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Aims Diagnosing long QT syndrome (LQTS) is challenging due to a considerable overlap of the QTc-interval between
LQTS patients and healthy controls. The aim of this study was to investigate the added value of T-wave morphol-
ogy markers obtained from 12-lead electrocardiograms (ECGs) in diagnosing LQTS in a large cohort of gene-
positive LQTS patients and gene-negative family members using a support vector machine.

...................................................................................................................................................................................................
Methods
and results

A retrospective study was performed including 688 digital 12-lead ECGs recorded from genotype-positive LQTS
patients and genotype-negative relatives at their first visit. Two models were trained and tested equally: a baseline
model with age, gender, RR-interval, QT-interval, and QTc-intervals as inputs and an extended model including
morphology features as well. The best performing baseline model showed an area under the receiver-operating
characteristic curve (AUC) of 0.821, whereas the extended model showed an AUC of 0.901. Sensitivity and specif-
icity at the maximal Youden’s indexes changed from 0.694 and 0.829 with the baseline model to 0.820 and 0.861
with the extended model. Compared with clinically used QTc-interval cut-off values (>480 ms), the extended
model showed a major drop in false negative classifications of LQTS patients.

...................................................................................................................................................................................................
Conclusion The support vector machine-based extended model with T-wave morphology markers resulted in a major rise in

sensitivity and specificity at the maximal Youden’s index. From this, it can be concluded that T-wave morphology
assessment has an added value in the diagnosis of LQTS.
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Introduction

Long QT syndrome (LQTS) is an inheritable disease entity associated
with malignant arrhythmias at young age. The diagnosis of congenital
LQTS, once based on a scoring system of clinical and electrocardio-
graphic parameters, is nowadays aided by genetic testing. Despite the

fact that genetic testing is currently relatively easy to perform at rela-
tively low costs, it remains of utmost importance to preserve genetic
testing to persons suspected for LQTS, since distinguishing patho-
genic variants from innocuous rare variants can be very complex.1 To
identify persons suspected for LQTS, gender-based cut-off values for
a prolonged QT-interval corrected for heart rate (QTc) are used.

* Corresponding author. Tel: þ31 43 388 1667; fax: þ31 43 388 1725. E-mail address: tammo.delhaas@maastrichtuniversity.nl
† The first two authors contributed equally to the study.

Published on behalf of the European Society of Cardiology. All rights reserved. VC The Author(s) 2018. For permissions, please email: journals.permissions@oup.com.

Europace (2018) 20, iii113–iii119 ORIGINAL RESEARCH
doi:10.1093/europace/euy243

D
ow

nloaded from
 https://academ

ic.oup.com
/europace/article/20/suppl_3/iii113/5202172 by H

asselt U
niversity user on 28 Septem

ber 2020

Deleted Text: <sup>(</sup>
Deleted Text: )


However, it is known that there is a considerable overlap in QTc-
intervals between LQTS patients and healthy controls,2 which ham-
pers the accuracy of diagnosing LQTS based on the QTc-interval.
Therefore, attempts have been made to take advantage of the fact
that LQTS patients often display abnormal responses to heart rate
changes. This led to diagnostic interventions in which the QT-interval
adaptation to heart rate changes is studied in for example the exer-
cise recovery phase,3 after epinephrine provocation,4 and the brisk-
standing-test.5 Although these interventions are known to improve
LQTS diagnosis, a clinician should have an LQTS suspicion before
such a test will be performed. Long QT syndrome patients with a
normal QTc-interval on the resting electrocardiograms (ECG) are
likely to never be tested with such an interventional diagnostic test
when they are not overt symptomatic or become part of a family
evaluation for LQTS and may therefore remain undiagnosed. Still,
they may have exaggerated risks for malignant arrhythmias under par-
ticular conditions such as the use of certain drugs and they may have
children who can become severely symptomatic when undiagnosed.6

Apart from a prolongation of the QTc-interval, variations in the
morphological configuration of the T-wave are seen in LQTS
patients, especially in relation to the LQTS type7,8 Previous studies
have indicated that using T-wave morphologies during interventions
as an additional marker to diagnose LQTS improves the diagnosis.9,10

These studies however not only require an intervention but their
manual assessment of T-wave morphologies makes the results clini-
cian dependent.

The added value of T-wave morphology markers in standard 10-s
12-lead ECGs to identify possibly LQTS genotype-positive patients
of the three most common mutated genes has not yet been investi-
gated. In this study, we use a machine-learning approach to investi-
gate the added value of T-wave morphology markers obtained from
baseline 10-s 12-lead body surface ECGs to diagnose LQTS in a large
cohort of gene-positive LQTS patients and their gene-negative family
members.

Methods

Study population
A retrospective cohort study consisting of LQTS patients and their family
was performed. Long QT syndrome patients with LQTS Type 1 (LQT1),
Type 2 (LQT2), and Type 3 (LQT3) were confirmed by pathogenic var-
iants in KCNQ1, KCNH2, or SCN5A, respectively. All genotype-negative
family members were used as healthy controls. All individuals were seen
in the Academic Medical Centre in Amsterdam, The Netherlands,

between January 1996 and December 2016. Inclusion criteria for this
study were an age >_16 years, known genetic testing results and digitally
available ECG at first presentation. Exclusion criteria were the presence
of any comorbidity that might affect ventricular re- and/or depolarization.
The study was approved by the Academic Medical Center Review Board
and informed consent of the individuals was waived as this study used ret-
rospective data from regular care.

Electrocardiograms
Digital standard 10-s 12-leads body surface ECGs performed in the initial
evaluation of individuals in the work-up during (family) screening for
LQTS were collected. Electrocardiograms were excluded when the ECG
contained too much noise and when all T-waves in all ECG leads were
too flat (<40 lV) to reliably assess the QT-interval and T-wave morphol-
ogy automatically. To avoid subjective evaluation of the T-wave morphol-
ogy, all ECG landmarks and T-wave morphology features were calculated
automatically using custom-made software in MATLAB (2017a,
Mathworks, Natick, MA, USA).

Data acquisition and pre-processing
Electrocardiograms were stored in the MUSE Cardiology Information
system (GE Healthcare, Little Chalfont, UK) and recorded with a 250
or 500 Hz sample frequency. All further processing and analyses in
this study were done using custom-made software in MATLAB.
Electrocardiograms were first filtered using a 2nd order bidirectional
Butterworth band pass filter (0.5–125 Hz) and a 2nd order infinite im-
pulse response notch filter (50 Hz). For all individual ECG leads, the resid-
uals of a median filter with a 600 ms window were regarded as baseline
deviations and were therefore subtracted from the individual leads to
correct for baseline wander. After filtering, a one-dimensional Fourier
up-sampling method was used to up-sample all ECG data to 1 kHz to as-
sure sampling frequency independency of our analysis.

Average complex construction
To obtain the best signal-to-noise ratio, analysis was done on average
complexes as constructed for all individual ECG leads. To construct these
average complexes, first all R-peaks were detected in the ECG lead with
the highest R-peak amplitude using a modified Pan-Tompkins algorithm.11

From these R-peaks, a trimmed mean RR-interval was calculated after
omitting 10% of the outermost RR-intervals. The individual complexes
were selected from the R-peak location minus 25% of the trimmed mean
RR-interval to the R-peak plus 70% of the trimmed mean RR-interval. All
complexes were aligned on the R-peak and an average complex was cal-
culated. Thereafter, to guarantee averaging of only reliable complexes, in-
dividual complexes with a correlation coefficient below 0.9 when
correlated with the average complex as well as complexes with an RR-
interval deviating more than 20% from the mean RR were excluded. If
less than 60% of all complexes in the whole ECG were preserved after
these exclusions, the entire ECG was excluded for further analysis.

Furthermore, if less than 60% of all complexes in an individual lead
were preserved, the entire lead was not taken into account since no reli-
able average complex could be constructed for this lead. Finally, if a com-
plex was excluded in more than three leads, the complex was excluded
for all leads to guarantee exclusion of e.g. ventricular extra systoles into
the average complex. A new and final average complex for all remaining
ECGs and leads was constructed from all remaining complexes. These fi-
nal average complexes were used for further analysis.

Landmark detection
To detect a global R-peak and QRS-onset, a root mean square ECG
(ECGRMS) was constructed from the precordial leads and the

What’s new?
• The added value of T-wave morphology markers on standard

10-s resting electrocardiograms to diagnose Long QT
syndrome (LQTS) was investigated.

• The cohort consisted of only genotype-positive LQTS patients
and their genotype-negative family members.

• T-wave morphology was assessed automatically.
• A support vector-machine was used to combine various T-

wave morphology markers to improve LQTS diagnosis.
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reconstructed unipolar leads VR, VL, VF as described previously by our
research group.12

The first component of principal component analysis (PCA1) using sin-
gular value decomposition on the unipolar ECG leads (VR, VL, VF, and
V1–V6) from R-peak þ 95 ms to R-peak þ 0.7� RR was used for global
T-wave landmarks. The peak of the T-wave (Tpeak) was detected as the
most prominent peak of PCA1. The start and end of the T-wave (Tstart

and Tend) were detected by means of an automated tangent method as
we described earlier.12 Tstart and Tend were manually checked by one ob-
server (T.D.) since multiple T-wave morphology features rely on a
proper determination of Tstart and Tend.

T-wave morphology features
All T-wave morphology features, apart from the T-wave heterogeneities,
were computed within the window Tstart and Tend for all unipolar ECG
leads. Most of the features were calculated for all ECG leads individually.
For some features, the ECGRMS, PCA1 or a vectorcardiogram (recon-
structed using the Kors matrix13) were used. All computed features are
listed in Table 1.

Support vector machine
Model inputs

Subjects were classified as gene-positive or gene-negative by a machine
learning classification model based on multiple inputs. Missing feature val-
ues were replaced by random values within mean ± standard deviation
for the corresponding feature. Two models were created: a baseline
model with age, gender, RR-interval, QT-interval, and QTc-intervals (QT
corrected for heart rate by the correction formulas of Bazett, Fridericia,
Framingham and Hodges14) as inputs and an extended model with all
morphology features as additional model inputs. The performance of the

baseline model was used to determine the optimal classification using
commonly used clinical parameters. The difference between the baseline
model and the extended model demonstrates the added diagnostic value
of T-wave morphology features.

Model training and testing

The model and training used in this study are summarized in Figure 1.
Both the baseline and the extended model were trained and tested on
the ECGs of the entire cohort using cross-validation. Therefore, the per-
formance of these models cannot be assessed directly. Hence, to investi-
gate the performances of the baseline and extended models, 100 similar
models were trained and tested on different randomized training and
testing sets. This was done for both the baseline and extended model.
Training sets consisted of a randomly chosen subset of ECGs containing
90% of all individuals, whereas testing sets consisted of the ECGs of the
remaining 10% of all individuals. The mean performance of these 100
models is the expected performance of the final model.15

For each of these 100 models, features with the highest discriminative
performance were selected by means of elastic net regularization, com-
bined with maximum likelihood estimation in a logistic regression model.
For a detailed description of elastic net regularization, we refer to Zou
and Hastie.16 In short, it combines two feature selection methods (lasso
and ridge regression). The mixing parameter (a) controls the ratio of
both feature selection methods to obtain an optimal combination. The
tuning parameter (k) controls the strength of this optimal combination.
For each of the 100 models, during feature selection, the value of a was
varied from 0 to 1, with steps of 0.2. For each value of a, 100 values of k
ranging from kmax (at which all features were excluded) to 10�4�kmax

were tested.17 For each k, the cross-validated error resulting from 10-
fold cross-validation on the current training set was noted. Subsequently,

....................................................................................................................................................................................................................

Table 1 T-wave morphology features summary

Features Short descriptions Calculated for References

Area Integral over time of T-wave amplitudes (can be negative and positive) VR, VL, VF, V1–V6 –

Absolute area Integral over time of absolute T-wave amplitudes VR, VL, VF, V1–V6 –

Length Interval between Tstart and Tend PCA1 –

Biphasicness 1� jAreaj
Absolute area (1 = biphasic, 0 = not biphasic) VR, VL, VF, V1–V6 –

Amplitude Height of the highest absolute value of the T-wave VR, VL, VF, V1–V6 –

Time to onset Interval between R and Tstart ECGRMS and PCA1 –

Skewness T-waves were treated as probability distribution curves and normalized

between 0 and 1 before calculating the skewness and kurtosis

VR, VL, VF, V1–V6 –

Kurtosis VR, VL, VF, V1–V6 –

Notch score According to Andersen et al. but applied on all unipolar ECG leads

instead of only on PCA1

VR, VL, VF, V1–V6 20

Asymmetry score VR, VL, VF, V1–V6 20

QRS amplitude Height of the highest absolute value of the QRS-complex VR, VL, VF, V1–V6 –

THV1–V3, THV4–V6 T-wave and R-peak heterogeneity = max ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
var Xð Þ

p
Þ in which X is an

n-by-3 matrix consisting of three ECG leads of length n.

V1–V3V4–V6 22

RHV1–V3, RHV4–V6

SP QRS-T angle Spatial peak QRS-T angle is the smallest angle between the vector at

maximal T-wave magnitude and the vector at maximal QRS complex

magnitude in the VCG

VCG 23

SM QRS-T angle Spatial mean QRS-T angle is the smallest angle between the mean vec-

tor of the T-wave and the mean vector of the QRS-complex in the

VCG

VCG 23

Tpeak-Tend interval Interval between Tpeak and Tend PCA1
24

ECGRMS, root mean square of the unipolar ECG leads; PCA1, the first component of principal component analysis; RH, R-peak heterogeneity; SM, spatial mean; SP, spatial peak;
TH, T-wave heterogeneity; VCG, vectorcardiogram.
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for each a, selected features resulting from the cross-validation were
noted at kmin (at the minimal cross-validated error) and k1SE (kmin þ 1
standard error).

For each of the 100 models, the area under the receiver-operating
characteristic curve (AUC) was calculated with each a at kmin and k1SE.
The combination of a and k with the highest mean AUC over all 100
models was selected as the optimal combination. This a and k were used
in the final model.

Statistical analysis
Values are expressed as mean ± standard deviation. The differences
between LQTS patients and genotype-negative family members were
analysed by independent samples T-test for parametric data, and v2 for
non-parametric data. A P-value <0.05 was considered statistically signifi-
cant. Receiver-operating characteristic (ROC) analysis was used to deter-
mine the performance of the models. Optimal performance was the
point with the maximal Youden’s index (YImax = sensitivity þ specificity
� 1). The area AUC, YImax, the sensitivity, and specificity were used to
quantify the ability of the different models to diagnose LQTS.

Results

Study population
Of all 1087 individuals with digitally available ECGs in their work-up
during (family) screening for LQTS, 284 were <16 years of age and
for 48 individuals genetic testing results were unknown. From the
remaining 755 individuals eligible for the study, 45 (6.0%) were ex-
cluded based on the presence of comorbidities that might potentially
affect ventricular re- and/or depolarization (varying from e.g. bundle
branch blocks, hypokalaemia, thalassaemia, angina pectoris, an

overlap syndrome with Brugada syndrome, to severe post-anoxic en-
cephalopathy). In 11 (1.5%) individuals the ECG registration con-
tained too much noise and in 6 (0.8%) individuals T-waves were too
flat (<40 lV) to reliably calculate Tstart and Tend. In 5 (0.7%) individuals
a correct ECG export failed. The remaining 688 (91.1%) individuals
were included in the analyses. The baseline characteristics of the
LQTS patients and the genotype-negative family members are shown
in Table 2. LQTS patients were statistically significant younger com-
pared with controls (41 ± 15 vs. 45± 15 years, P < 0.001).

Baseline model
The best performing support vector machine-based baseline model
was reached with an a of 1 and an elastic net tuning parameter
of kmin. The selected features for the baseline model were: age,

Figure 1 Schematic representation of the machine learning steps. A detailed description is given in the main text. a, mixing parameter.

.................................................................................................

Table 2 Study population characteristics

Number Gender

(male/female)

Age (years)

Control 348 163/185 45 ± 15

LQTS 340 143/197 41 ± 15

LQT1 129 52/77 42 ± 15

LQT2 160 72/88 42 ± 15

LQT3 51 19/32 40 ± 15

Age is given as mean ± standard deviation. All others are presented as counts.
LQTS, long QT syndrome; LQT1, LQT2, and LQT3, long QT syndrome Type 1,
2, and 3.
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QT-interval, and QTc-Hodges. The ROC of the best performing
baseline model is shown in Figure 2. ROC analysis resulted in an AUC
of 0.821 and a YImax of 0.523 with a corresponding sensitivity and spe-
cificity of 0.694 and 0.829, respectively.

Extended model
The best performing support vector machine-based extended model
with additional morphology inputs was reached with an a of 0.2 and
an elastic net tuning parameter of k1SE. ROC curves, shown in
Figure 2, resulted in an AUC of 0.901 (95% CI 0.893–90.87), a YImax

of 0.681 and a sensitivity and specificity of 0.820 and 0.861, respec-
tively. All selected features along with their coefficients are listed in
Table 3. Compared with the baseline model, AUC, sensitivity and spe-
cificity increased with 0.080, 0.126, and 0.032, respectively.

Clinical QTc-interval cut-off value
Figure 3 shows the amount of correctly and incorrectly classified
cases and controls based on the clinically used QTc-Bazett thresh-
olds (>480 ms18) as well as the classification results based on the ex-
tended model. As shown in Figure 3, the extended model resulted in
a major drop of incorrectly classified LQTS patients. It can also be
seen that some controls with a QTc-interval >480 ms are correctly
classified as control by the extended model. This all comes at the
cost of some controls (with QTc-interval <480 ms) being incorrectly
classified as LQTS patients.

Discussion

In this study, we compared a baseline model using age, gender, QT-
and QTc-interval as inputs with a model extended with T-wave mor-
phology inputs to investigate the added value of T-wave morphology
markers in the automated diagnosis of LQTS. Comparison of the
ROC analyses of both models showed that the model extended with
T-wave morphology markers resulted in a better performance. Since

both models were trained and tested similarly, this improved perfor-
mance can be attributed to the addition of the T-wave morphology
markers. In other words, it can be concluded that T-wave morphol-
ogy markers have an added value to age, gender, QT- and
QTc-interval in automatically distinguishing LQTS patients from
genotype-negative family members.

The sensitivity and specificity of respectively 0.820 and 0.861 from
our extended model might seem modest to previous studies, which
have suggested higher performances when using T-wave markers for
the diagnosis of LQTS.9,19–21 However, our study population con-
sisted of LQTS patients and gene-negative family members, whereas
other studies used healthy individuals as controls.9,19–21 In our study,
QTc-intervals of the control group showed considerable more over-
lap with QTc-intervals of LQTS patients than in the above-
mentioned studies. Therefore, distinguishing gene-positive LQTS
from gene-negative family members is more challenging than distin-
guishing LQTS patients from healthy controls. This might explain the
higher performance of other studies on the added value of T-wave
morphology markers to identify LQTS patients. Beside the use of dif-
ferent control groups, the ECG recordings also differed between our
study and the studies by Immanuel et al.19 and Chorin et al.9 who
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Figure 2 Average receiver-operating characteristic curves with
95% confidence intervals of the extended model (solid turquoise)
and the baseline model (dashed red).

.................................................................................................

Table 3 Selected features

Features b

Age �0.010

QT 0.002

QTc Bazett 0.0048

QTc Fridericia 0.0044

QTc Framingham 0.0043

QTc Hodges 0.0048

Area in VL, V2, V3 3.57 � 10�6, 1.69 � 10�7, and

1.96 � 10�6

Absolute area in VL, V1, V2, V3 2.28 � 10�6, 1.35 � 10�5, 1.45

� 10�6, and 4.13 � 10�6

Biphasicness in VR, V1, V2, V6 �0.51, �0.09, �0.08, and �0.35

Amplitude in VR, VF, V6 5.49 � 10�4, �1.54 � 10�5, and

�1.35 � 10�4

Length 0.011

Time to onset 0.007

Skewness in VR, VL, VF, V4, V5, V6 �0.69; �0.24; �0.47; �0.07;

�0.40; �0.21

Kurtosis in VL and V3 0.43; 0.30

Asymmetry in VR, VL, VF, V2, V3 1; 0.09; 0.07; 0.03; 0.21

Tpeak to Tend interval 2

QRS amplitude VL, VF, V1 �1.40 � 10�4, -2.99 � 10�4,

6.19 � 10�5

SP QRS-T angle 0.0018

RHV4–V6 �3.00 � 10-4

THV4–V6 0.0012

Note that all features are unitless because all features are normalized by subtract-
ing the mean and dividing the result by the standard deviation (with mean and
standard deviation determined from the training set).
RH, R-peak heterogeneity; SP, spatial peak; TH, T-wave heterogeneity.
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respectively studied 24 h Holter registrations and T-wave morpholo-
gies during the brisk-standing-test. Our study only used standard 10-s
12-leads body surface ECGs but could nevertheless show that T-
wave morphology markers in these ECGs improve prediction results.
Since these standard ECGs are widely available and are part of clinical
routine, the added value of being able to improve LQTS diagnosis
from these recordings is considerable.

In this study population, gene-negative family members were found
to be significantly older than LQTS patients. Not surprisingly, age was
a selected feature in both the baseline and the extended model and
contributed to the performances of both models. However, since
age was a selected feature in both models, the effect of age on the
performance of the models is expected to be the same. Therefore,
the comparison between both models is still valid.

Next to the support vector machine, a logistic regression model
and a bagged random forest were used. From these methods, the
support vector machine resulted in the best mean discriminative per-
formance and was therefore used as the machine learning method in
this study.

Although it has been shown that Hodges’ QTc-intervals are less
correlated with heart rate compared with the others,14 still QTc
Bazett is the most commonly used QTc correction method.
However, the fact that the only QTc method selected in our baseline
model was QTc Hodges might be another argument that the clinical
use of QTc Hodges should be re-evaluated.

Limitations
Although the results of this study are promising, there is still room
for improvement. First of all, no notch scores are used in our models.

Initially, we implemented the notch score as described by Andersen
et al.20 However, we found a very poor agreement between the
implemented notch score and visual inspection by two blinded
observers. We, therefore, chose to exclude this feature from all
models.

Secondly, Tstart or Tend have been manually adjusted for 30 out of
688 ECGs. Although the algorithm seems to work for the majority of
ECGs, improving these steps might be necessary before our algo-
rithm can be used on a larger scale.

A third potentially important limitation of the methodology used
in this study is that too flat T-waves (<40 mV) have to be excluded
even though flat T-waves are a specific aberrant T-wave morphology
feature in LQTS patients.

Next, the signal quality of these retrospectively collected ECGs
was relatively poor for this study purpose in relatively many cases.
Since all ECGs were recorded because of clinical routine, no special
care was taken to obtain very high quality ECGs. Though the rela-
tively poor ECG quality might be an explanation for the two limita-
tions described above, future directions should be to increase the
robustness of the model to deal with ECGs from daily clinical
routine.

Conclusion

In this study, we compared a baseline and an extended model includ-
ing T-wave morphology inputs, both using support vector machines,
to investigate the added value of T-wave morphology markers in di-
agnosing LQTS. The performances of both models showed that the

Figure 3 Graphic representation of the added value of the support vector machine with T-wave morphology features on clinically used QTc
thresholds. The amount of correctly and incorrectly classified gene-negative subjects (left) and gene-positive subjects (right) based on the QTc-inter-
val cut-off value of 480 ms (top panel) and based on our final support vector machine (bottom panel). The classifications as shown in this figure are
the average classifications for each individual patient at YImax obtained from 1000 Monte Carlo cross-validations.
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model extended with T-wave morphology markers resulted in a bet-
ter performance in the diagnosis of LQTS. Therefore, it can be con-
cluded that the use of T-wave morphology markers has an added
value to distinguish LQTS patients from genotype-negative family
members.

Conflict of interest: none declared.

References
1. Wilde AA, Ackerman MJ. Exercise extreme caution when calling rare genetic

variants novel arrhythmia syndrome susceptibility mutations. Heart Rhythm 2010;
7:1883–5.

2. Viskin S. The QT interval: too long, too short or just right. Heart Rhythm 2009;6:
711–5.

3. Sy RW, Werf C, Van Der Chattha IS, Chockalingam P, Adler A, Healey JS.
Derivation and validation of a simple exercise-based algorithm for prediction of
genetic testing in relatives of LQTS probands. Circulation 2011;124:2187–94.

4. Ackerman MJ, Khositseth A, Tester DJ, Hejlik JB, Shen W-K, Porter CJ.
Epinephrine-induced QT interval prolongation: a gene-specific paradoxical re-
sponse in congenital long QT syndrome. Mayo Clin Proc 2002;77:413–21.

5. Viskin S, Postema PG, Bhuiyan ZA, Rosso R, Kalman JM, Vohra JK et al. The re-
sponse of the QT interval to the brief tachycardia provoked by standing. J Am
Coll Cardiol 2010;55:1955–61.

6. Postema PG, Neville J, de Jong JS, Romero K, Wilde AA, Woosley RL. Safe drug
use in long QT syndrome and Brugada syndrome. Europace 2013;15:1042–9.

7. Lehmann MH, Suzuki F, Fromm BS, Frankovich D, Elko P, Steinman RT et al. T
wave ‘humps’ as a potential electrocardiographic marker of the long QT syn-
drome. J Am Coll Cardiol 1994;24:746–54.

8. Moss AJ, Zareba W, Benhorin J, Locati EH, Hall WJ, Robinson JL et al. ECG T-
wave patterns in genetically distinct forms of the hereditary long QT syndrome.
Circulation 1995;92:2929–34.

9. Chorin E, Havakuk O, Adler A, Steinvil A, Rozovski U, Werf C, van der et al.
Diagnostic value of T-wave morphology changes during “QT stretching” in
patients with long QT syndrome. Heart Rhythm 2015;12:2263–71.

10. Khositseth A, Hejlik J, Shen WK, Ackerman MJ. Epinephrine-induced T-wave
notching in congenital long QT syndrome. Heart Rhythm 2005;2:141–6.

11. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed
Eng 1985;32:230–6.

12. Hermans BJM, Vink AS, Bennis FC, Filippini LH, Meijborg VMF, Wilde AAM et al.
The development and validation of an easy to use automatic QT-interval algo-
rithm. M Baumert, ed. PLoS One 2017;12:e0184352.

13. Kors JA, Herpen G, van Sittig AC, van Bemmel JH. Reconstruction of the Frank
vectorcardiogram from standard electrocardiographic leads: diagnostic compari-
son of different methods. Eur Heart J 1990;11:1083–92.

14. Luo S, Michler K, Johnston P, MacFarlane PW. A comparison of commonly used
QT correction formulae: the effect of heart rate on the QTc of normal ECGs.
J Electrocardiol 2004;37:81–90.

15. James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning. An
Introduction to Statistical Learning: With Applications in R. New York, NY: Springer
New York; 2013.

16. Zou H, Hastie T. selection via the elastic-net. J R Stat Soc B 2005;67:301–20.
17. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear

models via coordinate descent. J Stat Softw 2010;33:1–22.
18. Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C et al. Executive sum-

mary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and man-
agement of patients with inherited primary arrhythmia syndromes. Europace
2013;15:1389–406.

19. Immanuel SA, Sadrieh A, Baumert M, Couderc JP, Zareba W, Hill AP et al. T-
wave morphology can distinguish healthy controls from LQTS patients. Physiol
Meas 2016;37:1456–73.

20. Andersen MP, Xue JQ, Graff C, Hardahl TB, Toft E, Kanters JK et al. A robust
method for quantification of IKr-related T-wave morphology abnormalities.
Comput Cardiol 2007;34:341–4.

21. Sugrue A, Noseworthy PA, Kremen V, Bos JM, Qiang B, Rohatgi RK et al.
Automated T-wave analysis can differentiate acquired QT prolongation from
congenital long QT syndrome. Ann Noninvasive Electrocardiol 2017;22:1–7.

22. Tan AY, Nearing BD, Rosenberg M, Nezafat R, Josephson ME, Verrier RL.
Interlead heterogeneity of R- and T-wave morphology in standard 12-lead ECGs
predicts sustained ventricular tachycardia/fibrillation and arrhythmic death in
patients with cardiomyopathy. J Cardiovasc Electrophysiol 2017;28:1324–33.

23. Oehler A, Feldman T, Henrikson CA, Tereshchenko LG. QRS-T angle: a review.
Ann Noninvasive Electrocardiol 2014;19:534–42.
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