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Abstract

There is a demand for automation in the professional audiovisual industry. One of those things

is automating a follow spot which is normally operated manually. Some similar systems have

already been released, but this thesis will tackle the problem from a different angle. The approach

is to use a field-programmable gate array (FPGA) as a central controller. During the research,

support was offered from DSV-Rent and the research group ES&S of KU Leuven.

The thesis works in a step-by-step manner. There is first a literature study that explores which

available positioning systems are suitable for use in a follow spot. The study also mentions how

the communication and processing of the data will proceed. Secondly, the structure of the system

is discussed. It elaborates on the implementation of the code on the FPGA. Next, the overall

setup is given. Each component is briefly explained to give an idea of the working principle of the

designed system. Finally, the results are presented and discussed. It is shown that the system

can interpret location data successively and convert it without introducing excessive delay.

However, the proof-of-concept implementation is still in a development phase and does not yet

offer good user-friendly qualities. Additionally, it is not yet possible to make a comparison with

existing systems as no tests have been done in the working environment due to the worldwide

pandemic. The proof-of-concept implementation that is realised in this thesis is thoroughly tested

and shows promising results.





Abstract in Dutch

Er is vraag naar automatisering in de professionele audiovisuele industrie. Een van die din-

gen is het automatiseren van een volgspot die normaal gesproken handmatig wordt bediend.

Gelijkaardige systemen zijn al beschikbaar maar deze masterthesis zal het probleem vanuit een

andere hoek benaderen. De aanpak is om een field-programmable gate array (FPGA) als cen-

trale besturing te gebruiken. Tijdens het onderzoek werd ondersteuning geboden door DSV-

Rent en de onderzoeksgroep ES&S van de KU Leuven. Eerst is er een literatuurstudie dat

positioneringssystemen vergelijkt. Het onderzoek vermeldt ook hoe de communicatie en verw-

erking van de gegevens zal verlopen. Ten tweede wordt de structuur van het systeem besproken.

Het behandelt de implementatie van de code op de FPGA. Vervolgens wordt de proefopstelling

doorgenomen. Elk onderdeel wordt kort uitgelegd om een idee te geven van het werkingsprincipe

van het ontworpen systeem. Tenslotte worden de resultaten weergegeven en besproken. Er wordt

aangetoond dat het systeem locatiegegevens sequentieel kan interpreteren en converteren zonder

grote vertragingen op te lopen. De proof-of-concept implementatie bevindt zich echter nog in

een ontwikkelingsfase en is daarom niet gebruiksvriendelijk. Bovendien is het nog niet mogelijk

om een vergelijking te maken met bestaande systemen omdat er door de wereldwijde pandemie

geen praktijktesten mogelijk waren. De gerealiseerde proof-of-concept implementatie in deze

masterproef werd grondig getest en laat veelbelovende resultaten zien.





Chapter 1

Introduction

The world is constantly innovating. Many applications have been developed that are still un-

used in all kinds of branches of industry. This master’s thesis will explore the use of a field-

programmable gate array (FPGA) in the professional audiovisual (AV) industry. The FPGA

offers the flexibility to quickly develop a controller for the AV industry and receives external

signals to apply further processing such as tracking. In this study, it is important to demonstrate

the benefits of an FPGA. Hopefully there will be more interest in developing applications with

FPGAs to support future innovation. In the current chapter, an overview will be given about

the situation, a problem definition of this project, as well as the objectives and methods.

1.1 Context

The master’s thesis is in cooperation with DSV-Rent located in Alken, Belgium and the research

group “Embedded Systems & Security”.

DSV-Rent is a company that manages the AV aspects for any type and size of rental project.

One of the aspects of AV is lighting. Concerts and performances typically take place in dark

environments. Therefore, a followspot is used to accentuate the performers in front of an audience.

In most of the cases, these followspots are characterized with a pan, tilt, change size, beam width,

and color. Nowadays, the properties of the followspot are manually controlled by the followspot

operator. These operators are often positioned near the ceiling of the arena. Recently, the

AV industry has been looking for an upgrade. A system where the operator can observe the

stage with a camera and remotely control the beam of the followspot. This can be even further

improved by using an automatic person tracking system that tracks the performances without

the help of an operator.

Embedded Systems & Security is a research group of the KU Leuven. ES&S conducts research

on embedded systems with extra focus on the security of digital data applications and efficient

implementation. They provide technical support during the project. This includes lending the

FPGA, positioning system and measuring equipment. With all this material, there was also the

necessary advice to get started.



1.2 Problem statement

For the operation of the positional control and settings of followspots lighting, an operator should

be present. An automatic spotlight control process is an innovation that can improve operational

reliability and cost savings. Furthermore, the operator can focus more on the effects (i.e. focus,

color) of the beam instead of pan and tilt of the followspot. A number of similar systems already

exist [1–3], but they are often too expensive or inaccessible for small businesses. That is why

there is a need for an affordable and quickly deployable system.

The automated person tracking system designed in this master’s thesis can replace the manual

pan and tilt control from the followspot operator. The improved system automatically determines

the position of the performer with which it calculates the required changes in pan and tilt of the

followspot. The communication between the stage light and automated person tracking system is

performed using the industry-standard DMX512-A protocol defined by ANSI in [4]. The whole

situation of AV should be taken into account, because the system can interfere with external

signals. Because, he system will be used on different locations a portable design should be

considered. Finally, the system must also guarantee stability and reliability to avoid breakdowns

or unwanted surprises during a performance.

1.3 Objectives

The main objective of this master’s thesis is to do a feasibility study on a person tracking system

on an FPGA in stage lighting and entertainment industry. This can be split into a series of

smaller objectives. The first objective is to conduct research into the different tracking systems

and determine which are suitable for use in the professional audiovisual industry. The second

objective is how to integrate this tracking system into a central system (FPGA). In concrete

terms, this means looking at the interface between two systems.

Then there is the third objective where the focus is on how to design the controller. This will

go deeper into the necessary logic functions of the FPGA. The penultimate objective is the

question of how the central system can control the follow spot. The last objective is to test the

obtained product. This phase will establish the properties of the product along with its strengths

and weaknesses. The research question can be considered successful if the realized product has

the functionality to have a spotlight follow a person. The product should be able to guarantee

operational reliability and cost savings for the user. In this way, the subject is a candidate for

more development in the future.

To give a concrete meaning to a functional followspot, the following specifications are specified:

1. a person tracking system with ±10 cm precision,

2. an update rate of at least 10Hz to ensure smoothness,

3. easily integrated with other systems without causing hindrance,

4. competitive cost to compete in the market.

2



1.4 Methods and materials

Initially, a suitable local positioning system will be sought. This system must have an interface

that is easy to integrate into an application. This will lead to use of an existing local position-

ing system (LPS) from Marvelmind Robotics (California, Unites States of America). The LPS

includes software that shows the functionality of the product to the user. It also provides a well-

documented manual which shows the available instructions of the hardware. Starting from this

hardware, a Python example from Marvelmind’s GitHub will be used to retrieve raw data from

the device. With the appropriate knowledge regarding the Marvelmind’s system, data transfer

protocols supported by the hardware will be explored. The two options are (1) Serial Peripheral

Interface (SPI) and (2) Universal asynchronous receiver-transmitter (UART). The best suited

protocol will be selected to then implement it on a FPGA system.

The FPGA itself is a Zynq-7000 SOC on a Xilinx ZedBoard. The FPGA system will eventu-

ally direct the stage lighting and be the heart of the system. From this point, work will be

done simultaneously on transforming the coordinates into angles and communicating with the

followspot. The standard communication protocol commonly used in effects and stage lighting

is DMX512-A. More information will be gathered about this in order to be able to implement

this in the FPGA’s hardware. At the same time, it is investigated how a trigonometric function

is calculated in digital logic in order to calculate the pan and tilt angles of the followspot. After

this, it is time to deploy a first prototype of the system. It is aimed to have it control the pan and

tilt of a stage light by outputting a DMX512-A signal. This is followed by connecting the LPS

system, or a system that imitates a LPS, to the FPGA to let the design calculate the angles. The

DMX512-A signal at the output will then be controlled autonomously to transmit the correct

angles. The inputs and outputs will be adjusted to have a correct transition of the voltage levels.

During the design process, simulations in Vivado Design Suite and the use of an oscilloscope or

logic analyzer will be used to provide feedback to the design. A final concept visualized in Unity

will be used to evaluate the final results. The LPS system can be temporarily replaced by an

Arduino to mimic the operation.

1.5 Thesis structure

The thesis has the following structure. First, chapter 1 introduces the subject. Chapter 2 will

discuss the studies that have been done beforehand to provide more information on the subject.

This provides an overview of the different local positioning systems and which systems may

be suitable for person tracking on a stage. An algorithm is also explained that shows how,

for example, a calculator can calculate trigonometric functions. The last two parts of chapter 2

briefly explain the operation of UART and DMX512-A. Chapter 3 is a transition from theoretical

knowledge to practical implementation. The chosen positioning system is explained and the

hardware implementation is informed to the reader. The results are discussed in chapter 4. This

chapter also shows feedback in the form of a simulation. Chapter 5 provides the conclusion of the

final product. In this chapter self-reflection is done and the future possibilities for the subject

are discussed.
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Chapter 2

Literature study

It is important to conduct an extensive literature review before continuing with the research

itself. Having a good knowledge of the subject and knowing the current available techniques is

an important factor in planning and designing an application prototype. A person tracker for

a spotlight spans several disciplines. Therefore, each of these subjects is in the literature study.

First, positioning will be discussed, with more explanation about the available technologies.

This boils down to explaining the advantages and disadvantages of each technology and shows

which technology fits well with the design of an automatic follow spot system. Subsequently,

the literature study provides more information about the UART protocol, about the DMX512-A

standard and about how the AV industry uses DMX512-A to control multiple devices. Finally,

a technique to calculate computational angles is also discussed.

2.1 Local positioning systems

In this section, some Local Positioning Systems (LPSs) are discussed together with their field

of operations. To provide some more insight into how these systems work, some measuring

principles are also discussed, as well as the positioning algorithms that use them [5].

2.1.1 General information

The person tracker is intended to be used on a stage. This is a rather limited area but comes

with the requirement that the location needs to be reported quite accurately. Using a satellite

base positioning system like a GPS or Galileo, will not be fit for our application because it does

not meet our requirement for high precision. Therefore, the focus will be on indoor positioning

systems which are targeted more towards a limited area to cover but with greater precision.

Using an LPS on a stage has some challenges:

• Multipath effects caused by the reflection of walls and object like stage equipment;

• No Line-Of-Sight (possible blind spot);

• High attenuation and signal scattering originated by high density objects;

• Quick temporal changes due to moving object or people;



• Need for high accuracy, precision and low latency (spotlight mismatch would be noticeable

for audience).

Covering a small area with fixed structure also has some advantages:

• Small area to cover means less beacons needed;

• If indoors ⇒ minimal weather influence;

• Fixed geometric constraints;

• Usable infrastructure (electricity, Internet, walls for mounting);

• Lower kinematics (the velocity of the tracking objects being generally slow).

2.1.2 Requirements and parameters of an LPS

Each technology that exists has its own unique pros and cons. In order to determine which

technology would be a great fit for our project, it would be a great start to look into their

specifications. First, it is important to know the requirements of the application in order to

define the exact specifications that are to be looked for. Therefore, a list for the most common

requirements of an application from a user’s perspective is provided by [5]:

• Accuracy

• Coverage area

• Cost

• Infrastructure (existing WiFi network, etc)

• Update rate

– Periodic: specific interval (Hz)

– Triggered by a user request

– Triggered by a certain event

• Required output data

• Interface (graphic display, communication

protocol, etc)

• Quality of service / Trustworthiness

– Stability: malfunctions which might

lead to exceeding the fault tolerance

– Availability: continuity in time

• Scalability

When looking from the perspective of the designer of the local position system, there are some

additional technical specifications to keep in mind:

• Type of technology (RF, optical, magnetic, etc)

• Positioning algorithm used

• Measuring principles

• Wavelength

• Measure types (signal strength, direction, acceleration, etc)

The following sections will elaborate on the most relevant aforementioned specifications.

2.1.3 Measuring principles

This section gives a short overview of different techniques to capture a distance or angular

measurement which will be a foundation for the positioning methods discussed later on. The

beacons or stationary nodes are usually fixed locations with known coordinates.

A more in-depth description will be given on:
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1. Time of Arrival (ToA)

2. Time Difference of Arrival (TDoA)

3. Round Trip Time (RTT)

4. Phase of Arrival (PoA)

5. Angle of Arrival

6. Doppler ranging

Time of Arrival (ToA)

This method is based on knowing the exact time when a signal is sent, when the signal arrives

and the speed at which the signal travels. By multiplying the speed with the difference in time,

the approximate distance between the beacon and the target can be calculated. The possible

location can be displayed as a sphere around the beacon. In order to predict the exact location,

an additional two beacons are needed with respective circles so the intersection of these circles

narrows down the position to 1 point. The velocity of the signal is often just the speed of light

which uses c as a symbol. However, the electromagnetic propagation speed can easily be slowed

down by the presence of certain obstacles. An example is the presence of concrete which can

more than halve the propagation speed.

d = c× (tarrival − tsent) (2.1)

Figure 2.1: Time of arrival principle visualized

Time Difference of Arrival (TDoA)

This method does not need to know when the signal was sent. Only the time of arrivals measured

on the beacons is used to calculate the time difference between beacons with ∆d = c×∆t. This
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time difference between two beacons can then be represented as an hyperbola [6].

∆d =
√

(x2 − x)2 + (y2 − y)2 −
√

(x1 − x)2 + (y1 − y)2 (2.2)

With (x1, y1) and (x2, y2) being the coordinates of 2 beacons. Just like ToA, a total of 3 beacons

are required to get a 1-dimensional result. The advantage of TDoA in comparison to ToA, is the

fact that the target clock does not have to be accurately synchronised with the beacons.

Figure 2.2: Time difference of arrival principle visualized

Round Trip Time (RTT)

Round trip time is basically measuring the time taken by the signal to travel from transmitter

to receiver and back. The main advantage of implementing this principle is having no need

for synchronization between the devices. No need for synchronization means that there is low

complexity and cost when designing hardware that utilises RTT. Having an easy implementation

comes at a cost: measurements over multiple devices need to be executed sequentially which

causes an increased latency. RTT will usually not be used when the application requires a high

update rate.
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Figure 2.3: Round trip time principle visualized

Phase of Arrival (PoA)

Phase of arrival measures the distance using the received carrier phase. In order to solve the

phase wrapping problem, one could use multiple frequencies to evaluate. On the other hand

one can choose the wavelength accordingly to the maximum distance. As such, the phase stays

between -180 and 180 degrees. Mostly, this is not a valid option when following the European

table of frequency allocations [7] regulations.

A simple example is shown in Figure 2.4. It represents a signal sent by the target to a beacon

and the phase is measured of both the target and the beacon. This measurement can be plotted

on a sine-wave and shows that there is a phase difference between the two signals. Accordingly,

the traveled distance can then be derived from the phase difference.

Figure 2.4: Phase of arrival principle visualized
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Angle of Arrival

Angle of arrival is used to determine the incidence direction. It has multiple antenna in a grid, and

can measure a difference in phase between each of these antenna which provides information to

calculate the angle theta. More details are available in the article of Wielandt and De Strycker [8,

p. 7].

Doppler ranging

This principle is only used to determine the speed between receiver and transmitter. When trans-

mitting a signal while travelling at a certain speed, waves are “compressed” or ”decompressed”

and a receiver might perceive this as a signal with a higher or lower frequency, respectively. This

property can be used at the receiver to calculate the speed difference with which the transmitter

is travelling. If the receiver is stationary, this results in the speed of the transmitter.

2.1.4 Positioning methods

This section gives a short overview of different techniques for positioning. A more in-depth

description will be given on:

1. Cell of Origin (CoO)

2. Centroid Determination

3. Multilateration

4. Polar Point Method

5. Fingerprinting

6. Dead Reckoning

Cell of Origin (CoO)

Cell of origin defines the locations of a mobile device merely on its presence in a certain area.

Multiple cells can be available to a device, but the one with the strongest signal is the one which

will be assigned to the device’s location. A common example is a phone cell tower that can

help with identifying the location of a phone. The nature of this method also indicates that the

technique is not really intended to be accurate. Therefore, it is mainly used when only a rough

estimate is needed.
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Figure 2.5: Cell of origin principle visualized

Centroid Determination

A mobile station receives signals from multiple beacons. Each signal has its own Received Signal

Strength Indicator (RSSI). It is possible to calculate a weighted centroid location with the RSSI

used as a weight in the calculation. An example is shown in Figure 2.6. There are two orange

beacons and one black tracking device. The signal strength of the second beacon will be stronger

because it is much closer to the target. This will lead to having more impact of the X2 coordinate

in equation (2.3) so the location of the mobile device will be located closer to beacon 2.

Xtarget =
RSSI1 ×X1 +RSSI2 ×X2

2
(2.3)

Figure 2.6: Centroid determination method example

Multilateration

Multilateration is the determination of the position of an object by using multiple distance

measurements coming from different nodes. These distance measurements can be techniques like
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ToA, TDoA and RTT which are briefly explained in Section 2.1.3.

Polar Point Method

Only one station is needed. This station delivers a distance measurement and an angle measure-

ment. The location is then defined by these 2 parameters.

Figure 2.7: Polar point method

Fingerprinting

It relies on the recording of a parameter that changes with distance. Usually, the signal strength

is used from several nodes, beacons or access points. Firstly, the target must go around and

store the measurements of signal strength with known location coordinates. Consequently, a

measurement with location (x,y) with a given RSSI of each node will be stored. This will be

performed for multiple locations until sufficiently data is present. This data will be stored in a

database which will be used when the systems comes “online”. Once the system comes online

and the mobile devices want to know its location, it will measure the RSSI of each node and

compare it to the database. The best match will be used as location coordinate of the mobile

device.

This technique is often used with Wi-Fi. One of the main disadvantages is that a change in the

environment can cause a complete different fingerprinting map. In order to restore this, one must

update the database again.

Dead Reckoning

Using a previously know position and measuring the velocity over time of the mobile station,

dead reckoning is able to give an estimation of a position. The main problem of this method

is that the previously given location will be used. No location measurement is perfect with the

consequence that that every new location is built upon the previous made errors. Therefore,

deviations of positions are cumulative and may cause a substantial error after few iterations.

Dead Reckoning is mostly combined with absolute positioning methods and a Kalman filter. An

example of dead reckoning can be the situation of a car driving into a tunnel and losing its GPS

signal. The Inertial Measurement Unit (IMU) can be used to predict the location knowing the

car’s initial position and the speed it is driving at.
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2.1.5 Local positioning technologies

Positioning systems always use a type of medium to determine a position. The most common ones

are electromagnetic waves. However, there is also a different approach like using sound waves.

When trying to determine the fitting positioning technology, it is recommended to compare the

performance parameters of the technology with the user application. Figure 2.8 shows several

technologies where the 2 most commonly important requirements are plotted on the x and y

graph respectively accuracy and coverage.

Figure 2.8: Overview of indoor technologies in dependence on accuracy and coverage

Source: [5]

Starting from this, there is already a good indication of what types of technologies need to be

addressed further when keeping our application in mind. Therefore, a small summary is provided

of possible candidates. It is important to keep in mind that many of these technologies are able

to implement a wide variety of positioning methods and even use a combination of multiple

methods. Combining methods gives options to play with the strengths of each method and try

to reduce the disadvantages that comes with each and every positioning method.

Wireless Local Area Network

A Wireless Local Area Network (WLAN) or also known as Wi-Fi is a common infrastructure

these days. It is very common in a lot of devices and makes it a cheap technology to set up a

positioning system. One of the major hurdles is the high signal attenuation. This can lead to

having to use a high amount of access-points to compensate for the signal loss. The positioning

methods often use the RSSI of an access point with the most common positioning method being

the fingerprinting method as stated in [9], [10]. However, the accuracy is only in the order of

meters.

Bluetooth

Bluetooth has similar benefits as Wi-Fi. It is common in many devices and provides a low

cost solution. However, the main disadvantage is the shorter range of Bluetooth. This has the
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outcome that even more beacons are needed for the same coverage area in comparison with

WLAN. Nonetheless, it is more power efficient. It gives the option to operate beacons with a

battery as opposed to Wi-Fi. This is especially the case with Bluetooth Low Energy (BLE)

which can operate months with a single coin-cell battery. One of the most common methods is

the use of cell of origin. A final remark is that the accuracy is only good enough to detect the

presence of the target at room level.

Ulta-WideBand

Ultra-WideBand (UWB) is a short-range technology with a high bandwidth. A signal is de-

clared as a UWB signal when the bandwidth occupies more than 500MHz or 20% of the carrier

frequency. There are additional specifications which a UWB signal needs to comply with in

order to maintain its legal state when unlicensed. These specifications are described by the Eu-

ropean Communications Committee (ECC) [11] to avoid interference with other radio signals.

This states for example that the signal is restricted between 6.0 GHz and 8.5 GHz. UWB has

a better penetrability through walls and has less problems regarding a multipath. It results in

a lower demand of transmitters in comparison with a technology like WLAN which suffers from

high signal attenuation. UWB is an important technology because the precision is substantially

better than most. Indoor applications like for example robotic movement inside a storage area

will often need high accuracy. UWB is the desired technology because most implementations

provide an accuracy below a meter down to several centimeters. There are also techniques like

passive UWB localisation which uses the retrieved scattered waves which has the possibility to

detect scattered waves reflecting of a person.

It is important to point out that the range is limited to 100m for safety by the ECC. Additionally,

when trying to consider the costs, this system is not using any existing or common cheap infras-

tructure like Bluetooth or WLAN. This can be an extra unnecessary cost when low accuracy is

needed for the application.

Sound

Sound is another interesting technology to use when trying to locate a position. It uses me-

chanical waves as a medium and propagates at lower speed than electromagnetic waves. Most

positioning systems use ultrasonic waves. However, there are some systems that use the audible

frequency range. It is mainly used indoor because there are environmental influences which can

be problematic. The first major problem can be temperature. Temperature influences the speed

of sound which can lead to performance degradation when the system only uses the standard

speed of sound which is 344 m/s. This change in speed can be estimated with equation (2.4).

vair = (331.3 + 0.606 · T ) m/s (2.4)

Another detrimental effect is wind. Here, there is also Doppler shifting of the frequency that

gives inconsistencies. The system’s coverage area is only between 10 to 30 meters. However,

it is possible to get centimeter accuracy. This means that it competes with UWB in terms of

high precision and relatively large coverage area applications. The advantages of using sound is

the fact that a time calculation becomes easy to execute. It can use a time difference of arrival

approach when broadcasting an RF and ultrasound signal at the same time. The receiver can

listen to these two signals and extract the distance by using the time difference of arrival with a

14



simple equation:

∆t =
distance

vair
− distance

vRF
(2.5)

The propagation speed of light is fast in comparison with sound that the second term in previous

equation can be omitted. A last important note is the rather slow update rate of a sound

positioning system. This value can vary between 10Hz and 20Hz but decreases as the distance

between beacon and target increases.

2.1.6 Summary

Table 2.1: Overview of the technologies

Accuracy Common measuring principals range update rate suitability
WLAN - fingerprinting - ++ -
Bluetooth – CoO – ++ -
UWB + T(D)oA / RTT ++ ++ ++
Ultrasound ++ TDoA + - +

With a small overview of types of technologies and which methods, principles, advantages and

disadvantages, it is now possible to understand what type of local positioning system should

suit a certain application. The question remains which system on the market will suffice. It is

important to look at the requirements and identify the available options. The application of a

person tracker for stage lighting will have a heavy focus on accuracy and update rate to ensure

smoothness. This section indicated that UWB and sound are two possible contenders.

2.2 CORDIC

In order to retrieve the pan and tilt from the coordinates, it is necessary to implement a way to

calculate trigonometric functions. An ideal solution is to use CORDIC which stands for COor-

dinate Rotation DIgital Computer. This method is relatively easy to understand and implement

in Verilog [12], [13]. It is based on the principle of vector rotation and increasing the accuracy

with each iteration as long as it is implemented in memory beforehand. First, the algorithm for

calculating the sine and cosine functions is explained. Thereafter, a brief explanation is given to

adapt this to calculate the arc tangent of an angle.

A basic vector representation is shown in Figure 2.9. To calculate vector Vn which is V0 rotated

over θ, the following equations can be used:

Xn = X0cos(θ)− Y0sin(θ)

Yn = Y0cos(θ) +X0sin(θ)
(2.6)

One can also rewrite these equations as:

Xn = cos(θ)[X0 − Y0tan(θ)]

Yn = cos(θ)[Y0 +X0tan(θ)]
(2.7)
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Figure 2.9: Rotation of vectors

Now in the CORDIC algorithm there will be restrictions to the angle so that tan(θ) = 2−i.

Examples of the angles are given in Table 2.2.

Table 2.2: Example of tangent angles for the CORDIC algorithm.

i tan(θ) = 2−i θ

0 1 45◦

1 1/2 26.565◦

2 1/4 14.036◦

3 1/8 7.125◦

4 1/16 3.576◦

... ... ...

Rewriting the cosine as a function of tangent and using the angle restriction will give us the

following equation:

cos(θ) = 1√
1

cos(θ)2

= 1√
cos(θ)2+sin(θ)2

cos(θ)2

= 1√
1+tan(θ)2

= 1√
1+tan2(tan−1(2−i))

= 1√
1+(2−2i)

= Ki

The value of Ki is only determined by i. Ki is therefore independent of the rotation, direction of

the rotation, X and Y of each iteration. Ki replaces cos(θ) but does not account for the possible

negative value of the cosine function (cos(θ) lays between -1 and 1). Therefore, a parameter di
will complete the replacement of the cosine function. With the introduction of Ki together with

the parameter di to control the direct of the vector rotation, it is possible to rewrite the vector

equation without a trigonometric function as displayed at (2.8).
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Xn = Ki[X0 − Y0di2−i]

Yn = Ki[Y0 +X0di2
−i] with di = ±1

(2.8)

Note that the restrictions on θ have been introduced specifically so that in the calculation of Xn

and Yn, a bit shift to the right is used instead of calculating the tangent. Xn and Yn will later on

represent the new coordinates for each iteration step (or rotation step). The question remains

now, how does an angle other than the ones listed in the Table 2.2 get calculated ? With equation

2.8, it is possible to do iterative operations that essentially perform a series of successively smaller

rotations that will converge to the correct angle. Accuracy is dependent on how many iterations

are done. Each iteration uses a value that is stored in the Lookup table (LUT) since the row

number of the lookup Table corresponds to the current iteration number. Every additional

iteration increases the convergence to the actual angle and thus improves accuracy. The amount

of entries in the Table is chosen by the required precision of the application. However, that is

not the only thing to keep in mind. The bit shift right in equation 2.8 means that there is no

point in doing more iterations than the bit width of X and Y. So when doing N iterations it is

important to choose a LUT with a length longer than at least the iteration count and a bit width

for X and Y which is also at least as long.

Table 2.3 shows the iterative step towards a desired angle of 20 degrees. With each step there is

a calculation of X and Y according to Equation 2.8. The rotation direction or di is evaluated

by whether the current angle is greater or smaller than 0.

Table 2.3: CORDIC example of calculating 20◦.

i tan(θ) = 2−i θ = atan(2−i) Current angle Rotation

0 1 45◦ 20◦ −45◦

1 1/2 26.565◦ −25◦ 26.565◦

2 1/4 14.036◦ 1.565◦ −14.036◦

3 1/8 7.125◦ −12.471◦ 7.125◦

4 1/16 3.576◦ −5.346◦ 3.576◦

... ... ... ... ...
19 ... ... −0.000195◦ ...

It is important to realize that the factor Ki is the same for each step because the tangent is

the same for both the positive and the negative angle. Another important feature of Ki is the

occurrence of convergence after several iterations seen at Equation 2.9. This allows the ability

to easily remove the K factor from the algorithm later on by applying the inverse of K at some

step in the process. K will be approximately 0.6073 when the iteration count N is at least seven.

Ki =
N∏
i=0

(
1√

1 + (2−2i)

)
(2.9)

⇒ Ki = (0.7071)×(0.8944)×(0.9701)×(0.9923)×(9981)×(0.9995)×(0.9999)×(1)×(1)... = 0.6073

With the basics explained, it is possible to give a summary of the algorithm:
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Xi+1 = [Xi − Yidi2−i]

Yi+1 = [Yi +Xidi2
−i]

Xfinal = K ×XN

Yfinal = K × YN
Anglei+1 = Anglei − ditan−1(2−i)

(2.10)

with N ≥ 7 in order for K = 0.6073 and di = ±1

This algorithm basically computes a vector rotation without any trigonometrical functions and

can therefore be represented as equation 2.6. If X is equal to 1 and Y is equal to 0, equation 2.6

becomes:

Xn = cos(θ)

Yn = sin(θ)
(2.11)

A final remark is that only an angle between −90◦ ≤ θ ≤ −90◦ can be calculated with this

algorithm. A pre-rotation is required in order to calculate different angles. This is something

that will be pointed out later on in the Verilog implementation on the FPGA in section 3.1.3.

The CORDIC method can be adapted to calculate inverse trigonometric functions, hyperbolic

functions, logarithms and more as mentioned in [14]. In this project it was necessary to process

the coordinates coming from a positioning system and convert it to an angle. To calculate the

pan and tilt from the spotlight, the arctangent of X&Y and X&Z is taken, respectively. The

CORDIC method that has been previously explained will need some adjustment to change it to

being able to calculate the cosine and sine of an angle to calculate the arctangent when X and

Y are given as input. The algorithm will look like Equation 2.12. Instead of using the angle as

an input and calculating X and Y, this method will use the X and Y as an input and calculate

an angle. The vector will slowly converge by fluctuating around zero degrees which is done by

using the sign of the Y vector. The algorithm is keeping track of the change in angle with each

iteration and will represent the arctan of X and Y. Unlike the previous method of calculating the

sine and cosine, it is not necessary to compensate for the factor K because K does not influence

the outcome of the angle.

Xi+1 = [Xi − Yidi2−i]

Yi+1 = [Yi +Xidi2
−i]

Anglei+1 = Anglei − ditan−1(2−i)

(2.12)

with di = 1 when Y is negative and di = −1 when Y is Positive

2.3 UART

The Universal Asynchronous Receiver and Transmitter (UART) uses a data protocol to send

data over a serial line, as illustrated in Figure 2.10. It contains a transmitter and a receiver.
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The transmitter is a shift register that loads data in parallel. This is followed by shifting the

bits one by one at a specific frequency. The receiver shifts data bit by bit in. The serial line

is logic 1 when there is no communication happening (IDLE state). The communication is sent

into frames. Each frame contains a start bit, data bits, stop bits and an optional parity bit. The

start bit is always logic 0. The data bits can contain 6, 7 or 8 bits and these bits can logic 0 or

logic 1 depending of which data is being sent. The number of stop bits can be 1,1.5 or 2. These

bits are always logic 1. Error detection can be done with the use of the parity bit.

Figure 2.10: Example of UART frame with 8 data bits, no parity bit and 1 stop bit

The transmitter and receiver must agree on the following parameters before the transmission can

happen: the clock frequency, the amount of data bits and stop bits, and if a parity bit is present.

Otherwise, the receiver will not know at which and what kind of frame is sent by the transmitter.

2.4 DMX512-A

Digital Multiplexed (DMX) 512-A is the current standard [15] that describes the transmission

between controllers and controlled lighting equipment and accessories. It is the successor of the

DMX512 standard (without A). The remainder of this thesis refers to DMX512-A as DMX.

2.4.1 DMX data protocol

The DMX data protocol uses the UART data protocol with 8 bits (or a byte) as data bits, 2

stop bits, no parity bit and 250000 baud rate as basis. Therefore a slot (another name for a

frame in the DMX standard) contains a data value between 0-255. These slots are always send

into a packet of multiple slots, also called a universe. Each universe can contain up to 513 slots.

Typically, the first slot contains 0x00 (NULL START) as data, as this is the default value. Other

values on the first slot are for further expansions of the standard. The secondary slot is the first

slot that contains actual data. A SPACE and mark after break (MAB) are used to announce a

new universe. The timing of each frame is given in the tables below. Something to mention is

that an error of 4% is allowed on each bit.

Figure 2.11: DMX data protocol
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The specific timing of the transmitter and receiver the DMX signals are given in Table 2.4 and

Table 2.5.

Table 2.4: Timing diagram values for transmitting a DMX signal

Source: [15]

Description Min Typical Max Unit

Bit rate 245 250 255 kbit/s

Bit time 3.92 4 4.08 µs

Minimum update time for 513 slots - 22.7 - ms

Maximum Refresh Rate for 513 slots 44 updates/s

”SPACE” for BREAK 92 176 - µs

“MARK” After BREAK (MAB) 12 - - µs

< 1.00 s

“MARK” between slots (MBS) 0 - <1.00 s

“MARK” Before BREAK (MBB) 0 - <1.00 s

DMX packet or universe 1204 - - µs

< 1.00 s

Table 2.5: Timing diagram values for receiving a DMX signal

Source: [15]

Description Min Typical Max Unit

Bit rate 245 250 255 kbit/s

Bit time 3.92 4 4.08 µs

Minimum update time for 513 slots - 22.7 - ms

Maximum Refresh Rate for 513 slots 44 updates/s

”SPACE” for BREAK 88 176 - µs

“MARK” After BREAK (MAB) 8 - - µs

< 1.00 s

“MARK” between slots (MBS) 0 - <1.00 s

“MARK” Before BREAK (MBB) 0 - <1.00 s

DMX packet or universe 1196 - - µs

< 1.00 s

2.4.2 Communication

DMX implements a simplex serial communication system. One DMX controller can send the

DMX signal up to 32 devices. All the devices that are in the same ring, receive the same slots.

The slot out of which they use data is set on the device itself. Therefore multiple devices can

get data out of the same slots or they can all use individual slots.

There are multiple varieties XLR cables. These cables are used in the professional audio, video

and lighting industry. The standard DMX recommends to use XLR5 connectors and cables to

connect devices with each other. XLR5 cables contain 1 wire for the ground. DMX universes
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are sent over the data 1 wires. This is done with the use of the RS485 protocol. The 2 wires for

data 2 of the XLR5 cables are used in enhanced version of DMX. Therefore, the industry also

uses XLR3 (XLR5 without data 2 wires) connectors to save money.

Figure 2.12: The front view of XLR connectors

Table 2.6: Properties XLR cables

pin assignment name Limit Volt with Common Comment

1 Ground 0 V

2 data 1- 0 < v < +6 VDC

3 data 1+ 0 < v < +6 VDC

4 data 2- 0 < v < +6 VDC only enchanced function

5 data 2+ 0 < v < +6 VDC only enchanced function

2.5 Results of the literature study

The literature study provides information to choose an appropriate positioning system. It is

suggested that UWB and ultrasound are possible candidates when an accurate positioning system

is required. Looking at existing systems, it is noticeable that many stage tracking systems are

based on UWB (e.g. Zactrack and Follow-me TraXYZ [1], [2]). UWB offers the necessary

accuracy and is at the same time a robust system with a reasonably large coverage area.

The CORDIC algorithm study shows how to calculate trigonometric functions in a step-by-step

manner with only a simple lookup Table and an iterative procedure. This will be applied in a

hardware description language (HDL) to implement it on an FPGA. In addition to the CORDIC

implementation on the FPGA, there will also be a module that will use UART and DMX. UART

is a well-known protocol and therefore, it is easy to start from an existing implementation. For

DMX, a new implementation will be designed.

2.6 Conclusion

With a small overview of different LPS-type technologies and methods, principles, advantages

and disadvantages, it is now possible to understand which type of LPS should suit a certain

application. The question remains which system on the market will suffice. It is important

to look at the requirements and identify what the available options are. The application of a

person tracker for stage lighting will have a heavy focus on accuracy and update rate to ensure
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smoothness. With regard to CORDIC, UART and DMX, sufficient insight has now been created

to start with the Verilog implementation.
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Chapter 3

Methods

Following chapter describes the design of the system. It is a step by step explanation of how the

system is created. Each section follows on the previous section and adds parts to the system to

get the final result. The first section Parts describes the 5 major parts of the system. There

is an in depth explanation of what the function of these parts are, how these parts work and

what the input and output of these parts are. Section two Communication describes how the

communication between these parts is done and how this communication is implemented. Next,

the section Simulation explains how a simulation design + environment is created to test the

system. The last section describes the measuring equipment.

3.1 Parts

Figure 3.1: Block diagram of the implementation

There are 5 individual parts that all have their own major role in the system. These are:

• The local positioning system that measures the coordinates of the artist and send these to

the pan and tilt calculation;

• DMX controller that is controlled by the operator to change data on the DMX slots;



• The pan and tilt calculation of the coordinates on the FPGA;

• DMX changer that adds the pan and tilt to the DMX signal;

• The moving head spotlight that follows the artist on the stage.

3.1.1 Field-programmable gate array

An FPGA is an circuit which is designed to be configurable after manufacturing. This config-

uration is done by an hardware description language (HDL). HDL is also used to program an

application specific integrated circuit (ASIC) which is used in applications where it is specifically

designed for as it is not programmable. An FPGA is chosen in this thesis as it provides an easy

way to develop, test and iterate over each new design. The specific device used in this master

thesis is the ZedBoard Zynq-7000 ARM / FPGA SoC Development Board [16]. It has the ability

to configure programmable logic (PL) and utilize a processing system (PS) namely an ARM pro-

cessor. However, for the person tracking application, everything is implemented in PL. Future

work could use the PS to design a more flexible application using software. More information

about the board can be found at [17].

Figure 3.2: Zynq-7000 ARM/FPGA SoC Development Board

Source: [17]

The FPGA in this thesis is configured in Verilog which is one of the most popular HDLs. The

other variant is VHDL. The designs in the FPGA consists of a DMX, pan and tilt via CORDIC,

and UART implementation using a 100MHz clock. Of course, a number of inputs and outputs

must be addressed to exchange the UART and DMX signals. To do this, the JA Digilint Pmod
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header (2x6) is currently being used. These general purpose headers consist of 12 female pins,

that are placed in 2 rows and 6 columns. It has 2 pins that provide a Vcc of 3.3 volt and 2

pins that are used as a ground. The rest of the pins can be used as input and output. More

information about all connectors and specifications can be found in the data sheet of the zedboard

at [16].

I/O pin assignment

Pin JA1 is currently used to receive UART serial communication. Pin JA9 sends out the modified

DMX signal. Pin JA2 can serve as the input signal for the DMX controller. The input signal is

then used to control the output signal. An input signal can also be generated internally on the

FPGA if there is no existing DMX signal to use. Finally, button BTND on the board is used as

a reset for the design.

3.1.2 Local positioning system

The literature study provides a baseline to start looking at which requirements and technologies

are needed for a stage light tracking system. The LPS should try to comply with the objectives

that are discussed in Section 1.3. It is decided to start with a turnkey based positioning system

as a design of a new system would require a lot of resources and would probably not provide the

finishing touches as the commonly used systems on the market. The study also found that ultra-

wideband or ultrasound are the technologies that offer sufficient accuracy. UWB is the technology

used in some existing stage light trackers such as Zactrack and Follow-me TraXYZ [1], [2].

Therefore, initially an existing UWB system is sought that offered easy integration for the FPGA.

Then, there turned out to be an available system in research group “Embedded Systems &

Security”. However it was a system based on ultrasound and is designed by a company called

Marvelmind Robotics [18].

Their devices are split into two architectures, namely inverse architecture (IA) and non-inverse

architecture (NIA). The IA means that the stationary beacons emit ultrasound and the mobile

beacons receive it. The NIA will then have mobile beacons that emit ultrasound and stationary

beacons that receive the signal. There are some major differences between these architectures.

Most importantly, the NIA systems generally have slightly better accuracy and can use between

1 to 4 mobile beacons. IA systems, however, have the option to add more mobile beacons.

Additional information between the two architectures can be found in the architecture comparison

sheet available at [19].

The available system of the research institution is a NIA starter set system shown in Figure 3.3.

The starter set has four stationary beacons, one mobile beacon and one modem that supports

up to 250 beacons. This is certainly sufficient since the focus is initially on using only one

mobile beacon. The device is advertised as a ± 2 cm indoor navigation system. It is often

used for autonomous vehicles, robots and drones. The beacons transmit both ultrasound and

radio frequencies (RF). The RF are in the license-free band of 433MHz or 868Mhz. As already

discussed in the literature study, the system determines the position of the mobile beacon based

on the propagation speed of sound. The Time-of-Flight (ToF) or also called the Time of Arrival

(ToA) is measured with respect to each beacon and a location is calculated by multilateration.

It is important that for valid 3D tracking, there must be at least 3 stationary beacons in line of
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sight of the mobile beacon. Furthermore, it is recommended that the distance between the two

nearest beacons should not exceed 30 meters.

The coverage area with the starter set configuration can be up to 1000 m2. The update rate

can vary from 0.05Hz to 25Hz. This can be adjusted manually, but the maximum speed varies

depending on the distance between mobile and stationary beacon. A smaller distance gives a

shorter delay and therefore, it gives a higher update rate in exchange. For the NIA architecture,

multiple beacons would have a huge detrimental effect on the update rate as it works via a

time division multiple access (TDMA) method. In short, the update rate can be determined

by multiplying 1
n

with the update rate where n represents the number of mobile beacons. The

beacons have a LiPo battery of 1000 mAh. The vendor claims that the stationary beacons with

an update rate of 16Hz can be operational for up to 72 hours. For the mobile beacons with 8Hz,

this is 12 hours.

Marvelmind interface

Figure 3.3: Marvelmind starter set HW v4.9-NIA

In terms of interface, 2 protocols are available: 1) SPI, and 2) UART, which are both available

via pins on the beacon board or router. Virtual UART through USB is also an option. UART

through the physical pins is the interface on which this project is based. SPI has an higher data

throughput but it is not necessary as a UART connection of the supported 500kbps suffices.

SPI has a chip enable signal which is not necessary because communication does not need to

be multiplexed between different devices. UART is relatively easy to implement and allows to

quickly set up a test rig. Hence, UART as communication protocol between the marvelmind and

FPGA, is chosen.

The datasheet about the marvelmind interfaces [20] has been consulted to gain insight into how

the communication proceeds. This datasheet contains a table that provides an insightful overview

of the format of a streaming packet. Based on this, a HDL design is made to decode the packets.

As seen in Table 3.1, the first packet to arrive needs to be 0xFF then 0x47 needs to arrive on the

FPGA and the rest of the data packet depends on the type of data packet. Multiple packages are

available. There is the option to receive the hedgehog (mobile beacon) coordinates in centimeters

or in millimeter resolution. It is also possible to receive the locations of all beacons. In addition

to receiving coordinates, there is the option to receive data from the inertial sensors, telemetry

data and more. In order to realize a first practical version, it is chosen to work with data code
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Table 3.1: Streaming packet format

Source: [20]

Offset Size (bytes) Type Description Value

0 1 uint8 t Destination address 0xff
1 1 uint8 t Type of packet 0x47
2 2 uint16 t Code of data in packet See detail
4 1 uint8 t Number of bytes of data transmitting N
5 N N bytes Payload data according to code of data field
5+N 2 uint16 t CRC-16 (see appendix)

0x0001 that represents a packet with centimeter resolution. Table 3.2 gives a more detailed table

of the packet which will be received on the FPGA.
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Table 3.2: Streaming packet format for hedgehog coordinates in cm (code of data 0x0001)

Source: [20]

Offset Size(bytes) Type Description Value

0 1 uint8 t Destination address 0xff
1 1 uint8 t Type of packet 0x47
2 2 uint16 t Code of data in packet 0x0001
4 1 uint8 t Number of bytes of data transmitting 0x10

5 4 uint32 t

Timestamp:
internal time of beacon
ultrasound emission, in milliseconds from
the moment of the latest wakeup event.
See note.

9 2 uint16 t Coordinate X of beacon, cm
11 2 uint16 t Coordinate Y of beacon, cm
13 2 uint16 t Coordinate Z, height of beacon, cm

15 1 uint8 t

Byte of flags:
Bit 0: 1 - coordinates unavailable. Data from
fields X,Y,Z should not be used.
Bit 1: timestamp units indicator (see note)
Bit 2: 1 - user button is pushed (V5.23+)
Bit 3: 1 - data are available for uploading to
user device, see section 2 (V5.34+)
Bit 4: 1 - want to download data from user
device, see section 2 (V5.34+)
Bit 5: 1 – second user button is pushed
(V5.74+)
Bit 6: 1 – data for another hedgehog (not
same one that sending this packet)
Bit 7: – reserved (0)

16 1 uint8 t Address of hedgehog

17 2 uint16 t

Bit 0. . . 11: orientation of hedgehogs pair in
XY plane, decidegrees (0. . . 3600)
Bit 12: 1 – coordinates are given for center
of beacons pair; 0 – coordinates for
specified beacon
Bit 13. . . 15: reserved (0)

19 2 uint16 t
Time passed from ultrasound emission to
current time, milliseconds (V5.88+)

21 2 uint16 t CRC-16 (see appendix)
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Marvelmind Verilog

Starting from the dataset, a design has been created to decode the 0x0001 package. An overview

of the inputs and outputs is given in Figure 3.5. The DV signal indicates to the marvelmind

module when a byte is ready to read in the UART module. The UART module is briefly discussed

in Section 3.2.1. After the full packet has been parsed, the ”updated” output signal goes high

and indicates that the X, Y and Z coordinates are available at the output.

Figure 3.4: Marvelmind module block representation

The functions of the Verilog code are provided schematically in Figure 3.5. The marvelmind

module keeps every correct incoming byte in a serial buffer. The serial buffer offset keeps the

number of the current incoming byte. If no correct bytes are received, no packet received will be

signaled and the buffer will start again from zero. Note that there is no implementation of cyclic

redundancy check (CRC).
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Figure 3.5: Marvelmind module decision chart
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3.1.3 Pan and tilt calculation

The pan and tilt module converts the coordinates from the marvelmind module to two corners

that can be used to control the spotlight. The first step in creating this module is to implement

CORDIC. This will be done as explained as explained in Section 2.2.

CORDIC

The CORDIC module is based on an existing module from Kirk Weedman [12]. However, some

adjustments are made to convert this to an arc tangent function by applying the equations of

(2.12). The module can be divided into 3 parts. The first part is the instantiation of the lookup

table, which stores the arc tangent values of 2−i. The table has 31 values and thus goes to an

i of 30. This means that the maximum of iteration that can be performed is 31. A choice has

been made to use the coordinates in the form of a 16 bit signed value. This means that only 16

iterations are used, this is enough accuracy for the angles.

The second part is the pre-rotation of the corners. If an angle is not in the domain of −90◦ ≤ θ ≤
90◦, the algorithm will not be able to calculate it. For angles that lie in the 2nd and 3rd quadrant

of the coordinate system, a rotation must take place to the 4th and 1st quadrant, respectively.

These conversions give the same tangent because the trigonometry shows that a 180 degree shift

has no influence on the tangent. This can also be found in the Verilog code where the characters

of the x and y coordinate are evaluated and rotated appropriately. For example, an angle in the

2nd quadrant will be converted to x = -x and y = -y and the current angle will be incremented

by 180 degrees.

The third part is to run the algorithm itself. This has already been explained and implements

the algorithm of (2.12) in Verilog. A repetition of this is given again in (3.1).

Xi+1 = [Xi − Yidi2−i]

Yi+1 = [Yi +Xidi2
−i]

Anglei+1 = Anglei − ditan−1(2−i)

(3.1)

with di = 1 when Y is negative and di = −1 when Y is Positive

The current module implements the 16 iterations in a pipeline. This offers the possibility to

obtain a high throughput. However, this is not necessary for the current application. This is still

susceptible to possible adjustments to make the design more compact.

Pan and tilt

The inputs and outputs of the tilt pan module are given in 3.6. A clock comes in along with

x, y, z and an enable signal. The enable signal is to indicate when a set of new coordinates are

ready. This signal will come from the marvelmind module. The output signal ”ready” will go

low during the process of calculating the angles. When this gets high again, it will indicate that

the angles are ready at the output and that a set of new coordinates can be entered again.

With the implementation of CORDIC, it is possible to pan and tilt the calculate of each set of

coordinates. There are a few methods to approach this. A pan angle is first calculated by means
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Figure 3.6: Pan and tilt module block representation

of the x and y coordinates.

Pan = arctan(y1/x1) (3.2)

Then, the Euclidean distance d from the target in the XY ground plane is calculated.

d =
√
x2 + y2 (3.3)

This defines a vertical two-dimensional plane along with the z coordinate. The tilt angle is

calculated by taking the CORDIC arc tangent of the z coordinate with respect to the distance

equation (3.3).

Tilt = arctan(z1/d) (3.4)

The working principle of the pan and tilt is shown in figure 3.7.

Figure 3.7: Working principle of calculating the 3D pan and tilt
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There is one more important note about the implementation of the Euclidean distance. It is not

possible to immediately use a square root in Verilog. Nevertheless, there is a way to calculate

square roots anyway by using a variant of CORDIC. Basic knowledge has been obtained by

adapting and designing a CORDIC module, but in order to work in a time-efficient manner, a

CORDIC IP (= preconfigured function) module from Vivado Design Suite has been used. This

IP module can then be constructed as required for the pan and tilt calculation. With the current

implementation, the output of the CORDIC square root function has a 16 bit unsigned number.

However, the CORDIC arc tangent module must receive a 16 bit signed number. To achieve

this conversion the number that serves as input for the arc tangent, the first bit of this number

becomes 0 and the rest of the 15 bits [14: 0] are the bits of the square root function’s output.

This means that the Euclidean distance may be a maximum of 215 in order to display a correct

tilt. To calculate a limit of the x and y coordinates, they become equivalent in equation (3.3).

This can be written mathematically as:

215 = 32768 =
√
x2 + x2

x =
32768√

2

x ≈ ±23170

(3.5)

Here, it is concluded that the distances should not exceed 23 170. This is more than sufficient

since this means a maximum distance of 231 m because the resolution is in centimeters. In order

to have a simple limit on this during the test phase, it is ensured that the distances do not exceed

14 bits (214 = 16 384).

Conversion of pan and tilt angle

The last step in the tilt pan module ensures a conversion between the calculated angle and the

angle expected by the spotlight. In section 3.1.6 is a more detailed description provided of how

a spotlight is controlled. The bottom line is that each type of rotating spotlight defines its own

maximum rotation. The pan and tilt are calculated so that when all 16 bits are high, a full angle

of 360 degrees is obtained. This means that the 360 degrees has a resolution of 65 536. The

smallest possible step is then 0.005 degrees.

Most spotlights on the market often map these 16 bit to an angle different from 360 degrees. For

example, there appear to be many spotlights that will map the pan at 540 degrees. If this is to

be taken into account in the module then 360 degrees must be mapped over not 65536 possible

angles, but at 65536× 2
3

= 43690 possible angles. This is done by a read only memory (ROM).

This ROM file is generated by a Python script that takes 2/3 of the incoming number to compress

the 360 degrees to a resolution of 43 690. The ROM file is included when uploading the bitstream

from Vivado to the FPGA to initialize the ROM memory. In a practical setup, first the settings

of the moving head spotlight will be investigated. The ROM file is then generated depending

on the spotlight settings. The current implementation simply converts both pan and tilt to 540

degrees. In the future there will be an adjustment depending on the available spotlight.
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3.1.4 DMX controller

The DMX controller is the part of the system that generates the DMX signal. It is manually

controlled by a spotlight operator to control the data on the slots. Each controller has its own

properties (i.e. the amount of slots that be configured, XLR3/XLR5 connector and timing of the

SPACE,MAB, ...) because these can vary between a minimum and maximum value.

The ”JBSYSTEMS ez-con6” (see Figure 3.8a) is used as DMX controller as this is given by

DSV-Rent. It contains a XLR3 connector to connect to other devices. Figure 3.8b displays the

signal sent by the Ez-con6. The ez-con6 sends 33 slots (1 start slot and 32 data slots) but only

the first 6 slots can be configured. This is done with the help of 7 sliders. One slider for each

slot and 1 master slider that scales all slots, i.e. when the master slider is completely closed the

range is 0-0 and when completely open 0-255. The individual ranges are scaled linearly). The

rest of the slot contains 0x00 as data.

(a) Frontview of the DMX controller
(b) Ez-con6 output DMX signal

Figure 3.8: JBSystems Ez-con6

3.1.5 DMX changer

The purpose of the DMX changer is to take the signal created by the DMX controller and pasted

the pan and tilt onto specific slots without interfering with the values of other slots. Pasting the

data onto an already created DMX signal is preferred because then the spotlight operator can

then still use the controller to control values of the other slots for other effects (like the spotlight

colour of the spotlight). There are multiple ways to implement this. The following two options

are considered: 1) measure, edit and create a new signal, and 2) paste values onto the slots of

an already existing DMX signal.

Measure, edit and create a new DMX signal

A DMX reader is designed to obtain all the values of the DMX Controller signal. The data is

then saved into a buffer. Once the universe is done, the pan and tilt are saved in specific places in

the buffer. Thereafter, a completely new DMX signal is created from the buffer data. Then, this

signal is sent to the moving head for configuring the pan and tilt. This method requires to read

a DMX signal and also to create a new DMX signal. This new DMX signal must be in sync with

DMX controller otherwise data is lost. This can be solved by taking a specific point on the DMX

controller and always start sending on that specific point. The end of SPACE could be such
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Figure 3.9: Visualization of first two slots by different options

point. The amount of slots sent by the DMX controller must also be measured. The minimum

values of the timings are taken. If the minimum timings are taken and the same amount of slots

are send as the input DMX signal then the time span of the output DMX signal is always less

then the input. Therefore, the output signal is always completely send and no data is lost by

sending a new universe before the previous universe is done.

Paste onto slots of an already existing DMX signal

The other option is to just paste new values on the slots of the DMX signal. This can be seen

as a mux that had the option to choose between the controller DMX slot or a custom-made slot.

The advantages of this option are that synchronization of the universe is not important anymore

but instead synchronization of the slot is important. However, if the start bit and the position

of the slot in the universe can be detected, values can be added into a specific slot. Another

advantage is that the values are added on the DMX signal of the DMX controller, therefore the

only delay present is due to measuring and transmitting the signal. A disadvantage is that a

value can be pasted on the SPACE. This option can only detect a SPACE when the SPACE is

done. Therefore, it can see the first part of the SPACE as slot and therefore a value can appear

if the DMX changer is configured to paste a value on that slot. The amount of slots must be

known upfront to prevent pasting data on the SPACE. A bit can also have an error. For this

reason, a slot created by the DMX changer must have less bit time span then the DMX controller

bit time span.

The second option is chosen because this is easier to implement. This design did not need a

DMX reader. It instead required a slot counter and slot start detector. The synchronization

could also happen after each slot instead of each universe which results in less problems with

synchronization.

Design in Verilog

Figure 3.10: DMX changer module block representation
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Figure 3.10 represents the block module for the DMX changer. The inputs of this module are:

the current DMX signal, slot start, the new value for the current slot, current slot which is on

the DMX slot and the clock signal. The output is an updated DMX signal with values pasted

on the slots which need new values.

Figure 3.11: DMX changer program flow

Figure 3.11 shows the flow of the module made in Verilog. The module starts two processes once

i slot start is high. The first process controls the bit counter. This bit counter decides which

bit to take from the new slot. After the start, the bit counter is set to zero. Then, the process

checks if the bit counter is equal to 10, this means that the last stop bit is being displayed. If

the bit counter is 10, then it starts waiting for a new slot start. If the bit counter is not equal

to 10, then it waits one bit. Next, the process increments the bit counter and go back checking

if the bit counter is equal to 10. This is repeated until bit counter is 10. While the first process

is controlling the bit counter, the second process decides what to show. It starts by checking if

their is a new value to add onto the slot. It does this by checking the most significant bit of

i new slot value . If this bit is 0, nothing changes on the input DMX signal and the updated

DMX signal is the unmodified input DMX signal. Thereafter, it goes back checking for start

slots. If the most significant bit of i new slot value is 1, then it creates a new slot with the 8

least significant bits. These bits represent the new data for slots. The new slot contains following

bits: The two most significant bits are 1 representing the stop bits. The next 8 bits represent

the data bits. Finally, the least significant bit is a zero bit, representing the start bit of the next

slot. After creating the slot, it takes the correct value out of the slot with the help of the bit

counter. Thereafter, it checks if the bit counter is equal to 10. If the bit counter is not equal

to 10 then it goes back to take the correct value for the updated DMX. If the bit counter is 10,

then it assigns the input DMX to output DMX. Finally, the second process goes back to wait for

a slot start as process one.

3.1.6 Moving-head spotlight

There are several spotlights with a rotating head in 2 directions, namely pan and tilt. Commu-

nication with the spotlight is done via DMX. DMX has 512 channels over which data transfer is
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done. Such a channel then has 8 bits to communicate, this is a value from 0 to 255. A channel

then often corresponds to a specific instruction that the lamp can execute. All these specifica-

tions can be found in the datasheet of the particular device. The ADJ Vizi BSW 300 can be

taken as an example [21]. The data sheet indicates that a maximum of 20 channels can be used

to control the device. Channel 1 corresponds to the pan movement. Channel 2 controls the fine

movement. For tilt this is the same on channels 3 and 4. Then, the other 16 channels are still

used to control the color wheel, shutter settings, dimmer, etc. Based on the data sheet, the first

channel can be determined as the 8 most significant bits and the second channel represents the 8

least significant bits of the spotlight. These 16 bits can achieve a maximum pan rotation of 540

degrees. For tilt rotation, there is a maximum of 240 degrees according to the data sheet. This

is also the reason for the conversion of the 16 bits at 360 degrees into the desired angle in the

pan and tilt module. The remainding channels should enter and exit the FPGA unchanged.

3.2 Communication

Figure 3.12: Communication between parts

Previous chapter explained how each of these parts worked. This section goes more in depth

of how these parts communicate with each other. More particular the UART communication

between the marvelminds and the FPGA. The DMX communication reader on the FPGA for

data input for the DMX changer. Followed by, the memory module to communicate data from

the pan and tilt module to the DMX changer. Lastly, the RS485 protocol to go from a 1 wire

data signal to a DMX signal is explained.

3.2.1 UART

UART is a well-known protocol of which many examples of HDL implementation are available

online. UART is also available as an Intellectual Property (IP). IP is a preconfigured logic
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function that can be used. For Vivado Design Suite, there are 2 UART IP’s available, namely

AXI UART LITE and AXI UART 16550. However, public HDL code from Nandland [22] is used

because of the clear and simple explanation of its Verilog design.

The UART module is designed to receive 8 data bits with one start bit and no parity bit. The

module has 2 input and 2 output signals as shown in Figure 3.13. An input signal i clock and

i RX Serial for this received data. The output signal o Rx DV shows when a correct bit has

been received (DV = data valid) by becoming high for a duration of 1 clock period. The received

bit is then ready to be read in parallel on o Rx Byte [7:0].

Figure 3.13: UART block representation

The module also provides the ability to work with different baud rates and clock rates by passing

a parameter to the module, namely CLKS PER BIT. The parameter is essentially to calculate

how many clock signals are required to sample 1 UART bit. This parameter can be calculated

depending on the frequency of the clock and the baud rate of the UART signal.

CLKS PER BIT =
clock frequency

baud rate UART
(3.6)

In short, the module will read in the signal by means of a state machine. There are 5 states:

idle, start, data, stop and cleanup. The idle state continuously detects whether a start bit has

been detected and then switches to the start state. The start state will take a sample in half of

the start bit to confirm the bit’s validity. Next, it is switched to the data state and each of the

8 bits is sampled. As the penultimate state, 1 bit period will be waited to represent the stop bit

and the DV signal indicating that a byte is ready will be raised. The cleanup state will reset the

DV signal to low and bring the idle state back up. The cycle continues.

3.2.2 Memory module

Figure 3.14: Memory module block representation

The communication between pan and tilt calculation and DMX changer is done with a simple

dual port Ram module from the FPGA. This module contains two ports. One port for writing
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data and one port for reading data as can be seen in Figure 3.14 The pan and tilt is connected

to the writing port and the DMX changer is connected to the reading port. It has a depth of

513. Each depth represents 1 slot (1 START slot + 512 data slots). A slot has a width of 9 bits.

The 8 least significant bits are the data bits. The most significant bit is used to let the DMX

changer know if the value needs to be added onto the DMX signal. The DMX changer adds the

data onto DMX signal if this is bit is 1. Otherwise, it takes the input DMX signal, even if there

is data onto the other bits.

Pan and tilt saver

The angles are sent to the slot memory ram at the start of the first data slot (slot 1) if the pan

and tilt are ready. Otherwise, it has to wait for the pan and tilt to be ready to sent the values.

Waiting for pan and tilt to be ready, can be done because the amount of clock cycli needed to

calculate the pan and tilt is always less than the amount of clock cycli needed for the start bit

to pass. This procedure is added at the final top level module to assign the pan and tilt values

to the memory module in a fitting manner. It uses 3 signals for this: a write enable, 8 data bits

and the designated slot.

The angles are written by assigning the appropriate 8 bits to each predetermined slot. In the

current implementation bits [15:8] of the pan angle are placed into slot 1. Bits [7:0] for fine

tuning of the pan angle are placed in slot 2. The same is done for the tilt angle on slot 3 and 4.

3.2.3 DMX receiver

Figure 3.15: DMX changer module block representation

The DMX receiver measures the incoming DMX signal for slot starts and the current slot. It

communicates when a slot starts to the DMX changer. The current slot is communicated to the

memory file.

Figure 3.16: State machine of the receiver module

Figure 3.16 displays the implementation of the receiver module as a state machine. The DMX

receiver starts and enters the SPACE state. Here, it waits until the SPACE is over. It does this
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by creating a counter that checks if the input DMX signal is zero for the minimum SPACE time

duration (see table 2.5 for minimum duration of the DMX signal). If this is correct, it goes from

SPACE to MAB. The MAB OVER is the same as the SPACE OVER but instead of waiting for

the minimum SPACE TIME, it checks for the minimum MAB TIME. A DMX signal is 1 for the

MAB and therefore the module checks if the input DMX signal is 1 during the minimum MAB

TIME. Thereafter, the module enters the START + DATA BITS state if the signal is 1 for the

minmum MAB Time. Otherwise, the module enters the SPACE state because of an INVALID.

The data bits can be 0/1 and therefore the module waits until the minimum START + DATA

BITS duration is passed. Then, it enters the STOP BITS state. In the STOP BITS state, it

checks if the input DMX gets 1 before the maximum START + DATA BITS duration is passed.

If the input DMX signal does not get 1 in time, then it means that stop bits are not coming.

This results into an INVALID. In this situation, the module goes back into the SPACE state to

repeat the process. If the stop bits get 1 in time, then it checks for the minimum STOP TIME

duration. The module enters the SPACE if the duration is less then the minimum STOP TIME

duration. If the duration of the STOP BITS are more then the minimum STOP BITS duration,

it goes back to START + DATA BITS to measure the next slot. While going back to START

+ DATA BITS state, it sets the output slot start to 1 and increments the output slot counter.

The output slot counter is reset to 0 when the module enters the SPACE state from the STOP

BITS state.

3.2.4 RS485

RS-485 uses two signal wires to send binary data over a cable interface. It uses 2 complementary

voltage levels to act as an differential signal that is immune to electrical noise. EIA-485 defines

the voltage levels to be between ± 1.5V and ± 5V [23]. Because this specification is within the

domain of the DMX, it is possible to use a MAX485 chip [24] to control DMX. The MAX485

allows to transfer a signal from the FPGA to a XLR cable which requires a differential signal

and vice versa.

3.3 Simulation

Figure 3.17: Block diagram of the simulation
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A simulation is made to test the design on the FPGA. Unity is used to simulate the person

and moving head spotlight. The marvelminds are replaced by an Arduino that simulates the

interface of the marvelminds. This Arduino receives coordinates from the Unity simulation. A

Transistor–Transistor Logic (TTL) is added to connect the Arduino with the FPGA. A new

module is created on the FPGA to simulate DMX signal from the DMX controller. A second

Arduino is added to measure the DMX signal received from the FPGA. This Arduino sends the

pan and tilt values measured on the updated DMX signal to Unity. Unity will then adjust the

moving head spotlight in the simulation environment.

3.3.1 Unity

Unity is a real-time 3D development platform. It is best known for being a tool to develop

games but with some creativity it can also be used as simulation for a person and moving head.

Unity personal 2019.3.12f1 version is used because this is a free version for individual use. Unity

works with scenes. Many objects, e.g. 3D objects and light sources, can be added to such scene.

These objects can be used to simulate a person and moving head spotlight. A sphere is used as

person, a spotlight light source is used as moving head spotlight. The sphere is controlled with

the use of the arrow keys, the SPACE to move up and the Z key to move down. This simulates

the walking behavior of a person. The spotlight is placed on the origin of the scene. By doing

this the coordinates is always relative to spotlight. Unity also has C# implemented as scripting

language. This allows sending and receiving data in Unity from the Arduinos with the use of a

C# serial library. Unity has a main thread where everything graphic is updated. In this thread,

the pan and tilt is updated. Unity does not allow to access 3D objects in other thread outside the

main thread. Therefore, the coordinates are saved into global variables. A new thread is created

to handle interaction with the Arduino. First, this thread sends a character to Arduino 2 with

the use of UART over COM4. As such, Arduino 2 knows that it is ready to receive data. Next,

it listens on serial COM4 for the pan and tilt sent by the Arduino 2 and save this values in global

variables. Finally, it sends the coordinates of the sphere to Arduino 1 with the use of UART over

COM3. This thread is always running in background when simulating the environment.

3.3.2 Arduino 1

Arduino 1 is used to send coordinates to the FPGA instead of the Marvelminds. It receives

the coordinates from Unity. By using these coordinates, it simulates the same packet as a

Marvelminds generates. The FPGA is connected on the Digital 1 pin/TX pin and the PC is

connected with the USB connector. The Arduino receives data from the PC over the serial and

sends data to the FPGA. Both devices uses the same serial port of the Arduino. Therefore,

the PC receives the data sent to the FPGA. This is solved by discarding the buffer on COM4

in Unity. The baudrate of the Marvelminds is 500 000. Therefore, the PC and Arduino also

communicate on a baudrate of 500 000.

The coordinates send by the Marvelminds are int 16 (see table 3.2). Therefore value ranging

between -32768 and 32767 can be send as coordinates of the marvelmind packet. The two least

significant bytes are taken of numbers with more then two bytes. The numbers are sent as

character from the pc to the Arduino. A character comma is used to announce the end of a

number. Characters other then numbers or minus signs are not used. The Arduino simulates a

marvelmind packet each time it receives three numbers. The frames of the marvelmind packet
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with a standard value or coordinates are sent with a value. The other frames, like the address of

hedgehog, contain no useful information for the UART receiver and are therefore send as zeros

frames. The values from the first, second and third number are taken for respectively x,y, and z

coordinates. Figure 3.18 describes the function of the Arduino as a flowchart.

Figure 3.18: Flowchart Arduino 1 program

3.3.3 Arduino 2

Arduino 2 measures the DMX signal transmitted by the FPGA. The DMX signal is connected

onto port 3. The PC is connected onto the USB Connector of the Arduino. A baudrate of 500000

is used to communicate between the PC and Arduino. The measurement of the DMX happens

with a DMX library. This library implements a measure function that tries to read the first n

slots of universe. The function returns a true if it could read the first n slots, otherwise it returns

false. The first n slots are saved into variables. Only the first 6 slots are measured and saved

into variables. Finally, the Arduino sends the values of the slots to the PC once it receives a

character onto the serial bus.

Figure 3.19: Flowchart Arduino 2 program

3.3.4 TTL

When the digital port of the Arduino uno is set high, a voltage of 5V DC is send over the cable.

However, this voltage level is too high for the FPGA to receive. Therefore, a transistor transistor

logic (TLL) is added to transform the 5V DC into 3.3V DC. A resistor of 1kΩ is added in series

at the 3.3V output to reduce overshoot.
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3.3.5 Ez-con6 simulation

Figure 3.20: Ez-con6 module block representation

The JBSystem EZ-CON6 is integrated onto the FPGA for the simulation. Therefore a design is

created on the FPGA that simulates JBSystem EZ-CON6. Figure 3.20 represents the EZ-con6

module. It has 2 inputs: an input start to start emitting the signal and clock signal. It outputs

the DMX signal. This signal is then used for the DMX changer and DMX receiver as DMX

signal input.

Figure 3.21: State machine implementation Ez-con6

Figure 3.21 describes the state flow of the module. It starts in START state, where it waits for

start to become 1. After that it moves the SPACE state. After given time SPACE T it goes the

MAB state where it stays until MAB T is passed. The module then enters the START SLOT

state, the start bit of the start slot is included in the timing START SLOT T. Then it enters the

STOP BITS state. The STOP BITS state wait for STOP BITS T time before going the START

BIT. The STOP BITS T contains the time it takes for stop bits + time of the MBS. It stays in

the START BIT for START BIT T. After that it enters the DATA BITS state, where it stays

for DATA BITS T. Finally, it enters STOP BITS again.

The loop from START BIT to STOP BITS is repeated n times. Each time representing 1 slot.

Therefore, N can maximum be 512, because this is the maximum amount of slots in a universe.

If it reaches n + 1 it returns back to the SPACE state, where it repeats the whole cycle again.

Going to the SPACE state can be seen as starting a new universe.
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Table 3.3: Ez-con6 real vs. parameters taken for simulating

properties Ez-con6 parameters simulation output value

NULL START SLOT True True /

DATA SLOT 32 32 /

SPACE 525 - 537µs 530µs 0

MAB 67.8− 70.8µs 69.8µs 1

START SLOT ±35.960µs 36µs 0

START BIT ±3.90µs 4µs 0

DATA BITS ±31.70µs 32µs 0

STOP BITS + MBS 282-288µs 288µs 1

UNIVERSE ±11.3s ±11.3s /

Table 3.3 displays the timings of the Ez-con6 and the timings taken for the simulation.The timing

of SPACE, MAB and STOP BITS + MBS varies between 2 values by the real signal.Therefore, a

value is chosen between ranges of the real SPACE and MAB for the simulated signal SPACE and

MAB. For the STOP + MBS a timing of 288 µs is taken because this is the most occurring value

by the real STOP + MBS. A 36 µs START + DATA BITS is taken for the simulated signal.

This makes each bit 4 µs long, which is easier to work with. This is also recommended value by

the standard (see table 2.4. All of the timing values taken for the simulated signal adhere to the

DMX standard (see table 2.4).Table 3.3 also displays the output value for each state. A simple

DMX signal with the right timing is wanted because the DMX changer will eventually write new

values onto slots. Therefore, all the data bits are taken 0. This result into universe with all slot

containing zero.

3.4 Measurement

Two tools are used to measure and check all the generated signals. The first one is a IKA logic

analyzer SQ200 [25]. The second one is the Tektronix MSO4102B-L [26].

3.4.1 IKA logic analyzer SQ200

The IKA logic analyzer SQ200 can measure up to frequencies of 200 MHz. It can trigger on

multiple voltage levels including 3,3V and 5V, which are the voltage levels of the FPGA and

Arduino. The IKA logic analyser SQ200 can also measure 4 signals at the same time. ScanaStudio

is the software tool used to interfere with IKA logic analyzer SQ200.
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Figure 3.22: IKA logic analyzer SQ200

Source: [25]

3.4.2 Tektronix MSO4102B-L

This is an oscilloscope of the Tektronix MSO4000 series. It has two analog channels and a

bandwidth of 1GHz. In contrast to the logic analyzer, analog signals can be measured. It is also

more accurate with the ability to measure 5GS/s when a single channel is used. More info can

be found in the datasheet of [27].
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Chapter 4

Results

In this chapter the results of Chapter 3 are discussed. First, the design on the FPGA is tackled,

showing the behavioral simulations of Vivado of the different modules. These simulations also

briefly discuss what data is present on the I/O pins and what the module has processed. On top

of that an overview of the module’s use of the resources of the FPGA is included.

In addition to the behavioral simulation of the design, the results of the test setup are also

discussed. This test setup combines the FPGA with Unity to visually present the person tracking

system in simulation. This section will explain the operation of the two Arduinos, Unity and

the communication between the devices. Finally, there is a small discussion that summarizes the

achieved results and looks at the possibilities for the future.

4.1 FPGA design

Figure 4.1: Final design FPGA design

Figure 4.1 describes the final result of the FPGA design for simulation. It shows how each part

was connected with each other. The gray arrows represents the clock signal. The following



sections go more in depth in the results of each module. The number between brackets after the

signals displayed on the Figures match to the numbers on Figure 4.1.

4.1.1 UART rx

Figure 4.2: UART simulation

Figure 4.2 displays how outside serial data (1) entered the module and was processed to be

accessed as a byte (2). If the byte was valid then the data valid signal (3) was high for 1 clock.

4.1.2 Marvelmind module

Figure 4.3: Marvelmind module simulation

The Marvelmind decoder module as seen on Figure 4.3 shows the processing of the UART

module’s bytes (2). The expected Marvelmind streaming packet size was 23 bytes. This can be

found in the figure by counting the 23 pulses of DV (3). At the end of the packet stream, the

coordinates were ready at the output (4-6). This was indicated by a high ”updated” signal (7).

4.1.3 Tilt and pan

Figure 4.4: Tilt and pan simulation

The input coordinates (4-6) were used as soon as updated was high (7). The calculation of the

angles needed 58 clock cycles. After this, a ready signal (10) was used to indicate that the pan

and tilt (8-9) were ready to be used. This ready signal was low when the module was busy with

performing the calculation.
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CORDIC

Calculating the pan and tilt angles was one of the most important tasks that the design had to

perform. This module must return a reliable angle that did not deviate too much from the actual

angle. Therefore, it was extensively tested. A test bench was made for this in Verilog. This test

bench read a data file .dat file which contained the x, y and z coordinates. The corresponding

calculated angles were stored afterwards in an output data.txt file. Based on these results, it

was concluded that the the angles were calculated correctly. In order to have a real visual

confirmation, a simulation was designed. However, there was one important note that follows

from testing. Small values only need a few bits. For example, a decimal value of 2 was going to

have a binary value of 0000 0000 0000 0010. The CORDIC algorithm works by shifting right the

intermediate results i times as shown in (3.1). i corresponds to the current iteration step.

Small numbers such as 0000 0000 0000 0010 had the disadvantage that multiple shifts had no

effect because after a few shifts it was already zero. The angle that ultimately corresponded to

this, had therefore a large deviation. This was not too big of a problem, because there was always

work in centimeter resolution and the distances will practically always be relatively large because

the spotlight is mounted above person height.To show a practical representation in simulation,

the example of figure 4.16 (values: 200, -400,200) is given as input for the pan and tilt module.

The first column in Table 4.1 shows the obtained 16 bit values for the pan angle of the test

bench in Figure 4.5. As previously explained, this angle had to be decreased 2
3

times to adapt

for a spotlight with 540 degrees of freedom over 16 bits. To convert this back to 360 degrees, in

the 3rd column a multiplication of 3
2

was performed. This was then divided by 216 = 65536 to

map the angle between 0 and 1. Finally, this was multiplied by 360 degrees to show an intuitive

result. The last 2 columns return the angles when coordinates were entered directly in an arc

tangent function on a calculator.

Figure 4.5: Screenshot test bench simulation 200, -400, 200

Table 4.1: Table of CORDIC pan and tilt result of 200, -400, 200

16 bit Pan (540◦) 16 bit Tilt (540◦)
Pan× 3

2

65536
× 360

T ilt× 3
2

65536
× 360 atan( y

x
) atan( z√

x2+y2
)

35979 2914 296.46◦ 24.01◦ −63.43◦ 24.09◦

or 296.57◦
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4.1.4 EZ-con6 simulation

Figure 4.6: DMX receiver Ez-con6

Figure 4.6 illustrates the Ez-con6 simulation. The start signal (14) was controlled by a button

on the FPGA. If this button was pressed, the signal turned high and the module started sending

the DMX signal (15). The time between the start high and the first high of the DMX signal

was the SPACE. Next, the MAB is shown with thereafter the null start slot and data slots with

MBS.

Simulated vs. real

Figure 4.7: Output input arduino 2

Figure 4.7 illustrates a DMX signal generated by the Ez-con6 and FPGA. The blue signal was

the DMX signal generated by the Ez-con6. The green signal was the DMX signal generated on

the FPGA. Taking the timings as discussed in 3.1.5 resulted therefore into 2 fairly similar signals.

4.1.5 DMX receiver

Figure 4.8: DMX receiver simulation

Figure 4.8 shows the simulation of the DMX receiver. The slot start (15) gave a pulse for each

data slot start of the input DMX signal. The slot counter (17) was also simultaneous updated

with with each data slot start.

4.1.6 Slot memory ram

The slot memory has a read and write part. Writing was in the order of clock cycle while reading

was in the order of data slots. Therefore, both are shown separately.
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Write

Figure 4.9: Slot memory write simulation

Figure 4.9 shows the writing part of the slot memory. The slots (12) were written with the pan

and tilt values (13) once the write enable (11) was set to high. It took 2 clock cycli to write and

then read the same value out of that slot.

Read

Figure 4.10: Slot memory read simulation

Figure 4.10 displays the reading part of the slot memory. The new values for the slots (18) were

loaded for each slot (17). These values contained 9 bits. The first bit was 1 for slots with a new

value to indicate that there was a new value. The other bits were the new value. Slots that had

no new data had 0x000 as new value (first bit was 0 to indicate that there is no new data).

Pan and tilt saver

Figure 4.11: Pan and tilt saver simulation

The pan and tilt saver is displayed in Figure 4.11. If a slot started (16), this slot was the first

slot data (17) and the pan and tilt was ready (10) then it turned the write enable high (11) for

the slot memory. Simultaneously, the pan and tilt saver module generated the values (13) for

each slot out of the pan (8) and tilt (9) received values of the pan and tilt calculator, with the

corresponding slot to write too (12).
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4.1.7 DMX changer

Figure 4.12: DMX changer simulation

Figure 4.12 shows the DMX changer part. It received the generated DMX signal (16) from the

EZ-con6 part. If the slot start was high, it saved the new values (18) onto the updated DMX

signal (19) when the values needed to be pasted.

Original and updated

Figure 4.13: First 5 slots of DMX original and DMX updated with pan and tilt

Figure 4.13 shows the original DMX compared to the updated DMX signal. Both were the same

except for the data the slots. The updated DMX signal contained the pan and tilt values for

coordinates 200, -400, 200 as seen in 4.1.3.

4.1.8 Resources used

The developed FPGA design used slices, Ram and DSPs component. Table 4.2 displays the

total resources of the zed-board, the total resources used by the design and the resources used

by each component. The design used a low amount of the resources of the total resources on

the Zedboard. 21,8 % by the RAM tile was used the most. Most of the resources were used for

the pan and tilt module. This module had the most slices and was the only module with DSPs

because of the calculation of the angles. The pan and tilt also used a RAM to convert 540◦ to

360◦ as seen in 4.1.3. Therefore, it used the most RAM tiles.The slot memory ram was the other

module with RAM tiles. The other modules all had fairly low use of slices. Summing up all the

individual slices resulted into a higher total resources as the total resource design seen in Table

4.2. This was because some slices are used for multiple parts. The total resources design slices

was the correct value to use.
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Table 4.2: Slices, Block RAM and DSP resources of the current design

Component Slices RAM Tile DSPs

Total resources Zedboard 13300 140 220

Total resources design 609 (4,6 %) 30.5 (21,8 %) 2 (0,9 %)

DMX Controller 38 0 0

Marvelmind 60 0 0

Slot memory ram 1 0,5 0

DMX receiver + sender 40 0 0

Pan and tilt 476 30 2

UART rx 15 0 0

4.2 Simulation

The following section shows the results of the simulation. It starts with setup used for simulating

the system. Next, the results of the communication between the used Arduinos and Unity are

shown. This is followed by the results of the spotlight following the person in Unity. The section

ends with a video of the test simulation.

4.2.1 Setup

Figure 4.14: Simulating setup

Figure 4.14 displays the simulating system described in 3.3 in practice. The left screen showed the

design of the system. The right screen showed the Unity environment with the FPGA controlled
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spotlight (red spotlight) and the ideal spotlight (blue spotlight). The sphere represented the

person that needed to be followed. The device closest to the right screen was the ZedBoard

FPGA. Arduino 1 was the right Arduino and Arduino 2 was the left Arduino. The TTL was

positioned between the two Arduinos. The Arduinos were connected to the PC with a USB 2.0

CABLE TYPE A/B and to the FPGA and TTL with jumper wires.

4.2.2 Arduino 1

Figure 4.15: Output input Arduino 1

Figure 4.15 illustrates the income and output signal of Arduino 1. The blue signal was send by

Unity to the Arduino. The yellow signal was send by the Arduino to the TTL. The Arduino

started sending the Marvelmind packet once it received 3 numbers.

Figure 4.16: Marvelmind packet for numbers 200,-400,200 dec

Figure 4.16 displays the Marvelmind packet sent by Arduino 1. The frames between the blue

bracket on Figure 4.16 contain the information over the simulated Marvelmind packet.Therefore,

they were not zero (see 3.2). The frames between the orange brackets represented the coordinates

of the Marvelmind packet (x is 200 dec or 0x00C8 hex, y is -400 dec or 0xFE70 and z is 200 dec

or hex 0x00C8). The others frames were all zero frames as described in 3.3.2.

4.2.3 Arduino 2

Figure 4.17 shows the input and output of Arduino 2. The blue signal was the DMX signal

generated by the FPGA. The first 4 data slots of the DMX signal are shown in Figure 4.18. The

yellow signal was the signal from the Unity to Arduino 2 and the red signal was the signal from

Arduino 2 to the Unity. This Arduino sent the data to the Unity once it received a character.

In this case, a ”0” was send, but this could be any character. The values sent to the Unity were

the values from the first 6 slots, as shown in Figure 4.17, Figure 4.18, and Figure 4.19.
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Figure 4.17: Output input Arduino 2 with DMX

Figure 4.18: First 4 slots of the DMX signal

Figure 4.19: Output input Arduino 2 without DMX

4.2.4 Unity environment

Figure 4.20 shows the Unity project for simulating the person and the moving head spotlight.

The items in the red box were objects added to the scene. These were 3D objects like a sphere,

the ground and lines, light sources like the spotlight FPGA, spotlight real and directional light

and cameras to get a view while running the simulation. The blue box displayed the scripts that

were used to handle the communication between Unity and both Arduinos, adjusting properties

of the 3D objects and light sources and movement of the sphere and camera.

The sphere represented the person that needed to be tracked. Coordinates of the center of the

sphere were send to Arduino 1 as position of the person. A ground plane and wall (not visible on

4.22) were added to see the spotlights. The red spotlight was controlled by the DMX controllor on

the FPGA. The blue spotlight was the ideal spotlight controlled by Unity. The cube represented
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Figure 4.20: Unity 3D simulation environment

the red spotlight and turned when the DMX controlled spotlights turns. The lines were added

to visualize the transmission from negative to positive coordinates. There were no 3D objects

added to visualise the ideal spotlight. Lastly, a directional light was added to get a light effect

on places where there was no spotlight.

4.2.5 Communication

Figure 4.21: Output input Arduino 2
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Figure 4.21 shows the communication between Unity and both Arduinos. The handling of how

the Unity communicated with the Arduinos happened as expected. First, a character was send

to Arduino 2 (red signal). Then, Arduino 2 responded with the values of the slots (green signal).

Next, the Unity sent the coordinates of the sphere to Arduino 1 (blue signal). The response of

the Arduino 1 was also shown (yellow signal), even though it was not used by Unity, to display

that Arduino 1 sent the Marvelmind packet when it received the coordinates.

4.2.6 Visualisation

Pan

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.22: Effect of coordinates on the pan of the DMX controller

Table 4.3: Extra information subfigures of figure 4.22

label X Y Z Unity pan ◦ Unity tilt ◦ fpga pan ◦ fpga tilt ◦

a 250 -250 -500 315 54.74 315.04 54.65

b 250 0 -500 0 63.43 359.96 63.31

c 250 250 -500 45 54.74 45.03 54.65

d 0 -250 -500 270 63.43 269.95 63.32

e 0 0 -500 0 90 99.88 90.04

f 0 250 -500 90 63.43 90.05 63.32

g -250 -250 -500 225 54.74 225.04 54.65

h -250 0 -500 180 63.43 179.95 63.31

i -250 250 -500 135 54.74 135.04 54.65

Figure 4.22f shows the FPGA spotlight (red) and the ideal spotlight (blue). The horizontal line

presented the y-axis and the vertical line presented the x-axis. Table 4.3 displays the coordinates

and the pan and tilt calculated by Unity and the FPGA. For the z coordinates, negative numbers
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were used to display the effect of the X en Y coordinates. The FPGA spotlight was always inside

the ideal spotlight. This can also be seen in Table 4.3 as the value of the pan and tilt by the

FPGA and Unity showed similar results except for e. The pan calculated by the FPGA was

99.88◦ off the value of pan calculated by Unity. However, this was not a problem because the

lamp was shining in the extension of the pan axis. Therefore, rotating pan would have effected

the direction to which the lamp was shining. This is also shown in 4.22e where the FPGA

controlled spotlight was still in the middle of the Unity spotlight.

The pan went from 360◦ to 0◦ when it crossed the upper vertical line. This is visualized in Figures

4.22a - 4.22c. The calculated pan by the FPGA in Figure 4.22a is 315◦. In Figure 4.22b, this

was 359.96 ◦. When entering the first quadrant (see figure 4.22c, the pan started counting from

0◦ which resulted in a FPGA pan of 45.03 ◦ and not 405.03◦.

Tilt

(a) (b)

Figure 4.23: Effect of coordinates on the tilt of the DMX controller

Table 4.4: Extra information subfigures of figure 4.23

label X Y Z Unity pan ◦ Unity tilt ◦ fpga pan ◦ fpga tilt ◦

a 800 -800 500 315 336.16 315.04 336.21

a 800 800 500 45 336.16 45.03 336.21

Figure 4.23 already showed the spotlights for multiple coordinates with negative z values. Figure

4.22f shows the spotlights for 2 coordinates with a positive z as coordinate. A wall was added into

3D scene to get a better view of the lights. The horizontal line illustrated the transition between

the negative and positive z coordinates. The vertical line illustrated the transition between the

negative and positive y coordinates. The pan and tilt of the FPGA were similar to the pan and

tilt of the Unity (see table 4.23). The tilt was more than 180◦ because the lamp was looking

upwards.

4.2.7 Video

A video (youtube: https://youtu.be/MqpbinhQAzs) was created to demonstrate the DMX con-

troller on the FPGA.The same setup was used as in 4.2.1. There was some delay between the

FPGA controlled spotlight and the sphere. This was due to the delay between sending and read-

ing the coordinates in Unity and the accuracy of 2 digits after the comma (moving the sphere

less then 0.01 resulted into sending the same coordinates).The FPGA controlled spotlight was
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practically synchronised with Unity’s blue spotlight which represents the ideal spotlight. The

controlled spotlight stopped following the sphere once the cable between the FPGA and DMX

receiver was disconnected. The controlled spotlight continued to follow the sphere once this cable

was reconnected.

4.3 Discussion

The current implementation performed proper tracking. A useful aspect during the development

phase was the possibility to make adjustments to the hardware. For example, instead of 512

data slots, it was possible to broadcast only 32 data slots with a minor adjustment in HDL. A

number of such adjustments took place in the development phase of the first prototype, which

accentuated the benefits of the flexibility of the FPGA.

From Table 4.2 it could be concluded that BRAM used the most resources of the FPGA in

proportion to the other modules. This originated from the ROM in Section 3.1.3 that provided

the conversion of the angle to a correct spotlight angle. For every angle that had to be converted

to its own specific angle, a ROM conversion table was needed. Only a single ROM was used in

the test setup. In real life, two instances of this ROM are often required as 540◦ for pan and 270◦

for tilt are common. Taking this into account, it was possible to search for the cheapest FPGA

on which the current implementation could run. The XC7A50T can be found in the datasheet of

the 7 Series FPGAs [28], which met the BRAM specification to control a spotlight with different

pan and tilt. This chip had a cost of approximately 50 euros excluding VAT according to the

following website [29].

This was a very rough estimate. However, more ways to convert angles should be explored in

the future. There are many possible adjustments that can improve the design and are not yet

been looked at. The initial goal of the first test set-up was to achieve correct operation.However,

with the current successful simulation, the next question rises: How can multiple spotlights be

added to the person tracking system? A first idea is to use a RAM memory where an offset of

each spotlight will be given with respect to the origin of the coordinate system. Then, the pan

and tilt of each location can be calculated sequentially and inserted into the correct DMX512

channel. There are also other ways such as using a Marvelmind streaming packet that requests

locations from the beacons whereby the beacons are associated with their associated spotlight.

Since the FPGA design can be adjusted at any time, there will also be the possibility to easily

add other functionalities of the spotlight. An important function of a spotlight is to adjust

the focus. It might be interesting that as the distance increases, the light beam becomes more

focused. Similar applications can be devised to take advantage of other functions such as color

selection and dimming.

Finally, a correct comparison with existing tracking systems in the lighting industry could not yet

be performed. No tests were been taken place in a practical work environment due to COVID-

19 restrictions. Practical tests are important to make a decision on how well the Marvelminds

perform in a potentially difficult environment. There may be possible interference or other

phenomena that might indicate that the Marvelminds trackers are not suitable for the application.

The Marvelminds work on ultra-sound and therefore may also be affected by a lot of wind, so

the question is whether the system can be used outdoor. It is recommended to switch to a

different tracking device because the current devices are not waterproof. Marvelmind offers an
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IP67 model [30] for this, but this waterproof model has an impact on the price. In addition, it

is difficult to estimate a cost, since the number of beacons to be installed could not be correctly

determined. Therefore, this requires further testing to determine whether a tracking system with

FPGAs and Marvelmind trackers can gain market share in the spotlight tracking market.
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Chapter 5

Conclusion and further work

This thesis developed a basic person tracking system with the aim of using it in the entertainment

and lighting industry. Although there were no practical tests with a spotlight, it was possible to

mimic the operation via simulation. Because no concrete tests have taken place in the working

environment, it is difficult to make decisions regarding the financial and the economic aspects of

the person tracker. Therefore,it is important that future work realizes a practical comparison with

existing systems in order to gain insight into the potential of the current setup. As demonstrated

in this thesis, the introduction of an FPGA as a central controller in the system offers many

advantages. This way, new functions can easily be added without losing performance and without

purchasing new specialized hardware. From the developer perspective, this has tremendous

advantages. Different systems can be developed on the same hardware and depending on the

application, the right bitstream can be uploaded.

In the long term, this will also yield potential benefits for the installation companies. As such,

the latest technologies can be integrated into the installations with a single long-term purchase.

There is still the cost of developing and maintaining the HDL code. However, this development

can proceed very efficiently. If the integration of FPGAs eventually increases in popularity in

the entertainment and stage lighting industry, a company may be formed that is solely engaged

in developing code at the request of stage installation companies. In a manner of speaking, a

company can then rent out FPGAs and offer customized solutions at a relatively low cost through

their expertise and high demand for similar setups. However, these are only speculations and

give an idea behind the vision of a possible new market.
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