
Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Remote power analysis attacks on reconfigurable cloud resources

2019•2020

PROMOTOR :

Prof. dr. ir. Nele MENTENS

COPROMOTOR :

dr. ing. Jo VLIEGEN

Dominique Meus
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Gezamenlijke opleiding UHasselt en KU Leuven

Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: elektronica-ICT

Masterthesis
Remote power analysis attacks on reconfigurable cloud resources

2019•2020

PROMOTOR :

Prof. dr. ir. Nele MENTENS

COPROMOTOR :

dr. ing. Jo VLIEGEN

Dominique Meus
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: elektronica-ICT

Deze masterproef werd geschreven tijdens de COVID-19 crisis in 2020.
Deze wereldwijde gezondheidscrisis heeft mogelijk een impact gehad op
de opdracht, de onderzoekshandelingen en de onderzoeksresultaten.

Acknowledgements

I would like to thank my advisors prof. dr. ir. Nele Mentens and dr. ing. Jo Vliegen for

providing me the opportunity to work on this thesis. I would like to specifically thank them for

their openness, patience and encouragement. Their ideas and suggestions played a big role in

producing this work.

Contents

Acknowledgements 1

List of figures 5

Glossary 7

Abstract 9

Abstract in dutch 11

1 Introduction 13

1.1 Problem statement . 13

1.2 Project objectives . 14

1.3 Outline . 14

2 Power sensors on FPGA 15

2.1 Introduction . 15

2.2 Tapped delay lines . 15

2.2.1 Working principle . 15

2.2.2 Implementation . 16

2.2.3 Limitations . 17

2.3 Ring oscillators . 17

2.3.1 Working principle . 18

2.3.2 Implementation . 19

2.3.3 Limitations . 19

3

3 Power analysis attacks 21

3.1 Simple power analysis . 21

3.2 Differential power analysis . 22

4 Experimental procedure 23

4.1 Automatic calibration . 23

4.2 Implementation . 24

4.3 Hardware and toolchain . 25

4.4 Benchmarking performance . 25

4.4.1 Ring oscillators . 25

4.4.2 Toggling registers . 25

4.4.3 AES core . 26

5 Results 27

5.1 Ring oscillators . 27

5.2 Toggling registers . 27

5.3 AES core . 28

5.4 Discussion . 28

6 Conclusion and future work 33

Bibliography 36

List of Figures

1.1 FPGA with multiple tenants sharing a power supply 13

2.1 Tapped delay line [9, p. 3] . 16

2.2 CARRY4 primitive [13, p. 43] . 17

2.3 Delay line using CARRY4 primitives . 18

2.4 Ring oscillator with enable signal . 18

2.5 Ring oscillator with TFFs to count oscillations [5, p. 4] 19

2.6 Clock diagram for a chain of TFFs . 19

3.1 SPA trace showing an entire DES operation [17, p. 2] 22

3.2 Simplified last round of AES for one byte . 22

4.1 Variable initial delay line principle . 24

4.2 Tapped delay line with automatic initial calibration 24

5.1 TDL delay at 50 MHz from enabling and disabling ROs 29

5.2 TDL delay at 25, 50 MHz from toggling registers 30

5.3 TDL delay at 25 MHz from enabling and disabling AES core 31

Glossary

AES Advanced encryption standard

CLB Complex logic block

DES Data encryption standard

DPA Differential power analysis

FF Flip-flop

FPGA Field-programmable gate array

LUT Lookup table

MMCM Mixed-mode clock manager

RO Ring oscillator

SCA Side-channel attack

SPA Simple power analysis

TDC Time-to-digital converter

TDL Tapped delay line

Abstract

Field-programmable gate arrays (FPGA) are highly customizable devices which make them inter-

esting devices to deploy in the cloud. To optimally use the hardware, multiple users could share

a portion of one FPGA. The customizability is also a risk, as several side-channel attacks have

been developed that use the reconfigurable fabric of the FPGA as sensors to gather information

on other tenants or even other devices sharing the same power supply. These sensors often rely

on time-to-digital converters to measure power consumption at nano-second scale. If one tenant

is using such an FPGA as a cryptographic accelerator, another tenant could use power analysis

to recover a secret key.

Currently, encryption cores running up to 100 MHz have been attacked using a tapped delay

line (TDL) sensor. There are two main limitations to this design, one disadvantage is that

the TDL has less time to measure the side-channel leakage as frequency goes up. Another

disadvantage is that the TDL has to be calibrated for each device and for clock speed.

This thesis contains measurements of ring oscillators, registers and AES core activity at 25 and

50 MHz on a Xilinx VC707 board. The results show that the side-channel leakage decreases as

the frequency goes up. However, the effect of a single AES core is too small to perform power

analysis on.

Abstract in dutch

Field-programmable gate arrays (FPGA) zijn programmeerbare logische circuits met interessante

toepassingen in de cloud. Om deze hardware optimaal te benutten zouden meerdere gebruikers

dezelfde FPGA kunnen gebruiken. Echter is de configureerbaarheid ook een risico, zo zijn er

verschillende side-channel attacks ontwikkeld die de FPGA configureren als een sensor om in-

formatie van andere gebruikers of andere chips met dezelfde voeding te meten. Deze sensors

maken gebruik van time-to-digital convertors om het vermogenverbruik te meten op nanosecon-

deschaal. Als één gebruiker de FPGA gebruikt voor cryptografische doeleinden, dan zou een

andere vermogensanalyse kunnen toepassen om de geheime sleutel te achterhalen.

Tot op het heden zijn er encryptiemodules tot 100 MHz succesvol aangevallen met tapped delay

line sensoren. Er zijn twee nadelen bij deze methode, één nadeel is dat de sensor minder tijd

heeft om te meten als de frequentie stijgt. Een ander nadeel is dat deze sensor apart gekalibreerd

moet worden voor elk apparaat en elke klokfrequentie.

Deze thesis bevat metingen van ring oscillators, registers en AES core activiteit aan 25 en 50

MHz op een Xilinx VC707 FPGA bord. De resultaten bevestigen dat de side-channel leakage

afneemt als de frequentie stijgt. Echter is het effect van een enkele AES core te klein om power

analysis op uit te voeren.

Chapter 1

Introduction

Field-programmable gate arrays (FPGAs) are semiconductor devices which are intended to be

configured after manufacturing. They are mainly built out of configurable logic blocks (CLB)

which can be arbitrarily connected together. This allows a designer to build various functions

on a single device and reconfigure the device if the requirements change. The flexibility and per-

formance of these devices makes them attractive candidates to implement in a cloud platform [1].

Many FPGAs support partial reconfiguration [2, 3] which allows a part of the device to be

reconfigured instead of reconfiguring the whole device at once. This enables cloud providers to

share one FPGA with multiple tenants. However, the reconfigurable nature of FPGAs allows

a developer to build sensors that measure the activity of other tenants on the FPGA. This

presents a security threat to the other tenants, especially if they are using the FPGA as a

cryptographic accelerator. Side-channel attacks, attacks that target the implementation instead

of the algorithm, have been developed and tested on various FPGAs [4–8]. These attacks may

use a time-to-digital converter (TDC) to measure power usage of the FPGA. Since the power

usage depends on the switching activity of the circuit implemented, power analysis attacks can

be used to gain knowledge about the other circuit. Figure 1.1 illustrates the setup, the shared

power supply is a source of information for tenant 2.

FPGA

Tenant 2Tenant 1
Performing encryption Measuring power consumption

Power
supply

TDCAES

Figure 1.1: FPGA with multiple tenants sharing a power supply

1.1 Problem statement

The main problem is that FPGAs allow users to configure a circuit that can measure the power

consumption of the whole device. In a situation where multiple tenants have access to different

parts of the FPGA that share a common power supply, this presents a security vulnerability

because a malignant tenant can use the power consumption data to gain information about

the circuits of the other tenants. Attacks against hardware vulnerabilities that are inherent to

the implementation of the device are called side-channel attacks (SCA). Different techniques

such as simple power analysis (SPA), differential power analysis (DPA) or correlation power

analysis (CPA) can be used to analyse the power consumption data.

In the worst-case scenario, the attacker may partially or completely recover the secret key. In

this scenario, the encryption can be considered defeated and the encrypted data insecure. A

partial key could reduce the computational complexity enough for the attacker to decrypt the

data in reasonable time.

The limitations of power analysis attacks must be researched to properly assess the risk they pose

to multi-tenant FPGAs. There are two common architectures, one is based on a tapped delay

line (TDL) and the other on a ring oscillator (RO). In [6], an AES secret key was recovered at

frequencies up to 96 MHz using a TDC. Schellenberg et al. [6] note that lower frequencies result

in larger variations in their power measurement. Zhao and Suh [5] demonstrate that an RO based

architecture works not only on one FPGA, but may also measure the power usage of a CPU on

the same SoC. Furthermore, [7] shows that this side-channel may be abused at board-level for

chips that share the same power supply. In [4, 8] frequencies up to 50 MHz were successfully

tested using an architecture based on an RO and a transmitter-receiver pair of wires. Ramesh

et al. [4] also noted that higher frequencies decreases the size of the side-channel, thus requiring

more samples to generate a successful key guess. However, the question remains whether attacks

using a power side-channel are possible or practical at frequencies over 100 MHz.

1.2 Project objectives

The goal of this thesis is to evaluate the security risks associated to using FPGAs as cloud

resources. Currently, the most effective architecture uses a TDL which requires fine-tuning per

device. The first objective is to simplify the calibration procedure such that the TDL architecture

becomes more portable. Several variations on the architecture exist, but generally two parameters

must be experimentally picked by the developer: initial and observable delay. A designer has

enough information to calculate an upper bound for initial delay, but the actual delay may be

significantly smaller. Thus the need to experimentally calibrate initial delay could be eliminated.

The second objective is to characterize the efficacy of TDL sensors at frequencies over 100 MHz.

1.3 Outline

Chapter 2 explains the architecture and limitations of the two main TDC architectures. Next,

chapter 3 explains how these TDCs may be used to attack cryptographic algorithms. Chapter 4

describes the tools and methods used to implement and test a TDL sensor. Finally, the results

are laid out in chapter 5 and the conclusions and ideas for future work are given in chapter 6.

14

Chapter 2

Power sensors on FPGA

2.1 Introduction

In order to perform side-channel attacks on an FPGA, the attacker must implement a sensor on

the FPGA that measures the side channel. By monitoring the propagation delay of gates in the

chip, the attacker can infer the relative power usage of the chip. More specifically, a tapped delay

line sensor measures the time it takes for a signal to propagate through a delay line. Another

way to measure the propagation delay is to measure the frequency of a ring oscillator, as the

duration of each oscillation is directly dependent on the propagation delay.

These types of sensors are TDCs that measure the propagation delay of an internal signal of the

FPGA. TDCs are used in any field where accurate time measurements are needed, thus other

architectures than the two discussed in this chapter exist. However, this chapter is limited to

TDLs and ROs since they are researched extensively for power sensing.

2.2 Tapped delay lines

A tapped delay line is a signal line with delay elements with one or multiple taps. A signal passing

through the delay line can be measured by observing the taps, which are simply measuring points

between the delay elements. The propagation delay of the signal is measured by storing the logical

value of all the taps at the same time. The propagation delay can then be expressed as the time

between applying the signal and capturing the values at the taps divided by the amount of taps

that changed value.

2.2.1 Working principle

Figure 2.1 illustrates a TDL. The upper row of buffers delay the incoming clock signal. In this

implementation the falling edge of the clock signal is used to enable the latches which act as taps

between the delay elements. Thus, the row of buffers is actively measuring when the clock signal

is high. The clock propagates through the delay line as a function of propagation delay of each

buffer. Activity on the board, or another device sharing the same power supply, will cause the

voltage of the power supply to sag momentarily. As a result, the buffers in the delay line exhibit

larger propagation delays.

The buffers are separated into two sections, an initial delay line and a observable delay line. The

clock period is the most important factor in choosing the length of the initial delay line.

Figure 2.1: Tapped delay line [9, p. 3]

2.2.2 Implementation

To achieve the highest resolution possible, the propagation delay of each delay element should

be as small as possible. Furthermore, to get a consistent linear measurement, each delay element

should have an equal delay. The designer has little control over the actual delay between prim-

itives. The length of the traces connecting the primitives together is unknown. Hence on Xilinx

FPGAs, CARRY4 primitives are commonly used. The dedicated carry logic with carry in and

carry out ports allow this primitive to be chained together to make a carry chain of arbitrary size.

There are several advantages of using this primitive over other logic elements. One advantage is

that a chain of carry elements get consistently fitted to a similar vertical structure and location

constraints can be used to guarantee a static structure. This ensures that there is minimal delay

between the carry output of one primitive to the carry input of another. Next, carry primitives

have low propagation delay. Depending on device and speed grade, actual delays of 17.5 ps have

been reported in [10–12]. Combining 4 delay elements into one primitive results in a total delay

of around 70 ps per CARRY4 primitive.

Figure 2.2 is a schematic of the innards of a CARRY4 primitive. The delay path is coloured in

red. By setting the MUXCY multiplexors input to 1 via S0 to S3, the CIN signal is propagated

through each MUXCY to COUT. Each MUXCY constitutes one delay stage. The taps are the

carry outputs CO0 to CO3. All taps should be connected to a flip-flop with a common clock.

The rising edge of this clock signal constitutes the stop signal of the delay line. The start signal

of the delay line is connected to the carry input of the first carry primitive. When the start

signal goes high, each carry output bit should sequentially go high. A short while later, the stop

clock captures the values of each carry out bit in flip-flops. If the stop clock goes high before the

start signal passes through the whole delay line, a relative measurement of delay between start

and stop is captured in the flip-flops.

Figure 2.3 illustrates how such a delay line could be implemented. The large rectangular blocks

are the carry primitives and the smaller squares are the flip flops capturing the data at the taps.

The carry out from the primitive below the selected primitive feeds into the carry in from the

selected primitive.

16

Figure 2.2: CARRY4 primitive [13, p. 43]

2.2.3 Limitations

To get a precise measurement, it is important that the stop signal clocks every tap simultaneously.

However, clock lines on an FPGA are divided into different clock regions [14]. Long delay lines

could span multiple clock regions and introduce non-linearities between regions. In [15] the start

signal is first passed through another kind of delay line which consists of lookup tables (LUTs)

and open latches before it enters the carry chain. This extra initial delay line reduces the need

for excessive CARRY4 primitives and allows a complete design to fit into one clock region. Zick

et al. claim the open latches enhance voltage sensitivity [15, p. 2].

Finally, it is important that the delay between the start and stop signal is consistent at pico-

second resolution. Any jitter larger than the smallest delay between taps will result in noisy

consecutive measurements, even if the actual propagation delays of the gates are stable.

2.3 Ring oscillators

A ring oscillator (RO) is a ring of an odd numbers of inverters. The most elementary form is an

inverter connected to a buffer. Every even number of inverters in an RO could be interpreted as

17

Figure 2.3: Delay line using CARRY4 primitives

a buffer. Connecting an AND gate into the ring, as in figure 2.4, creates a simple enable signal

to turn the oscillator on or off.

Figure 2.4: Ring oscillator with enable signal

2.3.1 Working principle

If an inverter has a 0 on its input, it will output a 1. After the delay of remaining gates and

wires in the ring, the 1 arrives at the input of the inverter, causing it to flip its output to

0. The same process is repeated with inverse values and the circuit is returned to its initial

state. When an RO is enabled, any point in the ring oscillates at a frequency at a rate inversely

proportional to the total delay of the ring. In figure 2.4 this delay consist of the propagation

delay of the inverter, buffer and AND gate plus the delay of the signal travelling through the

wires connecting the gates. Propagation delay of CMOS gates are dependent on several factors

such as supply voltage, manufacturing technology and temperature. Thus, assuming all other

factors are constant, measuring the frequency of a ring oscillator is a way to measure the voltage

of the gates in the ring.

18

2.3.2 Implementation

One way to implement an RO on an FPGA, is to omit the buffer as the AND gate acts as a very

small buffer. The inverter and AND gate can each be implemented in one slice. Compared to an

ASIC, the routing delay on an FPGA is also likely to be larger. To measure the frequency, [5]

suggests using a chain of T-flip-flops (TFF) because the RO oscillates much faster than the

system clock. The toggle of each TFF is pulled high and the ring oscillator feeds the clock of the

first TFF. The output of the first TFF feeds the clock of the second, as illustrated in figure 2.5.

Alternatively [8] suggests using a Johnson Ring Counter.

Figure 2.5: Ring oscillator with TFFs to count oscillations [5, p. 4]

Figure 2.6: Clock diagram for a chain of TFFs

A chain of TFFs with its toggle ports pulled high is essentially a counter, as each TFF halves

the frequency of the previous TFF since it only toggles on the rising edge. A clock diagram of

a chain of TFFs is given in figure 2.6. Note that TFF3-TFF1 is effectively counting down, but

inverting every signal would result in an up counter. The frequency of the RO can be determined

by comparing the count, or the amount of toggles, to a clocked counter with a known frequency.

The amount of TFF in the chain should be great enough such that the last TFF never gets

toggled, this ensures the counter has not rolled over. For example, in figure 2.6, the RO has a

frequency of 100 MHz, the first TFF has a frequency of 50 MHz, the second TFF has a frequency

of 25 MHz and the third TFF has a frequency of 12.5 MHz. If the reference clock period is more

than 80ns, the count would be ambiguous.

2.3.3 Limitations

Compared to a tapped delay line sensor, an RO is simpler to implement and more portable

across different FPGAs. However, [15] notes that an RO sensor is best suited for measuring

static effects or slow transients. In [8], Gravellier et al. note several disadvantages: frequency

dependent resolution, quantization error and counter timing error. The temporal resolution of the

TDC depends on the frequency of the RO. For a given measuring period, a higher frequency RO

returns a higher resolution measurement. Therefore, it is important to maximize the oscillation

19

frequency of the RO. Next, the counter measuring the RO count must be specially designed with

very high frequencies in mind. Finally, a RO is a combinatorial loop and synthesis tools already

recognize this structure, thus it would be easy to detect and forbid from being implemented in a

multi-tenant FPGA.

20

Chapter 3

Power analysis attacks

Power analysis attacks are effective because they target the implementation of a security sys-

tem rather than the cryptographic algorithm. Since the hardware implementation of a system

is often abstracted away from the designer, it is easy to overlook the security implications it

has on the system. There are several ways an attacker could exploit fine-grained power meas-

urements on a system performing cryptographic calculations. The simplest technique, simple

power analysis (SPA), interprets power measurements over time. Conversely, differential power

analysis (DPA) exploits the power data by utilizing statistics on many traces and incorporating

the plaintext or ciphertext. Closely related to DPA is correlation power analysis, where power

traces are compared to a model of the power leakage. Kocher et al. cover several techniques

in [16].

3.1 Simple power analysis

Simple power analysis refers to interpreting a power trace over time. The main idea is that power

usage scales with electrical activity. The simplest kind of SPA attack is to identify if a system

is in an idle state or not. If a system is idle, the power draw is likely to be constant or follows a

consistent pattern. Alternatively, if a device is computing information, the power draw is more

chaotic or follows a different pattern than idle. Though this information may seem useless, an

attacker could use this data to decide when to attack. If the attacker intends to perform a denial

of service attack, it is valuable to know when a system is most active.

A lot more information can be leaked through power traces. Figure 3.1 is a power trace from a

system performing encryption using data encryption standard (DES). From visually inspecting

the trace, it is immediately clear some action is repeated 16 times. Counting the amount of

repeated patterns could help an attacker determine which algorithm is being performed on a

device. With access to an accurate power trace, an attacker can compare rounds to each other.

If the algorithm is implemented on a CPU, a branch depending on the ciphertext or key value

may cause the round to be slightly longer.

With a naive implementation, a great deal can be learned about a system from its power trace.

In reality, an accurate power trace often requires physical access. However, even with a noisy

power trace, an attacker can likely still determine which algorithm is being used. With this

Figure 3.1: SPA trace showing an entire DES operation [17, p. 2]

information, differential power analysis can uncover even more.

3.2 Differential power analysis

In contrast to SPA where information is deduced from the structure of an implementation, DPA

targets power differences caused by different data. By collecting many power traces, an average

trace may be computed. Depending on if the plaintext or ciphertext is known and what algorithm

is being used, the attacker targets a specific step in an encryption algorithm.

Consider a situation like in figure 3.2, which is similar to the last round of AES. Assume signals

Key, A and Ciphertext are 8-bit values and that a large amount of power traces and corresponding

Ciphertexts are known. Randomly guess the value of Key and compute A under the assumption

your guess is correct. Next, invert the Byte substitution operation to get a value for BS0.

If there is a difference in power consumption based on data, then the set of power traces with

corresponding BS0 calculated to be 0 should differ from the set of traces where BS0 was calculated

to be 1. Compute the average for both sets of traces and subtract them from each other. If the key

guess is incorrect, the calculated BS0 value is incorrect and the set of power traces is separated

into two random sets, which are the same on average. If the key guess is correct, the two sets

should have different averages.

Byte
Substitution

Key
Ciphertext

BS7

BS0

A

Figure 3.2: Simplified last round of AES for one byte

Repeat this process for every possible key. In this case, for an 8-bit key, there are only 256

different options. The key guess that resulted in the largest peak difference between sets of

power traces is most likely to be the actual key. Note that the choice of BS0 is arbitrary here,

any other BS bit may be used to separate the set of traces into two sets.

22

Chapter 4

Experimental procedure

To date, the best performing architecture is the TDL variant. As previously mentioned, this type

of sensor requires careful fine-tuning for clock frequency and for different devices. Alternatively, a

very long carry-chain without initial delay could be used such that a large time period is covered

with one sensor. Ideally the carry-chain is placed into one clock region so that the clock skew is

kept to a minimum. Assuming 70 ps per CARRY4 primitive and a chain length of 50 primitives,

a delay of less than 3.5 ns could be measured. This kind of architecture would limit the sensor

to clock speeds of 150 MHz and up. Note that the architecture in figure 2.1 measures only when

the clock is high, thus the delay line is only active for half a clock period.

Since attacks have only been successfully implemented at 100 MHz or slower, it is recommended

to include an initial delay line using elements with larger delays such as open latches. The

propagation delay of the larger delay element determines how many elements should be added to

the delay line. The manufacturer typically specifies pessimistic delay estimates so that a normal

design is likely to meet timing if the pessimistic delay is taken into account. No minimum delay

is given and the actual delay could be significantly less than the given pessimistic delay, therefore

it is necessary to fine-tune for each device.

4.1 Automatic calibration

Figure 4.1 illustrates how the initial delay line from figure 2.1 can be turned into a variable delay

line. If Enable 0 is high, then the signal from start only passes through the topmost AND gate

and the OR gate. This results in a relatively short initial delay. Alternatively, if Enable n is

high, then the signal has to pass through n delay elements, an AND gate and the OR gate. The

initial delay can be set by choosing the right enable signal.

To automatically determine the right enable signal, start by setting Enable 0 high. If the delay

line is just right, the clock signal should not propagate to the end of the observable delay line.

If the delay line is too short, the last tap of the observable delay line will measure high. Con-

sequently, the last bit of the Delay Line Out Register will be high. Using this last bit, the enable

register is shifted right by one. Now Enable 1 is high and the initial delay has increased one

delay element. This process is repeated until the last tap of the observable delay line is not high,

indicating that the initial delay line is long enough.

Figure 4.1: Variable initial delay line principle

4.2 Implementation

The final TDL implementation is illustrated in figure 4.2. The output of the CARRY4 chain is

captured with two D Flip-Flops (FF) in series to avoid metastability issues. Compared to the

negative edge trigged latch used in figure 2.1, using a separate clock is more flexible. By setting

the phase shift, the delay data can be captured at any time. By decreasing the phase shift at

lower frequencies, a relatively small delay line could be used as ”the amount of time during which

the side-channel leakage can be leveraged is not bounded to the AES frequency but to the device

itself” [8, p. 7]. The disadvantage is that phase shift jitter may impact the measurement. The

Mixed-Mode Clock Manager (MMCM) displays a maximum peak-to-peak jitter of 129.198 ps for

a 100 MHz clock. If this were the case, the TDL data could swing over 7 bins using only one

clock. Fortunately, the jitter is an order of magnitude lower in practice.

Figure 4.2: Tapped delay line with automatic initial calibration

24

The primary clock is derived from the MMCM. Additionally a secondary clock phase shifted

180◦ was used to capture the delay data. The data was recovered from the FPGA using the

Xilinx Internal Logic Analyser (ILA) IP core. This IP implements a logic analyser on the FPGA

and streams the data to the host computer over a JTAG connection. From Vivado, the data can

be exported to a comma-separated values (csv) file for further processing. Using a Python script,

bubble correction was applied to the delay data and then the binary values were converted to

decimal numbers.

4.3 Hardware and toolchain

Every experiment was run on a Xilinx Virtex-7 VC707 Evaluation Kit. This kit features a

VX485T FPGA with a 200 MHz differential clock on board. Synthesis, implementation and

bit-stream generation were performed in Vivado 2018.3. The opt design steps in implementation

are turned off to prevent Vivado from optimizing away logic [18]. The FPGA was used at room

temperature (20◦C) with the fan disabled. The code was written in Verilog. To avoid synthesis

removing extra logic, KEEP and DONT TOUCH constraints were used [19]. Additionally, relat-

ive location (RLOC) constraints were used to ensure the CARRY4 elements were implemented as

a chain. The webpage [10] provides a working example in VHDL compatible with most 6-series

and higher Xilinx FPGAs.

4.4 Benchmarking performance

To verify the functionality and test the performance of the TDL sensor, several test circuits were

implemented. A counter was used to enable and disable the test circuits so a comparison between

an active and inactive circuit can be made. The test circuits are: ring oscillators, large registers

alternating state, and an AES core.

4.4.1 Ring oscillators

An RO consumes a lot of power because it switches state very rapidly. Additionally an RO occu-

pies relatively little area. These properties make it a very good circuit to test the functionality

of our sensor since many ROs can fit in same clock domain the sensor is located in. The ROs

were implemented with an enable signal similar to figure 2.4. The enable signal was driven by

a bit from a counter, causing all ROs to enable and disable at the same time. Since this circuit

drives no other logic, it is important to use constraints to prevent it from being synthesized out.

To generate many copies of a RO, a for loop was used and the loop variable was passed to the

RO module. Passing the loop variable prevents Vivado from trimming identical instantiations.

4.4.2 Toggling registers

Once the TDL sensor is verified to work, a more realistic target is needed. Thus, the second test

circuit consists of turning large registers on and off. This circuit has considerably less switching

25

activity compared to the RO test, since there is only one transition for each bit every clock cycle

compared to many transitions every clock cycle.

4.4.3 AES core

Finally an AES core is measured. The 128-bit AES core is implemented with a 128-bit datapath.

This means that the input, key and output are 128-bit signals. AES128 consists of ten rounds and

each round is computed in one clock cycle. Byte substitution and mix columns are implemented

as 8 bit and 32 bit lookup tables. The implementation contains no additional pipelining or other

features to improve performance or area.

26

Chapter 5

Results

The results in the following section are illustrated as a combined figure of an enable signal and

the TDL sensor output. The enable signal is active high, i.e. 1 is active and 0 is inactive. The

following figures show the output of the carry chain. A delay tap refers to one output from a

CARRY4 primitive, four delay taps correspond to one CARRY4 element. As mentioned earlier,

on a Xilinx 7-series FPGA, one tap is equal to approximately 17.5 ps of delay. Since an initial

delay line of open latches was used, figure 5.1, 5.2 and 5.3a do not show the total delay value.

5.1 Ring oscillators

Figure 5.1 shows the effect of enabling ROs on the TDL sensor. For these figures, the TDL

sensor was clocked at 50 MHz. Clearly, enabling ROs decreases the delay. As the amount of ROs

increases, the delay gets more and more severe. As the ROs get enabled, the delay continually

decreases. When the ROs get disabled, the delay value jumps up a bit and then recovers for a

short duration before stabilising. The difference in delay is roughly 8, 12, 16 and 20 taps for

1000, 1500, 2000 and 2500 ROs, which suggests a linear scaling. As the amount of ROs decreases

to under 500, the effect becomes harder to visually identify.

5.2 Toggling registers

Figure 5.2 shows the effect of toggling registers on the TDL sensor. Compared to the ROs,

the effect of toggling on and off registers on the sensor is less pronounced. Figure 5.2f, 10000

registers at 50 MHz, looks similar to figure 5.1a with 250 ROs. At 2000 registers, it becomes

almost impossible to tell if the circuit is enabled from the sensor trace. To increase the delay

variance, the clock speed was reduced to 25 MHz. As illustrated in figure 5.2a and 5.2b, the

sensors response is somewhat enhanced.

5.3 AES core

Figure 5.3 shows the effect of running an AES core on the TDL sensor at 25 MHz. Visually,

in figure 5.3a it is hard to distinguish a difference between enabled and disabled from the delay

trace. To amplify the effect, the AES modules were duplicated 5 and 10 times for figures 5.3c,

5.3d and figures 5.3e, 5.3f. With duplicated cores, it is possible to visually distinguish between

enabled and disabled.

5.4 Discussion

Measuring large amount of ROs clearly indicates that using FPGA resources has an impact on

propagation delay. The results show that using a TDL, it is possible to measure this effect under

certain circumstances. When measuring registers, the clock speed was lowered from 50 MHz to

25 MHz to reliably measure a difference. The clock speed was kept at 25 MHz when measuring

the AES core. Compared to the literature [6, 7], our side-channel leakage is less pronounced.

There are several factors that could have influenced this result. First of all, Schellenberg et al. [6,7]

use a SAKURA-G FPGA board specially designed for side-channel attack research, though they

claim to achieve similar results on an Artix-7 and Zynq-7000 development board. One major

difference between these boards and the VC707 board used in this work is size. The VC707

features 485760 logic cells compared to less than 100000 for the boards from the literature.

Secondly, there are subtle differences between the TDL implemented in this paper compared

to the ones in the literature. My sensor uses a chain of open latches for the initial delay line,

compared to a chain of LUTs alternating with open latches. It is possible that the LUTs enhanced

the delay response. Finally, the tests in this chapter may not ideally represent the sensors

performance. The AES core used for the final test consists of a simple 128 bit implementation

with most of the computations pre-computed and stored in LUTs. As a consequence, computing

different ciphertexts may have similar power traces. However, in our tests it is not even possible

to detect if a single core is on or off.

28

30
33
36
39
42
45
48
51
54
57

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(a) 250 ROs

24
27
30
33
36
39
42
45
48

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(b) 500 ROs

36
40
44
48
52
56
60
64
68

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(c) 1000 ROs

64
68
72
76
80
84
88
92
96

100

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(d) 1500 ROs

20

25

30

35

40

45

50

55

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(e) 2000 ROs

25
30
35
40
45
50
55
60
65
70

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(f) 2500 ROs

Figure 5.1: TDL delay at 50 MHz from enabling and disabling ROs

29

8

12

16

20

24

28

32

36

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(a) 25 MHz, 2000 registers

0

4

8

12

16

20

24

28

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(b) 25 MHz, 4000 registers

60

63

66

69

72

75

78

81

84

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(c) 50 MHz, 2000 registers

54

57

60

63

66

69

72

75

78
De

la
y

ta
ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(d) 50 MHz, 4000 registers

60

63

66

69

72

75

78

81

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(e) 50 MHz, 6000 registers

12

15

18

21

24

27

30

33

36

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(f) 50 MHz, 10000 registers

Figure 5.2: TDL delay at 25, 50 MHz from toggling registers

30

6
3
0
3
6
9

12
15
18

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(a) 1 core

9
6
3
0
3
6
9

12
15
18

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(b) 1 core

12

16

20

24

28

32

36

40

44

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(c) 5 identical cores

12

16

20

24

28

32

36

40

44
De

la
y

ta
ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(d) 5 identical cores

25

30

35

40

45

50

55

60

65

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(e) 10 identical cores

25

30

35

40

45

50

55

60

65

De
la

y
ta

ps

0 500 1000 1500 2000 2500 3000 3500 4000
Time (samples)

0

1

En
ab

le

(f) 10 identical cores

Figure 5.3: TDL delay at 25 MHz from enabling and disabling AES core

31

32

Chapter 6

Conclusion and future work

In conclusion, a tapped delay line sensor was implemented on a Xilinx VC707 development

kit with the goal of measuring its performance at high frequencies. Since this type of sensor

requires fine-tuning, an automatic calibration circuit was added to the design. The calibration

circuit significantly reduced the development time when regularly switching clock frequencies for

testing.

During testing, the effect of various circuits on the FPGA or side-channel leakage turned out

to be smaller than anticipated. Compared to the literature, where a small AES core causes a

significant effect on the sensor, only a small effect was measured. Since the side-channel decreases

as frequency goes up, it was not possible to investigate the viability of power analysis attacks at

frequencies over 100 MHz.

Instead, the results suggest other factors may severely impact the performance of this type of

sensor, and by extension the risk side-channel attacks pose to tenants in shared FPGAs. To

that end, a study comparing different sizes of FPGAs and power filtering circuits for the FPGA

could be useful. The VC707 contains a large FPGA compared to the FPGAs typically used to

demonstrate power analysis attacks. However, it is quite small compared to the FPGAs offered

by cloud providers.

On the other hand, it is not clear what the best architecture is for the initial delay line. A

comparison between LUTs, latches and other primitives would be valuable in getting the best

signal to noise ratio.

34

Bibliography

[1] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang, “Enabling

FPGAs in the cloud,” in Proceedings of the 11th ACM Conference on Computing Frontiers

- CF ’14, (Cagliari, Italy), pp. 1–10, ACM Press, 2014.

[2] “Which Intel FPGA devices support Partial Reconfigura-

tion?.” https://www.intel.com/content/www/us/en/programmable/

support/support-resources/knowledge-base/tools/2018/

which-of-the-intel-fpga-devices-does-supports-partial-reconfigur.html.

Accessed: 2020-05-16.

[3] Vivado Design Suite User Guide: Partial Reconfiguration (UG909), 2018.

[4] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pillement, D. Holcomb,

and R. Tessier, “FPGA Side Channel Attacks without Physical Access,” in 2018 IEEE

26th Annual International Symposium on Field-Programmable Custom Computing Machines

(FCCM), (Boulder, CO), pp. 45–52, IEEE, Apr. 2018.

[5] M. Zhao and G. E. Suh, “FPGA-Based Remote Power Side-Channel Attacks,” in 2018 IEEE

Symposium on Security and Privacy (SP), (San Francisco, CA), pp. 229–244, IEEE, May

2018.

[6] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An inside job: Remote power

analysis attacks on FPGAs,” in 2018 Design, Automation & Test in Europe Conference &

Exhibition (DATE), (Dresden), pp. 1111–1116, IEEE, Mar. 2018.

[7] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori, “Remote inter-chip power

analysis side-channel attacks at board-level,” in Proceedings of the International Conference

on Computer-Aided Design - ICCAD ’18, (San Diego, California), pp. 1–7, ACM Press,

2018.

[8] J. Gravellier, J.-M. Dutertre, Y. Teglia, and P. Loubet-Moundi, “High-Speed Ring Oscillator

based Sensors for Remote Side-Channel Attacks on FPGAs,” in 2019 International Confer-

ence on ReConFigurable Computing and FPGAs (ReConFig), (Cancun, Mexico), pp. 1–8,

IEEE, Dec. 2019.

[9] D. R. E. Gnad, F. Oboril, S. Kiamehr, and M. B. Tahoori, “An Experimental Evaluation

and Analysis of Transient Voltage Fluctuations in FPGAs,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 26, pp. 1817–1830, Oct. 2018.

[10] “Basic fpga tdc design.” https://cas.tudelft.nl/fpga_tdc/TDC_basic.html. Accessed:

2020-05-16.

35

https://www.intel.com/content/www/us/en/programmable/support/support-resources/knowledge-base/tools/2018/which-of-the-intel-fpga-devices-does-supports-partial-reconfigur.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/knowledge-base/tools/2018/which-of-the-intel-fpga-devices-does-supports-partial-reconfigur.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/knowledge-base/tools/2018/which-of-the-intel-fpga-devices-does-supports-partial-reconfigur.html
https://cas.tudelft.nl/fpga_tdc/TDC_basic.html

[11] “Tdc on zybo board.” https://forums.xilinx.com/t5/

General-Technical-Discussion/TDC-on-ZYBO-Board/td-p/817194. Accessed: 2020-05-

16.

[12] L. H. Menninga, “Implementation, Characterization, and Optimization of an FPGA-based

Time-to-Digital Converter,” 2011.

[13] Xilinx, 7 Series FPGAs Configurable Logic Block User Guide, 2016.

[14] Xilinx, 7 Series FPGAs Clocking Resources User Guide, 2018.

[15] K. M. Zick, M. Srivastav, W. Zhang, and M. French, “Sensing nanosecond-scale voltage

attacks and natural transients in FPGAs,” in Proceedings of the ACM/SIGDA international

symposium on Field programmable gate arrays - FPGA ’13, (Monterey, California, USA),

p. 101, ACM Press, 2013.

[16] P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to differential power analysis,”

Journal of Cryptographic Engineering, vol. 1, pp. 5–27, Apr. 2011.

[17] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” p. 10.

[18] Vivado Design Suite User Guide: Implementation (UG904), 2018.

[19] Xilinx, Constraints Guide, 2013.

https://forums.xilinx.com/t5/General-Technical-Discussion/TDC-on-ZYBO-Board/td-p/817194
https://forums.xilinx.com/t5/General-Technical-Discussion/TDC-on-ZYBO-Board/td-p/817194

	Acknowledgements
	List of figures
	Glossary
	Abstract
	Abstract in dutch
	Introduction
	Problem statement
	Project objectives
	Outline

	Power sensors on FPGA
	Introduction
	Tapped delay lines
	Working principle
	Implementation
	Limitations

	Ring oscillators
	Working principle
	Implementation
	Limitations

	Power analysis attacks
	Simple power analysis
	Differential power analysis

	Experimental procedure
	Automatic calibration
	Implementation
	Hardware and toolchain
	Benchmarking performance
	Ring oscillators
	Toggling registers
	AES core

	Results
	Ring oscillators
	Toggling registers
	AES core
	Discussion

	Conclusion and future work
	Bibliography

