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Deze masterproef werd geschreven tijdens de COVID-19 crisis in 2020. Deze wereldwijde 

gezondheidscrisis heeft mogelijk een impact gehad op de opdracht, de onderzoekshandelingen en de 

onderzoeksresultaten. 
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Abstract 

Around 75% of the pears, produced in Belgium, are currently exported. Most export countries demand 

that these pears originate from land plots that are free of fire blight. As a first step towards automatic 

detection of fire blight, this thesis explores the potential of state-of-the-art machine learning techniques 

to detect apples, leaves and branches in RGB images of an orchard. These techniques require a large, 

labelled image dataset, which is typically very time consuming to obtain. A solution to this problem is 

created in this thesis.   

In this work, a Python program was written that offers the ability to generate a large annotated dataset 

consisting of synthetic images in a common object segmentation image format (COCO) via a 3D 

creation software (Blender). Furthermore, the researcher has control over every aspect in every scene, 

such as brightness, light exposure, camera position, etc. This dataset can then be used to train several 

neural networks. Here, this software was used to create a dataset consisting of 2750 synthetic train 

images of different kinds of apple trees carrying fruits. These images and annotations were used to train 

a Mask Region based Convolutional Neural Network (Mask R-CNN) to detect and annotate apples, 

leaves and branches in an orchard.  

The results based on apples only are promising, with a F1-score of 0.85. With respect to the Mask R-

CNN model trained with the standard COCO dataset, this is an improvement of 0.78, evaluated on 

orchards. Finally, a method is proposed to remove the false positives. 
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Abstract (Dutch) 

In België wordt 75% van de geproduceerde peren geëxporteerd. De meeste exportlanden eisen dat deze 

peren afkomstig zijn van percelen die vrij zijn van bacterievuur. In een eerste stap wordt er gekeken 

naar de mogelijkheid om appels, bladeren en takken te detecteren in RGB-afbeeldingen van 

boomgaarden via machine learning-technieken. Deze technieken vereisen een grote, gelabelde dataset, 

wat erg tijdrovend is om te verkrijgen. Echter wordt hiervoor ook een oplossing gegeven. 

In deze masterthesis werd een programma geschreven in Python waarmee een grote dataset van 

geannoteerde afbeeldingen gegenereerd kan worden in common object segmentation image formaat 

(COCO) via een 3D modeleringssoftware (Blender). Daarnaast heeft de onderzoeker controle over elk 

aspect in elke scene, zoals helderheid, lichtinval, camerapositie… Deze dataset kan vervolgens gebruikt 

worden om verschillende neurale netwerken te trainen. In deze thesis werd het programma gebruikt om 

een COCO-dataset bestaande uit synthetische afbeeldingen van verschillende appelbomen te genereren. 

Aansluitend worden deze afbeeldingen en annotaties gebruikt om een Mask Region based 

Convolutional Neural Network (Mask R-CNN) te trainen om zo appels, takken en bladeren in een 

boomgaard te herkennen. 

De resultaten zijn alvast veelbelovend met een F1-score van 0.85, gebaseerd op enkel appels. Dit is 

een vooruitgang van 0.78 ten opzichte van het Mask R-CNN model getraind met een COCO-dataset. 

Tot slot wordt nog een methode voorgesteld om de huidige valse positieven te verwijderen. 
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Chapter 1:  

Introduction 

Context 

In Belgium, pear cultivation is actually a ‘Conference’ pear cultivation: more than 90% of the pear 

cultivation area in Belgium consists of Conference pears. This percentage kept increasing in recent 

years up to more than 10.000 ha. More than 75% of the total pear production is exported, mainly within 

the EU, but also to China, USA, Brazil, Canada, Vietnam and Israel. In a number of export countries, 

the pears must come from fire blight (Erwinia amylovora) free plots. However, detection of this 

bacterial disease is still very time-consuming and, hence, costly. Currently, it is done by visually 

monitoring each row of trees and carefully cutting out infected flower clusters, twigs, branches and 

fruitlets. Disinfection of used tools and cutting wounds as well as follow-up monitoring are crucial. In 

case of severe infection, the entire orchard has to be eliminated, i.e. all trees need to be removed and 

burned, including the rootstock. Whenever this is the case, the economic loss will amount to up to tens 

of thousands of Euros or more, since the grower not only loses the infected trees, but he will also have 

to wait several years until the new planting reaches full production. 

pcfruit, a research centre specialized in fruit search, is searching for a solution to detect fire blight 

symptoms automatically and, if possible, early. One of the possible approaches was introduced as a 

master’s thesis for the students of the Faculty of Engineering Technology from the joint program of 

KULeuven and UHasselt.  

Problem definition and goals 

The initial aim of this master’s thesis was to establish a method to detect fire blight symptoms via 

drone images using AI techniques, such as Deep Learning or other predictive modelling techniques. 

However, after a meeting with VITO, who conducted previous research with pcfruit on spectral 

detection of fire blight symptoms in orchards using drone images, it was clear that this is currently not 

possible because of the lack of ground truth images to train the Mask R-CNN. In agreement with VITO, 

pcfruit and ACRO, we decided to shift the aim of this master’s thesis. The new aim is to solve this 

problem of sparse ground truth by generating synthetic images for which ground truth is perfectly 

known. Furthermore, the approach will be tested and evaluated by verifying how well the trained 

Convolutional Neural Network (CNN) model is able to detect apples in the first place, and later on also 

leaves and branches in real images of an orchard. This solution may be used in the future to detect fire 

blight symptoms in earlier stages. 

Tools 

During this master’s thesis, three major tools were used. First, a 3D creation software (Blender) was 

used to create 3D models of every object in the scene. In this project, only apples, leaves and branches 

were created. The other tool that was used, was Python. Blender comes with a built-in Python plug-in. 

Using this plug-in, everything in every scene can be controlled, while every process in Blender can be 

automized.  The last tool was a Mask R-CNN framework from matterport. More information about this 

framework can be found in 2.1.1.  

Overview 

This thesis has the following structure. First, chapter 2 handles the literature study that was written to 

acquire the information that was necessary to choose and use the training-frameworks. Apart from a 
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convolution neural network (CNN) in general, two specific CNN’s are discussed as well. In addition, 

some important terms and different approaches to gather ground truth are explained here. Chapter 3 

explains the materials and methods. First, it is explained how the synthetic images and the 

corresponding ground truth images are made using both Blender and Python. It dives into detail on how 

each function in the written Python-script works and how it is used during this master’s thesis. 

Furthermore, it explains how the ground truth images are converted to actual ground truth in COCO-

format and gives the format in which these files are saved. Lastly, chapter 3 will also give an explanation 

on how to both train and evaluate a model using the synthetic dataset. In chapter 4, the results of the 

different approaches are discussed, while some extensions are given that can be implemented in the 

future in order to improve the current model and results. These extensions are based on some 

weaknesses of the current method which will also be explained in this fourth chapter. In chapter 5, a 

conclusion is formed based on these results and suggestions for future work are given. 
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Chapter 2 

Literature study 

First, this chapter will discuss some related work about fruit detection in orchards and image 

segmentation based on synthetic ground truth images. Furthermore, this chapter will also discuss some 

concepts and definitions, which will be used later in this master’s thesis. These concepts and definitions 

are important to have a better understanding on how a CNN can be trained using only synthetic data. 

First, the operating principle of an artificial neural network in general is explained, followed by two 

more specific CNN’s; Mask R-CNN and YOLO. Next, previous research on synthetic ground truth and 

machine learning is summarised. Finally, the adopted evaluation criteria for the trained model are 

explained. 

Related work 

2.1.1 Fruit detection in orchards 

An earlier approach to detect apples in orchards using CNN’s, was conducted by the University of 

Minnesota in 2018. [1] 13 000 images were labelled manually by human labelled. After this process, 

they were able to achieve an accuracy of 94%. However, this method is only used and evaluated to 

count apples. During this master’s thesis, the trained model will be evaluated based on the instance 

segmentation of every apple in the evaluate images, which is more difficult to achieve.  

2.1.2 Image segmentation based on synthetic ground truth images 

A research conducted by the University of Chicago in 2018 proved that training a neural network is 

possible with only synthetic images. The idea to combine both synthetic images and domain 

randomization originated from this research. The researchers generated 100 000 synthetic images to 

transfer learn (from the COCO weights) a CNN. This resulted in an average precision of 83.7%. [2]   

Neural network 

Every neural network consists of multiple layers. Each layer has its own purpose, working principle 

and function. Together, all these layers will be able to make decisions based on the input and previous 

experiences. In this master’s thesis, the working principle of two different neural networks will be 

discussed, namely Mask R-CNN and YOLO. Purely based on theory, one of those two networks will 

be chosen and used during this project to detect apples in an orchard.  

Basically, there are multiple detection possibilities. The first one is called ‘image classification’ and, 

as illustrated in [3, Fig. 1a], will only tell us which objects are present in the image. The second 

possibility, called ‘image detection’, will draw square bounding boxes around every detected object and 

will name these bounding boxes accordingly. This is visualized in [3, Fig. 1b]. The third way to label 

objects in an image is called ‘image segmentation’. In this method, the network will label every object 

pixel-based, however, it will not make any distinction between every individual object in a group of the 

same objects, as shown in [3, Fig. 1c]. The last method, called instance segmentation, is able to make 

this distinction as illustrated in [3, Fig. 1d]. This literature study will mainly focus on the latter, since 

objects during this thesis should be detected separately. [3] 
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Figure 1: Different image detection possibilities [3]. 

 

2.1.1 Mask R-CNN 

This deep neural network results from Faster R-CNN and aims to solve instance segmentation problems 

in both computer vision and machine learning. [4] Mask R-CNN consists of 4 major parts and networks:  

1. The first layer consists of a ResNet 101. This is a CNN with 101 layers. Its purpose is to 

extract feature maps from a given image, so the output will be several feature maps. A feature 

map of a CNN is the result of applying a filter in a certain layer to the input image. A method 

to understand which features the CNN is able to detect, is to visualize these feature maps. [5] 

2. The following layer is a region proposal network (RPN) with these feature maps as input. The 

RPN is responsible for proposing different areas in order to detect objects. This is done by 

dividing the image in about 200.000 regions of different sizes, called anchors. These anchors 

must overlap to cover as much of the image as possible. Since the RPN is able to scan over 

the backbone feature map instead of the image itself, it is considered to be a rather fast process. 

Furthermore, RPN is able to scan the anchors in parallel. Finally, the anchors with the highest 

probability to contain an object are selected. These anchors are called the regions of interest 

(RoI) and passed to the next layer. [6] 

3. This next stage consists of a RoI classifier and takes the previously mentioned RoIs as input. 

For each RoI it calculates both the class (foreground or background) and bounding box of the 

object in the anchor. However, these anchors probably are of different sizes which could cause 

a problem. To solve this, RoI pooling is used. This means that every anchor will be cropped 

and resized into a fixed size. [7] 

4. These first three layers are similar to a Faster R-CNN framework. Only the fourth layer will 

distinguish a Mask-RCNN framework from a Faster-RCNN one. This fourth layer is once 

again a CNN. This network, however, is responsible for constructing the segmentation masks 

which will outline and locate the detected objects in an image. These masks have a low 

resolution, nevertheless, they consist of float numbers instead of bits. This means that each 

pixel contains more information. Using this extra information, this framework is later able to 

return pixel-based masks for (almost) every object in the image. [7] 

Mask R-CNN only annotates an object when the confidence is above a certain threshold. This 

threshold is called minimum confidence threshold (MCT). 
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Figure 2: Schematic visualization of Mask R-CNN [4]. 

 

2.1.2 You Only Look Once 

Another neural network is called You Only Look Once (YOLO). This framework can detect several 

objects with only one glance at the image. Unlike Mask R-CNN, YOLO consists of only one single 

neural network. Using this single neural network, YOLO is able to return both the bounding box and 

the confidence for (almost) every object in an image with only one look at this image. [8] 

This first step in YOLO is to resize the image to 448 x 448 pixels. Next, the image is divided into a 

grid. Finally, this grid is combined with the results of the CNN which results in different bounding 

boxes with each a certain probability. This framework is rather fast since it only has to look at the image 

once and only one neural network is needed. However, it is not as accurate as other neural networks, 

since it could experience problems predicting false positives in the background and because it learns 

rather general representations of objects. [8] 
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Figure 3: Schematic visualization of YOLO [5]. 

 

Since Mask R-CNN is the most accurate framework for pixel-based instance segmentation, it is the 

better choice for this project. Furthermore, for this project, it is not necessary to detect objects in real-

time, like YOLO is capable of. 

Machine learning for semantic segmentation with synthetic data 

Semantic segmentation refers to pixel-based recognition of objects in images. Each pixel is assigned to 

either a class (e.g. an apple, a leaf, a tree trunk) or the background. In order to train a model to recognize 

those objects, gigabytes of ground truth are necessary. One option could be to take hundreds of 

thousands of pictures and annotate them manually. However, this would be a very time-consuming 

process in both collecting and annotating. A more efficient alternative is to generate synthetic data via 

a computer program, like Blender. Nonetheless, this could mean a drop in run-time performance, as 

well as accuracy, of the trained network. Another approach, called ‘domain randomization’, tackles 

these problems by randomizing multiple properties of real images, like brightness, colour distribution, 

alpha compositing, etc. In this literature study, both approaches will be discussed thoroughly. 

 

2.2.1 Synthetic data via 3D graphics software 

In the first approach, a researcher will use 3D graphics software, such as Blender or Unity, to generate 

a large quantity of synthetic images with their corresponding bit masks. Next, these bit masks will be 

converted to annotations in a dataset. This image dataset can be in different formats: COCO, PASCAL 

VOC, ILSVRC, SUN… This literature study will focus on the COCO dataset, since this format will be 

important and was used later on in this thesis. The COCO dataset was originally introduced by Microsoft 

but became quickly a standard format for image detection and segmentation. [6] It consists of a JSON-

file with 5 different objects. The first object is called ‘info’ and only stores some basic information like 
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description, URL, version, year, etc. The next object, ‘licenses’, contains all the licenses for the images 

in a list, if they are necessary. Every license consists of the URL, an incremental id and a name for the 

license. The third object is called ‘images’ and stores all the necessary information of every image in a 

list. Every single image possesses information about its unique id, dimension, license if necessary, file 

name, etc. For the fourth and fifth parts of the JSON-file, ‘categories’ and ‘annotations’, there are 

several options. Since in this master’s thesis only instance segmentation was used, this literature study 

will only explain this option. The former, ‘categories’, is a list of object classes that could be detected 

in the image. This object class contains in its turn a supercategory, a unique id and a name. The latter, 

‘annotations’, is a list of annotations in the image that makes up most of the dataset. For every 

recognized object it stores the coordinates of every single pixel in the contour of this object. It also 

stores the surface area, the id of the image, the coordinates of a bounding box around this object, the id 

of the category that was recognized, whether or not this object is part of a bigger crowd of objects from 

the same class, and a unique id for this annotation. [9] 

Using the method of generating synthetic images, for which the software is written during this master’s 

thesis, the programmer has total control of every aspect of the image. It is possible to change the light 

exposure in every way by changing the position of the sun, the texture, volume, shape and position of 

the objects, etc. All of this can be done via the Python script in Blender. In addition, the programmer 

can easily render an unlimited number of images with their corresponding bit masks. However, this 

process can take a long time if the program is running on a CPU instead of a GPU. This approach is 

very useful for a programmer when he wants full control of every single synthetic image. However, 

using this method, non-realistic images could be generated without the programmer’s control. This can 

be prevented by setting very strict limits when randomizing some properties but can also be useful to 

prevent overfitting in some way. Lastly a framework for this approach could be made where different 

users can generate their synthetic ground truth with less effort. [10] 

 

2.2.2 Synthetic data via domain randomization 

The other approach, called ‘domain randomization’, solves the problem of too sparse ground truth by 

randomizing different properties of existing images. When the programmer would like to generate and 

annotate an image with two different objects (with each a different class), they would take an 

appropriate background along with an image for every single object. After pasting each object onto the 

background in a different position, a basic image is generated. Once again, the programmer has control 

over both the position and the size of the objects in the image. This way, the bit mask can be generated 

as well. Once this image is generated, the programmer can apply domain randomization on the image. 

This means that they will change different properties like size, contrast, rotation, lighting… Hence, the 

programmer can, once again, generate a somewhat large number of images with its corresponding 

ground truth. However, this approach is not as efficient as the first approach when the amount of ground 

truth necessary becomes too large. [11] 

Evaluation criteria 

To determine how good a model is, multiple formulas can be used. The most well-known one is the F1-

score. It considers both the average precision (AP) and average recall (AR). To calculate these numbers, 

some factors should be determined first. These are (i) the true positives (TPs), which is represented by 

the number of objects that are correctly predicted, (ii) the false positives (FPs), which shows how many 

objects were wrongly predicted to be part of a certain class, and, (iii) the false negatives (FNs) , which 

is equal to the number of objects that were wrongly predicted not to be part of a certain class. [12] 
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2.3.1 Precision 

The precision of a model indicates how many of the retrieved instances were actually relevant in one 

image, and thus part of a valid class. Whenever the precision is low, the number of false positives will 

be too high. [9, eq. (2.1)] is used in order to calculate the average precision of a model in all images 

used to evaluate. [12] 

      

𝐴𝑃 =  
𝑇𝑃𝑠

𝑇𝑃𝑠 + 𝐹𝑃𝑠
 

  (2.1) 

 

2.3.2 Recall 

The recall of a model indicates how many relevant instances were actually retrieved and selected in one 

image. Whenever the recall is low, the number of false negatives will be too high. [9, eq. (2.2)] is able 

to calculate the average recall of a model in all images used to evaluate. 

𝐴𝑅 =  
𝑇𝑃𝑠

𝑇𝑃𝑠 + 𝐹𝑁𝑠
 

     (2.2) 

 

2.3.3 F1-score 

Since both recall and precision are important in order to indicate the correctness of a model, the F1 

score is used. This score considers both the recall and the precision of the evaluation test. It is not 

possible to just multiply both recall and precision, since one could be rather low while the other can be 

very high. This means the F1 score will be rather low as well, since the model is not good at all. That 

is why the F1 score is calculated using [9, eq. (2.3)]. It aims to be equal to one. [12] 

       

𝐹1 =  2 ∗
𝐴𝑃 ∗ 𝐴𝑅

𝐴𝑅 + 𝐴𝑃
 

     (2.3) 
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Chapter 3 

Materials & methods 

The work executed broadly involves four major steps. The first step is to generate synthetic images, 

while the second step generates corresponding annotations of every single image, which will define the 

ground truth. The third step consists of converting these images and annotations to a dataset in COCO 

format. The fourth step is to train a Mask R-CNN model using this dataset and, additionally, evaluate 

this model on orchard images. 

Synthetic images in Blender 

In order to generate synthetic images, multiple steps need to be executed. The first step consists of 

modelling and painting the model of a realistic apple in Blender. Additionally, this procedure is also 

used to create realistic models of branches and leaves. The second step is to randomize these models 

via Python. This needs to happen in such way that every model stays as realistic as possible. Every 

function in this Python-script will thus be explained thoroughly. 

3.1.1 Synthetic modelling in Blender 

Using Blender, a 3D model of an apple, consisting of 242 vertices, is made. The number of vertices, 

which is 242, was chosen via trial and error. When the number is too low, the resolution will be too low 

as well. However, when the number of vertices is too high, the modelling will be too complicated and, 

thus, take a long time. In order to model such an apple, a UV sphere is added to the scene in Blender as 

a starting point for the apples. This UV-sphere is a basically a ball in Blender. The radius is set to the 

radius of a realistic and average apple, which is approximately 4 cm, while the number of horizontal 

rings that shapes the apple is decreased to 12. This can be seen as temporarily lowering the smoothness 

and resolution of the apple. This way the modelling process is much simpler, since the model is simpler 

as well. However, in the end, the resolution will be increased.  

When going to the ‘edit-mode’ in Blender, the shape of the apple can be changed by moving or resizing 

every single vertex, node or plane. The resolution of the model was increased by adding a Subdivision 

Surface modifier. This modifier is able to increase the smoothness and resolution by dividing every 

surface into multiple smaller surfaces. The resolution for modelling purposes can be increased by 

increasing the viewport subdivisions. However, since the resolution should be higher in the renderer 

than in the viewport, the render subdivisions must always be higher than or equal to the viewport 

subdivisions. In this master’s thesis, both were set to two. When the modelling was done, the apple was 

smoothened by right clicking the model and selecting ‘Shade Smooth’. 

After modelling the apple and getting a resulting 3D model as illustrated in Figure 4a, multiple 

materials are generated by painting the model with images of different existing apples, as shown in 

Figure 4c. In order to paint these images onto the objects, the 3D models must be unfolded using the 

UV editor in Blender. A result is visualized in Figure 4b. Every 3D model will be cut precisely so its 

plane will fit on a 2D surface. In order to project the 2D images from Figure 4c onto the 3D object, 

which is converted to 2D planes shown in Figure 4b, texture paint in Blender is used. Using a paintbrush, 

the colours of the image can be drawn onto the 2D planes, as shown in Figure 4d. 

First, 10 pictures of red apples are used. Afterwards, the red- and green-values of every pixel are 

swapped in order to generate 10 pictures of green apples. This way, an apple can be applied with a total 

of 20 different textures, of which 10 are red and the other 10 are green. 
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Figure 4: Schematic visualization of texture painting 

 

3.1.2 Domain randomization of models using Python 

Blender also comes with an embedded Python interpreter when it is installed on your PC. It provides a 

typical Python environment and carries its own modules, such as mathutils and bpy. Using these, a 

program in Python is written with multiple functions for this project, which is explained below. 

The first function (select_obj) in this program deals with selecting given 3D objects. It takes a list of 

objects as input, next it will deselect every single object in the scene, while, lastly, it selects the given 

objects. Besides a list with multiple objects, this function can also work with a list containing only one 

element. This function will later on be used multiple times. 

A second function (save_*_vertices_as_default) will save the coordinates of all the 242 vertices in 

three-dimensional space of an apple to a csv-file. So, when an apple should be saved as default, it is 

possible to save its vertices to a csv-file using this function. An additional third function 

(set_default_*) is able to load these coordinates in Blender and apply it to an object. This way, every 

object can be set to a certain default apple. This function can also be used when the user would like to 

duplicate an object.  

The program also contains a fourth function, which consists of four smaller functions, that can 

randomize every apple a bit. Hence, not every apple will look the same and there will be some variation. 

This function will rotate, translate and reshape every apple sufficiently. The first smaller function 

(rotate) takes the object to rotate and the minimum and maximum rotation angle as input. The given 

object is selected and rotated with three different and random angles (one angle in every dimension). In 

the second smaller function (translate) the given object is selected and translated in a similar way. The 

given object is again selected and three different numbers in a given range are generated. Finally, the 

object is translated to the three given points; one for every dimension. The ranges are set in such way 

(a) (b) 

(c) 

(d) 
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that the objects will fit in the rendered images. Via the third smaller function an object can be resized, 

however, this works in a different manner. The object will not be physically resized, but, since the 

ranges in the x dimension are larger than in the other dimensions, the objects will be nearer or farther 

away from the camera. Hence, they will seem smaller or bigger. The fourth smaller function (random_*) 

is used to randomize the shape of an object a bit. It takes as input (i) the object, which should be 

randomized, and (ii) a range, which is proportional to how much the object should be randomized, and 

thus reshaped. This randomizing is done by relatively translating every node of the object. The rotation- 

and translation-ranges are predetermined. After careful consideration and multiple tests, ranges in Table 

1 gave the best results. The ranges for the reshape-function depend on which object should be 

randomized and are described later in Table 2. 

 

 X Y Z 

Rotation [0, 2π[ [0, 2π[ [0, 2π[ 

Translation [-1.5, 1.5[ [-0.8, 0.8[ [-0.8, 0.8[ 

Table 1: Ranges for rotation and translation in every dimension 

 

Next, a fifth function (apply_texture) that is responsible for assigning textures to objects was written. 

This function needs the object, material name of the texture and two booleans as input. The object 

describes which object should be changed to the specific texture, which is defined by the material name. 

However, when the first boolean is true, a random material will be chosen from material name, which 

is now a list. The second boolean refers to whether or not the object actually is a list of multiple objects. 

When this is true, every object in this list will get a texture assigned independently of the other objects. 

To apply the material to the object, the function follows three steps. First, it receives the actual material 

object via the given material name. Second, it determines the index of the given object, which can be 

seen as an ID. And third, it changes this material slot of the object to the actual material. 

At a later stage in this project, leaves and branches were also added to the program. Every function 

mentioned above, can also be applied to these two different objects. Once again, multiple textures are 

made for every object. In total, there are 22 textures for leaves and 9 for the branches. Additionally, the 

textures of every object -apples, leaves and branches- will be selected from a list on a random basis. 

The previously mentioned reshape-ranges of these objects are shown in Table 2. The plus-sign 

determines how much every vertex can be changed at most in the positive x-, y- and z-direction, while 

minus limits the change in the negative directions. These values were determined by trial-and-error, 

such that the shape of objects remained realistic. 
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 Apple Branch (small) Branch (big) Leaf 

Minus 0.01 0 0.02 0.008 

Plus 0.01 0.008 0.02 0.008 

Table 2: Ranges for reshaping for every class 

The above steps ensure that a synthetic 3D-scene can be generated with random objects and random 

textures. To receive different images from these scenes, the camera will rotate around the scene. In 200 

steps, the camera will rotate around the scene while zooming in and out and rendering images every 20 

frames. This is done by generating an empty with three axes in the middle of the scene. This empty will 

rotate around its own centre, which is also the centre of the scene. The rotation happens in the way it is 

told to, while the camera will only move on one axis of the empty in both directions, which provides a 

zooming effect. After the empty is done rotating around its own centre, 11 different images will be 

rendered. 

To conclude, the first step of generating synthetic images is able to randomise a scene with different 

apples, branches and leaves. The number of apples, leaves and branches in every scene can easily be 

changed. However, in this project, they were set to 8 leaves, 4 apples and 5 branches. This seemed to 

be an appropriate number of objects, however, as will be proved later in this thesis, the number of leaves 

was too low. The five branches consist of four smaller branches and one bigger branch. However, both 

will be labelled as a tree. The above steps will be repeated several times. During this project, 11 images 

were rendered per scene and 250 scenes were made. Hence, 2750 different synthetic images were 

generated. A list of the changeable parameters and explanation is given in Appendix A. 

Ground truth via Blender and Python 

Besides the synthetic images, the software, written during this master’s thesis, is also able to create the 

corresponding ground truth for every individual synthetic image. First, ground truth images are 

generated in Blender by changing the texture for every object. Next, these ground truth images are 

converted to annotations in COCO-format, since these can be saved into a JSON-file.  

3.2.1 Pixel-wise label colouring of each object in Blender 

After one scene is rendered and multiple (in this project 11) synthetic images are generated, the program 

written in Python and Blender will change the texture of every object in the scene to a unique colour, 

which can be seen as a label. This colour is defined via nodes. When a new object is generated, it will 

get its own unique object index, which will be used as an ID. 

Using the nodes visualized in [Fig. 5], every object will get its own unique colour, which can be seen 

as a label. Via the first node, the object index is retrieved. Next, 1 is subtracted from this number, since 

the object index for the first object is equal to 1. Then, the number is divided by the number of objects 

in the scene, which is 17 in this project (8 leaves + 4 apples + 5 branches). This is done so the number 

will fit on a scale from 0 to 1. The next node will convert this number to specific RGB-values via a 

ColorRamp-node in Blender. Lastly, the colour is applied to the material via an emission-node.  

To change the texture of every object, the function to change textures, which is explained in the previous 

paragraph ‘Synthetic Images in Blender’, was used. However, in this case the list of materials will only 

contain one material which is the label. This label-texture will set a unique color to every object with 

regard to the object index via the nodes. 
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Apart from the textures of every object, the sun should also be hidden in the render image. 

Furthermore, the ‘Filter Size’ in Blender should be set as small as possible, which is 0.01. This way, 

the transition between the object and the background is direct and not smooth. The background will be 

transparent. Thus, no shadow will be seen in the ground truth images, the contours of every object will 

be as sharp as possible, and the segmentation map will not be disrupted. Furthermore, the empty axis 

will rotate in the same way as previously mentioned, as will the camera. This will ensure that the same 

images will be rendered, while only the textures have been changed in label colours. The method 

described above generates ground truth images. However, a dataset in COCO-format only supports 

ground truth annotations, not images. 

 

3.2.2 Converting colour labels into COCO-annotations 

In the first approach during this project, every single bit mask, which corresponds to an annotation, was 

individually saved in a file. However, this takes too much space and can cause performance-issues. 

Furthermore, it slows the process down significantly. A better approach is to save the segmentations 

immediately to a Python dictionary, which will later be saved to a JSON-file. As mentioned previously, 

a dataset in COCO-format is a JSON-file consisting of multiple objects.  

The first three objects, ‘info’, ‘licences’ and ‘categories’, can be hardcoded in Python. The next object, 

‘images’, contains a list with information about every image that is generated in the previous section. 

This information holds a unique id, the filename and the width and height of the image. The fifth part, 

‘annotations’, contains several subobjects. An annotation should be made for every single object in an 

image. So, in total, there should be 17 annotations per image in this project, unless an object is hidden 

behind another, larger object. The first subobject, ‘image_id’, is the id of the image which contains the 

object where this annotation corresponds to. The second sub-object, ‘category_id’, represents the id of 

the class to which this object belongs. Since there are three different classes during this project, there 

will be three different id’s: 1 for an apple, 2 for a leaf and 3 for a branch. The third subobject in 

‘annotations’, ‘id’, is just a unique id for the annotation. The fourth subobject, ‘segmentation’, contains 

every coordinate in the biggest contour of the object in the following format: [x1, y1, x2, y2, x3, y3, 

…, xn, yn]. In order to find these coordinates, various functions are used. The first function comes from 

scikit-image and will calculate the contour of the object in the bitmask. This bitmask only contains the 

object which should be annotated, the other pixels are left blank. Next, the contour is converted to 

another format and a polygon is made from these coordinates. Furthermore, this polygon will be 

simplified. Otherwise, the annotations would be too long, and the dataset would be too big. The polygon 

is one last time converted to the right format, which is mentioned previously. From this annotation, the 

fifth and sixth sub-objects, ‘area’ and ‘bbox’, respectively, are calculated. The former refers to the area 

of the contour, while the latter contains the maximum coordinates of the contour in order to hold the 

bounding box in following format: [xmin, ymin, width, height]. The seventh and last subobject, 

Figure 5: Blender nodes to generate ground truth images 
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‘iscrowd’, refers to whether multiple objects from the same class are annotated as one, as in a crowd. 

However, this should always be set to zero when creating a training dataset. 

Using the methods above, a test and a smaller validate dataset will be made as well. The structure of 

the total dataset will look as follows: 

appels 

|-train 

     |-annotations 

          |-instances_minival2020.json 

          |-instances_train2020.json 

     |-val2020 

     |-train2020 

 

The two json-files, instances_minival2020.json and instances_train2020.json, will contain the 

annotations of the real images to evaluate and the annotations of synthetic images to train respectively. 

The two other folders, val2020 and train2020, will contain these images as jpg-files. 

Training and evaluation of Mask R-CNN 

In this paragraph, first, it is explained how it is possible to use the previously generated dataset 

(consisting of synthetic images and ground truth) to train a Mask R-CNN on a server. Furthermore, this 

trained model is evaluated with a hand-made dataset, consisting of real images. 

3.3.1 Training of mask R-CNN 

During this project, the Mask R-CNN implementation of Matterport was used. This implementation 

uses Python3, Keras and TensorFlow, is built on a Feature Pyramid Network (FPN) and a ResNet 101 

backbone and generates both segmentation masks and bounding boxes for each recognized object in the 

image. [4] 

After cloning this repository from GitHub, two classes need to be extended: the config- and the dataset-

class. Via the former, different parameters for training can be set. These parameters are the name, the 

images per GPU, the number of GPU’s, the number of classes that need to be trained and the minimum 

confidence for an object to be detected. In this project, the name was kept as ‘COCO’ and the number 

of images per GPU set at 1. However, the number of GPU’s was set to one, since only one GPU was 

used, the HP NVIDIA Quadro K5200. The method to install the right software and to train on a GPU 

can be found in Appendix B. Furthermore, the number of classes, including the background, was 

changed to 4 (apple, leaf, branch and background) instead of 81, while the minimum detection 

confidence was initially set to 0.7, which is the standard value in this Mask R-CNN implementation. 

When extending the dataset-class, the correct dataset can be implemented. Once again, the correct 

parameters need to be set. Thus, the correct class needs to be enumerated and the images and annotations 

will be added to this class. Lastly, the number of epochs (or times the algorithm will loop over the whole 

dataset) and the learning rate can also be changed per training step. The number of epochs cannot be 

too high, nor can they be too low. When they are too high, the model will overfit on the training dataset. 

If done correctly, both classes will be filled correctly when following command is ran:  
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python coco.py train --dataset=*PATH_TO_DATASET* --model=coco 

 

For this project, training was divided into three stages. In the first stage only the network heads, which 

is the ResNet-101, were trained, and takes 60 epochs. The second stage takes 30 epochs and is supposed 

to finetune every layer from ResNet and up. The last stage will finetune every layer one more time and 

takes 30 more epochs. 

3.3.2 Evaluation of model on apple orchard 

In order to evaluate the previously trained model, a validation dataset was necessary. A small part of 

this dataset consists of images from Google. These images were manually annotated using makesence.ai 

[13]. However, these annotations were not in the right COCO-format, so a Python script was written in 

order to convert these annotations to the right format. The bigger part of this dataset, however, consists 

of real images from The University of Sydney in Australia. [14] These images were gathered by the 

Australian Centre for Field Robotics (ACFR) and consists of images of apples, mangos and almonds in 

an orchard. Only the former is needed during this project. Every apple in a picture is individually 

annotated via a circle. This circle has a centre (x- and y-coordinate) and a radius. These coordinates and 

distance are saved in a csv-file for every single image. Every row in this csv-file corresponds to a new 

annotation. In total, there are 5,765 apples in 1,120 images. For this master’s thesis, a Python-script was 

written in order to convert the annotations from ACFR in the csv-files to COCO-annotations. First, the 

Python-script loops through every single annotation file (which corresponds to an individual image) 

and extracts the centre and radius of every annotation in the file. Because every point of this circle will 

be saved in the COCO-dataset, the circle will first be converted into a simplified polygon. Thus, only 6 

points will be saved for every annotation, and consequently, the annotation will rather be in the form of 

a hexagon, while the annotation of the model proposed in this thesis will have the shape of the 

recognized apple itself. However, this should not cause any problems during the evaluation, since most 

of the areas will still overlap with each other. 
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Figure 6: Idealistic examples for synthetic images 

Figure 7: Results of synthetic images 

Chapter 4 

Results 

Synthetic images in Blender 

The goal of the first part of this master’s thesis is to generate as many synthetic images of apple orchards 

as possible. Ideally, these images would look like the following real examples in [Fig. 6]. 

 

However, the objects in the background are less important than the objects in the foreground in most 

applications, like an apple-picking robot. Therefore, there is no need to render these objects. This means 

that they do not need to be recognized, but it would not be wrong when they are recognized by the 

model in this project. Two resulting synthetic images are shown below in [Fig. 7]. 

 

 

Every apple has a slightly different shape, texture, rotation and translation, even in the same scene. 

However, the brightness is the same for every apple in one scene. Furthermore, as indicated above, 

some can be found in the foreground, while others are more in the background. However, since every 

apple is restricted to lie between certain borders in every dimension, they will all be converted into 

COCO-annotations later. The same is valid for the twigs and leaves in every scene. 

There is a lot of variance for every apple. This will advance the learning process of the model. 

However, there is not so much variance for the twigs nor for the leaves: the models are not very different 

and there are not a lot of different textures. The models are also not very realistic. This will benefit the 

learning process, but the results will not be as good. 
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Figure 8: Results of ground truth images in Blender 

In total, the scenes are not very realistic. However, this should not cause any problems during this 

project since every object that should be detected is realistic most of the time, especially the apples. 

Ground truth via Blender and Python 

In this section, the resulting ground truth images, which were obtained via Blender and Python, are 

shown and discussed. Afterwards, the results of the conversion from images to COCO-annotations are 

shown as well. 

4.2.1 Ground truth images 

Whenever a scene is rendered, the texture of every object is changed to the label-texture. Thus, every 

object will have an individual colour, according to their unique id. The two ground truth images of the 

two synthetic images above can be seen below in [Fig. 8]. 

 

Every object has an individual colour. For apples, these are different kinds of green, while branches 

and twigs have different kinds of blue and leaves are either yellow or red. 

The run-time performance of the Python script for generating synthetic images depends on the 

resolution of these synthetic images and is shown in Table 3. These images are rendered on the specs 

shown in Table 4 below. 
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Figure 9: Run-time performance of Python script in function of image resolution 

Table 3: Performance of Python script in function of resolution of synthetic images 

Table 4: Specs of PC used to generate synthetic images 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the graph in [Fig. 9] below, the best resolution lays between 560x420 and 640x480 px. This 

is the point where the performance of the program starts to descend a bit more, while the resolution 

does not rise as quickly. For this master’s thesis, a resolution of 640x480 px was chosen. 

 

Resolution (px)  Time (sec) 

80x60 34.29 

160x120 37.24 

240x180 44.84 

320x240 53.70 

400x300 65.15 

480x360 81.38 

560x420 100.33 

640x480 123.06 

720x540 144.58 

800x600 168.40 

880x660 195.22 

960x720 231.61 

 HP Elitebook G5 850  

OS Ubuntu  

CPU Intel i5-7200U (2.50GHz)  

GPU Intel HD Graphics 620 (Kaby Lake GT2) 

RAM 16 GB  
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Figure 10: Validation of synthetic COCO-annotations 

 

4.2.2 Annotations for COCO-dataset 

The above images are converted to actual annotations in a json-file, as explained in paragraph 3.2.2. 

For example; the annotations in the 2750 synthetic images are converted to a JSON-file of size 12.0 

MB. A snippet of this file can be found in Appendix D. To check these annotations, they are reconverted 

and pasted on a corresponding random image. Some random results are shown below in [Fig. 10]. This 

is basically the input data, from which the model will try to learn, visualized. 

 

 

 

Training and evaluation of Mask R-CNN model for apple  

detection 

In this paragraph, the results after training the Mask R-CNN model, as explained in paragraph 3.3.1, 

are shown and discussed. To evaluate the accuracy of the MCT values are used. 
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Figure 11: Results after training with only apples (MCT=0.95) 

Figure 12: Results after training with apples and random objects (leaves and branches) (MCT=0.95) 

4.3.1 Evaluation (MCT = 0.95) after training with apples and obstacles 

The first results came after training with only apples. No leaves, nor branches were present in the 

synthetic images. The results were very bad, with an F1-score approximating 0, whereas the goal is to 

reach a F1-score towards 1. Two examples are shown below in [Fig. 11]. A bigger version of these 

images can be found in Appendix E.  

 

Leaves were almost always annotated as an apple, since the model has no reference to make a 

distinction between an apple and a leaf. This demonstrates the importance of adding leaves to the 

synthetic images. This way, the model will learn to make a distinction between apples and leaves. Not 

only will it be able to learn how to recognize leaves, more importantly in this project, it will also know 

not to annotate leaves as apples. Results from this implementation with the input images from [Fig. 6] 

are shown below in [Fig. 12], while a bigger version can be found in Appendix F. 
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Figure 13: Results after training with apples and random objects (leaves and branches) (MCT=0.7) 

Figure 14: Results after training with apples and random objects (leaves and branches) (MCT=0.99) 

4.3.2 Evaluation (MCT = 0.7) after training with apples and obstacles 

Now that the importance of obstacles (leaves or branches) is proven, the model can be evaluated with 

multiple MCTs. These obstacles can be leaves or branches, as explained above, for example. The lowest 

MCT that is discussed in this master’s thesis is 0.7. The results are shown in [Fig. 13] and a bigger 

version can be found in Appendix G.  

 

Since the MCT is rather low, the model will be rather flexible and not strict. Thus, almost every apple 

will be correctly annotated: there are only 4 FNs, while there are 568 TPs. However, with 938 FPs, 

there are too many FPs. Since the number of FNs is very low, the AR is very high with 99.3%. On the 

other hand, since the number of FPs is too high, the AP is very low with only 37.7%. This results in a 

very bad F1-score of 0.55. 

4.3.3 Evaluation (MCT = 0.99) after training with apples and obstacles 

Conversely, the Mask R-CNN model can also be made very strict. This way, the model must be very 

sure before annotating an object. The resulting images are shown in [Fig. 14], while a bigger version of 

these images can be found in Appendix H. 

 

This approach induces a sharp decrease in total number of FPs to only 85 over the whole dataset, 

which brings the AP to 81.7%. However, since the model is not as flexible anymore, the number of FNs 

increases to 51, which causes the AR to decrease towards 88.2%, which is still rather good. Lastly, the 

F1-score rose to 0.85. This already gave a much better result than the lower MCT of 0.7. 

 

4.3.4 Evaluation with multiple MCT-values 

In order to find how strict, or flexible, the Mask R-CNN model should annotate different objects, the 

evaluation is done with multiple MCT-values. As mentioned in paragraph 4.3.2, the lowest MCT that 

will be discussed in this master’s thesis is 0.7. The highest MCT, however, is the absolute maximum at 

0.99. A plot of the AR, AP and F1-score in function of the MCT over 50 different validate images is 

given in [Fig. 15].  
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Figure 15: AR, AP and F1 in function of MCT for own model 

While the AR stays rather the same, the AP starts increasing from the beginning and increases sharply 

after an MCT of 0.95. Because the AR is more or less constant at 1 until the MCT reaches 0.90, the AR 

will not induce any change in the F1-score. Thus, the F1-score will increase parallel with the AP until 

the MCT reaches 0.90. Afterwards, the AR starts decreasing slightly, which causes the F1-score to 

increase less sharply. When the MCT is equal to 0.99, from which the results were discussed previously, 

the F1-score reaches its highest point. This means that the Mask R-CNN model should be initialized as 

a rather strict model. However, this depends on the purpose of the model. But, in general, a higher F1-

score is better. 

The flexibility or strictness of the model can also be explained by [Fig. 16]. This histogram plots the 

frequency with which every true positive is annotated. 

Figure 16: Number of TPs in function of confidence range for own model 

From this plot it can also be derived that the AR, which is proportional to the number of TPs and FNs, 

will stay rather the same. It will also decrease slightly after the MCT reaches 0.95. Furthermore, it is 

important to note that the model is almost always 100% sure that an object belongs to the apple class, 

whenever it annotates this object as an apple. 
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Figure 17: F1-score in function of MTC for model trained in this paper and COCO model 

4.3.5 Comparison with COCO dataset trained Mask R-CNN  

Since transfer learning, which means that the learning process was started from an already existing 

model, was used to train the model proposed in this master’s thesis, it is important to make a comparison 

with this first model. The model that was used to perform transfer learning is a Mask R-CNN previously 

trained with the standard COCO dataset. This dataset consists of 80 classes, including an apple class. 

However, the model is actually more trained to detect apples in a store or on a kitchen table, not in 

environments such as an orchard. The comparison is visualized in [Fig. 17]. 

 

Both models start off with an F1-score of about 0.55 at an MTC of 70%. The F1-score of the own 

trained model increases rather quickly after it reaches 0.85. However, while the own trained model 

experiences an increase, the F1-score of the COCO model decreases somewhat exponentially until it 

reaches an F1-score of 0.07 at MTC equal to 0.99, while it still had a F1-score of 0.32 when the MTC 

is 0.95. The transfer learning clearly benefitted the Mask R-CNN model in the evaluation-

circumstances. These circumstances are environments, like a farm or an orchard, in which the model 

proposed in this paper was trained. The AR, AP and F1 for the Mask R-CNN model trained with the 

standard COCO dataset in function of an increasing MCT, like [Fig. 15], is visualized in [Fig. 18]. Once 

again, this model was evaluated by images of the necessary environments during this master’s thesis.  

Figure 18: AR, AP and F1 in function of MCT for COCO model 

In contrast to the own trained model, the AR decreases rather fast with an increasing MCT, while the 

AP increases just slightly. Thus, the number of FNs increases a lot with an increasing MCT, while the 
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Figure 19: Results after training and detection of three classes (apples, leaves and branches) 

number of FPs stays rather low. This means that the model, trained with the COCO standard dataset, 

needs to get less strict guidelines (lower MCT) to give the most accurate annotations. 

Training and evaluation of Mask R-CNN for apples-, leaves- and 

branches-detection (MCT = 0.85) 

In order to prove the functionality of the Blender-program, the Mask R-CNN model was also taught to 

annotate leaves and branches more or less correctly. In order to do this, only two models were made in 

Blender: one for a leave and one for a branch. The program randomized these models, as explained in 

0, and applied a provided texture. However, these models and textures were not sufficient, nor were 

they random enough. Two examples from [Fig. 6] are shown below in [Fig. 19].  

 

It is obvious that the leaves and branches are not as well recognized as the apples. This could be 

explained by the fact that not much effort was put in the creation of the model and the texture of both 

the leaves and the branches; there was not a lot of variety in the textures and the models were too basic 

and unrealistic. Moreover, an insufficient number of leaves and branches were put in the scenes. 

However, the addition of the models was only to prove the flexibility of the Blender-program and how 

easy it is to add extra objects. 
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Chapter 5 

Conclusion & Future work 

During this master’s thesis, a program has been written which offers the user the opportunity to generate 

synthetic images with the corresponding ground truth in COCO-format. These generated images are 

composed of multiple objects and textures given from the user. The program will first randomize these 

objects and apply a random texture. Furthermore, it will save all the necessary information along with 

the annotation and ground truth to a json-file. 

After creating the synthetic images and corresponding ground truth, this approach was tested by 

training a Mask-RCNN to detect mostly apples, but also leaves and branches, in an orchard. It was clear 

that the model of the objects needs to be as accurate as possible. Furthermore, multiple textures were 

needed for every object. During this project, 20 apple-textures were used, which gave an acceptable 

result. However, more textures can only give better results. Finally, the importance of multiple random 

objects in every scene was proven. This allows the model to distinguish objects from the background. 

The program in Blender written in Python is also able to add these random objects whenever a model 

for these objects is given by the user. 

The evaluation of the trained Mask R-CNN model gave an F1-score of 0.73 when MCT was set at 

0.95, and a F1-score of 0.85 when MCT was set at 0.99, based on the detection of apples only. The 

number of false positives was higher than the number of false negatives, which approaches zero. 

However, these number of false positives can be lowered when improving the models of leaves. In 

comparison with the pretrained Mask R-CNN model with the standard COCO-dataset, this is an 

improvement. This pretrained model had an F1-score of 0.56 when MCT was set at 0.7 and an F1-score 

of 0.07 when MCT was set at 0.99. 

Overall, it can be concluded that a Mask R-CNN model is successfully trained using synthetic images. 

These synthetic images were generated using a very flexible Python script, which was written during 

this master’s thesis, in Blender. Furthermore, using transfer learning, an existing model is also improved 

to detect apples in an orchard. 

The main goal is to further improve the detection of apples in orchard images. Several possible 

improvements of the current approach are proposed. First, the model of the apple can be improved; 

there can be more variety in the shapes and textures. This way, the number of false negatives will 

decrease, which will cause a higher AR. Second, the AP can also be increased. This can be achieved by 

adding more random objects, such as pears, poles… This way, the model will learn that these random 

objects are no apples, by being able to make a distinction between those objects and an apple. Another, 

third, possibility to improve is to improve the models of the leaves and branches. As mentioned before, 

not much effort was put into these objects. However, when these models are improved, both the AR 

and the AP will increase, which will cause a higher overall F1-score. The AR, when using the model 

that only detects apples, will increase since more leaves and branches will be detected. Simultaneously, 

the AP will also increase, because fewer leaves will be annotated as apples, which means fewer false 

positives. Finally, more leaves should also be added to every scene, since there are a lot of leaves in the 

real images. For now, only 8 leaves are generated in each scene, which is not enough. In the future, a 

model for fire blight can also be invented and created. Using the Python-framework proposed in this 

thesis, thousands of synthetic images of fire blight in orchard can be generated. This dataset can then 

be used to train a model to detect fire blight, as was the initial goal of this thesis.
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Appendixes 

 

Appendix A: parameters for domain randomization in Blender via 

Python 

• Position of object 

The position of every object will be set at random, however, the borders within these objects 

must be placed can be chosen. These translation ranges can be found in [Tab. 1]. 

 

• Rotation of object 

The rotation of every object will be set at random, however, the borders within these objects can 

rotate can be chosen. These rotation ranges can be found in [Tab. 1]. 

 

• Shape of object 

The shape of every object will be randomized by translating every vertex a little bit. The ranges 

in which every vertex can be moved depend on the type of class to which the object belongs and 

are shown in [Tab. 2]. 

 

• Size of object 

The size of every object will also be changed randomly. However, this is done by zooming in 

and out with the camera, not by changing the objects physically. 

 

• Texture of object 

The texture of the object will be randomly chosen from a list. This list contains multiple self-

made textures. The list of textures should correspond to the type of class. This way, a leave-

texture cannot be applied to an apple, for example. 

 

• Amount of objects 

In every scene, the number of objects for every class can also be changed. During this master’s 

thesis. The number of apples were set to 4, the number of branches to 5 and the number of leaves 

to 8. 

 

• Camera position 

It is possible to determine the path the camera should follow. During this master’s thesis, this 

was done by adding an extra empty. This way, the camera will rotate around the whole scène 

while zooming in and out. This means that an image will be taken from multiple different angels 

and the objects will seem smaller or bigger. 

 

• Focus point of camera 

Apart from the position, the focus point of the camera will also change multiple times. This way, 

the model is able to detect objects that are not in focus in a real image. However, once again, 

ranges were set. 

 

• Resolution of synthetic image 

The resolution of every synthetic will also be changed randomly. However, this is not as useful 

in this implementation, since Mask R-CNN automatically resizes every image to a fixed size of 

1024x1024 px. 

 

• Light exposure 
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The light exposure in every scene can also be set to a fixed number. However, in this project, 

the exposure changes randomly every scene. This is achieved by making the sun in Blender 

follow a random trajectory. This method will also cause a random angle of light incidence in 

every scene. 

 

• Brightness 

Apart from the exposure, the brightness will also be random when using the previous approach 

of making the sun follow a random trajectory and random angle of light incidence.  

 

• Amount of images 

The number of images can also be set as wished. First, it is possible to choose the number of 

scenes that should be created. Additionally, the user can also choose how many images the 

camera should capture in every scene. The multiplication of both of these numbers will 

determine the number of total images. During this project, the camera will capture 11 images in 

250 different scenes, which results to 2750 different synthetic images. 
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Appendix B: Setting up server to train Mask R-CNN 

 

git clone https://github.com/matterport/Mask_RCNN 

virtualenv venv 

source ./venv/bin/activate 

pip3 install -r requirements.txt; these requirements can be found with short explanation in Appendix C 

python setup.py install –user 

wget https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5 

cd .. 

git clone https://github.com/cocodataset/cocoapi.git 

cd PythonAPI 

make 

python3 setup.py install –user 

pip3 uninstall tensorflow 

pip3 install tensorflow-gpu==1.14.0 

to train on GPU, follow https://ruthwik.github.io/machinelearning/2019-08-12-tensorflow_gpu/ 

pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI 

  

https://github.com/matterport/Mask_RCNN
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Appendix C: requirements necessary to train Mask R-CNN 

numpy – package for scientific computing with Python [15] 

scipy – scientific computing tools for Python [16] 

Pillow – Python image library [17] 

Cython – optimizing static compiler for Python [18] 

Matplotlib – a comprehensive library for creating static, animated, and interactive visualizations in 

Python [19] 

scikit-image – image processing in Python [20] 

tensorflow>=1.3.0 – end-to-end open source platform for machine learning [21] 

keras>=2.0.8 – a Python deep learning API [22] 

opencv-python – a computer vision library [23] 

h5py – Pythonic interface to the HDF5 binary data format [24] 

imgaug – Python library for image augmentation in machine learning experiments [25] 

IPython[all] – framework to use Python interactively with a notebook [26]  
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Appendix D: Snippet of COCO-annotations in JSON-file  

 

{ 

"info":  

 {"description": "Synthetic COCO Dataset for fireblight",  

 "url": "",  

 "version": "1.0",  

 "year": 2020,  

 "contributor": "Senne Colson",  

 "date_created": "2020/03/12"},  

"licenses": [],  

"images":  [{"id": 1, "license": 0, "width": 640, "height": 480, "file_name": "image_0_frame_0_texture.jpg", 

"date_captured": ""},  

   {"id": 2, "license": 0, "width": 640, "height": 480, "file_name": 

"image_0_frame_100_texture.jpg", "date_captured": ""},  

   {"id": 3, "license": 0, "width": 640, "height": 480, "file_name": 

"image_0_frame_200_texture.jpg", "date_captured": ""}], 

"categories": [ {"id": 1, "name": "apple", "supercategory": "fruit"},  

    {"id": 2, "name": "leaf", "supercategory": "tree"},  

    {"id": 3, "name": "tree", "supercategory": "tree"}], 

"annotations":  

 [{"segmentation": [[410.0, 165.5, 402.5, 167.0, 385.0, 231.5, 399.5, 223.0, 416.5, 169.0, 410.0, 165.5]],  

 "iscrowd": 0,  

 "image_id": 1,  

 "category_id": 3,  

 "id": 0,  

 "bbox": [385.0, 165.5, 31.5, 66.0],  

 "area": 806.25},  

 {"segmentation": [[247.0, 132.5, 241.5, 143.0, 246.0, 146.5, 331.5, 171.0, 333.0, 160.5, 247.0, 132.5]],  

 "iscrowd": 0,  

 "image_id": 1,  

 "category_id": 3,  

 "id": 1,  

 "bbox": [241.5, 132.5, 91.5, 38.5], 

 "area": 1116.5}] 

}  
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Appendix E: Results after training with only apples (MCT=0.95) 
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Appendix F: Results after training with apples and obstacles 

(leaves and branches) (MCT = 0.95)  
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Appendix G: Results after training with apples and obstacles 

(leaves and branches) (MCT = 0 .7) 
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Appendix H: Results after training with apples and obstacles 

(leaves and branches) (MCT = 0 .99) 
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Appendix I: Results after training with apples, leaves and branches 

for three-class detection (MCT=0.85) 


