
Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: chemie

Masterthesis
Energy minimization of distillation columns by neural networks

2019•2020

PROMOTOR :

Prof. dr. ir. Mumin Enis LEBLEBICI

PROMOTOR :

ir. Min WU

Jordy Ottenburgs
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: chemie

Gezamenlijke opleiding UHasselt en KU Leuven



Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: chemie

Masterthesis
Energy minimization of distillation columns by neural networks

2019•2020

PROMOTOR :

Prof. dr. ir. Mumin Enis LEBLEBICI

PROMOTOR :

ir. Min WU

Jordy Ottenburgs
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: chemie





 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deze masterproef werd geschreven tijdens de COVID-19 crisis in 2020. 
Deze wereldwijde gezondheidscrisis heeft mogelijk een impact gehad op 
de opdracht, de onderzoekshandelingen en de onderzoeksresultaten. 





 
 

PREFACE 
 

 

As a master’s student at the engineering faculty of UHasselt in cooperation with KU Leuven, I 
was granted the opportunity to perform research at ‘Centrum voor Industriële 
Procestechnologie’ (CIPT) in prospect of my master’s dissertation. CIPT, also previously 
known as LAB4U, performs research with the intention to develop new technologies which can 
be applied to and for industrial processes. This includes a range of  subjects like the 
improvement of the production of pharmaceuticals and reactors running on solar power [1]. 
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specifications. 

I would like to take this opportunity to thank a few people who contributed to this dissertation. 

• First, I would like to thank my internal promotor, ir. Min Wu for guiding me through 
this research project and helping me overcome the problems that emerged during 
coding and the design of logical structures. 

• Prof. dr. ir. Mumin Enis Leblebici, for his continuous support and guidance during my 
research project. 

 

 

 

 

 

 

 

 

 

 

 

 

 





 
 

TABLE OF CONTENTS 
 

 

PREFACE ............................................................................................................................................................... 3 

LIST OF TABLES ................................................................................................................................................... 7 

LIST OF FIGURES ................................................................................................................................................. 9 

GLOSSARY .......................................................................................................................................................... 11 

ABSTRACT .......................................................................................................................................................... 13 

ABSTRACT IN DUTCH ..................................................................................................................................... 15 

CHAPTER 1: INTRODUCTION ........................................................................................................................ 17 

1. CONTEXT .................................................................................................................................................. 17 
2. PROBLEM DEFINITION .............................................................................................................................. 17 
3. RESEARCH OBJECTIVE .............................................................................................................................. 18 
4. LAYOUT .................................................................................................................................................... 18 

CHAPTER 2: THEORETICAL BACKGROUND ............................................................................................... 19 

1. ARTIFICIAL INTELLIGENCE ........................................................................................................................ 19 
1.1. ARTIFICIAL INTELLIGENCE, MACHINE LEARNING AND DEEP LEARNING ................................................................... 19 
1.2. SUPERVISED AND UNSUPERVISED LEARNING ................................................................................................... 19 
1.3. LINEAR REGRESSION AND COST FUNCTION ...................................................................................................... 20 
1.4. ARTIFICIAL NEURAL NETWORKS AND DEEP LEARNING ........................................................................................ 21 
1.5. GENERAL APPLICATIONS OF DEEP LEARNING ................................................................................................... 23 
1.6. APPLICATIONS OF DEEP LEARNING IN CHEMICAL ENGINEERING ........................................................................... 24 
2. DISTILLATION ........................................................................................................................................... 27 
3. MATERIALS AND METHOD ....................................................................................................................... 29 
3.1. MATERIALS ............................................................................................................................................. 29 
3.2. CREATING AN ARTIFICIAL NEURAL NETWORK STRUCTURE ................................................................................... 30 

CHAPTER 3: CASE STUDY ONE – CREATION OF A PREDICTION MODEL ............................................ 35 

1. DATA ........................................................................................................................................................ 36 
2. CREATING LOGICAL STRUCTURES............................................................................................................. 37 
2.1. LOGICAL STRUCTURE FOR ASPEN DATA COLLECTION ......................................................................................... 37 
2.2. LOGICAL STRUCTURE FOR NEURAL NETWORK .................................................................................................. 38 
3. ASPEN SIMULATIONS ............................................................................................................................... 39 
4. GENERATING INPUT DATA FOR ASPEN ..................................................................................................... 41 
5. EXTRACTING DATA AND PRE-PROCESSING .............................................................................................. 41 
6. HYPERPARAMETER OPTIMIZATION .......................................................................................................... 42 
6.1. NEURAL NETWORK SIZE .............................................................................................................................. 42 
6.2. ACTIVATION FUNCTION .............................................................................................................................. 43 
6.3. TRAINING ALGORITHM ............................................................................................................................... 44 
6.4. FINAL MODEL CONFIGURATION .................................................................................................................... 45 
7. PROCESSING OF NETWORK RESULTS ....................................................................................................... 45 
7.1. RESULTS EVEN DISTRIBUTION ...................................................................................................................... 46 
7.2. RESULTS GAUSSIAN DISTRIBUTION ............................................................................................................... 47 
8. DISCUSSION OF PRELIMINARY RESULTS ................................................................................................... 47 
9. ADJUSTMENT ........................................................................................................................................... 50 
9.1. CREATING LOGICAL STRUCTURES .................................................................................................................. 50 



 
 

9.2. GENERATING INPUT DATA FOR ASPEN ........................................................................................................... 51 
9.3. HYPERPARAMETER OPTIMIZATION ................................................................................................................ 52 
9.4. PROCESSING OF NETWORK RESULTS .............................................................................................................. 53 
9.5. COMPARISON BETWEEN SHORTCUT, DFM AND ANN ...................................................................................... 54 

CHAPTER 4: CASE STUDY TWO – CREATION OF AN ADVANCED PREDICTION MODEL ................. 55 

1. DATA ........................................................................................................................................................ 55 
2. CREATING LOGICAL STRUCTURES............................................................................................................. 55 
2.1. LOGICAL STRUCTURE FOR ASPEN DATA COLLECTION ......................................................................................... 56 
2.2. LOGICAL STRUCTURE FOR NEURAL NETWORK .................................................................................................. 57 
3. ASPEN SIMULATIONS ............................................................................................................................... 58 
4. GENERATING INPUT DATA FOR ASPEN ..................................................................................................... 59 
4.1. PROBLEM SOLVING APPROACH .................................................................................................................... 59 
4.2. GENERATING INPUT PARAMETERS ................................................................................................................ 60 
5. EXTRACTING DATA AND PRE-PROCESSING .............................................................................................. 62 
6. HYPERPARAMETER OPTIMIZATION .......................................................................................................... 62 
6.1. DATA SET ................................................................................................................................................ 62 
6.2. NETWORK SIZE, ACTIVATION FUNCTION AND TRAINING ALGORITHM .................................................................... 65 
6.3. FINAL MODEL CONFIGURATION .................................................................................................................... 65 
7. PROCESSING OF NETWORK RESULTS ....................................................................................................... 66 
7.1. RESULTS FEED 1 ....................................................................................................................................... 67 
7.2. RESULTS FEED 2 ....................................................................................................................................... 68 
7.3. DISCUSSION OF RESULTS ............................................................................................................................ 68 
8. TIME  MEASUREMENT .............................................................................................................................. 70 

CHAPTER 5: CONCLUSION & OUTLOOK ..................................................................................................... 71 

1. CONCLUSION ............................................................................................................................................ 71 
2. FUTURE OUTLOOK.................................................................................................................................... 72 

LIST OF REFERENCES ....................................................................................................................................... 73 

APPENDIX .......................................................................................................................................................... 77 

 



 
 

LIST OF TABLES 
 

 

TABLE 1: AVAILABLE DEGREES OF FREEDOM OF DISTILLATION COLUMN  ................................................................................ 27 
TABLE 2: DEGREES OF FREEDOM SET BY SPECIFIED FEED  .................................................................................................... 27 
TABLE 3: SPECIFICATIONS AND CALCULATED VARIABLES FOR DISTILLATION DESIGN PROBLEMS  ................................................... 28 
TABLE 4: SPECIFICATIONS AND CALCULATED VARIABLES FOR DISTILLATION SIMULATION PROBLEMS  ............................................ 29 
TABLE 5: FEED SPECIFICATION  ...................................................................................................................................... 36 
TABLE 6: RESULTS OF SHORTCUT DESIGN AND DRIVING FORCE METHOD ................................................................................ 36 
TABLE 7: MODEL SELECTION PROCESS ASPEN .................................................................................................................. 37 
TABLE 8: MODEL SELECTION PROCESS NEURAL NETWORK ................................................................................................... 38 
TABLE 9: FEED SPECIFICATION IN ASPEN PLUS .................................................................................................................. 40 
TABLE 10: COMPARISON OF NETWORK PERFORMANCE - NETWORK SIZE - EVEN AND GAUSSIAN DISTRIBUTION .............................. 42 
TABLE 11: TRAINING SETTINGS ..................................................................................................................................... 42 
TABLE 12: COMPARISON OF NETWORK PERFORMANCE - ACTIVATION FUNCTION - EVEN DISTRIBUTION ........................................ 43 
TABLE 13: COMPARISON OF NETWORK PERFORMANCE - ACTIVATION FUNCTION - GAUSSIAN DISTRIBUTION ................................. 43 
TABLE 14: COMPARISON OF NETWORK PERFORMANCE - TRAINING ALGORITHM - EVEN DISTRIBUTION ......................................... 44 
TABLE 15: COMPARISON OF NETWORK PERFORMANCE - TRAINING ALGORITHM - GAUSSIAN DISTRIBUTION .................................. 44 
TABLE 16: FINAL NETWORK SETTINGS ............................................................................................................................ 45 
TABLE 17: RESULT FROM NEURAL NETWORK IN COMPARISON TO ASPEN - EVEN DISTRIBUTION.................................................. 46 
TABLE 18: RESULT FROM NEURAL NETWORK IN COMPARISON TO ASPEN - GAUSSIAN DISTRIBUTION ........................................... 47 
TABLE 19: NEURAL NETWORK TRAINING CONFIGURATIONS AND RESULTS .............................................................................. 52 
TABLE 20: COMPARISON OF PREDICTED SETTINGS FOR OPTIMIZED ENERGY REQUIREMENTS BY NEURAL NETWORK AND RESULTS IN 

ASPEN PLUS. .................................................................................................................................................... 53 
TABLE 21: COMPARISON BETWEEN RESULTS SHORTCUT DESIGN, DRIVING FORCE METHOD AND NEURAL NETWORK ........................ 54 
TABLE 22: BASIC DATA USED FOR CASE STUDY 2 ............................................................................................................... 55 
TABLE 23: MODEL SELECTION PROCESS NEURAL NETWORK ................................................................................................. 57 
TABLE 24: TRAINING RESULTS OF DIFFERENT DATA TYPES ................................................................................................... 63 
TABLE 25: TRAINING RESULTS OF DATA TYPES COMBINED WITH RESULTS OF FIRST CASE STUDY .................................................. 63 
TABLE 26: HYPERPARAMETER OPTIMIZATION RESULTS CASE STUDY 2 ................................................................................... 65 
TABLE 27: FINAL NETWORK SETTINGS ............................................................................................................................ 65 
TABLE 28: FEED COMPOSITIONS FOR SECOND CASE STUDY ................................................................................................. 66 
TABLE 29: RESULTS FOR IMPURE FEED............................................................................................................................ 67 
TABLE 30: RESULTS FOR CLEAN FEED.............................................................................................................................. 68 
TABLE 31: RESULTS OF TIME MEASUREMENT ................................................................................................................... 70 
 





 
 

LIST OF FIGURES 
 

 

FIGURE 1: GRAPHICAL INTERPRETATION OF GRADIENT DESCENT  .......................................................................................... 21 
FIGURE 2: DIAGRAM OF NODE FUNCTIONALITY ................................................................................................................ 22 
FIGURE 3: COMMONLY USED ACTIVATION FUNCTIONS  ...................................................................................................... 22 
FIGURE 4: ARTIFICIAL NEURAL NETWORK STRUCTURE ........................................................................................................ 23 
FIGURE 5: PROPOSED METHODOLOGY ............................................................................................................................ 30 
FIGURE 6: PERFORMANCE CURVE OVERFITTING ................................................................................................................ 34 
FIGURE 7: PERFORMANCE CURVE NO OVERFITTING ........................................................................................................... 34 
FIGURE 8: INDIRECT APPROACH .................................................................................................................................... 35 
FIGURE 9: DIRECT APPROACH ....................................................................................................................................... 35 
FIGURE 10: CORRELATION PREDICTED AND REAL FEED STAGE - EVEN DISTRIBUTION ................................................................. 38 
FIGURE 11: FLOWSHEET SIMULATION ............................................................................................................................ 39 
FIGURE 12: GAUSSIAN DISTRIBUTION OF ASPEN INPUT PARAMETERS .................................................................................... 41 
FIGURE 13: EVEN DISTRIBUTION OF ASPEN INPUT PARAMETERS ........................................................................................... 41 
FIGURE 14: PERFORMANCE CURVE - EVEN DISTRIBUTION ................................................................................................... 42 
FIGURE 15: PERFORMANCE CURVE - GAUSSIAN DISTRIBUTION ............................................................................................ 42 
FIGURE 16: HISTOGRAMS OF FLOW RATES – EVEN DISTRIBUTION ........................................................................................ 48 
FIGURE 17: HISTOGRAM OF FLOW RATES - GAUSSIAN DISTRIBUTION .................................................................................... 48 
FIGURE 18: HISTOGRAM DISTILLATE FLOW TOLUENE - EVEN DISTRIBUTION ............................................................................ 49 
FIGURE 19: HISTOGRAM DISTILLATE FLOW TOLUENE - GAUSSIAN DISTRIBUTION ..................................................................... 49 
FIGURE 20: ASPEN MODEL FOR CASE STUDY 1 MODIFICATIONS ........................................................................................... 50 
FIGURE 21: ANN MODEL FOR CASE STUDY 1 MODIFICATIONS ............................................................................................. 50 
FIGURE 22: HISTOGRAM DISTILLATE FLOW TOLUENE - ADJUSTED RANGES ASPEN .................................................................... 51 
FIGURE 23: ERROR HISTOGRAM CONDENSER DUTY ........................................................................................................... 53 
FIGURE 24: ERROR HISTOGRAM REBOILER DUTY ............................................................................................................... 53 
FIGURE 25: SELECTED ASPEN MODEL CASE STUDY 2 .......................................................................................................... 56 
FIGURE 26: DISTRIBUTION OF GENERATED FEED COMPOSITIONS .......................................................................................... 61 
FIGURE 27: DISTRIBUTION OF DISTILLATE FLOW COMPOSITION OF BENZENE - NORMAL+CS1 ................................................. 64 
FIGURE 28: DISTRIBUTION OF DISTILLATE FLOW COMPOSITION OF BENZENE - SMOGN(U)+CS1 .............................................. 64 
FIGURE 29: DISTRIBUTION OF DISTILLATE FLOW COMPOSITION OF TOLUENE - NORMAL+CS1 ................................................. 64 
FIGURE 30: DISTRIBUTION OF DISTILLATE FLOW COMPOSITION OF TOLUENE - SMOGN(U)+CS1 .............................................. 64 
 





 
 

GLOSSARY 
 

 

AI Artificial intelligence 
ANN Artificial neural network 
B Bottom flow rate 
BO Bayesian optimization 
BR Bayesian regularization 
BTX Distillation of benzene, toluene and three xylene isomers 
CIPT Centrum voor industriële procestechnologie 
CPU Central processing unit 
D Distillate flow rate 
DFM Driving force method 
EPR Electronic paramagnetic resonance 
GPU Graphical processing unit 
HPLC High performance liquid chromatography 
L/D Reflux ratio 
LM Levenberg-Marquardt 
Logsig Logarithmic sigmoid transfer function 
MSE Mean square error 
QC Condenser duty 
QR Reboiler duty 
RMSE Root mean square error 
SMOGN Synthetic Minority Oversampling Technique for Regression in 

combination with Gaussian Noise 
Tansig  Hyperbolic tangent transfer function 
XD Distillate composition 
XB Bottom stream composition 
  
  
  
  
  
  
  
  

 





 
 

ABSTRACT 
 

 

Distillation is one of the most commonly used operation units in the chemical industry. 
Minimizing energy consumption is an important aspect of designing distillation columns. This 
energy minimization leads to a reduction in CO2 emission. Designing distillation columns with 
the goal of energy minimization depends on graphical interpretations or requires the use of 
specialized software. When a lot of these simulations need to be performed, the time needed to 
perform all simulations can accumulate. This problem can be solved by applying an artificial 
neural network (ANN) solution. The goal of this research is to create an ANN that is both 
accurate and efficient in predicting the optimal settings of a distillation column and feed 
conditions.  

To comply to this goal, first an ANN solution is created and trained using data collected from 
performing simulations in Aspen. Additionally, the ANN also needs to be optimized to ensure 
a good performance. The optimization procedure is performed by altering the hyperparameters 
of the ANN such as the size of the network and the training algorithm. After finding the optimal 
network configuration, results are obtained by performing simulations using the ANN.  

The network is able to predict the required energy with a high accuracy, confirmed by 
performing an accuracy check. To ensure an accurate prediction of the optimum conditions 
and settings, the neural network needs to be trained using a balanced data set and the reflux 
ratio needs to be added to the output features of the network. 

 

 

 

 

 

 

 

 

 

 

 

 

 





 
 

ABSTRACT IN DUTCH 
 

 

Destillatie is een van de meest gebruikte systemen in de chemische industrie. Een belangrijk 
aspect bij het ontwerpen van destillatiekolommen is het optimaliseren van energieverbruik. Het 
minimaliseren van de energie leidt tot een verminderde CO2 uitstoot. Het ontwerpen van 
destillatiekolommen met oog hierop gebeurt vaak via gespecialiseerde softwarepakketten of 
wordt uitgevoerd door grafische interpretaties en berekeningen. Wanneer er een groot aantal 
simulaties worden uitgevoerd met deze software kan de tijd die nodig is om al deze simulaties 
uit te voeren zeer hoog oplopen. Dit probleem is niet aanwezig indien men hiervoor gebruik 
zou maken van neurale netwerken. Het doel van dit onderzoek is om een neuraal netwerk te 
construeren dat zowel nauwkeurig als efficiënt is in het voorspellen van de optimale instellingen 
van een destillatiekolom.  

Om aan dit doel te voldoen wordt er een grote hoeveelheid data verzameld in Aspen om het 
netwerk te trainen. Hiernaast moet ook de configuratie van dit netwerk worden 
geoptimaliseerd. Dit gebeurt door verschillende hyperparameters aan te passen zoals de grootte 
van het netwerk en het trainalgoritme. Na het aanpassen van deze parameters worden resultaten 
verkregen door het uitvoeren van simulaties.  

Het netwerk blijkt de nodige energie met een zeer hoge nauwkeurigheid te kunnen voorspellen. 
Om een correcte voorspelling te kunnen doen moet het netwerk getraind worden met een 
gebalanceerde dataset. Daarnaast moet de refluxverhouding toegevoegd worden aan de output 
features van het netwerk. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 



 
 

CHAPTER 1: INTRODUCTION 
 

 

1. CONTEXT 

‘Centrum voor industriële procestechnnologie’ (CIPT), also previously known as LAB4U, 
performs research with the intention to develop new technologies which can be applied to and 
for industrial processes.  These technologies include a range of subjects like the production of 
pharmaceuticals and reactors running on solar power [1]. One subject in particular that is 
researched is the use of artificial intelligence in chemical industry applications. In the latest 
decade there has been an increase in the use of artificial neural networks (ANN) for multiple 
applications, an evolution that has been caused by major improvements in the development of 
the central processing unit (CPU), the graphical processing unit (GPU) and other 
computational components. The application of neural networks has already proven to be useful 
in chemical engineering applications. One application in particular that will be studied in this 
dissertation is the utilization of artificial neural networks in the design and modification of a 
distillation column.  

Distillation is one of the most commonly used unit operations in chemical industry. The main 
goal of distillation is to purify product streams using a difference in boiling points. Accordingly, 
the product streams that enter the distillation column need to be heated and energy has to be 
supplied to the tower. During recent years, a lot of attention has been payed towards the 
sustainability of the industry and the use of renewable energy. One important aspect that needs 
to be considered to be able to comply with the emission standards is energy minimization. 
Reducing energy use leads to a reduction in CO2 emission [2]. Thus, it is important that next to 
the required specifications of the output product, the column uses as little energy as possible. 

 

2. PROBLEM DEFINITION 

Distillation cases generally consist of two main categories: simulation and design cases. The first 
case study consists of a design problem. Given a fixed feed composition and a fixed number of 
column stages, what is the optimal design of the column concerning the reflux ratio, distillate 
composition and the feed stage? An attempt is made to shape a distillation column to a product 
stream with a specified composition, temperature and pressure. The column will be designed 
with the objective of energy minimization.  The second case study will serve as an extension to 
the first case study and will in addition focus on optimizing the total number of stages, feed 
temperature given a specific feed composition. 

Chemical processes are often described as systems of complex mathematical equations. These 
equations need to account for the multiple interactions that arise during the process, including 
the interactions between the components and the multiple phases [3]. The design of a 
distillation column is usually performed either through the use of specialized software or 
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depends on graphical interpretations. Performing a lot of simulations using specialized software 
may cost a lot of time. Each simulation takes a few seconds, while a neural network can perform 
tens of thousands of simulations in a fraction of a second. Additionally, tests to simulate and 
optimize settings are usually performed in a lab scale environment and are susceptible to errors 
made due to a scaling-up factor [2]. That is where the neural network vows to be an efficient 
tool. Artificial neural networks (ANN) are generally known for their ability to relatively fast 
detect non-linear relations between input features and the respective output features. The ANN 
will be used to provide a fast and simple interpretation to approximate the new column 
settings/specifications. 

In this dissertation, an attempt will be made to apply ANN structures to the design of distillation 
columns. 

 

3. RESEARCH OBJECTIVE 

In order to be able to determine if the constructed ANN solution provides an efficient solution, 
it is useful to compare it to how well other methods perform in predicting the optimal column 
design. That is why a research article is considered, where a new method is used to optimize the 
design with the intention of energy minimization. The ANN prediction will afterwards be 
compared to the prediction of this method to see if it is efficient and if it is able to provide a 
solution that requires less energy. 

The main objective of this research study is to find an efficient and accurate ANN solution that 
can be applied to a design problem. An additional goal is to get a better solution (less energy 
required) from the ANN than in the case of using the conventional method from the research 
article. To be able to comply to this objective, the ANN needs to be optimized to return a 
minimal error on the predicted settings/specifications. This will be accomplished by tuning the 
hyperparameters of the network. 

 

4. LAYOUT 

The second chapter consists of a theoretical background on neural networks and the analysis of 
the degrees of freedom. Additionally, the materials and methods will be discussed. The third 
chapter contains the results of the creation of the first neural network which is used to predict 
the optimum feed stage and reflux ratio for a fixed feed composition and a fixed number of 
column stages. In the fourth chapter, this model is expanded to also provide the optimum feed 
temperature and number of stages for different feed compositions. The final chapter consists of 
a conclusion and an outlook to the future work that needs to be done to further optimize the 
prediction by the neural network models. 
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CHAPTER 2: THEORETICAL BACKGROUND 
 

 

1. ARTIFICIAL INTELLIGENCE 

The last few decades, a lot of progress is being made towards the development of new techniques 
that will be used to further simplify everything surrounding us. A lot of these techniques will be 
used in engineering applications to optimize processes and reduce costs. 

One of the most prominent techniques on the rise is the use of artificial intelligence (AI). This 
terminology might sound futuristic, but existing applications have already proven otherwise. A 
lot of applications of artificial intelligence are already present in our everyday life. 

 

1.1.  Artificial intelligence, machine learning and deep learning 

The first big moment of artificial intelligence originates from the 1950s, when Alan Turing 
developed the Turing Test to test a machines intelligence against a human one. Over a short 
period of time, simple programs, like artificial checkers players were developed. Little did they 
know they would spark an interest leading to the revolution of today’s automation.  

Artificial intelligence has become known as the addition of human intelligence to machines. 
The thought behind it is to learn machines to mimic the thinking process of a human brain. 
Later on, in the 1980s, the use of machine learning started to flourish. Machine learning is based 
on using input data to ‘train’ artificial intelligence in order to make future decisions based on 
new data. 

In the last decade, deep learning has found its way into practical use cases. Deep Learning is a 
technique based on the functionality of the neurons in our brain. The created neural networks 
will allow for the model to recognise patterns in data and draw conclusions from them. The 
theory behind deep learning will be explained in 1.4 [4], [5]. 

 

1.2.  Supervised and unsupervised learning 

Machine learning can be operated using two different techniques: supervised and unsupervised 
learning. 

If a supervised machine learning algorithm is used, the data inserted into the algorithm is 
labelled. This includes algorithms like linear regression and object recognition in photo’s. Two 
examples are supplied to elaborate on the operation of the algorithm [4], [5]. 
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• The first example is a classification problem. A possible scenario of a classification 
problem is the evaluation of the malignancy of tumors. Based on the model developed 
by the input data, new data will be classified as ‘malignant’ or ‘not malignant’. 

• Another type of problem is regression. Imagine wanting to predict the price of real 
estate. Prices of recently sold houses in a neighborhood are available along with 
properties like habitable area, number of bedrooms and number of bathrooms. This 
data will be used to train a model which in the end will be used to estimate the real estate 
price of a house. 
 

Unsupervised learning is used in cases where data is supplied unlabeled. A case where the 
application of unsupervised learning is convenient is the use of e-mail spam filtering. A 
clustering technique will be used to group similar samples together based on their properties 
and form classes: spam and non-spam e-mails. 

 

1.3.  Linear regression and cost function 

In the previous paragraph, the difference between supervised and unsupervised learning 
algorithms was explained. In the case of supervised learning regression problems, the model 
uses linear regression to predict a value. In order to achieve a good correlation between the 
expected and calculated value, a cost function is used to assess the model. 

A possible cost function is represented by the mean square (MSE) error equation: 

 
𝐽𝐽(𝜃𝜃0,𝜃𝜃1, … ,𝜃𝜃𝑛𝑛) =

1
2 ∙ 𝑚𝑚

∙��ℎ𝜃𝜃(𝑥𝑥(𝑖𝑖)) − 𝑦𝑦(𝑖𝑖)�
2

𝑚𝑚

𝑖𝑖=1

 (1) 

With: 

• 𝑚𝑚  = number of data entries 

• ℎ𝜃𝜃(𝑥𝑥(𝑖𝑖)) =  𝜃𝜃0 + 𝜃𝜃1 ∙ 𝑥𝑥1
(𝑖𝑖) + 𝜃𝜃2 ∙  𝑥𝑥2

(𝑖𝑖) + ⋯+ 𝜃𝜃𝑛𝑛 ∙  𝑥𝑥3
(𝑖𝑖) = predicted value 

• 𝑦𝑦(𝑖𝑖) = actual value 

A lower cost indicates a better model. The cost function needs to be minimized by iteratively 
altering the coefficients or weights, which is called backpropagation. There are a number of 
ways to do this. The first method consists of using gradient descent to find the optimum 
coefficients. 

The iterative formula for the coefficient is represented by: 

 
𝜃𝜃𝑗𝑗  ∶= 𝜃𝜃𝑗𝑗 −  𝛼𝛼 ∙  

1
𝑚𝑚
∙  ��ℎ𝜃𝜃�𝑥𝑥(𝑖𝑖)� − 𝑦𝑦(𝑖𝑖)� ∙  𝑥𝑥𝑗𝑗(𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

 (2) 

With: 

• 𝑥𝑥0(𝑖𝑖) = 1 
• 𝛼𝛼 = learning rate 
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The coefficient will be recalculated until the cost remains the same or increases. The cost can be 
approached as a three-dimensional figure of which the global minimum needs to be achieved 
by altering the position on the graph. Such graphical interpretation is represented in Figure 1. 
When applying this method, careful consideration has to payed to the learning rate. This factor 
influences the performance of the algorithm. A learning rate too small or large might cause the 
algorithm to get stuck at a local minimum, causing the algorithm to never reach an optimal 
solution. 

 

 
Figure 1: Graphical interpretation of gradient descent [5] 

 

Another method that can be used to determine the optimal coefficients is the use of the normal 
equation, a method that solves 𝜃𝜃 analytically using the following vector expression. 

 𝜃𝜃 = (𝑋𝑋𝑇𝑇 ∙  𝑋𝑋)−1 ∙ 𝑋𝑋𝑇𝑇 ∙ 𝑦𝑦 (3) 
 

In case of a large number of features (>106),  gradient descent is preferred. When working with 
a smaller set of features, the use of the normal equation is suggested as it will converge faster 
[5], [6]. 

 

1.4.  Artificial neural networks and deep learning 

Artificial neural networks are algorithms based on the functioning of a human brain, more 
specifically on the functionality of neurons. Our brain consists of billions of neurons, which are 
all interconnected with each other. Each neuron is connected to approximately another 1000 
neurons [7]. An artificial neural network will attempt to replicate this structure using nodes 
(neurons) which are connected through layers. The goal of this artificial neural network is to 
find a connection between the input and the output of the training data. 
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The node will function according to Figure 2. 

 

 

 

 

 

 

 

The input data will be entered through the input nodes. A weight will be assigned to the inputs 
depending on the significance of each input factor, a more significant factor is assigned a larger 
weight coefficient. The first input factor is considered the bias. As can be seen in Figure 2, the 
input is first multiplied by the weight coefficient. Afterwards, all factors will be enumerated 
leading to one final sum. This sum will be passed to the activation function, which will decide 
if the node is activated or not. 

Activation or transfer functions exist in several forms and are picked depending on the kind of 
data they need to transfer. The following activation functions mentioned in Figure 3 are the 
most frequently used ones and can be chosen for use in a hidden layer. 

 

   

   

Log-sigmoid transfer 
function 

Hyperbolic tangent sigmoid 
transfer function 

Linear transfer function 

Figure 3: Commonly used activation functions [8, p.2-5] 

 

In case of the use of linear regression, the hidden layer that passes data to the output layer will 
make use of the linear activation function. 

  

w
0

w
1

w
...

w
n

1

x
1

x
...

x
n

Net input function

Input Weights

Activation function

Output

Figure 2: Diagram of node functionality 
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Figure 4 shows an artificial neural network, which consists of a number of layers: the input layer, 
the output layer and a variety of hidden layers - also referred to as the depth of the structure. 
The output of one layer will be used as the input for the consequent layer. Deep learning 
networks are networks with a depth larger than three layers. Multiple hidden layers lead to the 
ability to process more complex input features [9]. 

 

 

 

 

 

 

 

 

 

 

An algorithm often used to train deep learning networks is the method of backpropagation. The 
algorithm will iteratively try to fit the calculated data to the labelled data using loss 
minimalization.  

An important aspect of constructing artificial neural networks is to choose the appropriate 
amount of nodes and layers, which is called hyperparameter optimization. Choosing too much 
hidden layers and nodes can cause overfitting of the data while not choosing enough layers 
might lead to underfitting [10]. Other parameters included in the domain of hyperparameters 
are network parameters like the type of transfer function and the training algorithm used to 
train the network with the training data. 

 

1.5.  General applications of deep learning  

Artificial intelligence and deep learning are already applied in a broad range of domains. A lot 
of research is being done towards application in more complex situations. Several applications 
focus on making our lives easier while AI and deep learning also feature in a lot of industry 
applications. 

A subject that has frequently appeared in the news lately, is the use of autonomous vehicles. 
Several multinational manufacturers are in progress of research towards employment on public 
roads, while some of them already have employed autonomous vehicles on the road. 
Furthermore, research being done in the medical sector generally focuses on the use of artificial 

Hidden layer 1

Output layer

Input layer

Output 1

Output 2

Input 1

Input 2

Input 3

Figure 4: Artificial neural network structure 
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intelligence to make diagnoses and to predict what treatment methods are more likely to 
succeed on a patient based on historical data. 

An example of an artificial intelligence application in the economical domain is the use of 
personalized advertisements. By analyzing web browsing data, a model will predict what kind 
of products potential customers are interested in. 

 

1.6.  Applications of deep learning in chemical engineering 

Intensive research is being done towards the implementation of deep learning in several 
domains of chemical engineering. The most important reasons are to optimize processes, 
reduce production losses and thus reduce costs and maximize profits. 

ORGANIC CHEMISTRY 

• Coley et al. developed a supervised deep learning approach to predict the end products 
of organic reactions given the reactants and solvents. The goal of this research is to have 
a reaction evaluation, to be able to predict the formation of by-products during a 
chemical reaction and possibly calculate the reaction yield in given circumstances.  

The constructed model consists of four main steps. The first step is to input the reactants 
and solvents. Next, the reaction sites of a molecule are determined using the detection 
of functional groups within the molecule. The third step consists of forming possible 
end-products using the chosen reactive sites. Afterwards, products that can be produced 
are ranked according to their likelihood to form. In the final step the reaction products 
are displayed in the output. The products predicted by the model were 85% accurate 
and all calculated within a time of 100 ms [7], [8] . 

• One year earlier, Gao et al. constructed an ANN to forecast optimal conditions for 
organic reactions. The model is able to predict up to one catalyst, two solvents, two 
reagents and the temperature starting from the end-product [13]. 

COMPUTATIONAL CHEMISTRY 

• Moghadassi et al. applied deep learning to the prediction of liquid viscosity. Because of 
product plant design, the viscosity of a liquid is very important to know during a 
production process as it influence the choice for pipeline diameters. Data on viscosity is 
not always available for specific conditions and might only be able to be determined 
empirically. In many cases it is convenient to use a neural network model to predict the 
viscosity. The predictions of the applied model resulted in an average error of 2.53% in 
comparison to data available in literature [14]. 

• Furthermore, attempts have been made to apply ANN structures to determine  
lipophilicity of chemicals [15], ionic activity coefficients and solubilities of electrolytes 
[16]. 
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BIOCHEMISTRY 

Artificial neural networks have also been a great tool in the analysis and understanding of the 
functionality of proteins.  

• The use of ANNs has been employed in predicting the stability of RNA/DNA hybrid 
duplexes, which are used for the design of chemotherapeutic drugs. A parameter used 
to assess the stability of the duplex is the melting temperature. The ANN predicted a 
melting temperature for a given duplex with a maximum standard error of 3.506 K [17]. 

• Dombi et al. reported the use of ANNs for the analysis of protein transmembrane helical 
regions. A troublesome part of protein analysis is the characterization of the tertiary 
structure of the protein. To gain a better understanding of protein structures, a neural 
network structure was applied to determine the secondary structure of proteins. 
Although secondary structures are more properly documented, the applied ANN can 
still turn out to be of use  [18]. 

• Empirical methods to determine the chemical shift point of a protein often do not take 
into account the 3D-structure of a protein and interactions with other molecules. 
Through the use of artificial neural networks, Meiler at al. attempted to include these 
interactions in the prediction of the chemical shift of proteins [19]. 

• Another example of an ANN application in biochemical engineering is the prediction 
of peptide liquid chromatography elution times in an effort to improve the confidence 
level of peptide identification [20]. 
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FOOD INDUSTRY 

• In the tea industry, characterization of different tea kinds is desirable to classify health 
effects. Characterization is based on chemical composition and antioxidant activity. 
Antioxidant activity levels are usually measured using either high-performance liquid 
chromatography (HPLC) or electronic paramagnetic resonance (EPR). As this methods 
are rather expensive and time consuming, using a model structure to predict the 
antioxidant activity is preferred. An ANN structure was used to predict the antioxidant 
activity in the tea and was trained using a backpropagation algorithm. Relative errors 
were reportedly less than 0.4% [21]. 
 

PROCESS CONTROL 

• In 1991, Himmelblau et al. developed an artificial neural network structure to detect 
faults in production processes. An example where this model is of use is the diagnosis 
of defects in a heat exchanger. The model was trained using simulated data 
(temperatures and heat transfer coefficient) with noise applied to the data and was able 
to correctly detect when defects were applied (0.02 of original value) [22]. In 1993, 
Suewatanaku et al. expanded the model by including flow rates, pressure drops in the 
tube and shell size to study fouling [23]. 

• Barton et al. used ANNs to predict polymer quality in industrial reaction units. 
Controlling reactor settings was difficult because of the large time between the changing 
of the controls and the measurement of samples as a result of the change in controls. 
The arrival of measurements was too late to accurately control the reactor settings. The 
model turned out to be accurate in the prediction of polymer quality over the entire 
reactor operating region [23]. 

• MacMurray et al. reported the use of ANNs for model predictive control (MPC). The 
goal of this model is to predict behavior of a chemical process, in order for process 
parameters to be manipulated at the right time to achieve the desired product properties 
[23]. 
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2. DISTILLATION 

Distillation is a chemical unit operation which is supported by a difference in boiling 
temperature between multiple components. This type of operation is used to separate 
components and purify product streams. The component with the lowest boiling point is the 
most volatile one, leading to a faster displacement to the vapor phase in opposition to the least 
volatile component. 

When working with design specifications and settings, attention has to be payed towards the 
number of variables specified for a specific case. Only a limited amount of variables can be 
altered. The analysis of the degree of freedom makes sure the column will not be over specified. 
It assumes a constant molar overflow and a constant pressure within the column. For a normal 
distillation column the degree of freedom is calculated accordingly. 

Table 1 and Table 2 display the accounted degrees of freedom for each specified distillation 
input feature and the feed respectively. For example, the degrees of freedom linked to the feed 
composition equals C-1 with C being the number of components in the feed stream. The 
summation of all degrees of freedom results in a total of C+6 degrees of freedom. In most cases 
however, the feed parameters are set fixed. 

 

Table 1: Available degrees of freedom of distillation column [24] 

Variables Degree of freedom 
Feed flow F 1 
Feed composition C-1 
Feed temperature 1 
Recovery component A in distillate 1 
Recovery component B in bottom 1 
L/D or V/B or heating duty 1 
Saturated liquid reflux or Treflux 1 
Optimum feed plate location 1 
 C+6 

 

Table 2: Degrees of freedom set by specified feed [24] 

Variables Degree of freedom 
Feed composition C-1 
Feed flow 1 
Feed temperature 1 
Feed pressure 1 
 C+2 

 

The corresponding degrees of freedom of the feed equals C+2. According to [24], an alternative 
to feed pressure is the reflux temperature or enthalpy. 
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If the degrees of freedom of the feed are subtracted from the total degree of freedom of the 
distillation column, a remaining number of four variables remain to be specified. In a 
distillation problem case, two situations might occur. One situation where it is necessary to 
design a new column for a process (design problem) or a separation process of which some 
calculations need to be made (simulation problem). Each problem requires a different approach 
[25] . 

The cases in Table 3 describe some examples that can be applied to design a new column starting 
from a fixed feed state. 

 

Table 3: Specifications and calculated variables for distillation design problems [24] 

Specified variables Calculated variables 
A Mole fraction light component in 

distillate (xD) 
A Distillate flow rate and Bottom flow rate 

 Mole fraction heavy component in 
bottom (xB) 

 Heating and cooling duty (QR and Qc) 

 Reflux ratio  Number of stages and optimum feed 
plate 

 Use of optimum feed plate  Column diameter 
B Fractional recovery of components in 

distillate 
B xB, xD, D, B 

 Fractional recovery of components in 
bottom 

 QR and QC 

 Reflux ratio  Number of stages and optimum feed 
plate 

 Optimum feed plate  Column diameter 
C Distillate flow rate or Bottom flow rate C B or D 
 xD or xB  xB or xD 

 Reflux ratio, L/D  Number of stages and optimum feed 
plate 

 Optimum feed plate  Column diameter 
D xD D D, B 
 xB  QR, QC 
 Reflux ratio, L/D  Number of stages and optimum feed 

plate 
 Optimum feed plate  Column diameter 
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The specifications in Table 4 can be utilized in case of a simulation problem. Column 
specifications like the feed stage and number of stages are already specified, only the settings of 
the column can be changed. 

 

Table 4: Specifications and calculated variables for distillation simulation problems [24] 

Specified variables Calculated variables 
A Number of plates A Reflux ratio 
 Feed plate  B and D 
 xD, xB  Qc and QR 

 Column diameter (constraint)  Check V < Vmax 

B Number of plates B xB (or xD) 
 Feed plate  B and D 
 L/D, xD (or xB)  Qc and QR 

 Column diameter (constraint)  Check V < Vmax 

C Number of plates C Reflux ratio 
 Feed plate  B and D 
 xD (or xB)  Qc and QR 

 Column diameter  XB or xD 

D Number of plates D Reflux ratio 
 Feed plate  B and D 
 QR, xD (or xB)  Qc , xB (or xD) 
 Column diameter (constraint)  Check V < Vmax 

 

3. MATERIALS AND METHOD 

In this section, the materials and methods used to conduct the experiments will be discussed. 

 

3.1.  Materials 

The following software packages are used to perform experiments for the research in this 
dissertation. 

• MATLAB® R2019b (9.7.0.1190202) 
• MATLAB® Deep Learning Toolbox version 13.0 
• MATLAB® Statistics and Machine Learning Toolbox version 11.5 

• Aspen Plus® version 10.0 
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3.2.  Creating an artificial neural network structure 

The construction of a proper artificial neural network structure consists of a number of steps. 
The first step consists of simulating a considerable amount of data entries through the use of 
Aspen Plus®. During the next step, the data is pre-processed to be able to start the construction 
of the neural network. Input and output features for the neural network are selected and the 
model is constructed. A large amount of possibilities exist to shape the structure of a neural 
network., common options for the hyperparameters are explored.  These hyperparameters are 
varied in order to obtain a neural network with a good accuracy. Finally, the neural network is 
used to predict the parameters that are needed to complete each case study. The proposed 
methodology is shown in Figure 5. 

 
Figure 5: Proposed methodology 
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3.2.1. Simulation 

As a first step all the necessary data is collected in Aspen Plus. For the neural network to be able 
to predict the desired features accurately, a lot of data needs to be collected. A choice for a 
sample size that is too small might result in the problem of underfitting. Underfitting may cause 
the network to provide inaccurate predictions. 

 

3.2.2. Extracting data 

Manually performing simulations and recording the data would be rather time consuming.  To 
address this issue, MATLAB is used in combination with Aspen Plus. Creating a COM interface 
within MATLAB already proved to be an efficient way to control Aspen Plus from MATLAB 
[26]. 

Random data is generated using MATLAB within predetermined boundaries for the input 
features. Accordingly, this data is inserted into Aspen using the COM interface and simulations 
are performed. After each simulation, the data of interest is saved into a matrix and saved as a 
.csv file to be processed later on. The code to extract the data was constructed using information 
from Satola et al. [26] and Abril et al. [27]. 

 

3.2.3. Pre-processing data 

An important step in the process is to pre-process data as this will mainly determine the speed 
at which the network will learn. This is caused by the structure of the activation function. An 
activation function often used in the hidden layers of a neural network is the sigmoid function, 
which does not function well when using net inputs with a value greater than three. Gradients 
will be very small and network training will be slow [8]. For this purpose the data is ‘feature 
scaled’ using the following standardization equation. 

 
𝑥𝑥𝑛𝑛

(𝑖𝑖) =  
𝑥𝑥(𝑖𝑖) − 𝜇𝜇

𝜎𝜎
 

 
(4) 

With: 

• 𝑥𝑥𝑛𝑛
(𝑖𝑖) = new value 

• 𝑥𝑥(𝑖𝑖) = old value 
• 𝜇𝜇 = mean of all feature entries 
• 𝜎𝜎 =  standard deviation of all feature entries 

Alternatively, methods like rescaling (min-max normalization) and mean normalization can 
also be used to feature as a function for feature scaling. 
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3.2.4. Creating a neural network structure 

After the pre-processing of the data, a neural network structure is created using the ‘Deep 
learning toolbox’ of MATLAB®.  This toolbox provides a graphical user interface that can be 
used to create a shallow neural network with a single layer. The input and output features are 
chosen depending on the goal of each case study. 

A considerable advantage of the Deep learning toolbox is that it is able to generate a training 
code. This training code can be edited to change various parameters of the neural network, 
which will be used to carry out the hyperparameter optimization.  An example of this code is 
supplied with Appendix A. A few examples of parameters that can be varied are: 

• number of hidden nodes, 
• number of hidden layers, 
• cost function, 
• activation function, 
• training algorithm, 
• division of data. 

An important note is that the algorithm must return the same MSE for every training iteration 
at the same settings. At default settings the initial weights are randomized each iteration and a 
random data division is utilized. To prevent this from happening the following measures need 
to be taken. 

To prevent from starting at different weights each iteration, the random seeds need to be 
initialized at the start of each training loop. A random seed specifies the starting point of the 
generation of a random number [28]. To compare different configurations of the network, the 
seeds are initialized at zero for every loop to start with the same initial weights. 

Another measure that needs to be taken is the fixed division of data. As previously mentioned, 
the data set is divided into a training set, a test set and a validation set with a default ratio of 
70/15/15. The validation set is used to make training less time intensive and correct for 
overfitting. The validation passes are defined, which will lead to early stopping. This indicates 
that training will stop if the MSE on the validation test set fails to decrease after a defined 
number of epochs. Each iteration will need to use the same division of data sets. This is taken 
care of by using the division by indices function in the Deep learning toolbox. Alternatively, the 
default division function can be used that divides the data set randomly. By initializing the seed 
at every training iteration, a fixed division of the data is ensured. 

 

3.2.5. Hyperparameter optimization 

Next, to make sure the created neural network is efficient and performs well for all the output 
features, an optimization step has to be performed. The hyperparameters that must be 
optimized include the number of hidden layers, hidden layer size, the activation function and 
the training algorithm. While these are all varied, the performance and regression of each 
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output feature is recorded, together with the total performance. Based on these parameters the 
optimal network configuration is determined. 

To optimize the hidden layer size and the number of hidden layers, a training loop is performed. 
For each iteration the performance for each feature together with the performance curve and 
regression for each feature is recorded. An attempt is made to find a model with a minimal MSE 
and a maximal regression fit without over or underfitting the data. As training algorithms are 
very computationally intensive with high network sizes, the layer size is limited to 25 nodes 
while the number of hidden layers is limited to two. A Bayesian Optimization algorithm will be 
used to check larger configurations for a better performance. This is an algorithm that is often 
used to evaluate configurations that take a long time to assess. 

Another parameter that is varied is the training algorithm. The following backpropagation 
algorithms are the most commonly used: 

• Levenberg-Marquardt: trainlm, 
• Bayesian regularization: trainbr, 
• Scaled conjugate gradient backpropagation: trainscg. 

The Levenberg-Marquardt (LM) training algorithm is the default training algorithm for 
regression problems in the ‘Deep learning toolbox’. This algorithm supports the division of the 
data set into a test, training and validation data set. The validation data set is used to prevent 
the model from overfitting. It stops the algorithm from training when the validation 
performance fails to improve or when a maximum amount of training loops or ‘epochs’ have 
been performed. The default validation checks that are performed are set to six while the 
maximum of epochs the algorithm performs is limited to 1,000. The main goal of this algorithm 
is to minimize the mean square error. 

The second algorithm is the Bayesian regularization (BR) backpropagation training algorithm. 
This algorithm is based on the Levenberg-Marquardt algorithm, but adds generalization. 
Unlike the LM training algorithm, this algorithm does not work with a validation subset. The 
goal of the algorithm is to minimize the weighted sum of squared errors and squared weights 
in an effort to prevent overfitting of the data set. As overfitting generally occurs when not 
enough training data is present, this method is often used for smaller data sets. As both the LM 
and BR algorithms are based on the mean square error, only the MSE cost function can be used 
in combination with these two algorithms [8], [29].  

This two training algorithms are prompted in order to find the optimal neural network, next to 
the two transfer functions for the first hidden layer: ‘tansig’ and ‘logsig’. In the final step of 
determining the optimal network configuration, consideration has to be paid to the choice of 
the model. A model with a good performance does not automatically indicate it is a better 
model. Larger sizes of neural network often lead to overfitting of the data, which indicates that 
the model performs well for the data in the training set but performs very poor on 
generalization. Generalization indicates how well a model performs for data it has never seen 
before. 
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The decision that a model is overfitting can be deducted from the training performance curve. 
This curve shows the development of the MSE of the training, test and validation set over each 
training epoch. Two examples of such training curves are displayed in Figure 6 and Figure 7. At 
the left, a figure is displayed where the model suffers from overfitting. When the model does 
not show any signs of overfitting, the figure will look like the one on the right. Additionally, the 
performance of the test set can be used to judge the overfitting properties of the network. 

 

  
Figure 7: Performance curve no overfitting 

 
An additional method to optimize the hyperparameters will be used later on in this dissertation 
and is called a Bayesian Optimization algorithm. This algorithm will perform random searches 
according to a defined objective function. An example of a possible objective function is the 
RMSE of the test set. The code is modified from the code published by [30]. 

 

3.2.6. Application of neural network 

Furthermore, a considerable amount of input data is generated within the same boundaries 
established in the first phase with the intention to process them using the neural network. As a 
final step, the prediction of the neural networks are used in Aspen to check the findings of the 
neural network for their accuracy. This is achieved by using an adapted version of the code used 
for the collection of data. 

 

 

 

 

 

 

 

Figure 6: Performance curve overfitting 
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CHAPTER 3: CASE STUDY ONE – CREATION 
OF A PREDICTION MODEL 

 

 

To be able to determine if a proposed ANN solution can provide an efficient solution, it is 
compared to the use of a more conventional method. In 2014, Faris et al. published a paper 
concerning the design of energy efficient distillation column systems [2]. Towards the 
prediction of an energy optimum design, a method called ‘driving force method’ (DFM) was 
used and was compared against the use of a shortcut design of a distillation column. This 
method proved to be more energy efficient than the shortcut design and resulted in an 
economization of approximately nine percent. The DFM depends on graphical interpretations 
to determine at which settings there is a minimum of energy required to separate the 
components. 

The paper described two use cases . Both cases were systems of two distillation columns and the 
DFM was applied to the final column in the system . A direct and an indirect system approach 
to a BTX distillation were studied– BTX refers to a distillation of benzene, toluene and three 
xylene isomers. In this dissertation, the direct approach will be used as the foundation of the 
first case study. An ANN solution will be applied to this problem and the result will be compared 
to the result obtained by using the DFM and shortcut design. 

 

 
Figure 8: Indirect approach 

 
Figure 9: Direct approach 

 

The proposed methodology of the first case study is shown in Figure 5. 
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1. DATA 

The case study starts with a representation of the data. The data in Table 1 was derived from 
the research paper [2] for the feed stream, with a temperature of 75 °C and a pressure of 2 atm. 

 

Table 5: Feed specification [2] 

Streams Feed 
Components kmol/hr X 
benzene 50.00 0.50 
toluene 30.00 0.30 
p-xylene 20.00 0.20 
total 100.00 1.00 

 

The research paper also discloses results for the specifications of the shortcut design and the 
driving force method. But as no column pressure was specified, the column pressure was set as 
the same pressure as the feed – 2 atm. The results for both methods were recalculated using 
Aspen Plus and are displayed in Table 6. 

 

Table 6: Results of shortcut design and driving force method 

 Shortcut design Driving force method 
No. of stages, Ns 21 21 
No. of feed location, NF 11 13 
Reflux ratio 1.60 1.41 
Composition 
at top 

benzene 0.9900 0.9900 
toluene 0.0100 0.0100 
p-xylene 0.0000 0.0000 

Composition 
at bottom 

benzene 0.0100 0.0415 
toluene 0.5900 0.5714 
p-xylene 0.4000 0.3871 

Energy condenser (kW) 1064.37 953.88 
Energy reboiler (kW) 1315.35 1201.64 
Total energy (kW) 2379.72 2155.52 
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2. CREATING LOGICAL STRUCTURES 

Before moving on to the simulation of the data, a decision needed to be made for the selection 
of the input and output data that was used in the artificial neural network as well as the data 
that was used for simulations in Aspen. 

 

2.1.  Logical structure for Aspen data collection 

First, the network features need to be collected using Aspen. A criterium for this step is that the 
simulations happen as efficient as possible. Just like in the case of the model selection for the 
neural network, a few models have been tested for the data collection. The models are based on 
a specific set of parameters. A limited amount of combinations are available for the specification 
of the column in Aspen. As determined in the analysis of the degrees of freedom, four column 
parameters can be specified. Of these four, the number of stages and feed stage are already 
chosen. Two parameters remain to be specified. 

Aspen allows for a range of parameters to be chosen to fill the remaining two slots when using 
the ‘Radfrac’ model. Next to this parameters, the reflux ratio was also taken into account as it is 
used to compare the results against the one obtained by the conventional method. The reflux 
ratio features either on the input side or the output side of the data collection model in Aspen. 

The available parameters in Aspen are: distillate to feed ratio, bottoms to feed ratio, distillate 
rate, boilup rate, reflux rate, reflux ratio, reboiler duty and condenser duty. The reasoning 
behind the choice of the final model is explained in Table 7. 

 

Table 7: Model selection process Aspen 

Model Model structure Result 
1 

 

Both model 1 and model 2 were rejected 
because they needed to much iterations to 
converge. Acquiring 10,000 simulations 
would take more time. 

2 

 
3 

 

Model 3 was accepted as almost every 
simulation converges. 

 

The model that will be used for the following steps is model 3. 

 

Aspen
Input Output

- Feed composition
- Feed conditions
- Number of stages
- Feed stage
- Condenser duty
- Reboiler duty

- Reflux ratio
- Distillate flow rate benzene
- Distillate flow rate toluene
- Distillate flow rate p-xylene

Aspen
Input Output

- Feed composition
- Feed conditions
- Number of stages
- Feed stage
- Condenser duty
- D:F ratio

- Reboiler duty
- Condenser duty
- Distillate flow rate benzene
- Distillate flow rate toluene
- Distillate flow rate p-xylene

Aspen
Input Output

- Feed composition
- Feed conditions
- Number of stages
- Feed stage
- Condenser duty
- D:F ratio

- Reboiler duty
- Reflux ratio
- Distillate flow rate benzene
- Distillate flow rate toluene
- Distillate flow rate p-xylene
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2.2. Logical structure for neural network 

During the course of this experiment, a variety of structures for the ANN have been 
investigated. The selection for the appropriate model was performed experimentally and was 
considered a process of ‘trial and error’.  The reasoning behind the choice of the final model is 
discussed in Table 8. 

Table 8: Model selection process neural network 

Model Model structure Result 
1 

 

Both model 1 and model 2 were rejected 
because of their inadequate performance to 
predict the accurate feed stage. The 
correlation between the predicted and the 
real feed stage was not high enough. This 
can be observed in Figure 10. 
 
 

2 

 

3 

 

Model 3 did not face the issue present in 
model 1 and model 2 as the feed stage is now 
on the input side of the network. However, 
performance was still poor as the network 
predicted a positive value for the condenser 
duty when using the specifications of the 
shortcut design. This model was rejected on 
the basis of its poor overall performance. 
 

4 

 

The final model which was tested is model 
4. The predictions of this model resulted in 
satisfactory results for the MSE and the 
correlation between the predicted and real 
values of both output features. 

 

 

 

 

 

 

 

 

Figure 10: Correlation predicted and real feed stage - even distribution 

The model that was used for the following steps is model 4. 

 

- Reboiler duty
- Condenser duty

- Distillate flow rate benzene
- Distillate flow rate toluene
- Distillate flow rate p-xylene
- Reflux ratio
- Feed stage
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Input Output
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- Distillate flow rate toluene
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- Feed stage
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Input Output

- Distillate flow rate benzene
- Distillate flow rate toluene
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- Condenser duty
- Reflux ratio
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3. ASPEN SIMULATIONS 

To ease the simulation procedure, an Aspen ‘template’ file was created. The specifications that 
were used are described in the following paragraphs. 

Properties – Specification 

The components were entered in the ‘specifications’ tab of properties. In this case, the 
components that need to be entered are benzene, toluene and p-xylene. 

Properties – Methods 

In the methods section, the appropriate property model was selected. The property model was 
chosen according to the property model selection flow chart mentioned in the Aspen User 
Guide [31]. 

The feed mixture only contains three (nonpolar) components. Accordingly, the property model 
that can be selected are ‘Peng Robinson’, ‘Redlich-Kwong-Soave’ and ‘Lee is ‘Peng Robinson’ 
(PENGROB). For the sake of this experiment, ‘Peng Robinson’ was selected as the property 
model. 

Simulation – Flowsheet 

Next, the block model was specified. For the sake of this experiment, the rigorous ‘RadFrac’ 
model was chosen. The RADFRAC column allows for the following parameters to be specified: 
feed stage, number of stages, condenser duty, distillate to feed ratio.  

 

 
Figure 11: Flowsheet simulation 
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Simulation – Feed stream  

The inlet stream was defined accordingly to Table 9. The corresponding degrees of freedom to 
the specification of the feed stream is five (C+2). 

 

Table 9: Feed specification in Aspen Plus 

Specificiation Value 
Temperature 75 °C 
Pressure 2 atm 
Total flow rate 100 kmol/hr 
XBENZENE 0.50 
XTOLUENE 0.30 
XP-XYLENE 0.20 

 

Simulation – Column specifications 

As a final step, the column settings were specified. The goal of this experiment is to find the 
optimal column settings for a minimized duty. To reach this goal several parameters were.   

Four parameters remained to be specified: 

• the total amount of stages was set fixed at 21,  
• feed stage (varied), 
• condenser duty (varied), 
• distillate to feed ratio (varied). 
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4. GENERATING INPUT DATA FOR ASPEN 

11,000 data entries were prepared both in a Gaussian distribution and an even distribution. The 
intention is to compare both distributions at the end of the case study according to their 
performance to predict the optimal settings. The boundaries were chosen as following: 

• Feed stage: 3 – 19  
• Condenser duty: -3000 – -500  
• Distillate to feed ratio: 0.2 – 0.8  

The distributions for each of the input features are displayed in Figure 12 and Figure 13. 

a. Gaussian distribution 

   
Feed stage Condenser duty Distillate to feed ratio 

Figure 12: Gaussian distribution of aspen input parameters 

 
b. Even distribution 

   
Feed stage Condenser duty Distillate to feed ratio 

Figure 13: Even distribution of aspen input parameters 

 

5. EXTRACTING DATA AND PRE-PROCESSING 

The data entries were entered in the column specifications in Aspen. Simulations are run and 
non-converging data entries are removed. Afterwards the data was pre-processed. As discussed 
earlier, the data needed to be normalized in order for the network to be trained efficiently. For 
this purpose, mean normalization will be used. 
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6. HYPERPARAMETER OPTIMIZATION 

A network configuration needs to be found with a minimal error on the predicted results. To 
find a network that is able to accurately predict the desired result, it needs to be optimized by 
tuning the hyperparameters. The hyperparameter optimization was performed in three steps. 

 

6.1.  Neural network size 

An iterative training loop was performed and resulted in the following optimal network 
configurations for each input distribution. 

 

Table 10: Comparison of network performance - network size - even and gaussian distribution 

Distribution in Aspen even Gaussian 
Network configuration 20x23 17x11 
Total MSE 0.000552 0.000450 
MSE Reflux ratio 0.000038 0.000007 
R² Reflux ratio 1 1 
MSE Reboiler duty 0.001066 0.000894 
R² Reboiler duty 1 1 
Test MSE 0.000597 0.000482 

 

As can be seen in Figure 14 and Figure 15, no overfitting occurred for both configurations. 

 

 
Figure 14: Performance curve - even distribution 

 
Figure 15: Performance curve - Gaussian distribution 

 
The results were acquired by using the settings for the training displayed in Table 11. 

Table 11: Training settings 

Training algorithm Levenberg-Marquardt 
Activation function Tangent sigmoid 
Validation passes 6 
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6.2.  Activation function 

The second step consisted of varying the activation function. The default activation function in 
the ‘deep learning toolbox’ is ‘tansig’, a tangent sigmoid transfer function. The performance of 
the networks that use this transfer function in the first hidden layer was compared to the 
network that uses the logarithmic sigmoid transfer function instead. 

For the even input distribution, the results are displayed in Table 12. 

 

Table 12: Comparison of network performance - activation function - even distribution 

Activation function tansig logsig 
Network configuration 20x23 24x21 
Total MSE 0.000552 0.000526 
MSE Reflux ratio 0.000038 0.000009 
R² Reflux ratio 1 1 
MSE Reboiler duty 0.001066 0.001043 
R² Reboiler duty 1 1 
Test MSE 0.000597 0.000551 

 

The network that uses the logarithmic sigmoid transfer function in the first layer proved to be 
more accurate in its prediction. For the network with the even distribution inputs, the ‘logsig’ 
transfer function was chosen to be further optimized. 

For the Gaussian distribution, the results are displayed in Table 13. 

 

Table 13: Comparison of network performance - activation function - Gaussian distribution 

Activation function tansig logsig 
Network configuration 17x11 13x14 
Total MSE 0.000450 0.000459 
MSE Reflux ratio 0.000007 0.000006 
R² Reflux ratio 1 1 
MSE Reboiler duty 0.000894 0.000913 
R² Reboiler duty 1 1 
Test MSE 0.000482 0.000471 

 

In contrast to the results of the network with the even distribution, the total network 
performance did not improve by altering the transfer function for the Gaussian distribution. 
The network with the default transfer function ‘tansig’ was chosen to be further optimized. 
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6.3. Training algorithm 

As a final step, the model was trained using the default Levenberg-Marquardt training 
algorithm as well as the Bayesian regularization algorithm.  

For the even input distribution, the results are displayed in Table 14. 

 

Table 14: Comparison of network performance - training algorithm - even distribution 

Training algorithm trainlm trainbr 
Network configuration 24x21 24x12 
Total MSE 0.000526 0.000559 
MSE Reflux ratio 0.000009 0.000053 
R² Reflux ratio 1 1 
MSE Reboiler duty 0.001043 0.000889 
R² Reboiler duty 1 1 
Test MSE 0.000551 0.000584 

 

The total network performance and performance of the test set for the even distribution did not 
improve by adjusting the used training algorithm. The error on the reboiler duty decreased, but 
the error on the reflux ratio increased significantly. 

For the Gaussian distribution, the results are displayed in Table 15. 

 

Table 15: Comparison of network performance - training algorithm - Gaussian distribution 

Training algorithm trainlm trainbr 
Network configuration 17x11 24x18 
Total MSE 0.000450 0.000449 
MSE Reflux ratio 0.000007 0.000010 
R² Reflux ratio 1 1 
MSE Reboiler duty 0.000894 0.000889 
R² Reboiler duty 1 1 
Test MSE 0.000482 0.000461 

 

Unlike in the case of the even distribution, the total network performance as well as the 
performance of the test set of the Gaussian distribution improved in case of using the Bayesian 
Regularization training algorithm. However the performance did not improve by much, the 
‘trainbr’ training algorithm was chosen for the final design. 
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6.4.  Final model configuration 

The optimization process resulted in the optimal network configurations displayed in Table 16. 

 

Table 16: Final network settings 

Distribution even Gaussian 
Network size 24x21 24x18 
Activation function logsig tansig 
Training algorithm trainlm trainbr 

  

7. PROCESSING OF NETWORK RESULTS 

In this step, the constructed neural network was put into action. As the goal is to compare our 
neural network solution to the solution achieved by using the driving force method, the feed 
composition at the top needed to be set fixed  at 0.99-0.01-0 for the respective composition of 
benzene, toluene and p-xylene in the distillate. 

10,000 data entries were generated to be entered in the neural network. These parameters 
include the distillate flow rate, the reboiler duty and the feed stage. The following boundaries 
were chosen for the data to be generated within. 

a. Feed stage: 3 – 19  

The boundaries for the feed stage are defined like in the first step. The first and last two 
stages will not be included within these boundaries. 

b. Reboiler duty: 800 -1400 kW 

The lower limit of the generated reboiler duties is fixed at 800. At low duties the separation 
will become more difficult. The upper limit is set a little higher than the reboiler duty used 
in the case of the shortcut design. 

c. Total distillate flow rate: 40 – 50.5051 kmol/hr 

Because a comparison is needed between the two methods, the distillate composition 
remained fixed at XBENZENE = 0.99 and XTOLUENE = 0.01. The upper limit of the total flow rate 
was defined as the case where 100% of the benzene is recovered in the distillate. The lower 
limit was set at 40 kmol/hr as anything lower might be considered too low of a recovery. 

Furthermore, the data was processed by the neural network and the settings that lead to a 
minimal duty were selected. The results predicted by the neural network for the optimal settings 
are displayed in the following paragraphs. 

 

  



46 
 

7.1.  Results even distribution 

The results for the even distribution are displayed in Table 17 together with an accuracy check 
obtained in Aspen. This accuracy check was performed using the optimal design predicted by 
the neural network as an input for a simulation in Aspen. 

 

Table 17: Result from neural network in comparison to Aspen - Even distribution 

 Neural network Aspen 
No. of stages, Ns 21 21 
No. of feed location, NF 18 18 
Reflux ratio 0.3896 0.3005 
Composition 
at top 

Benzene 0.9900 0.80 
Toluene 0.0100 0.17 
p-xylene 0.0000 0.03 

Composition 
at bottom 

Benzene 0.02 0.20 
Toluene 0.58 0.42 
p-xylene 0.40 0.38 

Energy condenser (kW) 550.4 X 
Energy reboiler (kW) 800.8 779.0  
Total energy (kW) 1351.21  1329.4  

 

To check the results, the condenser duty calculated by the network was entered in Aspen 
together with the specified feed stage and distillate to feed ratio. As can be noticed in Table 17, 
a significant difference exists between the predicted results and the actual results. The reason 
why this might be happening will be discussed in DISCUSSION OF PRELIMINARY RESULTS. 
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7.2.  Results Gaussian distribution 

The result for the Gaussian distribution is displayed in Table 18 together with an accuracy check 
obtained in Aspen. This accuracy check was performed using the optimal design predicted by 
the neural network as an input for a simulation in Aspen. 

 

Table 18: Result from neural network in comparison to Aspen - Gaussian distribution 

 Neural network Aspen 
No. of stages, Ns 21 21 
No. of feed location, NF 5 5 
Reflux ratio 0.3567 0.2849 
Composition 
at top 

benzene 0.99 0.83 
toluene 0.01 0.14 
p-xylene 0.00 0.03 

Composition 
at bottom 

benzene 0.00 0.16 
toluene 0.60 0.46 
p-xylene 0.40 0.38 

Energy condenser (kW) 548.8 X 
Energy reboiler (kW) 800.5 781.0  
Total energy (kW) 1349.3 1329.8  

 

The results for the Gaussian distribution also display a significant error in the case of the 
Gaussian distribution. The reason why this might be happening will be discussed in 
DISCUSSION OF PRELIMINARY RESULTS. 

 

8. DISCUSSION OF PRELIMINARY RESULTS 

The obtained results show a deviation in terms of the distillate purity in comparison to the 
distillate composition obtained by performing an accuracy check in Aspen. The inability of the 
network to correctly link the flow rates to the reboiler duty and reflux ratio might be caused by 
the following reason. 

As discussed earlier, the influence of the distribution of the Aspen input features on the neural 
network performance was investigated (condenser duty, feed stage and distillate to feed ratio). 
A possible problem that might arise is the distribution of the neural network input parameters 
and thus the Aspen output parameters. While the reboiler duty and the reflux ratio both show 
a similar distribution to the Aspen input parameters, the values for the flow rates are very 
unevenly distributed, which influences the network performance. The dataset is imbalanced. 
The histograms for the distillate flow rates are displayed in the following figures. The x-axis 
presents the flow rates expressed in kmol/hr. 
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a) Even distribution 

Flow rate benzene Flow rate toluene 

  
Flow rate p-xylene 

 
Figure 16: Histograms of flow rates – Even distribution 

b) Gaussian distribution 

Flow rate benzene Flow rate toluene 

  
Flow rate p-xylene 

 
 
 
 
 
 

 
 
 

Figure 17: Histogram of flow rates - Gaussian distribution 
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There is a significant difference between the amount of data used to train the network at higher 
flow rates and at lower flow rates. For example, the number of data entries used to train the 
network between a distillate flowrate of benzene of 49.50 and 50.00 is 4,093, while the amount 
of data to train the network between a distillate flowrate of benzene of 49.00 and 49.50 is 477. 
A possible option to solve this problem is to adjust the boundaries set for the data generation 
for the simulations in Aspen, leading to a broader distribution for the flow rates. The broader 
distribution will have a positive impact on the network performance. 

The largest issue is present in the case of toluene. When generating the data for the last step, the 
boundaries for the distillate stream of toluene are set between 0.40 and 0.5051. The network is 
trained with only 104 samples between 0.4 and 0.5 for the even distribution and 123 samples 
for the Gaussian distribution as can be seen in Figure 18 and Figure 19 . This explains why the 
error on the predictions is high when the overall MSE was very low.  

 

 
Figure 18: Histogram distillate flow toluene - Even 

distribution 

 
Figure 19: Histogram distillate flow toluene - Gaussian 

distribution 

 

This issue will be kept in mind when performing experiments for the second case study. 
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9. ADJUSTMENT 

Before moving on to the second case study, an attempt was made to correct the procedure used 
to obtain the data for the first case study. As mentioned in the discussion of the results, the 
uneven distribution of the simulated flow rates of the distillate might cause the insufficient 
performance of the neural network model in this particular range. To solve this problem, a 
different approach was taken when generating data for the simulations in Aspen. 

 

9.1.  Creating logical structures 

Just like in the case of the normal approach of this case study, several logical structures were 
tested. Unlike previous results, a neural network with both the condenser duty and reboiler duty 
seemed to result in a good performance in case of adjusting the training data set. When using 
this adjusted input data set, the number of Aspen simulations that converged using the 
following model raised significantly. This was not the case for earlier experiments. The Aspen 
model that will be used for further experiments is pictured in Figure 20. 

 

 

 

 

 

 

 

Figure 20: Aspen model for case study 1 modifications 

 

The neural network model that will be used is pictured in Figure 21. 

 

 
Figure 21: ANN model for case study 1 modifications 

 

 

ANN
Input Output

- Distillate flow rate benzene
- Distillate flow rate toluene
- Distillate flow rate p-xylene
- Feed stage
- Reflux ratio

- Condenser duty
- Reboiler duty
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9.2.  Generating input data for Aspen 

As previously mentioned in the discussion of the result, the bad performance is likely caused by 
low number of training samples in the desired range of the distillate flow of toluene. A design 
specification analysis was performed to find the range for the reflux ratio needed for each feed 
stage to finally obtain a distillate flow rate of toluene within the desired range. 

The new ranges for the reflux ratio were defined for each feed stage and performing new 
simulation resulted in a number of 5,483 training samples around a fractional composition of 
1% for toluene, shown in Figure 22. 

 

 
Figure 22: Histogram distillate flow toluene - adjusted ranges Aspen 
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9.3.  Hyperparameter optimization 

Like in the case of the normal approach, several network configuration parameters were varied 
to find the optimal network configuration. In addition to the regular iterative process to find 
the optimal network size, a Bayesian Optimization (BO) algorithm was used. This algorithm is 
used to scan larger network sizes for better performances. Because this algorithm does not take 
overfitting into account, the objective function – a function that is minimized to determine the 
optimal configuration – that will be used is the root square of the MSE of the test set, as low 
performances of the test set are not influenced by overfitting. 

First, the performance within boundaries of 30 nodes in the first hidden layer and 30 nodes in 
the second hidden layer were tested. Additionally, another transfer function was applied in 
order to improve the performance of the network. If this improved the performance, the 
transfer function was kept the same and the training algorithm is applied to the new 
configuration. This training procedure resulted in the following optimal configurations (Table 
19). 

Table 19: Neural network training configurations and results 

Training algorithm 
and activation function 

trainlm - tansig trainlm - logsig  trainbr - logsig 

Network configuration 24x19 21x23 30x15 
Total MSE 7.6961e-04 7.7164e-04 8.0758e-04 
MSE Condenser duty 6.7012e-04 6.7411e-04 7.2146e-04 
R² Condenser duty 1 1 1 
MSE Reboiler duty 8.6910e-04 8.6917e-04 8.9371e-04 
R² Reboiler duty 1 1 1 
Test MSE 8.1801e-04 8.1739e-04 8.3055e-04 
Test RMSE 2.8601e-02 2.8590e-02 2.8819e-02 

 

Of the test configurations, the network with the ‘logsig’ transfer function in the first layer and 
trained with the ‘Levenberg-Marquardt’ training algorithm showed the best results for the test 
set. 

Afterwards, the BO algorithm is performed for each configuration (training algorithm and 
transfer function) within a range of 50x50 (50 nodes in the first hidden layer and 50 nodes in 
the second hidden layer). No network configurations were found to have a better performance 
for the test set. As the configuration ‘trainlm-logsig’ resulted in the lowest root mean square 
error (RMSE) on the test set, this configuration was used for the next step. 
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9.4.  Processing of network results 

The final step of the process consists of using the constructed neural network to predict the 
optimum column settings. In order to make a comparison between the DFM and the neural 
network solution, the same recovery was considered for the input of the neural network. The 
settings leading to the lowest sum of duties in the network are reported in Table 20 together 
with simulation results of the same settings in Aspen performed as an accuracy check. As can 
be noticed, there is still a difference between the distillate flow rates used by the ANN and the 
distillate flow rates obtained by performing the accuracy check, but the deviation is noticeably 
smaller than in the case of using the old approach. The predicted duties are close to the 
simulated ones, with a total error percentage of 0.25% on the combined duty. 

 

Table 20: Comparison of predicted settings for optimized energy requirements by neural network and results in Aspen Plus. 

 Neural network Aspen  
No. of stages, Ns 21 21  
No. of feed location, NF 15 15  
Reflux ratio 1.3722 1.3722  
Composition 
at top 

Benzene 0.9900 0.9718  
Toluene 0.0100 0.0282  
p-xylene 0.0000 0.0000  

Composition 
at bottom 

Benzene 0.0415 0.0585  
Toluene 0.5714 0.5543  
p-xylene 0.3871 0.3871  

Energy condenser (kW) 933.6 937.3  (-0.39%) 
Energy reboiler (kW) 1181.3 1182.9  (-0.13%) 
Total energy (kW) 2114.9 2120.2  (-0.25%) 

 

The fact that the predicted duties are close to the real ones is confirmed by the error histograms. 
The following histograms (Figure 23 and Figure 24) display the number of samples of the test 
set with their respective percentage error. 

 
Figure 23: Error histogram condenser duty 

 
Figure 24: Error histogram reboiler duty 
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9.5.  Comparison between shortcut, DFM and ANN 

At last, a comparison is made between the results obtained by the shortcut design method, the 
driving force method and the neural network. The results for all three methods are included in 
Table 21. 

 

Table 21: Comparison between results shortcut design, driving force method and neural network 

 Shortcut DFM Neural network 
No. of stages, Ns 21 21 21 
No. of feed location, NF 11 13 15 
Reflux ratio 1.60 1.41 1.37 
Composition 
at top 

Benzene 0.9900 0.9900 0.9718 
Toluene 0.0100 0.0100 0.0282 
p-xylene 0.0000 0.0000 0.0000 

Composition 
at bottom 

Benzene 0.0100 0.0415 0.0585 
Toluene 0.5900 0.5714 0.5543 
p-xylene 0.4000 0.3871 0.3871 

Energy condenser (kW) 1064.4 953.9 933.6 
Energy reboiler (kW) 1315.4 1201.6 1181.3 
Total energy (kW) 2379.7 2155.5 2114.9 
Economization  -9.42%  
    

As there is still a small difference between the distillate flow rates used by the neural network 
and the flow rates calculated by entering the features in Aspen as an accuracy check, it is difficult 
to compare them in terms of economization. The predicted settings, however, are close to the 
settings predicted by using the DFM method. When further optimized, the neural network 
solution vows to be a useful tool in predicting the optimal settings. 
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CHAPTER 4: CASE STUDY TWO – CREATION 
OF AN ADVANCED PREDICTION MODEL 

 

 

This chapter contains the results obtained for the second case study. The goal of this case study 
is to provide an extended model in comparison to the model created in the first case study. For 
a specified feed composition, the model needed to provide an optimal design of the distillation 
column consisting of the feed temperature, the number of stages of the column, the stage at 
which the feed enters the column and the reflux ratio with a focus on energy minimization. This 
model was optimized with the intention to return a prediction with a minimal error. 

 

1. DATA 

For the purpose of this case study, some of the starting data of the first case study was reused. 
This data is displayed in Table 22. 

 

Table 22: Basic data used for case study 2 

Components benzene, toluene, p-xylene 
Total feed flow rate 100 kmol/hr 
Feed pressure 2 atm 
Column pressure 2 atm 

 

2. CREATING LOGICAL STRUCTURES  

Before moving on to the simulation of the data, a decision needed to be made about the selection 
of the input and output data that needed to be used in the artificial neural network as well as 
the input data that was used to collect data in Aspen. 

As previously discussed, the goal of this case study is to predict the optimal column settings and 
specifications for a given feed composition. Therefore, the following parameters needed to be 
included in both the data collection model and the neural network model: feed composition, 
feed temperature, number of stages, feed stage and reflux ratio. Another parameter that was 
necessary to include was the distillate composition to be able to assess the model accuracy. 
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2.1. Logical structure for Aspen data collection 

Following the parameter selection, the data needed to be collected from performing simulations 
in Aspen. A criterium for this stage is that simulations need to happen as efficient as possible. 
This is why a variety of models have been tested and compared for their efficiency. The models 
are based on a specific set of parameters. A limited amount of combinations are available for 
the specification of the column in Aspen. As determined in the analysis of the degrees of 
freedom, four column parameters can be specified. Of these four, the number of stages and feed 
stage are already chosen, two parameters remained to be specified. Concerning the specification 
of the feed, C+2 parameters can be specified. As the feed pressure was already determined in 
advance (2 atm) C+1 feed parameters remained to be defined. 

Aspen allows for a range of parameters to be chosen to fill the remaining two slots when using 
the ‘Radfrac’ model. In the previous case study, the reflux ratio together with the distillate to 
feed ratio proved to be an efficient way to perform the simulations in Aspen. In addition to the 
model previously used, the composition and temperature of the feed stream were varied. This 
lead to the following model used for collecting data from Aspen (Figure 25). 

 

 
Figure 25: Selected Aspen model case study 2 

 

 

 

 

 

  

Aspen
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- Feed flow rate p-xylene
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- Condenser duty
- Reboiler duty
- Distillate flow rate benzene
- Distillate flow rate toluene
- Distillate flow arte p-xylene
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2.2. Logical structure for neural network 

Just like in the case of the first case study, a variety of neural network models were tested. The 
selection for the appropriate model was performed experimentally and was considered a 
process of ‘trial and error’.  The reasoning behind the choice of the final model is discussed in 
Table 23. The composition is entered in the model as the separate flow rates of each component. 

 

Table 23: Model selection process neural network 

Model Model structure Result 
 
 

1 
 
  

Model 1, 2, 3 and 4 were tested with the goal 
to circumvent the imbalanced data 
limitations. Their performance however, 
proved to be inadequate for application in 
this case study. 

 
 

2 
 
 

 

 
 

3 
 
  

 
 

4 
 
 
 

 

 
 

5 
 
 
 

 

Model 5 was the final model tested and is an 
extended version of the model used in the 
first case study. The performance of this 
neural network model is better than any of 
the other models previously tested. 
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3. ASPEN SIMULATIONS 

To ease the simulation procedure, an Aspen ‘template’ file was created. The specifications that 
were used are described in the following paragraphs. 

Properties – Specification 

The components were entered in the ‘specifications’ tab of properties. In this case, the 
components that needed to be entered were benzene, toluene and p-xylene. 

Properties – Methods 

In the methods section, the appropriate property model was selected. The model was chosen 
according to the property model selection flow chart mentioned in the Aspen User Guide [31]. 

The feed mixture only contains three (nonpolar) components. Accordingly, the property 
models that could be selected were ‘Redlich-Kwong-Soave’ and ‘Peng Robinson’ (PENGROB). 
For the sake of this experiment, ‘Peng Robinson’ was selected as the property model. 

Simulation – Flowsheet 

Next, the block model was specified. For the sake of this experiment, the rigorous ‘RadFrac’ 
model was chosen. The RADFRAC column allows for the following parameters to be specified: 
feed stage, number of stages, condenser duty, distillate to feed ratio.  

Simulation – Feed stream  

The goal of the ANN model is to supply optimal settings for any given feed composition. 
Therefore the simulations needed to include very impure feed streams as well as pure feed 
stream. 

Simulation – Column specifications 

As a final step, the column settings will be specified. The goal of this experiment is to find the 
optimal column settings for a minimized duty. To reach this goal several parameters will be 
varied: 

• number of column stages,  
• feed stage,  
• reflux ratio, 
• distillate to feed ratio.  

 

  



59 
 

4. GENERATING INPUT DATA FOR ASPEN 

The next step consists of generating the input data for the simulations in Aspen. The 
imbalanced data problems that occurred in the first case study proved that this is a crucial step. 

 

4.1. Problem solving approach  

The approach of solving the imbalanced data set problem for the first case study consisted of 
performing a design specification analysis to obtain the reflux ratio boundaries for each and 
every feed stage. Applying this approach here would be quite inefficient as there are too many 
features that vary. There is a variety of approaches that can be applied to offset this negative 
effect. 

a) Under-sampling 

Under-sampling consists of removing data that is overrepresented. Data samples that are too 
similar to other data samples are removed from the data set. This might cause a negative effect 
on the network performance as information is removed and might cause a shortage of 
representable data.  

b) Over-sampling 

This technique is often applied to classification problems with an imbalanced data issue. Over-
sampling consists of duplicating data samples and uses regression to add more samples to the 
underrepresented range. Applying this method to regression problems is unconventional but 
has proven to be efficient [32], [33]. 

c) Combination of under- and over-sampling 

Over- and under-sampling are techniques often applied to imbalanced data issues of 
classification problems and have been adapted to work with regression problems. Branco et al. 
published a paper elaborating on the use of a method called ‘Synthetic Minority Oversampling 
Technique for Regression in combination with Gaussian Noise’ (SMOGN). This method will 
apply a combination both under- and over-sampling to improve the performance of the data 
set for regression [34].  

d) Gathering more qualitative data 

An imbalanced data set can cause two problems. Next to scarcity in the underrepresented 
region, it also leads to an overrepresentation in a specific region. As models will be trained using 
the mean error, the overrepresented region has a larger influence on the training. Gathering 
more qualitative data might positively influence the imbalanced data set. 

This strategy can be applied by adding the qualitative data of the first case study as this case 
study is just an expansion of the first one and the ranges of the first case study are still included. 
Because more parameters are varied, the amount of simulations is increased to 50,000 to ensure 
enough samples are present to provide enough relations for the network to learn from. 
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Both approach c and d were applied to this problem and are discussed in the following 
paragraph. In the first case study a Gaussian distribution as well as a uniform distribution were 
applied to the input parameters. As this did not have a major influence on the distribution of 
the output parameters, the even distribution is used for the generation of the Aspen input 
parameters. 

 

4.2. Generating input parameters 

50,000 data entries were prepared in an even distribution. The boundaries were chosen as 
following: 

• number of stages: 10-42 

For a very pure feed stream, a small column might suffice while for a less pure feed stream 
a larger column is required to achieve a pure distillate stream. For the sake of this 
experiment the number of stages was varied between 10 and 42. 

• feed stage: 1-41 

When generating the feed stage, the maximum feed stage needs to be taken into 
consideration. The feed stage cannot be larger than the number of stages specified for the 
data entry. 

• reflux ratio: 0.4-10 
• distillate to feed ratio: 0.3-0.6 
• feed temperature: 70-80°C 

One of the additional parameters to be varied this time is the feed temperature. According 
to literature, the feed temperature also has an influence on the required energy for the 
separation of the feed stream [35]. The feed temperature is varied in a narrow range around 
the temperature used in case study 1 (75°C). 
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• Feed composition 

For the sake of this experiment, only feed compositions were considered with more benzene 
than toluene and more toluene than p-xylene. Specifying the feed composition is tricky. 
While two of them can be specified, the third one is always fixed as the total feed flow rate 
is specified at 100 kmol/hr. More important is to include an even distribution of feed 
compositions. This can be achieved by using an algorithm that computes random vectors 
with a fixed sum in MATLAB [36]. Using this code resulted in the following composition 
distribution displayed in Figure 26 for a number of 50,000 simulations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Distribution of generated feed compositions 
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5. EXTRACTING DATA AND PRE-PROCESSING  

The data entries were entered as column specifications in Aspen. Simulations were run and 
non-converging data entries were removed. Afterwards the data was pre-processed. As 
discussed earlier, the data will need to be normalized in order for the network to be trained 
efficiently. For this purpose, mean normalization was be used. 

 

6. HYPERPARAMETER OPTIMIZATION 

A network configuration needed to be found with a minimal error on the predicted results. To 
find a network that is able to accurately predict the desired result, it needs to be optimized by 
tuning the hyperparameters. For the second case study the hyperparameter optimization was 
performed in four steps. 

 

6.1. Data set  

Six data sets were tested for training the model and compared based on their performance to 
predict the reboiler and condenser duty. 

• NORMAL 

Regular data set. 

• NORMAL + CS1 

Regular data with the additional qualitative data of the first case study. 

• SMOGN 

Data set constructed by applying the SMOGN algorithm. The regular data set was enriched 
by over-sampling and overrepresented data was removed. 

• SMOGN(U) 

Data set constructed by applying the SMOGN algorithm and only keeping the original, 
under-sampled data.  

• SMOGN + CS1 

Data set constructed by applying the SMOGN algorithm. Afterwards, the qualitative data of 
the first case study was added. 

• SMOGN(U) + CS1 

Data set constructed by applying the SMOGN algorithm and only keeping the original, 
under-sampled data. Afterwards, the qualitative data of the first case study was added. 
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The data sets were used to train neural networks within the range of 15 to 25 nodes for both 
hidden layers. The training was performed using the default hyperparameters mentioned in 
Table 11. The results of training are displayed in Table 24. 

 

Table 24: Training results of different data types 

 normal SMOGN SMOGN(U) 
Configuration 24x20 19x23 15x19 
Total MSE 0.5928 1044.2557 0.9496 
Test MSE 0.5005 965.7267 1.6500 

 

Use of the SMOGN dataset did not have a positive influence on the prediction of the reboiler 
and condenser duty. Accordingly, the SMOGN dataset was rejected for use in further 
experiments. 

Afterwards, the data of the first case study was added to reduce the error caused by the 
imbalanced data. The results for the data set combined with the data of the first case study are 
displayed in Table 25. 

 

Table 25: Training results of data types combined with results of first case study 

 normal+CS1 SMOGN(U)+CS1 
Configuration 21x24 19x20 
Total MSE 0.0354 0.0494 
Test MSE 0.0368 0.0704 

 

Both data sets resulted in a similar error on both the test set and the total data set. To move on 
to the tuning of the other hyperparameters, a choice needed to be made as to which data set 
would be used. An important aspect of this choice is the distribution of the distillate flow rates. 
The training algorithms will always try to train by minimizing the MSE on the training set. If 
more samples are present in a specific range, these samples will have a more significant 
influence on the training procedure. The distributions are shown in Figure 27, Figure 28, Figure 
29 and Figure 30. 

 

 

 

 

 

 



64 
 

 

NORMAL+CS1 SMOGN(U)+CS1 

 
Figure 27: Distribution of distillate flow composition of 

benzene - NORMAL+CS1 

 
Figure 28: Distribution of distillate flow composition of 

benzene - SMOGN(U)+CS1 

NORMAL+CS1 SMOGN(U)+CS1 

 
Figure 29: Distribution of distillate flow composition of 

toluene - NORMAL+CS1 

 
Figure 30: Distribution of distillate flow composition of 

toluene - SMOGN(U)+CS1 

 

When using the random under-sampling method of the SMOGN algorithm, almost half of the 
samples in the undesired range are removed thus diminishing the effect of the overrepresented 
samples on training. The SMOGN(U) dataset combined with the samples of the first case study 
was used to make further improvements. 
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6.2. Network size, activation function and training algorithm 

The similar procedure to the one of the first case study was followed for the tuning of the other 
hyperparameter. This resulted in the following results mentioned in Table 26. 

 

Table 26: Hyperparameter optimization results case study 2 

Training algorithm 
and activation function 

trainlm - tansig trainlm - logsig  trainbr - tansig 

Network configuration 19x20 11x19 16x25 
Total MSE 0.0494 0.2128 0.0089 
MSE Condenser duty 0.0511 0.2423 0.0090 
R² Condenser duty 1 1 1 
MSE Reboiler duty 0.0477 0.1833 0.0089 
R² Reboiler duty 1 1 1 
Test MSE 0.0704 0.3085 0.0213 
Test RMSE 0.2653 0.5554 0.1459 

  

The ‘logisg’ activation function did not improve the performance of the neural network, while 
changing the training algorithm to ‘trainbr’ resulted in a better performance. 

Expanded ‘trainbr’ configurations were tested using the Bayesian optimization algorithm. The 
results of this algorithm showed that no better configuration could be found within a range of 
40x40 nodes in the hidden layers. 

 

6.3. Final model configuration 

The optimization process resulted in the optimal network configurations displayed in Table 27. 

Table 27: Final network settings 

Network size 16x25 
Activation function tansig 
Training algorithm trainbr 
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7. PROCESSING OF NETWORK RESULTS 

In this step, the constructed neural network was put into action. The goal of this case study is 
to provide the optimal design given a specified feed composition and purity of the distillate 
stream. Accordingly, both the feed composition and the distillate composition were set fixed. 

The optimal conditions were determined for two cases mentioned in Table 28. 

 

Table 28: Feed compositions for second case study 

 Feed flow rate 
benzene (kmol/hr) 

Feed flow rate 
toluene (kmol/hr) 

Feed flow rate p-
xylene (kmol/hr) 

Case 1 (impure feed) 40 35 25 
Case 2 (pure feed) 80 15 5 

 

10,000 data entries were generated to be entered in the neural network. These parameters 
include the number of column stages, the feed stage, the feed temperature, reflux ratio and the 
distillate flow rate. The following boundaries were chosen for the data to be generated within. 

a. Number of column stages: 10-42 
b. Feed stage: 1- Number of column stages 

The feed stages were generated within the range of 1 and the total number of column 
stages. The feed stage cannot be larger than the number of stages specified for the data 
entry. 

c. Reflux ratio: 0.4-10 
d. Distillate flow rate 

The distillate flow rate was generated to result in a recovery of at least 90%. The distillate 
flow rate is defined as a distillate stream with 90-100% recovery of benzene consisting 
of 99 mol% benzene and 1 mol% toluene. 

e. Feed temperature: 70-80°C 
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7.1. Results feed 1 

The results for the impure feed are displayed in Table 29 with an accuracy check obtained in 
Aspen using the predicted design. 

 

Table 29: Results for impure feed 

 Neural network Accuracy check  
No. of stages, Ns 26 26  
No. of feed location, NF 15 15  
Reflux ratio 0.4184 0.4184  
Feed temperature 78.9628 78.9628  
Composition 
at top 

benzene 0.9900 0.7964  
toluene 0.0100 0.1832  
p-xylene 0.0000 0.0204  

Composition 
at bottom 

benzene 0.0286 0.1618  
toluene 0.5640 0.4503  
p-xylene 0.4074 0.3880  

Energy condenser (kW) 423.2 452.8 -6.54% 
Energy reboiler (kW) 682.1 694.0 -1.72% 
Total energy (kW) 1105.3 1146.8 -3.62% 

 

While the predicted energy requirement is close to the required energy obtained in Aspen, there 
is still a difference between the distillate flow rate used by the neural network and the distillate 
flow rate acquired by performing the accuracy check.  
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7.2. Results feed 2 

The results for the pure feed are displayed in Table 30. 

 

Table 30: Results for clean feed 

 Neural network Accuracy check  
No. of stages, Ns 17 17  
No. of feed location, NF 9 9  
Reflux ratio 0.4007 0.4007  
Feed temperature 77.5054 77.5054  
Composition 
at top 

benzene 0.9900 0.9593  
toluene 0.0100 0.0400  
p-xylene 0.0000 0.0007  

Composition 
at bottom 

benzene 0.2540 0.3424  
toluene 0.5523 0.4661  
p-xylene 0.1937 0.1916  

Energy condenser (kW) 836.4 851.8 -1.81% 
Energy reboiler (kW) 983.3 996.3 -1.30% 
Total energy (kW) 1819.7 1848.1 -1.54% 

 

The error on the predicted required energy is lower than in the case of the impure feed. It can 
be noted that just like in the case of the impure feed stream there is still a deviation present in 
the distillate flow rates used by the ANN compared to the ones obtained by the accuracy check. 
However, this deviation is noticeably smaller than in the case of the impure feed stream. 

 

7.3. Discussion of results 

There are no obvious reasons that explain the difference between the performance of the pure 
and impure feed stream.  

In the first part of the research it was thought that the imbalanced data problem was to blame 
for the deviations in the distillate flow rates. Later on, however, it was established that another 
factor caused the deviations in the distillate flow rates. The reflux ratio is part of the input 
features of the neural network. An important observation to be made is that the reflux ratio is 
the only parameter of the input features that is directly corelated to the energy supplied to the 
column. As the distillate composition is also part of the input features, this causes a problem. 
The reflux ratio would need to accurately correspond to the reflux ratio needed to reach a 
distillate composition of 99 mol% benzene and 1 mol% toluene. 

To solve this problem using the same model, simulations would need to be performed to 
calculate the reflux ratio for each sample, corresponding to the reflux ratio required to reach 
the proposed distillate composition. This would defeat the purpose of using the ANN solution. 
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Another approach that can be taken to solve to decrease the influence of this problem is 
deducted from the approach used to solve the supposed imbalanced data problem in the first 
case study. The data collection can be divided into smaller parts, with reflux ratio boundaries – 
to reach a distillate composition of approximately 99 mol% benzene and 1 mol% toluene  – 
being determined by performing design specifications analyses. Attention has to be payed 
towards the fact that this will still not provide an accurate solution, but the predicted distillate 
flow rates will be a lot closer to the actual distillate flow rates. 

An accurate solution can only be found if  a new, efficient model is created with the reflux ratio 
as one of the output features, together with the reboiler and condenser duty.  
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8. TIME  MEASUREMENT 

The  most significant advantage of using neural networks to perform simulations is the time it 
takes to perform the simulations. While performing experiments in Aspen Plus can take a few 
seconds for each simulation, neural networks  are able to perform thousands of simulations in 
a fraction of a second. To be able to assess the time consumption of both methods, an 
experiment was performed. For each method (Aspen Plus and a neural network model), the 
time needed to perform simulations was recorded. The results were interpolated to one 
simulation.  It has to be noted that these time measurements are dependent of the hardware 
specifications of the system on which the experiments were performed. To be able to compare 
the time, both experiments were run on the same system. The results are displayed in Table 31. 

 

Table 31: Results of time measurement 

Number of 
simulations 

1,000,000 100,000 10,000  1 

ANN 3.1 e-01 s 3.0 e-02 s 4.9 e-03 s 4.9 e-07 s 
Aspen Plus x x 2.0 e+04 s 2.0 s 

 

What can be noted from these time measurements is that in the time it takes for Aspen Plus to 
perform one simulation, the ANN can perform more than a million simulations indicating the 
importance of using ANN’s for various applications. 
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CHAPTER 5: CONCLUSION & OUTLOOK 
 

 

1. CONCLUSION 

In the first part of this dissertation, a neural network model was constructed which predicted 
the required energy for the separation of a feed stream with a fixed composition. The neural 
network model was used to find an optimized design of a distillation column, which consists of 
the feed stage and the reflux ratio. The neural network was able to accurately predict the 
required energy for the separation of the feed stream (total error percentage of 0.2%). However, 
the usage of imbalanced data to train the neural network model supposedly caused a deviation 
in the distillate flow rates used in the model compared to the distillate flow rates obtained by 
performing an accuracy check. By performing new simulations, the number of samples within 
the desired range improved and the used distillate flow rates were closer to the ones obtained 
by the accuracy check. Because there was still a deviation present its prediction could not be 
compared against the optimal design of the DFM. 

The second part of this dissertation consisted of the construction of an expanded version of the 
neural network created in the first part. Additionally, the network needed to predict the optimal 
number of stages and the feed temperature for different feed compositions. Although it was 
established that obtaining evenly distributed data for the distillate flow rates would be best 
practice, it was not possible to obtain an evenly distributed data set concerning the distillate 
flow rates. Instead, to diminish the effect of the imbalanced data set: more simulations were 
performed, qualitative data of the first case study was taken into consideration and the SMOGN 
method was applied. The over-sampling of the SMOGN method did not have a positive 
influence on the network performance,  thereby only the under-sampling technique was used. 
The optimal design was determined for two different feed compositions: one impure feed and 
one more pure feed. The neural network models were again able to accurately predict the 
required energy for the separation (max total error percentage of 3.62%). But once again, the 
used distillate flow rates by the neural network model deviate from the ones determined by 
performing the accuracy check. The deviation of the distillate flow rates was found to be higher 
for the impure feed than for the pure feed. Later on, it was established that the reflux ratio being 
present on the input side of the ANN was to blame for the distillate flow rates deviation issue 
as the reflux ratio is strongly corelated to the required energy for the separation. 

As a side experiment, the time needed for one simulation was measured for Aspen Plus and the 
ANN solution. While the average time it took for one simulation in Aspen Plus was 2 seconds, 
the ANN solution can perform one million simulations in 0.31 seconds. This time reduction is 
an important advantage of the use of neural networks and is one of the reasons why neural 
networks are being deployed in various domains of science. 
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2. FUTURE OUTLOOK 

To confirm if neural networks can be applied to design problems, future experiments need to 
be performed using a balanced data set or using more data within the desired ranges. The model 
used in this research can be improved by dividing the data collection in multiple small sections 
with reflux ratio boundaries determined by multiple design specification analyses. Attention 
has to be payed towards the fact that using this method, an accurate prediction cannot be 
performed, but it can give an idea as to the ranges the optimal configuration is situated in. 

For the further optimization of the networks the following options can be explored: 

• acquire more qualitative data between the desired ranges; 
• vary the starting weights: Up until now, every training iteration uses the same starting 

weights to train the network. Varying the weights might help the training algorithm to 
find a more suitable configuration; 

• vary the division of the data set: The goal of the hyperparameter optimization in this 
case study was to compare different network configurations by their total MSE and test 
MSE. Therefore, fixed data division was used in order to compare them. A more 
accurate approach might be to test multiple divisions of the data set and use to average 
error to define the performance of the network configuration; 

• consider other options for the transfer function and training algorithm. 

Additionally, to be able to make an accurate prediction a new, accurate network has to be 
created with the reflux ratio on the output side of the network together with the reboiler and 
condenser duty. 
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Appendix A: Training code 
 
 
% Solve an Input-Output Fitting problem with a Neural Network 
% Script generated by Neural Fitting app 
% Created 10-May-2020 22:44:25 
% 
% This script assumes these variables are defined: 
% 
%   InputModel1 - input data. 
%   OutputModel1 - target data. 
  
x = InputModel1'; 
t = OutputModel1'; 
  
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 
  
% Create a Fitting Network 
hiddenLayerSize = 1; 
net = fitnet(hiddenLayerSize,trainFcn); 
  
% Choose Input and Output Pre/Post-Processing Functions 
% For a list of all processing functions type: help nnprocess 
net.input.processFcns = {'removeconstantrows','mapminmax'}; 
net.output.processFcns = {'removeconstantrows','mapminmax'}; 
  
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivision 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
  
% Choose a Performance Function 
% For a list of all performance functions type: help nnperformance 
net.performFcn = 'mse';  % Mean Squared Error 
  
% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
    'plotregression', 'plotfit'}; 
  
% Train the Network 
[net,tr] = train(net,x,t); 
  
% Test the Network 
y = net(x); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 
  
% Recalculate Training, Validation and Test Performance 
trainTargets = t .* tr.trainMask{1}; 
valTargets = t .* tr.valMask{1}; 
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testTargets = t .* tr.testMask{1}; 
trainPerformance = perform(net,trainTargets,y) 
valPerformance = perform(net,valTargets,y) 
testPerformance = perform(net,testTargets,y) 
  
% View the Network 
view(net) 
  
% Plots 
% Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
%figure, ploterrhist(e) 
%figure, plotregression(t,y) 
%figure, plotfit(net,x,t) 
  
% Deployment 
% Change the (false) values to (true) to enable the following code blocks. 
% See the help for each generation function for more information. 
if (false) 
    % Generate MATLAB function for neural network for application 
    % deployment in MATLAB scripts or with MATLAB Compiler and Builder 
    % tools, or simply to examine the calculations your trained neural 
    % network performs. 
    genFunction(net,'myNeuralNetworkFunction'); 
    y = myNeuralNetworkFunction(x); 
end 
if (false) 
    % Generate a matrix-only MATLAB function for neural network code 
    % generation with MATLAB Coder tools. 
    genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 
    y = myNeuralNetworkFunction(x); 
end 
if (false) 
    % Generate a Simulink diagram for simulation or deployment with. 
    % Simulink Coder tools. 
    gensim(net); 
end 
 
 

 

 

 

 


