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WHAT? AL PROBLEM DEFINITION

= Artificial Neural Network

kden yer (ANN) SUSTAINABILITY .
Input layer | «  Design chemical installations with the goal
* Computing systems of energy minimization o
* Allow for the detection of - Energy minimization > reduction of CO, . ..
non-linear relations » To design distillation columns in Aspen, a lot " —{_==
between features of simulations need to be performed N —
* Low simulation time » ANN's reduce this simulation time and can
compared to chemical provide a good prediction of the actual )

;imulation software suites optimal settings.
like Aspen Plus

Figure 1. ANN structure
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Figure 2: Distillation column [1,p.4]
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IMBALANCED DATA PROBLEM
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When performing simulations, data

Possible approaches:
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determined boundaries
*

Perform simulations in

Optimize network by
tuning hyperparameters

*

calculated energy requirement

Process data using NN and sort according to

samples with a very pure distillate are PHASE 1 PHASE 2 PHASE 3 PHASE 4

overrepresented causing a bias during =TT DATA COLLECTION NEURAL NETWORK DETERMINE OPTIMAL DESIGN CINAL RESULT

’[raining. * * Generate input data for neural network within desired _—)' *
Generate data within —) Construct neural network —) boundaries Final design obtained

- Redefining boundaries of input eI Aspen e |
features /:,-gure 4 Pick settings with lowest predicted energy
- Under-sampling Distributions Figure 3: Methodology
- Gathering more qualitative data Of distillate
flow rates

&) RESULTS £ CONCLUSION & \

CASE STUDY 1 CASE STUDY 2 FUTURE WORK
Creating a model to find optimal design (reflux ratio, Expand model of first case study with number of
feed stage ) and compare the result to the use of stages, feed composition and feed temperature
Driving Force Method given specific feed conditions [2] « Model performs well in predicting the
L — required energy for the separation
Neural Accuracy Neural Accuracy

— Oﬁtaiels’ - Neural network 21Accuracy check® DflM o T network — check network - check ® |mb alanc ed da-ta S e-t needs -to b e -ta ken
No. of feed location, NF 15 13 o. of feed location, i :
Reflus rai L1 i No. of eed location, NF b . into account when gathering data |
Ciomposmon Benzene 0.9900 0.9718 0.9900 Feed temgerature (°C) 78.9628 77 5054 ® The mOdel needs -to have -the reﬂux ra-tlo
at top Toluene 0.0100 0.0282 0.0100 Composition Benzene 0.9900 0.7964 0.9900 0.9593 . .

~ pxylene 0.0000 0.0000 0.0000 at top Toluene 0.0100 0.1832 0.0100 0.0400 at the OUtpUt, toge’[her with the reboiler
Composition ~ Benzene 0.0415 0.0585 0.0415 p-xylene 0.0000 0.0204 0.0000 0.0007
at bottom Toluene 0.5714 0.5543 0.5714 Composition Benzene 0.0286 0.1618 0.2540 0.3424 aﬂd COﬂdeﬂSGI’ duty

p-xylene 0.3871 0.3871 0.3871 at bottom Toluene 0.5640 0.4503 0.5523 0.4661 . . .
Energy CO;ldTnle; \(;;N) 1913831-63 1913872-39 1925031-96 p-xylene 0.4074 0.3880 0.1937 0.1916 « Further optimization of the model needs
Energy reboiler . . : nergy condenser . . . . .
Total energy (W) 21149 21202 21555 e i) o cort 0 oo to be performed by varying other
Total energy (kW) 1105.3 1146.8 1819.7 1848.1 hyperpa ram eterS
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(1) The accuracy check is performed to see if the calculated values of the ANN correspond to the values that
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