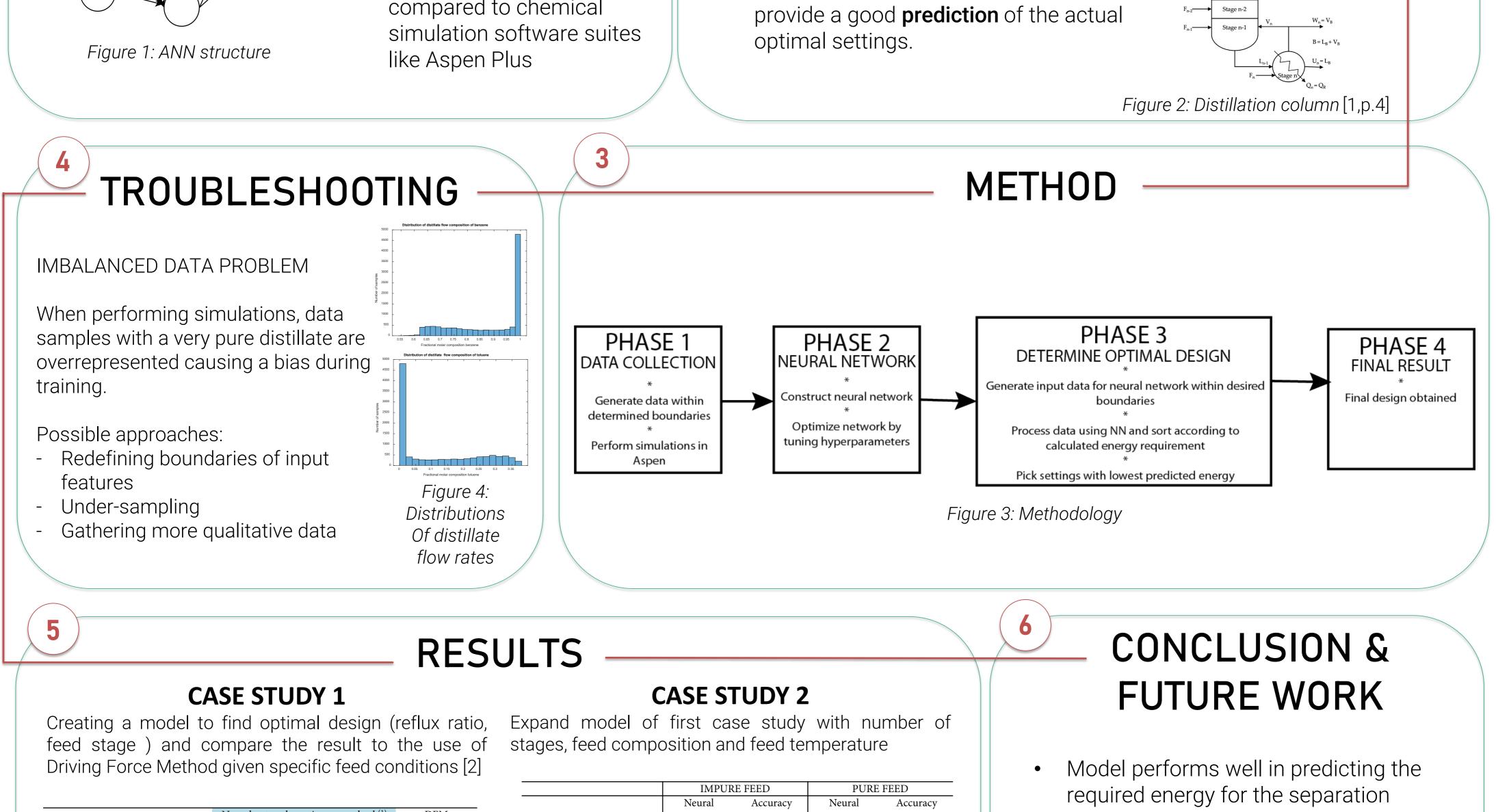
Master's Thesis Engineering Technology


2019-2020

ENERGY MINIMIZATION OF DISTILLATION COLUMNS BY ARTIFICIAL NEURAL NETWORKS

JORDY OTTENBURGS

Master of chemical engineering technology

1 WH	HAT?	2 PROBLEM DEFINITION
Hidden layer 1 Input layer Input 1 Input 2 Input 3 Input 3	 Artificial Neural Network (ANN) Computing systems Allow for the detection of non-linear relations between features Low simulation time 	 SUSTAINABILITY Design chemical installations with the goal of energy minimization Energy minimization → reduction of CO₂ To design distillation columns in Aspen, a lot r, stage; stade; stage; stage; stage; stade; stage; stage; stade; stage;

	21		No. of stages, Ns	
	15		No. of feed location,	
1.3	1.3722		Reflux ratio	
0.9900	0.9718	0.9900	Feed temperature (°C	
0.0100	0.0282	0.0100	Composition Benz	
0.0000	0.0000	0.0000	at top Tolue	
0.0415	0.0585	0.0415	p-xyl	
0.5714	0.5543	0.5714	Composition Benz	
0.3871	0.3871	0.3871	at bottom Tolue	
933.6	937.3	953.9	p-xyl	
1181.3	1182.9	1201.6	Energy condenser (k	
2114.9	2114.9 2120.2		Energy reboiler (kW	
			Total energy (kW)	
	1.3 0.9900 0.0100 0.0000 0.0415 0.5714 0.3871 933.6 1181.3	$\begin{array}{c c} & 15 \\ \hline 1.3722 \\ \hline 0.9900 & 0.9718 \\ \hline 0.0100 & 0.0282 \\ \hline 0.0000 & 0.0000 \\ \hline 0.0415 & 0.0585 \\ \hline 0.5714 & 0.5543 \\ \hline 0.3871 & 0.3871 \\ \hline 933.6 & 937.3 \\ \hline 1181.3 & 1182.9 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

		network	check	network	check
No. of stages, Ns		26		17	
No. of feed location, NF		15		9	
Reflux ratio		0.4184		0.4007	
Feed temperature (°C)		78.9628		77.5054	
Composition	Benzene	0.9900	0.7964	0.9900	0.9593
at top	Toluene	0.0100	0.1832	0.0100	0.0400
	p-xylene	0.0000	0.0204	0.0000	0.0007
Composition	Benzene	0.0286	0.1618	0.2540	0.3424
at bottom	Toluene	0.5640	0.4503	0.5523	0.4661
	p-xylene	0.4074	0.3880	0.1937	0.1916
Energy condenser (kW)		423.2	452.8	836.4	851.8
Energy reboiler (kW)		682.1	694.0	983.3	996.3
Total energy (kW)		1105.3	1146.8	1819.7	1848.1

- Imbalanced data set needs to be taken into account when gathering data
- The model needs to have the reflux ratio at the output, together with the reboiler and condenser duty.
- Further optimization of the model needs to be performed by varying other hyperparameters

Supervisors / Cosupervisors: ir. Min Wu

[1] V. Steffen and E. A. da Silva, "Steady-State Modeling of Equilibrium Distillation," in *Distillation - Innovative Applications and Modeling*, InTech, 2017.

Prof. dr. ir Mumin Enis Leblebici [2] M. Faris, A. Noor, F. Mohd, I. Asri, I. Norazana, and K. Mohd, "Design of Energy Efficient Distillation Columns Systems," in International symposium on green manufacturing and applications, 2014, no. June, pp. 66–69.

(1) The accuracy check is performed to see if the calculated values of the ANN correspond to the values that are found in Aspen.

