Master's Thesis Engineering Technology

2019-2020

Comparison of PI/PID and model predictive control applied to a Simscape Multibody model of a DCpowered conveyor belt

Berden Ruben

Master of Energy Engineering Technology

Olaerts Tristan

Onshape

📣 MathWorks

Simscape Multibody

Master of Energy Engineering Technology

Method

The 3D model of the conveyor belt is drawn using the free online tool **Onshape**. This tool is used because Onshape is compatible with **Simulink Multibody** which makes it possible to implement an Onshape drawing with a few simple commands. Once the 3D model is implemented in Simulink Multibody a **friction model** is added. This model is then applied to the Simulink model to become a realistic conveyor model.

The added friction model follows the **Stribeck model**. The friction force is simulated as a function of relative velocity and is assumed to be the sum of Stribeck, Coulomb, and viscous components, as shown in figure 2. This model has for a certain velocity regime a decreasing friction force with increasing velocity. This is called the Stribeck effect. This representation proves accurate for real friction.

Setting

This project was commissioned by the Electrical and Automation Engineering Department of HAMK Häme University of Applied Sciences in Finland. In the university's laboratory, there is a simple conveyor belt, shown in Figure 1, which will be modelled and controlled. The conveyor belt is straight and horizontal and is equipped with a 24V DC motor that can be controlled in speed by using PWM control.

This study is set out to investigate three main aspects of the modelling and control of a conveyor belt.

- The conversion from an Onshape model to a Simulink Multibody model is straightforward. The design process is accelerated by building the graphical model in a familiar CAD environment.
- 2. Practical tests on the conveyor belt were not carried out. This made it impossible to match the parameters with test values.
- **3.** Simulations have shown that for the conveyor application a **gain scheduled PID controller performs better** than a single MPC controller at **speed** control. In **position** control, the PID and the MPC are **equivalent**.

[1] MathWorks, 'Friction in contact between moving bodies - MATLAB -MathWorks Nordic', MathWorks Documentation, 2016. [Online]. Available: https://se.mathworks.com/help/physmod/simscape/ref/translationalfriction.html.
[Accessed: 11-May-2020].

[2] Onshape, 'Onshape | Product Development Platform'. [Online]. Available: https://www.onshape.com/. [Accessed: 11-May-2020].

[3] 'Simscape Multibody - MATLAB'. [Online]. Available:

https://se.mathworks.com/products/simmechanics.html. [Accessed: 11-May-2020].

Supervisors / Cosupervisors: Prof. dr. ir. Juhani Henttonen

Prof. dr. ir. Johan Baeten

