
Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: bouwkunde

Masterthesis
Optimal stiffness of longitudinal stiffeners in girders subjected to
patch loading

2019•2020

PROMOTOR :

Prof. dr. ir. Herve DEGEE

PROMOTOR :

Prof. dr. Géze Balázs KOVESDI

Aaron Laenen, Jordi Vanderhoven
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: bouwkunde

Gezamenlijke opleiding UHasselt en KU Leuven



Faculteit Industriële ingenieurswetenschappen
master in de industriële wetenschappen: bouwkunde

Masterthesis
Optimal stiffness of longitudinal stiffeners in girders subjected to
patch loading

2019•2020

PROMOTOR :

Prof. dr. ir. Herve DEGEE

PROMOTOR :

Prof. dr. Géze Balázs KOVESDI

Aaron Laenen, Jordi Vanderhoven
Scriptie ingediend tot het behalen van de graad van master in de industriële wetenschappen: bouwkunde





I 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deze masterproef werd geschreven tijdens de COVID-19 crisis in 2020. 
Deze wereldwijde gezondheidscrisis heeft mogelijk een impact gehad op 
de opdracht, de onderzoekshandelingen en de onderzoeksresultaten. 



II 
 

  



III 
 

Preface 
 
This Master’s thesis is part of the study program Civil Engineering at the University of Hasselt 
(Uhasselt) and the Catholic University of Leuven (KU Leuven). This thesis could not have been 
written without the help of others. Therefore, we would like use this opportunity to thank 
some people for their help. 
 
First of all, we would like to thank Budapest University of Technology and Economics (BME) 
for receiving us at their university as Erasmus students, and letting us do our research there. 
They have provided us the chance to investigate and write an interesting Master’s thesis. 
Additionally, we would like to thank our external supervisor, Prof. dr. Géze Balázs Kovesdi. He 
was our contact within the university in Budapest. He provided us with some interesting 
documents to familiarize us with the subject of our thesis. Beside this, he helped us with our 
research and gave us feedback during the process of documenting it. Furthermore, we want 
to thank Prof. dr. ir. Herve Degée for supervising the academic aspect of our Master’s thesis.  
 
Finally, we are satisfied with the end result of our Master’s thesis. It was not easy to provide 
a balance between answering the research question and achieving a sufficient academic level. 
However, we have a positive feeling about meeting the expectations of both our supervisors. 
 

Budapest, 8th June 2020 

 

Laenen Aaron, Vanderhoven Jordi 

  



IV 
 

  



V 
 

Table of content 
 

Preface ............................................................................................................................ III 

Notations and symbols ................................................................................................... VII 

Table list ........................................................................................................................ XIII 

Figure list ........................................................................................................................ XV 

Abstract ......................................................................................................................... XIX 

Abstract Nederlands ...................................................................................................... XXI 

 
1. Introduction .............................................................................................................. 1 

1.1 Situating ...................................................................................................................... 1 

1.2 Problem statement .................................................................................................... 1 

1.3 Goal ............................................................................................................................ 2 

1.4 Method ....................................................................................................................... 2 

 
2. Literature review ....................................................................................................... 3 

2.1 Unstiffened girders ..................................................................................................... 3 

2.1.1 Empirical models .................................................................................................... 3 

2.1.2 Mechanical models ................................................................................................ 3 

2.2 longitudinally stiffened girders .................................................................................. 7 

2.2.1 Direct models ......................................................................................................... 7 

2.2.2 Incremental factor procedures (regression models) ............................................. 9 

2.2.3 Reduction factor and elastic critical load ............................................................. 11 

2.3 Standards .................................................................................................................. 14 

2.3.1 British Standard (BS) ............................................................................................. 15 

2.3.2 Swiss Standard (SIA) ............................................................................................. 15 

2.3.3 American Standard (AASHTO) .............................................................................. 16 

2.3.4 European Standard (EN 1993-1-5) ....................................................................... 16 

2.4 Experimental results ................................................................................................. 20 

2.5 Analysis of the most relevant factors ....................................................................... 24 

2.5.1 Relative position of the stiffener .......................................................................... 24 

2.5.2 Rigidity of the longitudinal stiffener .................................................................... 25 

2.5.3 Slenderness of the directly loaded panel ............................................................. 25 

 
3. Numerical model ..................................................................................................... 27 

3.1 Geometry of the verified model ............................................................................... 27 

3.2 Applied numerical model ......................................................................................... 28 



VI 
 

3.3 Model properties ...................................................................................................... 29 

3.4 Linear buckling analysis and geometrically and materially nonlinear analysis........ 29 

3.5 Finite element mesh sensitivity testing ................................................................... 30 

3.6 Applied imperfections .............................................................................................. 31 

3.7 Performed tests ........................................................................................................ 32 

3.7.1 Test set-up 1 ......................................................................................................... 32 

3.7.2 Test set-up 2 ......................................................................................................... 32 

3.7.3 Test set-up 3 ......................................................................................................... 34 

3.8 Model verification .................................................................................................... 35 

 
4. Numerical parametric test ....................................................................................... 37 

4.1 Numerical test Design .............................................................................................. 37 

4.2 Numerical test setup – one stiffener ....................................................................... 38 

4.2.1 General ................................................................................................................. 38 

4.2.2 Range of the changing parameters ...................................................................... 38 

4.2.3 Determination process of the optimal stiffness .................................................. 39 

4.2.4 Eurocode formula range....................................................................................... 48 

4.3 Test results and discussion – one stiffener .............................................................. 49 

4.3.1 Interpretation of the results................................................................................. 49 

4.3.2 Main comment for one stiffener cases ................................................................ 49 

4.3.3 Effect of change of the loaded length (𝑆𝑠) .......................................................... 50 

4.3.4 Effect of change of the length of the girder (𝑎) ................................................... 51 

4.3.5 Effect of change of the height of the web (𝐻𝑤) ................................................. 53 

4.3.6 Effect of change of the web thickness (𝑡𝑤) ........................................................ 54 

4.4 Numerical test setup – two and three stiffeners ..................................................... 55 

4.5 Test results and discussion – two and three stiffeners ............................................ 56 

4.5.1 Effect of number of stiffeners on optimal stiffness, numerical results ............... 56 

4.5.2 Effect of number of stiffeners on optimal stiffness, Eurocode formulation........ 57 

4.5.3 Effect of 𝑏1/𝑡𝑤 ratio on the optimal stiffness, numerical results ....................... 58 

4.5.4 New formulation for optimal stiffness – LBA method ......................................... 61 

4.5.5 New formulation for optimal stiffness – GMNIA method ................................... 67 

4.5.6 Comparison formulation LBA vs. GMNIA ............................................................. 72 

 
5. Conclusion............................................................................................................... 73 

 
References ...................................................................................................................... 75 



VII 
 

Notations and symbols 
 
The notations and symbols used in this thesis are listed and explained here in alphabetical 
order. 
 
 Roman notations and symbols 
 
 𝑎 Panel length of the girder 

 𝑎 length of the longitudinal stiffener, global imperfection 

 a, 𝑏 short span of the subpanels, local imperfection 

𝑏ଵ Height of the loaded subpanel, clear distance between loaded flange and first 
stiffener 

 𝑏௘௙௙ Effective width 

 𝑏௙ Width of the flange 

 𝑏௦௧ Width of the longitudinal stiffener 

𝐶଴ Parameter for calculating the buckling coefficient of a longitudinally stiffened 
web according to Graciano 

𝐶௥ = 6,6 ∗ 10଺ MPa, when 𝑀௨ < 𝑀௬ (𝐿𝑅𝐹𝐷) or 1.5 𝑀௔ < 𝑀௬ (𝐴𝑆𝐷) at location 
of the force 

𝐶௥ = 3,3 ∗ 10଺ MPa, when 𝑀௨ ≥ 𝑀௬ (𝐿𝑅𝐹𝐷) or 1.5 𝑀௔ ≥ 𝑀௬ (𝐴𝑆𝐷) at location 
of the force 

𝐷 flexural rigidity of a unit width of the web plate 

 ஽೔

஽೘ೌೣ
 Relative displacement of the upper and lower subpanel 

 𝐸 Young’s modulus  

 𝑒ீ displacement, global imperfections 

 𝑒௅,ଵ,ଶ,ଷ displacement, local imperfections 

 𝑓௦ Correction factor / increasing factor in regression models 

 𝑓௬௕ Basic yield strength 

 𝑓௬௙ Yield strength of the flange 

 𝑓௬௪ Yield strength of the web 

 𝐹 Force 

 𝐹௖௥ Elastic critical buckling load 
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𝐹௖௥ଵ Elastic critical buckling load for the upper (directly loaded) panel, patch 
loading 

 𝐹௖௥ଶ Elastic critical buckling load for the whole web panel, patch loading 

 𝐹௘௫௣ Ultimate load acquired by tests 

 𝐹ோௗ Predicted patch load resistance of longitudinal stiffened girders 

 𝐹ோ଴ Predicted patch load resistance of unstiffened girders 

 𝐹ோ,஽௔௩௔௜௡௘ Predicted patch load resistance of longitudinal stiffened girders, Davaine 

 𝐹ோௗ  Web buckling criterion for unstiffened girders 

 𝐹ோௗଶ Web yielding criterion for unstiffened girders 

 𝐹ோௗଷ Web sidesway buckling criterion for unstiffened girders 

 𝐹௥,௘௫௣ Experimentally found patch loading resistance 

 𝐹ோ,ீ௥௔௖௜௔௡௢ Predicted patch load resistance of longitudinal stiffened girders, Graciano 

 𝐹௥,௡௨௠. Numerically found patch loading resistance 

 𝐹ௌ Applied load 

 𝐹௨ Ultimate resistance 

 𝐹௬ Yield resistance 

 𝐺 Shear modulus 

 ℎ Height of the web in specimen 

 ℎ௦௧ Height of stiffener 

 ℎ௪ height of the web 

 𝐼௙ Second moment of inertia, flange 

 𝐼௦௧,ூ Second moment of inertia, longitudinal stiffener 

 𝑘 Coefficient 

 𝑘௖௥ Buckling load coefficient 

 𝑘ி Buckling load coefficient, patch loading 

 𝑘ிଵ Buckling load coefficient for the upper (directly loaded) panel, patch loading 

 𝑘ிଶ Buckling load coefficient for the whole web panel, patch loading 

 𝑘௦௟ Buckling load coefficient addition for a longitudinally stiffened web 

 𝐾௦௧ Torsional constant  

 𝐿௕ Largest laterally unbraced length along either flange at the point of load 
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 𝐿௘௙௙ Effective length for resistance to transverse forces 

 𝑙௬ effective loaded length 

 𝑚ଵ contribution of the flange to the patch load resistance of unstiffened girders 

 𝑚ଶ contribution of the web to the patch load resistance of unstiffened girders 

 𝑀௔ Required flexural strength using ASD load combinations 

 𝑀௘ Applied bending moment 

 𝑀௜  Plastic moment resistance, inner plastic hinge in flange 

 𝑀௢ Plastic moment resistance, outer plastic hinge in flange 

 𝑀௣௙ Plastic moment resistance, flange 

 𝑀௣௪ Plastic moment resistance, web 

 𝑀ோ Bending moment resistance according to EN 1993-1-5 

 𝑀௨ Required flexural strength using LRFD load combinations, kip-in [N-mm] 

 𝑀௬ Yield moment about the axis of bending, kip-in [N-mm] 

 𝑁௖௥ Critical load 

 𝑠௛ influence of the horizontal stiffeners, correction factor Bergfelt 

 𝑠ఎ modified distance between the outmost plastic hinges in the upper flange 

 𝑠௦ Loaded length 

 𝑠௩ influence of the vertical stiffeners, correction factor Bergfelt 

 𝑠௬ Distance between plastic hinges in loaded flange 

 𝑡௙ Thickness of the flange 

𝑡௜ Flange thickness, idealized ; correction factor for the flange thickness 
(Bergfelt) 

 𝑡௦௧ Thickness of the longitudinal stiffener 

 𝑡௪ Thickness of the web 

 𝑉ଵ(ଶ),௦ Reaction shear force 
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Greek notations and symbols 

 𝛼 Angle 

 𝛼 Distance between the yield lines in the web 

 𝛼, 𝛼ி Imperfection factor, reduction function 

 𝛽 Distance between the plastic hinges 

 𝛽ଵ factor for the slenderness of the flange, SIA 

 𝛽ଶ  factor for the slenderness of the web, SIA 

 𝛽ଷ factor for the loaded length, SIA 

 𝛽ସ factor for the longitudinal stresses, SIA 

 𝛾 Boundary condition dependent parameter 

 𝛾௧ Transition rigidity of the longitudinal stiffener 

 𝛾ெ Partial factor for resistance 

 𝛾ெ
∗  Corrected partial factor for resistance 

 𝛾ெଵ Partial factor for members susceptible to instability 

 𝛾௦௧ Relative flexural rigidity of longitudinal stiffener 

 𝛾௦௧,௢௣௧ Relative flexural optimal rigidity of longitudinal stiffener, numerically obtained 

𝛾௦௧,௢௣௧,ா஼ Optimal stiffness of longitudinal stiffener, Eurocode formulation 

𝛾௦௧,௢௣௧,௅஻஺ Optimal stiffness of longitudinal stiffener, LBA formulation 

𝛾௦௧,௢௣௧,ீெேூ஺ Optimal stiffness of longitudinal stiffener, GMNIA formulation 

 𝛿 Deformation 

 𝛿௪ In-plane deformation of the web 

 𝜀 Strain or Material dependent parameter 

 𝜂 Correction factor for bending moment or imperfection factor 

 𝜃 Angle defining deformation of web with yield lines 

 𝜆 Slenderness 

 𝜆ி Plate slenderness parameter, patch loading 

 𝑣 Poisson’s ratio, 𝑣 = 0,3 if nothing else is stated 

 𝜎 Stress 

 𝜎௕ longitudinal stress in the flange 
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 𝜎௖   Compressive stress 

 𝜎௖௥ Critical stress 

 𝜎௥  Residual stress 

 𝜎௪  Stress in the web 

 𝜎௫  Normal stress 

 𝜑ி Slenderness, patch loading 

 ɸ௦௧ Relative torsional rigidity of longitudinal stiffener 

 𝜒(𝜆) Resistance function 

 𝜒 Reduction factor 

 𝜒ி Reduction factor, patch loading 

 𝛹 Stress ratio 
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Abstract 
 
Hungarian bridges are usually built using the incremental launching method. This causes large 
support reactions which need to be considered in the design of the bridge. EN 1993-1-5 gives 
the patch loading resistance of girders with longitudinal stiffeners, which is known to have a 
significant underestimation. This formulation is designed for girders with only one longitudinal 
stiffener, while most bridges are built using two or more stiffeners. The goal of this study is to 
investigate the patch loading design resistance of the EN 1993-1-5 for stiffened girders and to 
improve it. 
 
This study is performed using numerical simulations (ANSYS). The effect of four main 
parameters are examined, which are: the loaded length of the patch load, the length of the 
girder, the height and the thickness of the web. Afterwards, the effect of the ratio of the height 
of the loaded subpanel (𝑏ଵ) over the thickness of the web (𝑡௪), is examined in function of the 
number of stiffeners. 
 
The results of the numerical simulations are used for a new, improved proposal for a 
design equation to apply "strong" stiffeners. The previously developed patch loading 
resistance formula is based on the 𝑏ଵ/𝑡௪ ratio and is more accurate and usable for girders 
with two or more longitudinal stiffeners. However, it needs "strong" stiffeners. The current 
study checked and developed an improved equation to check if a stiffener can be classified as 
"strong" or "weak". This is the requirement for the new patch loading resistance formulation. 

  



XX 
 

  



XXI 
 

Abstract Nederlands 
 
Bruggen in Hongarije worden gebouwd met de incrementele lanceringsmethode. Deze zorgt 
voor een tijdelijke reactiekracht op het steunpunt, wat ingecalculeerd wordt in het ontwerp 
van de ligger. EN 1993-1-5 geeft een methode om de reactiekracht van longitudinaal verstijfde 
liggers te berekenen, maar die wordt onderschat. Deze methode is ook ontworpen voor liggers 
met slechts één verstijver, terwijl de meeste bruggen met twee of meer verstijvers gebouwd 
worden. 
 
Het doel van dit onderzoek is om de reactiekracht van verstijfde liggers, gegeven door EN 
1993-1-5, te onderzoeken en te verbeteren. Dit onderzoek maakt gebruik van een numerieke 
simulatie in ANSYS. Het effect van de vier belangrijkste parameters voor het berekenen van 
de reactiekracht van de verstijfde liggers zijn onderzocht. Deze zijn: de belaste lengte, de 
totale lengte van de ligger, de hoogte en de dikte van het lijf. Ook het effect van de hoogte 
van het belaste paneel (𝑏ଵ) ten opzichte van de dikte van het lijf (𝑡௪) is onderzocht in functie 
van het aantal verstijvers. 
 
De resultaten van het onderzoek zijn gebruikt om een voorstel te doen voor een verbeterde 
ontwerpmethode voor het gebruik van “sterke” verstijvers. Een eerder ontworpen 
reactiekrachtformule is gebaseerd op de 𝑏ଵ/𝑡௪ ratio en is zowel accurater als bruikbaarder 
voor longitudinaal verstijfde liggers met meerdere verstijvers. Het gebruik van “sterke” 
verstijvers hierin is noodzakelijk. Een nieuwe formule wordt voorgesteld om het onderscheid 
tussen “sterke” en “zwakke” verstijvers te bepalen. 
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1. Introduction 
 
 

1.1 Situating 
 
This Master’s thesis is performed by two master students from the faculty Civil Engineering of 
the University of Hasselt (Uhasselt) and the Catholic University of Leuven (KU Leuven). This 
research was done during an Erasmus exchange in Budapest, Hungary at the Budapest 
University of Technology and Economics (BME). The performed research investigates the 
currently available design methods for longitudinally stiffened girders. Eurocode 3 (EN 1993-
1-5) [1] formed the base for this research. The design methods are analyzed by using 
numerical models which are verified based on previous experimental tests.  
 

1.2 Problem statement 
 
The purpose of this investigation is based on the building process of most of the Hungarian 
bridges. Hungarian bridge erections are performed using a launching technique called 
“incremental launching”. This process is executed in different stages as shown in Figure 1. 
First, the launching nose is placed and pushed forward to the next pier. In the second phase, 
the precast segments are pulled over the launching nose. When the cantilever of a part is at 
its longest point, the patch load onto the I-girder is at his highest value. This patch load can 
lead to web crippling or web buckling of the I-girder. This can occur due to the use of slender 
webs for economic reasons. The web buckling is the most common failure mode in Hungarian 
bridges. Small, vertical stiffeners between the loaded flange and the stiffener are used along 
the entire bridge to strengthen the longitudinal stiffener. However, this solution causes high 
manufacturing costs and the structure becomes fatigue sensitive [2]. A more cost efficient 
solution for this problem is the usage of longitudinal stiffeners [3]. Because of these 
difficulties, and the widely usage of this method, EN 1993-1-5 [1] describes the design of these 
stiffeners, despite the fact that the problem is a problem in service state and not in the usage 
state. The design of these longitudinally stiffened girders is based on the design method 
described in EN 1993-1-5 [1]. However, there are several problems and voids related to this 
design method. 
 

 
 

Figure 1: Incremental launching method [4, p. 39] 
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The first problem with the design method from Eurocode 3 is that the design method is not 
valid in all geometric ranges. A second problem is the character of the resistance model. This 
is currently based on one failure mode while there are more failure modes which can occur in 
reality, depending on the amount and stiffness of the longitudinal stiffener(s) (local buckling 
of the subpanels, global buckling or an interaction of these failure modes) [2]. Lastly, the 
design method from EN 1993-1-5 is developed for girders stiffened with only one longitudinal 
stiffener, while in reality most bridges are built with more than one longitudinal stiffener. 
 

1.3 Goal 
 
The goal of this research is to improve a newly proposed formula for calculating the patch load 
resistance of longitudinally stiffened girders. In this new formula, a difference has to be made 
between “weak” and “strong” stiffeners, since this formula is only applicable for “strong” 
stiffeners. A “strong” stiffener causes a local buckling failure mode, which results in the highest 
patch loading resistance. Therefore, this investigation is focused on defining a “strong” 
stiffener. The term “strong” stiffener is based on the stiffness of a longitudinal stiffener. This 
stiffness is a factor based on the moment of inertia of the composite part of the stiffener and 
partly of the web of the girder. When making a longitudinal stiffener stiffer, the failure modes 
will differ and are depending on this value. The optimal stiffness is an important value in this 
design method because this describes the point from where the stiffener is “strong” and from 
where there is no further patch load gaining in making the stiffener stiffer. It is important for 
economic and ecological reasons to describe this point precisely. Therefore, this new design 
proposal is mostly based on improving the calculation for the optimal stiffness of the 
longitudinal stiffener. 
 

1.4 Method 
 
Firstly , a theoretical literature review will be done about the research that has already been 
done about stiffened and unstiffened I-girders. This literature review will also cover the 
existing designing method from EN 1993-1-5 [1] and will point out the main criticism of this 
designing method. 
 
Secondly, a numerical model will be created based on the experimental tests conducted by 
Seitz [5] at the university of Stuttgart. This will be a model with one longitudinally stiffener. 
This numerical model will be tested and validated based on these experimental test results.  
 
Afterwards, this model will be adjusted to the research domain. This domain includes girders 
with one, two and three stiffeners. Once these models are completed, a parametrical study 
will be conducted focusing on four main parameters that can influence the optimal stiffness 
of a longitudinal stiffener. The aim is to establish a link between the optimal stiffness of a 
girder and an influencing parameter. If such a link is established, a formula will be created 
using regression to describe the optimal stiffness of a girder in function of this influencing 
parameter. 
 
Lastly, the investigation will be documented in this master thesis. 
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2. Literature review 
 
This chapter describes several methods for determining the patch loading resistance which is 
available in the literature. Firstly, two models (empirical and mechanical) for determining the 
patch load resistance of unstiffened girders will be reviewed. Secondly, three different models 
(direct, regression, reduction factor) for determining the patch load resistance of girders with 
one longitudinal stiffeners will be reviewed. Afterwards, the standards (British, Swiss, 
American and European) will be reviewed. Lastly, experimental results from the literature will 
be discussed.  
 

2.1 Unstiffened girders 
 
The topic of this Master’s thesis is the optimal stiffness of longitudinal stiffeners and their 
influence on the patch loading resistance, hence the patch loading resistance of stiffened I-
girders is investigated. However, in many cases this patch loading resistance of longitudinally 
stiffened girders is determined through the solution of the unstiffened girder. Therefore, it is 
important to examine this topic as well. 
 
Firstly, there were only empirical methods to calculate the patch loading resistance of 
unstiffened I-girders. Later, when there were more experiments and studies performed on 
this subject, more accurate mechanical models emerged. First the empirical methods will be 
discussed and afterwards the more accurate mechanical models. 
 

2.1.1 Empirical models 
 
Granholm (1960) gave the first formula for calculating the patch loading of unstiffened I-
girders. He based his formula on 11 experiments with different geometries. His conclusion was 
that the patch loading resistance was independent of the height of the web (ℎ௪) and was only 
depending on the thickness of the web (𝑡௪). The formula for calculating the patch loading 
resistance based on his experiments is given in eq. (2.1). This formula is significantly in favor 
of safety, the founded patch load resistance will be lower than it is in reality [6]. 
 
 𝐹ோ଴ = 0.85 ∗ 𝑡௪

ଶ          (2.1) 
 
Bergfelt (1971) on the other hand developed a sizing procedure to estimate the patch loading 
resistance. He also experimentally investigated the effect of the thickness of the flanges (𝑡௙). 
This resulted in a new formulation of eq. (2.1) and is given in eq. (2.2) [6]. 
 

 𝐹ோ଴ = 0.045 ∗ 𝐸 ∗ 𝑡௪
ଶ ∗ ቀ0.55 + 0.22 ∗

௧೑

௧ೢ
ቁ      (2.2) 

 
2.1.2 Mechanical models 

 
The mechanical models are based on a yield line mechanism, developed by Roberts and 
Rockey. This chapter will present the work of Roberts and Rockey (1979), Bergfelt (1979) and 
Lagerqvist (1994). These models determine the resistance of unstiffened girders. The first 
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model based on failure mechanisms was developed by Roberts and Rockey. This model was 
later modified by Lagerqvist and Johansson [7]. 
 

2.1.2.1 Roberts and Rockey (1979) 
 
Roberts and Rockey [8] made a proposition for the ultimate resistance of unstiffened I-girders 
which are subjected to patch loading. This proposal is based on a yield line mechanism which 
consists of four plastic hinges in the loaded flange and three yield lines in the web (Figure 2).  
 

 
Figure 2: Failure mechanism proposed by Roberts and Rockey [8, p. 1330] 

The loaded flange is moved downward, with a value of 𝛿௪, due to the patch loading. This 
downward movement is described by eq. (2.3). 
 
 𝛿௪ = 2 ∗ 𝛼 ∗ 𝑐𝑜𝑠θ ∗ δθ        (2.3) 
 
The position of the yield lines was assumed to be as shown in eq. (2.4) [8]. 
 
 𝛼 = 20𝑡௪𝑓௬௪/𝑓௬௙         (2.4) 
 
This causes the yield line position to be limited to 2𝛼, which is approximately 40 times the 
thickness of the web. The parameter θ characterizes the deformation of the web just before 
failure. The mechanism that is described was used to formulate an expression for calculating 
the patch load resistance of unstiffened girders. In order to simplify the method, 
approximations and empirical modifications were used to make it easier to apply this method 
on hand calculations. The formulation of Roberts and Rockey is presented in eq. (2.5) [6]. 
 

 𝐹ோ଴ = 𝑓௬௪ ∗ 𝑡௪ ∗ ൬𝑠௦ + 2 ∗ 𝑡௙ ∗ ට
௙೤೑∗௕೑

௙೤ೢ∗௧ೢ
൰      (2.5) 

 
2.1.2.2 Bergfelt 

 
Bergfelt also used a yield line mechanism to formulate his proposal. The mechanism Bergfelt 
used is shown in Figure 3. This mechanism shows that there is a plastic hinge formed just 
below the load which causes the web to flow after the stress limit (𝑓௬௪) is reached. The positive 
and negative bending moments generated in the flange will increase and will cause additional 
plastic hinges to form at the end points of the load. This will result in failure of the structure 
[6]. 
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Figure 3: Failure mechanism proposed by Bergfelt [6, p. 1330] 

 
Bergfelt then tried to find a satisfactory correlation with the tension in the web (𝜎௪) and this 
mechanism. He formulated the connection between the dent in the flange and the tension in 
the web as following:  
 
 𝜎௪ = ඥ𝜎௖௥ ∗ 𝑓௬௪         (2.6) 
 
The proposed solution of Bergfelt for calculating the patch loading resistance of unstiffened 
girders is given in eq. (2.7).  
 

 𝐹ோ଴ = 0.8 ∗ 𝑡௪
ଶ ∗ ඥ𝐸 ∗ 𝑓௬௪ ∗ ට

௧೔

௧ೢ
∗ 𝑓(𝑠௦, ℎ௪ , 𝑒𝑡𝑐)  𝑖𝑓

௧೑

௧ೢ
> 2  (2.7) 

 
𝑡௜ represents the correction factor for the flange width, and is calculated as following:  
 

- 𝑏௙ = 25 ∗ 𝑡௙ →  𝑡௜ = 𝑡௙         (2.8a) 

- 𝑏௙ ≠ 25 ∗ 𝑡௙ → 𝑡௜ = 𝑡௙ ∗ ට
௕೑

ଶହ∗௧೑

ర        (2.8b) 

 
The correction factor 𝑓(𝑠௦, ℎ௪ , 𝑒𝑡𝑐) is in function of different geometric parameters, which 
are presented in detail in the literature [9]. Eq. (2.9) gives a simplified version of this formula: 
 
 𝑓(𝑠௦, ℎ௪ , 𝑒𝑡𝑐) = 𝑓(𝑠௦) ∗ 𝑓(ℎ௪) ∗ 𝑓൫𝑓௙௬௪൯ ∗ 𝑓(𝑀ா) ∗ 𝑓(𝛿) ∗ 𝑓(𝑠௩) ∗ 𝑓(𝑠௕) (2.9) 
 

2.1.2.3 Lagerqvist (1994) 
 
Lagerqvist performed several experiments and numerical simulations to be able to make a 
recommendation for a design procedure for calculating the resistance of unstiffened steel 
girders subjected to patch loading. The model that Lagerqvist used (Figure 4) is very similar to 
the one that Roberts and Rockey used (see section 2.1.2.1). The difference between the two 
models is that Lagerqvist also included a part of the web in the plastic hinges of the flange and 
thus forming a T-section as shown in Figure 4. He came to this conclusion based on his 
experiments. His experiments showed that when the slenderness of the web was increased, 
the effective loaded length (𝑙௬ = 𝑠௦ + 2 ∗ 𝑡௙ + 𝑠௬) also increased [6]. 
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Figure 4: Mechanical model of Lagerqvist [6, p. 17] 

The research of Lagerqvist makes use of the yield resistance (𝐹௬), the slenderness parameter 
(𝜆 = ඥ𝐹௬/𝐹௖௥), where 𝐹௖௥ is the elastic critical load, and the resistance function (𝜒(𝜆)) which 
reduces the yield resistance depending on 𝜆 . The patch loading resistance for unstiffened 
girders (𝐹ோ଴) is given in eq. (2.10) [10] - [11]. 
 
 𝐹ோ଴ = 𝐹௬ ∗ 𝜒(𝜆)         (2.10) 
 
With 𝐹௬ the yield resistance calculated as in eq. (2.11). 
 
 𝐹௬ = 𝑓௬௪ ∗ 𝑡௪ ∗ 𝑙௬         (2.11) 
 
With 𝑙௬ the effective loaded length calculated as following in eq. (2.12) 
 
 𝑙௬ = 𝑠௦ + 2 ∗ 𝑡௙ + √𝑚ଵ + 𝑚ଶ       (2.12) 
 
𝑚ଵ and 𝑚ଶ are dimensionless parameters (𝑚ଶ should be taken as zero if 𝜆 < 0.5 and when a 
welded girder is used) 
 

 𝑚ଵ =
௙೤್∗௕೑

௙೤ೢ∗௧ೢ
 and 𝑚ଶ = 0.02 ∗ ൬

௛ೢ

௧೑
൰

ଶ

      (2.13) 

 
The resistance function 𝜒(𝜆) is calculated as in eq. (2.14) and the slenderness parameter as in 
eq. (2.15). 
 
 𝜒(𝜆) = 0.06 +

଴.ସ଻

ఒ
≤ 1        (2.14) 

𝜆 = ට
ி೤

ி೎ೝ
           (2.15) 

 
𝐹௖௥ in eq. (2.15) represents the buckling load (critical load) and is determined by Lagerqvist as 
in eq. (2.16). 
 

 𝐹௖௥ = 𝑘ி ∗
గమ∗ா

ଵଶ∗(ଵି௩మ)
∗

௧ೢ
య

௛ೢ
        (2.16) 

 
𝑘ி is the buckling coefficient and is given by eq. (2.16). 
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 𝑘ி = 5.82 + 2.1 ∗ ቀ
௛ೢ

௔
ቁ

ଶ

+ 0.46ସ ∗ ඥ𝛽 with 𝛽 =
௕೑∗௧೑

య

௛ೢ∗௧ೢ
య     (2.17) 

 
Lagerqvist suggests a simplification for both the equations of the resistance function 𝜒(𝜆) and 
the buckling coefficient, respectively eq. (2.14) and eq. (2.17). These simplified formulas are 
given below: 
 
 𝜒(𝜆) =

଴.ହ

ఒ
≤ 1         (2.18) 

 𝑘ி = 6 + 2 ∗ ቀ
௛ೢ

௔
ቁ

ଶ

         (2.19) 
 
This design procedure was calibrated to experimental results using a statistical method. They 
found that the value of the partial safety factor (𝛾ெ

∗ ) is 1,1 [6]. Therefore, the value of the 
resistance determined by Lagerqvist is as following: 
 

 𝐹ோ଴ =
ி೤∗ఞ(ఒ)

ఊಾ
∗           (2.20) 

 
2.2 longitudinally stiffened girders 

 
This chapter will focus on the available models created for calculating the patch loading 
resistance of longitudinally stiffened girders. There are several different types of models to be 
found in the literature. The first models that will be discussed are the direct models. These 
methods try to calculate the patch loading resistance directly. Afterwards, the models using 
an incremental factor will be discussed. In these methods, the patch loading resistance is 
calculated for unstiffened girders and then multiplied by an increasing factor (𝑓௦) to add the 
effect of the longitudinal stiffener and to estimate the resistance of the longitudinally stiffened 
girder. Lastly, the models using a reduction factor will be discussed. These methods implement 
the effect of the longitudinal stiffener in the critical load (𝐹௖௥) and in the buckling coefficient 
(𝑘ி) by modifying it by an additive factor (𝑘௦௟). 
 

2.2.1 Direct models 
 
These models attempt to calculate the patch loading resistance of longitudinally stiffened 
girders directly. Firstly, the genetic programming (GP) method, developed by Cevik (2007) [8], 
is discussed. Afterwards, a model proposed by Graciano is discussed. 
 

2.2.1.1 Cevik (2007) 
 
The method developed by Cevik (2007) [8] is based on the principle of genetic programming 
(GP). GP is a technique in which a program is self-developing. It starts with pre-defined 
variables which are solved and mutated to refine an expressing and to eventually solve an 
expression, or at least to approximate the solution of an expression. During this process, the 
program keeps on making new solutions and it keeps the most accurate results and tries to 
refine the solution. At the end, the best-so-far solution is designated as the result of the 
genetic programming. Cevik’s GP based formulation, applicable for the patch loading 
resistance of longitudinally stiffened girders, is based on several different experimental results 
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from the literature. He used 138 experiments with 11 variable geometric and material 
parameters [6], [8]. The result of this research was an explicit formulation for the patch loading 
resistance of longitudinally stiffened girders in function of these 11 variable geometric and 
material parameters. Eq. (2.21) gives a representation of the different parameters used in the 
GP formulation. The different expressions for this formulation are given in the following units: 
 

𝐹௥௟ = (𝑡௪ , 𝑎, ℎ௪ , 𝑓௬௪, 𝑡௙ , 𝑏௙ , 𝑓௬௙, 𝑆௦, 𝑏௟ , 𝑡௦௧ , 𝑏௦௧)      (2.21) 
 

- 𝐹௥௟  [kN] 
- 𝑡௪ , 𝑎, ℎ௪ , 𝑡௙ , 𝑏௙ , 𝑆௦, 𝑏௟ , 𝑡௦௧ , 𝑏௦௧ [mm] 
- 𝑓௬௪ , 𝑓௬௙ [MPa] 

 
The final form of the GP formulation is given in eq. (2.22).  
 

𝐹௥௟ = ൬𝑡௪ +
ୡ୭ୱ൫௔య൯∗ඥ௙೤ೢ

ିହ .ହ଻∗௧ೞ೟ା௦ೞି଼ଷ.଴଼
൰ ∗ ቆ

௧೑

ඥ௧೑ ାଵ .ଽ଻ା
భఴర.మమ

ೞೞ

ቇ     (2.22) 

∗ ൬
௙೤೑

௛ೢ∗௕భା଺ହ.଼ଵା௕೑ିଽ଼.଻଻∗൫௦ೞି௙೤೑൯
൰ ∗ ൬𝑡௪ +

௛ೢ

௧೑
మିଵ .ସଶ∗௧ೞ೟ା௙೤೑ିଷସ.଻଺ି௕ೞ೟

൰ 

 
The accuracy of this final form is evaluated with the numerical results of the experimental 
database used for obtaining the formulation itself. The conclusion of this evaluation was that 
the GP formulation was more accurate than the existing methods, such as the British 
Standards (see section 2.3.1), the regression model developed by Bergfelt (see section 2.2.2.3) 
or the mechanical model developed by Roberts and Rockey (see section 2.1.2.1). However, 
there are still two important issues with this formulation despite the accuracy with the 
experimental results. Firstly, the proposed GP based equation is complicated which makes it 
difficult to use it in practical circumstances. The second problem is that this equation is only 
valid for the same variables used in the research of Cevik [8]. Therefore, this equation may not 
be dimensionally correct when using other variables than the ones used for the formulation 
of eq. (2.22).  
 

2.2.1.2 Graciano – model II: Failure mechanism model 
 
Graciano made a direct model for determining the patch loading resistance of longitudinally 
stiffened girders. He used the four-hinge model from Roberts and Rockey (see section 2.1.2.1) 
and added the stiffening effect of the longitudinal stiffener.  
 

 
Figure 5: Longitudinally stiffened girder subjected to patch loading [12, p. 566] 
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He assumed that the yielding of the web and flange was equal (𝑓௬௪ = 𝑓௬௙). He formulated his 
patch loading resistance expression in the following two equations: 
 

 𝐹ோଵ = 4 ∗ 𝑡௪
ଶ ∗ ට

ா∗௙೤ೢ∗௧೑

௕భ
+

ଶସ∗ா∗ூ೑∗൫௦ೞାଶ∗௧೑ିఎ൯∗ெ೛ೢ
మ

௕భ∗ெ೛೑
మ      𝑖𝑓 ௕భ

௧ೢ
≤ 40  (2.23) 

 

 𝐹ோଵ = 2 ∗ 𝑓௬௪ ∗ 𝑡௪
ଶ ∗ ට

ଶ∗ா∗௧೑

ఈ∗௙೤೟
+

ଵଶ∗ா∗ூ೑∗൫௦ೞାଶ∗௧೑ିఎ൯∗ெ೛ೢ
మ

ఈ∗ெ೛೑
మ    𝑖𝑓

௕భ

௧ೢ
> 40  (2.24) 

 
The formulas presented above are divided depending on the position of the yield line. Eq. 
(2.23) is used when 𝛼 =

௕భ

ଶ
≤ 20 ∗ 𝑡௪ and eq. (2.24) is used when 𝛼 = 20 ∗ 𝑡௪ ∗ 𝑓௬௪/𝑓௬௙. Both 

formulas use the parameter 𝜂, which is describe in eq. (2.25). This parameter assumes that 
the load at failure is transmitted in the length of the web, which is yielding due to membrane 
compressive stresses [3], [6]. 
 

 𝜂 =
ெ೛ೢ∗ቀସ∗ఉାଶ∗൫௦ೞାଶ∗௧೑൯ቁ

ଶ∗ெ೛ೢା௙೤ೢ∗௧ೢ∗ఈ∗
ಾ೛೑

మ

ల∗ಶ∗಺೑∗ಾ೛ೢ

       (2.25) 

 
This method is not usable for hybrid girders since the yielding of the web and the flange is not 
equal (𝑓௬௪ ≠ 𝑓௬௙). Therefore, other design methods could be more useful then the model 
presented above. However, for cases where 𝑓௬௪ = 𝑓௬௙, this method is suitable. 
 

2.2.2 Incremental factor procedures (regression models) 
 
This chapter will discuss the methods using an incremental factor to calculate the patch 
loading resistance of longitudinally stiffened girders. The idea of these models is to calculate 
the patch loading of an unstiffened girder (𝐹ோ଴) and then multiplying this resistance by a 
correction factor (𝑓௦), as shown in eq. (2.26). This correction factor is usually empirically 
determined by performing two equal experiments. Once the experiment is performed without 
the use of a longitudinal stiffener, once the same experiment is performed with the use of a 
longitudinal stiffener. The difference in the results is then determined as the correction factor 
[6], [10], [16]. 
 
 𝐹ோ = 𝐹ோ଴ ∗ 𝑓௦          (2.26) 
 
There are multiple proposals available in the literature which describe the correction factor. 
These will be discussed in the next paragraphs. The discussed methods are the ones of 
Markovic and Hajdin, Kutmanova and Skaloud, Bergfelt and Graciano’s model I. 
 

2.2.2.1 Markovic and Hajdin (1992) 
 
The first proposal to be discussed is the one from Markovic and Hajdin. They developed a 
formulation based on several tests (133 longitudinally stiffened and 318 unstiffened girders) 
[6]. They proposed a linear equation for the consideration of the longitudinal stiffener with 
the use of the mechanism solution presented by Roberts and Rockey (see section 2.1.2.1) [11]. 
Eq. (2.27) gives the patch loading resistance of the unstiffened girder. 
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 𝐹ோ଴ = 0.5 ∗ 𝑡௪
ଶ ∗ ට

ா∗௙೤ೢ∗௧೑

௧ೢ
∗ ൭1 +

ଷ∗௦ೞ

௛ೢ
∗ ൬

௧ೢ

௧೑
൰

య

మ
൱ ∗ ඨ1 − ൬

ఙ್

௙೤ೢ
൰

ଶ

     (2.27) 

 
Eq. (2.28) gives the proposed correction factor, which is only depending on the relative 
position of the stiffener. However, it should be noted that this correction factor of Markovic 
and Hajdin is limited to 1.0 ≤ 𝑓௦ ≤ 1.21. 
 

𝑓௦ = 1.28 − 0.7 ∗
௕భ

௛ೢ
  𝑙𝑖𝑚: 0.1 ≤ 𝑏1/ℎ𝑤 ≤ 0.3    (2.28) 

 
This formulation has also been incorporated in the 2000 Edition of BS 5400 Part 3 (British 
Standard, Code of practice for the design of steel bridges) [8], [11], [14]. 
 

2.2.2.2 Kutmanova and Skaloud (1992) 
 
Kutmanova and Skaloud also did a proposal for calculating the patch loading resistance of 
longitudinally stiffened girders with the use of an increment factor. They based their proposal 
on experiments conducted by Janus in 1988 [15]. The patch loading resistance of unstiffened 
girders can be calculated using eq. (2.29). 
 

 𝐹ோ଴ = 12.6 ∗ 𝑡𝑤ଶ ∗ 𝑓௬௪ ∗ ቆ1 + 0.004 ∗ ቀ
௦ೞ

௧ೢ
ቁቇ ∗ ൭ቀ

ூ೑

௧ೢ
ర ቁ ∗ ට

௙೤೑

ଶସ଴
൱

଴.ଵହଷ

  (2.29) 

 
Eq. (2.30) gives the proposed correction factor, which is again only depending on the relative 
position of the stiffener. However, this correction factor has no limitation on the relative 
position of the stiffener. 
 

 𝑓௦ = 0.958 − 0.09 ∗ ln ቀ
௕భ

௛ೢ
ቁ        (2.30) 

 
2.2.2.3 Bergfelt 

 
Bergfelt used his own research, given in section 2.1.2.2, to suggest a new method based on 
the relative position of the stiffener and the distance between the plastic hinges in the loaded 
flange [11]. He presented a formula for the patch loading of an unstiffened girder in eq. (2.7). 
He later added a correction factor (𝑓௦) to his research. This correction factor is given in eq. 
(2.31). 
 

 𝑓௦ = 1 + ቀ
ଵ

ଷ
+

௕భ

௛ೢ
ቁ ∗ ට

௦ആ

ଷ∗௕భ
   𝑙𝑖𝑚: 0.1 ≤ 𝑏ଵ/ℎ௪ ≤ 0.3   (2.31) 

 
The factor 𝑠ఎ in eq. (2.31) represents the modified distance between the outmost plastic 
hinges in the upper flange. The value of 𝑠ఎ lies between the following interval, presented in 
eq. (2.32) [3]: 
 

𝑠௬ + 𝑠௦ ≤ 𝑠ఎ ≤ 𝑠௦ +
௦ೞ

మ

௦೤
         (2.32) 
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When considering the correction factor for the flange width (𝑡௜), Bergfelt suggested eq. (2.33) 
for determining the distance between the outmost plastic hinges in the upper flange [3]. 
 

 𝑠௬ = 5.2 ∗
௕೑

ఎ
∗ ቀ

௧೑

௧ೢ
ቁ

ଶ

∗ ට
௧ೢ

௧೔
∗

௙೤೑

ඥா∗௙೤ೢ
       (2.33) 

 
2.2.2.4 Graciano – model I: Regression analysis of test results 

 
Graciano also [11] developed an incremental factor procedure to calculate the path loading 
resistance of longitudinally stiffened girders. He used the method of Lagerqvist (see section 
2.1.2.3) to determine the patch load resistance of the unstiffened girder. He determined the 
correction factor by conducting a regression analysis for the relative location of the stiffener 
(𝑏ଵ/ℎ௪), the ratio of the flange to web thickness (𝑡௙/𝑡௪) and the ratio of the flange to web 
yield strength (𝑓௬௙/𝑓௬௪). He found out that all three ratios had an influence on the patch load 
resistance and he thus presented the following formulation for the correction factor. Again, 
this correction factor is limited for the location of the stiffener. 
 

𝑓௦ = 0.556 − 0.277 ∗ ln ቆ
௕భ

௛ೢ
∗ ൬

௙೤೑

௙೤ೢ
∗

௧ೢ

௧೑
൰ቇ  𝑙𝑖𝑚: 0.1 ≤ 𝑏1/ℎ𝑤 ≤ 0.3 (2.34) 

 
This formulation for the correction factor is the most accurate one to be found in the 
literature. It is the only one that takes the flange to web thickness and flange to web yield 
strength ratio into account and not only the relative position of the stiffener [6], [8], [10]. 
 

2.2.3 Reduction factor and elastic critical load 
 
This chapter discusses the design methods which use buckling reduction factors (𝜒ி). These 
methods implement the effect of the longitudinal stiffener in the critical load (𝐹௖௥) and in the 
buckling coefficient (𝑘ி) by modifying it by an additive factor (𝑘௦௟). However, this reduction 
factor should be evaluated by the same equation for unstiffened and longitudinally stiffened 
girders. Two methods using a reduction factor will be discussed in this chapter. The first model 
is from Graciano and second one is from Davaine. 
 

2.2.3.1 Graciano – model III: Post-critical Resistance Approach 
 
Graciano conducted a parametric study using the finite element package ABAQUS. In this 
study, he proposed an approximative solution for the buckling coefficient (𝑘ி) for 
longitudinally stiffened girders subjected to patch loading. He started his numerical study on 
longitudinally stiffened and unstiffened girders and then compared the results with the 
already discussed methods presented above. He then refined his parametric study to find the 
significance of the relative position and flexural stiffness of the stiffeners [3], [6], [12].  
Graciano used the results of his parametric study to improve the equation (eq. 2.17) found by 
Lagerqvist (see section 2.1.2.3). He changed this formula by adding an additive factor (𝑘௦௟). 
This new formulation is given in eq. (2.35), in which the additive factor takes the effect of the 
longitudinal stiffener (open or closed section) and the panel aspect ratio of the upper panel 
(𝑏ଵ/𝑎 ) into account [3]. 
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 𝑘ி = 5.82 + 2.1 ∗ ቀ
௛ೢ

௔
ቁ

ଶ

+ 0.46ସ ∗ ඥ𝛽 + 𝑘௦௟  with 𝛽 =
௕೑∗௧೑

య

௛ೢ∗௧ೢ
య   (2.35) 

 
The first three terms on the right side of eq. (2.35) are valid for unstiffened girders. Stiffeners 
are often characterized by two dimensionless parameters: its relative flexural rigidity (𝛾௦௧ =
ாூೞ೟

௛ೢ஽
= 10.9

ூೞ೟,೗

௛ೢ௧ೢ
య ) and its relative torsional rigidity (ø௦௧ =

ீ௄ೞ೟

௛ೢ஽
) .  The additive factor takes the 

effect of the longitudinal stiffener, with its relative bending stiffness (𝛾௦௧), into account. It also 
includes a new factor (𝐶଴) which is determined by a regression analysis and which is 
dependent on the ௕భ

௔
− ratio. This is formulated in eq. (2.36) [12]. 

 
 𝑘௦௟ = 𝐶଴ ∗ ඥ𝛾௦௧         (2.36) 
 
𝐶଴ is also dependent on the cross section of the longitudinal stiffener (open or closed section). 
Therefore, this parameter can be divided into two parts: 
 
 𝐶଴ = 5.44 ∗

௕భ

௔
− 0.21        (2.37) 

 
 𝐶଴ = 6.51 ∗

௕భ

௔
          (2.38) 

 
Where eq. (2.37) is valid for open section stiffeners (ø௦௧/𝛾௦௧ < 0.15) and eq. (2.38) is valid for 
closed section stiffeners (ø௦௧/𝛾௦௧ ≥ 0.15). Both these equation are valid in the range 0.05 ≤
𝑏ଵ/𝑎 ≤ 0.3. When substituting eq. (2.37) and (2.38) into the formulation for the flexural 
rigidity, one can find the following equation: 
 

 𝑘௦௟ = 3.3 ∗ 𝐶଴ ∗ ට
ூೞ೟,೗

௛ೢ∗௧ೢ
య         (2.39) 

 
Which should not be larger than: 
  
 𝑘௦௟ ≤ 𝐶଴ ∗ ඥ𝛾௧         (2.40) 
 
Where 𝛾௧ represents the transition rigidity of the stiffener. This transition rigidity is the point 
after which no or only small further increase in 𝑘ி is noticeable. This 𝛾௧ is defined as following: 
 

 𝛾௧ = 14 ∗ ቀ
௔

௛ೢ
ቁ

ଶ.ଽ

+ 211 ∗ ቀ0.3 −
௕భ

௔
ቁ    𝑓𝑜𝑟

øೞ೟

ఊೞ೟
< 0.15 (𝑜𝑝𝑒𝑛 𝑠𝑒𝑐𝑡𝑖𝑜𝑛)  (2.41) 

 

 𝛾௧ = 45 ∗ ቀ
௔

௛ೢ
ቁ

ଵ.ଷ

                                        𝑓𝑜𝑟 
øೞ೟

ఊೞ೟ 
≥ 0.15 (𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑐𝑡𝑖𝑜𝑛) (2.42) 

 
Graciano concluded that these terms take the interaction between the web, the flanges and 
the longitudinal stiffener into account. Therefore, this formulation takes the transition from 
the global to the local buckling modes, shown in Figure 6, into account [3]. 
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Figure 6: Failure modes, depending on the rigidity stiffness of the stiffener 𝛾௦௧: a) local buckling, b) interaction of local and 

global buckling, c) global buckling [12, p. 564] 

 
Graciano later continued his research with Mendes in 2014. With the use of a large number 
of numerical tests, they determined a new critical load amplifier. The proposed equation for 
determining the values of 𝑘௦௟ can be found in eq. (2.43). 
 
 𝑘௦௟ = −1.87 + 63.94 ∗ ቀ

௕భ

௛ೢ
ቁ − 62.86 ∗ ቀ

௕భ

௛ೢ
ቁ

ଶ

− 8.09 ∗ ቀ
ௌೞ

௔
ቁ + 16.38 ∗ ቀ

ௌೞ

௔
ቁ

ଶ

− 0.0036 ∗ 𝛾௦௧ (2.43) 

  + 0.44 ∗ ቀ
௧೑

௧ೢ
ቁ + 30.95 ∗ ቀ

௕భ

௛ೢ
ቁ ∗ ቀ

ௌೞ

௔
ቁ + 0.031 ∗ ቀ

௕భ

௛ೢ
ቁ ∗ 𝛾௦௧ + 0.0035 ∗ ቀ

ௌೞ

௔
ቁ ∗ 𝛾௦௧    

 
Also eq. (2.35) was simplified and is given in eq. (2.44). 
 

 𝑘ி = 6 + 2 ∗ ቀ
௛ೢ

௔
ቁ

ଶ

+ 𝑘௦௟        (2.44) 
 
This model follows the EN 1993-1-5 strategy, however, this formulation is complicated to use 
in practical cases [2]. 
 

2.2.3.2 Davaine (2005) 
 
Davaine developed a methodology which was based on the interaction of two buckling modes. 
The first mode that is considered is the buckling of the directly loaded subpanel. The second 
considered mode is the buckling of the whole web (as studied in the work of Graciano and 
Lagerqvist). In order to consider the buckling of the directly loaded panel, a model, as shown 
in Figure 7, was proposed by Davaine. This model shows a simply supported panel, 
asymmetrically loaded on both longitudinal edges [6], [16]. 
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Figure 7: Upper subpanel as suggested by Davaine (2005) [16, p. 4] 

He used this model to make a formulation for the buckling coefficient as presented in eq. 
(2.45). Also a formulation for the critical load of this model is given in eq. (2.46) 
 

 𝑘ிଶ = ቀ0.8 ∗ ቀ
௦ೞାଶ∗௧೑

௔
ቁ + 0.6ቁ ∗ ቀ

௔

௕భ
ቁ

൬଴.଺∗൬
ೞೞశమ∗೟೑

ೌ
൰ା଴.ହ൰

    (2.45) 

 

 𝐹௖௥ଶ = 𝑘ிଶ ∗
గమ∗ா

ଵଶ(ଵି௩మ)
∗

௧ೢ
య

௕భ
         (2.46) 

 
As can be seen in Figure 7, the transfer of the load through the upper panel has a slope of one 
by one. Therefore, eq. (2.45) is only valid in the following case: 𝑠௦ + 2 ∗ 𝑡௙ + 2 ∗ 𝑏ଵ ≤ 𝑎. 
Davaine also proposed an interaction formula for the two buckling modes that where 
considered in his research. This formula is given in eq. (2.47) [16]. 
 
 ଵ

ி೎ೝ
=

ଵ

ி೎ೝభ
+

ଵ

ி೎ೝమ
         (2.47) 

 
In this formula, 𝐹௖௥  is obtained by using eq. (2.16) and eq. (2.35) presented in sections 2.1.2.3 
and 2.2.3.1 . The reduction factor (𝜒ி)was also determined by Davaine: 
 
 𝜑ி = 0.5 ∗ (1 + 0.21 ∗ (𝜆ி − 0.8) + 𝜆ி      (2.48) 
 
 𝜒ி =

ଵ

ఝಷାටఝಷ
మିఒಷ

         (2.49) 

 
This proposal by Davaine follows the current EN 1993-1-5 strategy. However, it is not 
applicable for webs with multiple stiffeners [2]. 
 

2.3 Standards 
 
This chapter will discuss the different national standards dealing with the patch loading 
resistance of girders.  First, the British (BS), Swiss (SIA) and American (AASHTO) Standards will 
be briefly discussed to see how other parts of the world handles this problem. Afterwards, the 
European Standard (EN 1993-1-5) will be discussed more in depth. 
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2.3.1 British Standard (BS) 
 
Annex D from the British Standard, BS 5400-3: Steel, Concrete and Composite Bridges (2000) 
[14], describes the patch loading on longitudinally stiffened girders. The design of girders is 
classified into two categories: beams without longitudinal stiffeners on the web and beams 
with longitudinal stiffeners on the web. The design of girders without longitudinal stiffeners 
on the web has 2 criteria which have to be fulfilled. The smallest value of these two gives the 
patch loading resistance. The first one is the web buckling criterium (this formula is the same 
as the one presented by Markovic and Hajdin in section 2.2.2.1):  
 

 𝐹ோௗଵ = 0.5 ∗ 𝑡𝑤
2 ∗ ට

𝐸∗𝑓𝑦𝑤∗𝑡𝑓

𝑡𝑤
∗ ൭1 +

3∗𝑠𝑠

ℎ𝑤
∗ ൬

𝑡𝑤

𝑡𝑓
൰

3

2

൱ ∗ ඨ1 − ൬
𝜎𝑏

𝑓𝑦𝑤

൰
2

    (2.50) 

 
The second criterion is the web yielding criterium: 
 

 𝐹ோௗଶ = (𝑠௦ ∗ 𝑡௪ ∗ 𝑓௬௪ + 2 ∗ 𝑡௙ ∗ ඥ𝑓௬௙ ∗ 𝑓௬௪ ∗ 𝑏௙ ∗ 𝑡௪ ∗ ඨ1 − ൬
ఙೣ

௙೤ೢ
൰

ଶ

  (2.51) 

 
The design for beams with longitudinal stiffeners on the web should be calculated by adding 
the correction factor from Markovic and Hajdin, presented in section 2.2.2.1: 𝑓௦ = 1.28 −
0.7 ∗ 𝑏ଵ/ℎ௪, which should not be less than 1.0 nor greater than 1.21. 
 

2.3.2 Swiss Standard (SIA) 
 
The Swiss Standard, SIA 263:2003 Constructions métalliques [17], also uses two criteria for 
calculating the patch loading resistance of unstiffened girders. The smallest value gives the 
patch loading resistance. These criteria are also the web buckling criterium (𝐹ோௗଵ) and the web 
yielding criterium (𝐹ோௗଶ). When the resistance of the girder is not enough to resist the patch 
loading, longitudinal stiffeners are added [18]. 
 

 𝐹ோௗ =
ଵ

ఊಾభ
∗ 0.5 ∗ 𝑡௪

ଶ ∗ 𝑓௬ ∗ ට
ா∗௧೑

௙೤∗௧ೢ
∗ 𝛽ଵ ∗ 𝛽ଶ ∗ 𝛽ଷ ∗ 𝛽ସ    (2.52) 

 

 𝐹ோௗଶ = ൫𝑠௦ + 10 ∗ 𝑡௙൯ ∗ 𝑡௪ ∗
௙೤ೢ

ఊಾభ
       (2.53) 

 
In eq. (2.52) there are 𝛽-coefficients which have to be calculated separately. These 𝛽-values 
correspond to: the slenderness of the flange (𝛽ଵ), the slenderness of the web (𝛽ଶ), the loaded 
length (𝛽ଷ) and the longitudinal stresses (𝛽ସ). The formulas for these coefficients are 
presented in eq. (2.54): 
 

 𝛽ଵ = ට
௕೑

ଵ଴∗௧೑

ర
≤ 1.25   ;    𝛽ଶ = ට

଺଴∗௧ೢ

௛ೢ
   ;   𝛽ଷ = 1 +

௦ೞ

௛ೢ
≤ 1.5   ;    𝛽ସ = 1.5 −

ఙೣ,ಶ೏∗ఊಾభ

௙೤ೢ
≤ 1 (2.54) 
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2.3.3 American Standard (AASHTO) 
 
The American standard, AASHTO-AISC-LFRD (2005) [19], calculates the patch loading 
resistance for longitudinally unstiffened girders by using three criteria, of which the smallest 
value gives the patch loading resistance. The first two (𝐹ோௗଵ ;  𝐹ோௗଶ) represent the same criteria 
as in the British and Swiss Standard.  
 

 𝐹ோௗଵ = ø ∗ 0.80 ∗ 𝑡௪
ଶ ∗ ቆ1 + 3 ∗ ൬

௦ೞ

௛ೢାଶ∗௧೑
൰ ∗ ൬

௧ೢ

௧೑
൰

଴.ହ

ቇ ∗ ට
ா∗௙೤ೢ∗௧೑

௧ೢ
    (2.55) 

 
 𝐹ோௗଶ = ø ∗ ൫𝑠௦ + 5 ∗ 𝑡௙൯ ∗ 𝑡௪ ∗ 𝑓௬௪       (2.56) 
 
The third criterium  (𝐹ோௗଷ) takes the lateral displacement of the flanges into account (web 
sideways buckling). There are two formulas given for calculating this criterium. The first one 
should be used when the compression flange is restrained against rotation and is only valid 
for ௛ೢ

௧ೢ
/

௟

௕೑
 ≤ 2.3. The second formula for 𝐹ோௗଷ should be used when the compression flange 

is not restrained against rotation and is only valid for ௛ೢ

௧ೢ
/

௟

௕೑
 ≤ 1.7. This web sidesway 

buckling should not be taken into account when they are not within their valid area. This 
means that the web sideways buckling does not apply [19]. 
 

 𝐹ோௗଷ

⎩
⎪
⎨

⎪
⎧஼ೝ∗௧ೢ

య ∗௧೑

௛ೢ
మ ∗ (1 + 0.4 ∗ ൭

೓ೢ
೟ೢ

೗

್೑

൱

ଷ

   𝑓𝑜𝑟: ൭

೓ೢ
೟ೢ

೗

್೑

൱ ≤ 2.3 

஼ೝ∗௧ೢ
య ∗௧೑

௛ೢ
మ ∗ (0.4 ∗ ൭

೓ೢ
೟ೢ

೗

್೑

൱

ଷ

         𝑓𝑜𝑟: ൭

೓ೢ
೟ೢ

೗

್೑

൱ ≤ 1.7

    (2.57) 

 
All formulas presented in this paragraph determine the limit state for the required strength of 
the girder. When the load on the girder exceeds this strength, stiffeners will be provided and 
will be sized for the difference between the required strength and the available strength for 
the applicable limit state [19]. 
 

2.3.4 European Standard (EN 1993-1-5) 
 
Nowadays, EN 1993-1-5 [1] is the most widely used design procedure. Researches that are 
investigating this topic are mostly starting from this design method. However, there are 
certain criticisms on this design method. In Figure 8, the most relevant cross section notations, 
used in EN 1993-1-5 [1], are presented. 
 

 
Figure 8: Cross section notations [1, p. 22] 



17 
 

In EN 1993-1-5 [1], section six is dedicated to the resistance of transverse forces (patch 
loadings) on I-girders. This section six includes a check for the buckling resistance, which was 
originally designed by Lagerqvist and Johansson [20]. This design method makes use of a 
parameter that defines the patch loading resistance for an unstiffened/stiffened I-girder. This 
parameter is shown in equation (2.58).  
 

𝐹ோௗ =
௙೤ೢ ௅೐೑೑ ௧ೢ

ఊ೘
         (2.58) 

 
This equation makes use of the yield strength of the web (𝑓௬௪), the thickness of the web (𝑡௪), 
the partial safety factor (𝛾௠) and the effective length for resistance to transverse forces 
( 𝐿௘௙௙). This last parameter can be calculated using equation (2.59). 
 

𝐿௘௙௙ = 𝜒ி  𝑙௬          (2.59) 
 
𝑙௬ in this equation is the effective loaded length and should be calculated using equation 
(2.60). 
 

𝑙௬ = 𝑠௦ + 2 𝑡௙ (1 + √𝑚ଵ + 𝑚ଶ )       (2.60) 
 
𝑠௦ is the parameter which represents the length of stiff bearing on the flange. This length 
should be taken as the length where the load is applied and effectively distributed at a slope 
one by one. 𝑚ଵ and 𝑚ଶ are dimensionless parameters.  
 

𝑚ଵ =
௙೤೑ ௕೑

௙೤ೢ ௧ೢ
           (2.61) 

 
In equation (2.61), 𝑚ଵ represents the contribution of the flange on the resistance of 
unstiffened girder webs. 𝑓௬௙ represents the yield resistance of the flange and 𝑓௬௪ is the yield 
resistance of the web. 𝑏௙ is the length of the cross section of the flange and 𝑡௪ is the thickness 
of the web. 
 

𝑚ଶ = 0,02 ൬
௛ೢ

௧೑
൰

ଶ

         (2.62) 

 
In equation (2.62), 𝑚ଶ represents the contribution of the web on the resistance of unstiffened 
girder webs. ℎ௪ represents the height of the web and 𝑡௙ is the thickness of the flange. For 
welded girders 𝑚ଶ = 0 if λ < 0,5. This restriction was obtained by Davaine [21] after 
conducting a numerical study. Here, there was founded that there is a better correlation 
between the computed resistances and theoretical predictions when the contribution of the 
web was neglected and 𝑚ଶ was chosen to be zero. This conclusion is sustained by a study 
done by Gozzi [9]. The slenderness parameter λ used to determinate if the restriction on 𝑚ଶ 
is necessary, can be calculated using equation (2.63). 
 

λ = ට
௟೤ ௧ೢ ௙೤ೢ

ி೎ೝ
          (2.63) 
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𝐹௖௥ represents the elastic critical buckling load. The reduction factor 𝜒ி, that was used in 
equation (2.59) to calculate the effective length for the resistance to the transverse forces, 
can be obtained from equation (2.64). 
 

𝜒ி =
଴,ହ

஛
          (2.64) 

 
The elastic critical buckling load can be obtained using equation (2.65). 
 

𝐹௖௥ = 0,9 𝑘ி  𝐸 
௧ೢ

య

௛ೢ
         (2.65) 

 
𝑘ி  is the buckling coefficient and depends on whether the girder is stiffened or unstiffened 
with longitudinally stiffeners and on the position of the load onto the girder. The most relevant 
load position for this research is type a, described in EN 1993-1-5 [1] as shown in Figure 9. 
Both of the equations (2.64) and (2.65) are simplified versions of the formulas represented by 
Graciano and Lagerqvist based on a finite element analysis [22].  
 
This load type a transfers the load through the flange and is resisted by shear forces in the 
web, as can be seen in Figure 9. 

 
Figure 9: Load type 𝑎 for an unstiffened I-girder [1, p. 26] 

The buckling coefficient 𝑘ி for this load application type is given by equation (2.66). 
 

𝑘ி = 6 + 2 ቀ
௛ೢ

௔
ቁ

ଶ

         (2.66) 
 
Equation (2.66) is obtained after a rounding off and by taking the rotational restraint of the 
flanges as a constant value [16].  
 
In the case of a girder with longitudinally stiffeners, another formula should be used to 
calculate the buckling coefficient.  
 

𝑘ி = 6 + 2 ቀ
௛ೢ

௔
ቁ

ଶ

+  ቂ5,44 
௕భ

௔
− 0,21ቃ ඥ𝛾௦௧     (2.67) 

 
In equation (2.67) that represents the buckling coefficient for a longitudinally stiffened girder, 
it is clearly visible that the third part of the formula is the contribution of the longitudinally 
stiffener. 𝑏ଵ in this formula stands for the depth of the loaded subpanel taken as the clear 
distance between the loaded flange and the stiffener.  
 
𝛾௦௧ is the relative flexural rigidity of the longitudinally stiffener and is described in equation 
(2.68). 
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𝛾௦௧ = 10,9
ூೞ೗,಺

௛ೢ ௧ೢ
య  ≤ 13 ቂ

௔

௛ೢ
ቃ

ଷ

+ 210 ቂ0,3 −  
௕భ

௔
ቃ

 

     (2.68) 

 
𝐼௦௟,ூ is the second moment of area of the stiffener that is the closest to the loaded flange. 
To summarize the design method in EN 1993-1-5, it can be stated that equations (2.58) – (2.65) 
are used to calculate the resistance of the longitudinally stiffened girder, while equations 
(2.66) – (2.68) are used to obtain the buckling coefficient of an unstiffened or stiffened girder. 
 

2.3.4.1 Criticism on EN 1993-1-5 
 
This chapter will discuss some concerns about the widely used design method presented in 
EN 1993-1-5 (see section 2.3.4). 
 
In general, several studies have pointed out that the current design method in EN 1993-1-5 
[1] leads to a significant underestimation of the resistance against the patch load. 
 
The next thing to point out is that the design method, as it is now in EN 1993-1-5 [1], only 
considers an I-girder with one longitudinally stiffener. In practice, this type of setting is rarely 
used. In fact, there are almost none bridges designed with one longitudinally stiffened I-girder. 
The more common used number of stiffeners is two or more. The model in EN 1993-1-5 [1] 
only covers the web crippling resistance of the upper and lower part and the interaction 
between these two in one mechanical model. Therefore, these models cannot be used for I- 
girders with two or more longitudinally stiffeners explicitly [16]. 
 
Thirdly, the current design method does not deal correctly with the placement of the 
longitudinally stiffener of the I-girder regarding to the patch load resistance. Davaine [21] 
proposed a solution for this manner, but his solution was still only applicable for one 
longitudinal stiffener and still underestimated the resistance of the stiffener. This problem will 
be further discussed in the next section about the analysis of the parameters [16]. 
 
The last remark is about the calculation of the additional strength of the longitudinal stiffener. 
The additional strength, generated by this stiffener, is implemented in the calculation of the 
buckling coefficient 𝑘ி as pointed out before. This implies that by increasing the strength of 
the stiffener, the buckling coefficient will increase. Because of the increase of the buckling 
coefficient, the critical load 𝐹௖௥ will also increase accordingly. This argumentation comes from 
the mechanical model where there is a global buckling and the stiffener can have a positive 
influence on the buckling resistance. But when the stiffener is rigid enough to separate the 
buckling shapes into the buckling of the lower and upper part, the further increase of the 
rigidity of the stiffeners does not affect the buckling resistance anymore. This rule thus only 
applies until the moment that the buckling shape is a global buckling of the whole web. 
Research done by B. Kövesdi shows that with a relatively small rigidity of the stiffeners, the 
buckling shape already changes from global buckling of the whole web to local buckling of the 
subpanels. From this point on, the increasing of the size of the stiffeners does not affect the 
patch load resistance anymore. The analysis of this phenome is missing from the current 
design method in EN 1993-1-5 [1] [16].  
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2.4 Experimental results 
 
This chapter will discuss some experimental results found in the literature. A large number of 
previous (experimental and numerical) investigations have studied the behavior of  
longitudinally stiffened girders subjected to patch loading. These investigations are mostly 
performed with girders having only one longitudinal stiffener, which can have a closed- or 
open stiffener type. Some of these researches are presented in Table 1. The number of tests, 
the used cross-sections of the stiffeners and some geometrical domains are also given in this 
table. 
 
Table 1: Characteristic data from the experiments and simulations found in the literature [3, p. 46] 

Author No. of tests 
Open/Closed 

𝑎/ℎ௪  ℎଵ/ℎ௪  𝑠௦/ℎ௪ 
stiffener 

Rockey et. Al (1978) 4 open 1 0,20-0,21 0,05 
Bergfelt (1979) 9 open 0,75-3,24 0,2 0,05-0,06 
Bergfelt (1983) 6 open 1,50-4,08 0,20-0,34 0,05-0,16 

Galea et. Al (1987) 2 open 1,4 0,21-0,26 0,54 
Shimizu et. Al (1987) 1 open 1 0,2 0,3 

Janus et. al (1988) 101 open 1,00-2,00 0,10-0,50 0,10-0,20 

Dubas and Tschamper (1990) 24 
12 open 

1,76-2,48 0,15-0,20 0,04-0,24 
12 closed 

Dogaki et. Al (1990) 2 open 1 0,2 0,1 
Carretero and Lebet (1998) 6 closed 1,31-2,25 0,20-0,38 0,25-0,38 

Walbridge and Lebet (2001) 5 
3 open 

1,43 0,11-0,23 0,29 
2 closed 

Kuhlmann and Seitz (2004) 4 closed 2 0,25-0,30 0,58 
Davaine (2005) (FEA) 366 open 1,33-4,00 0,10-0,40 0,20-1,00 

 

The results of the researches presented in the table above are compared to EN 1993-1-5. Mind 
that the validation statement, regarding eq. (2.66) in paragraph 2.3.4 of EN 1993-1-5, is not 
followed for this comparison with the test results. All results were plotted in three different 
figures, in order to be able to evaluate all test results with respect to EN 1993-1-5. There were 
540 tests results compared to EN 1993-1-5, including 140 cases having open cross-sectional 
stiffeners (Figure 10), 24 cases having closed cross-sectional stiffeners (Figure 11) and 366 
cases having open cross-sectional stiffeners. This was done using numerical FE simulations 
(Figure 12) [3].  

All researches mentioned in Table 1 come to the conclusion that adding a longitudinal stiffener 
to the web of a girder results in an increase of the patch loading resistance. This increase is 
even more significant when closed section stiffeners are used. The stiffness of the stiffener 
also has an influence on the patch loading resistance. When increasing the stiffness of the 
stiffener, the patch loading resistance also increases. However, the gain of patch loading 
resistance, due to the adding of a longitudinal stiffener, only depends on the cross-section of 
the girder, the placement of the stiffener and the cross-section of the stiffener [3]. 
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Figure 10 shows the comparison of the results of the experiments using an open type stiffener 
with the predicted resistance of EN 1993-1-5. Most of these test are on the safe side, which 
means that the Eurocode underestimates most of these cases. However, there are a few, less 
slender, specimens which are overestimated by the Eurocode design method. These 
overestimated tests are excecuted by Janus et. al (1988) and have a slendernes of λ୊~0.6. A 
large scatter in the results is also noticable. For the slender cases, with a slenderness of λ୊ >

2, a rise of the resistance curve of EN 1993-1-5 would be favorable [3]. 

 
Figure 10: The 140 specimens with open section longitudinal stiffeners. Ultimate experimental load, 𝐹௘௫௣ compared to the 

EN 1993-1-5 recommended design procedure [3, p. 63]. 

Figure 11 shows the comparison of the results of the experiments using a closed type stiffener 
with the predicted resistance of EN 1993-1-5. All cases are on the safe side, which means that 
the Eurocode underestimates all of these cases. Though, there is one case which has exactly 
the same value as predicted by the Eurocode (test by Carretero and Lebet). The prediction of 
the resistance of the girders by EN 1993-1-5 is on the conservative side. A rise of this curve 
would result in a more accurate prediction. Again, a large scatter in the results can be seen 
[3]. 

 
Figure 11: The 24 specimens with closed section longitudinal stiffeners. Ultimate experimental load, 𝐹௘௫௣compared to the EN 

1993-1-5 recommended design procedure [3, p. 63]. 

Figure 12 shows the comparison of the numerical results of Davaine with the predicted 
resistance of EN 1993-1-5. There is less obvious scatter noticable in these results, most of the 
cases are concentrated in one area. However, there are still some cases showing a significantly 
larger resistance than predicted by EN 1993-1-5. A rise of the curve, representing the 
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prediction resistance of EN 1993-1-5, would be recommended for the cases with a slenderness 
higher than λ୊ > 1.5 [3]. 

 
Figure 12: The  366 numerical simulations with open section longitudinal stiffeners. Ultimate experimental load, 𝐹௘௫௣ 

compared to the EN 1993-1-5 recommended design procedure [3, p. 64]. 

 
When looking at all these results, one can conclude that overall all results would be better 
predicted by EN 1993-1-5 when the calculation of the patch loading resistance would be 
changed to better fit the more slender cases. Two things have to be improved in the EN 1993-
1-5 design method. Namely, the prediction must fit better for the more slender specimens 
and the patch loading resistance must be better calculated to reduce the scatter in the results 
[3]. 

Test results from B. Kövesdi et al. were also examined and compared to different patch loading 
resistance models. The compared models were from Davaine, Graciano (2015) and EN 1993-
1-5. The patch loading behavior, of longitudinally stiffened girders, was numerically examined 
in the research conducted by B. Kövesdi et al. [25]. The most important parameters in this 
research were the imperfection shape and magnitude of the specimens. The test results of 
this research, and the three existing models, are presented in Table 2. The second column of 
each resistance model gives a percentual comparison with the experimentally determined 
resistance. These results are also plotted in Figure 13 to compare the experimental and 
numerical results with the predicted resistance of EN 1993-1-5. In Figure 14, the experimental 
results with the different resistance models are compared. 

Table 2: Comparison of different resistance models to test results, [kN] [25, p. 204]. 

Specimen 𝑓௘௫௣ 𝑓௡௨௠ 𝐹ோ,ாேଵଽଽଷିଵିହ 𝐹ோ,஽௔௩௔௜௡௘ 𝐹ோ,ீ௥௔௖௜௔௡௢ 
1 206,4 204,6 124,1 0,60 - - - - 
2 258,4 254,8 163,5 0,63 173,7 0,67 184,6 0,71 
3 271,0 266,8 151,9 0,56 187,9 0,69 178,2 0,65 
4 320,4 268,2 166,9 0,52 198,2 0,62 180,9 0,56 
5 180,2 176,5 108,4 0,60 - - - - 
6 214,3 207,9 142,9 0,67 142,1 0,66 156,7 0,73 
7 218,4 191,6 125,3 0,57 146,7 0,67 144,2 0,66 
8 223,8 208,9 139,8 0,62 156,2 0,69 148,6 0,66 
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In Figure 13, it can be see that the numerical model, using standard imperfection magnitudes 
and considering local or global imperfections shapes, is in close vicinity of the experimentally 
determined patch loading resistance. However, all numerical results are slightly on the safe 
side. When looking at the predicted resistance of EN 1993-1-5, one can see that these values 
are underestimating the real situation [25]. 

 
Figure 13: Comparison of the experimental, numerical and analytical resistance models [25, p. 204]. 

 
In Figure 14 it can be seen that all resistance models underestimate the real patch loading 
resistance of the conducted experiments. However, the improvements made by Davaine and 
Graciano, on the widely used resistance model of EN 1993-1-5, are seeable in this figure. 
Therefore, the resistance model of EN 1993-1-5 is the most conservative with ratios varying 
between 52-67 %, while the resistance model of Davaine varies between 62-69 % and the 
resistance model of Graciano between 56-73 %. This proves that the design method of EN 
1993-1-5 must be improved to better predict the real patch loading resistance of longitudinally 
stiffened girders. Also, the models proposed by Davaine and Graciano still have some room 
for improvement [16], [25]. 

 
Figure 14: Comparison of different resistance models to test results [25, p. 204]. 
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2.5 Analysis of the most relevant factors 
 
Several investigations showed that there are multiple factors which are relevant in designing 
longitudinally stiffened I-girders. The first, and most common used in the literature, is the 
relative position of the stiffener. This factor is described as 𝑏ଵ/ℎ௪. The second one is the 
rigidity of the longitudinal stiffener 𝛾௦௧ [24] [25]. Lastly, the ratio of the directly loaded 
panel 𝑏ଵ/𝑡௪ is a relevant parameter. This parameter is referred to as the slenderness of the 
directly loaded panel. In Table 3, a summarizing table of these parameters can be seen while 
in figure 15 a notion of different parameters is presented. 
 

 

Table 3:The most relevant parameters  

 Factors 
1 𝑏ଵ/ℎ௪  

2 𝛾௦௧ 
3 𝑏ଵ/𝑡௪ 

 
 
 
 
 
 

2.5.1 Relative position of the stiffener 
 
In order to obtain a maximum capacity for a longitudinally stiffened I-girder under patch 
loading, the placement of the longitudinally stiffener is of high importance. Carlos Graciano 
[22] did research about the validity of the EN 1993-1-5 [1] design method towards the relative 
position of the stiffener. He compared the results of experimentally tests, done by Wallbridge 
and Lebet [26]. They tested four girders with open section stiffeners. The experiments showed 
a significant increase in the resistance of the girders for the patch load when the longitudinal 
stiffener was placed rather close to the loaded flange. Carlos Graciano [22] found out that 
there was an anomaly between these test results and the results that were obtained using EN 
1993-1-5 [1]. Using EN 1993-1-5 [1], the critical load should increase when the longitudinal 
stiffener is placed further from the loaded flange. This is in contrast with the experimental test 
results. Carlos Graciano [22] thus observed that with the approach proposed by Davaine [21], 
the weakness in EN 1993-1-5 [1], in regards to the stiffener location, could be overcome. As 
stated before, this is still only for a girder with one longitudinal stiffener and also still 
underestimates the resistance of the stiffener [27]. 
 
 
 
 
 
 
 

Figure 15: Parameter notation of longitudinally stiffened girders under 
patch loading [28, p. 1234] 
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2.5.2 Rigidity of the longitudinal stiffener 
 
By increasing the cross section of the stiffener, the rigidity of the stiffener will also increase. 
This increase of stiffness was observed in comparison to the buckling coefficient 𝑘ி by Carlos 
Graciano [27]. Here it was observed that 𝑘ி would only increase until a certain point. This was 
expected because of the reasoning stated in section 2.3.4.1, “criticism on EN 1993-1-5 design 
method”. After a certain rigidity of the stiffener, the buckling shape will reform to local 
buckling of the subpanels and thus will no longer contribute to the patch load resistance of 
the girder. The most efficient way to design the rigidity would be to do it just under the point 
that would make the loaded sub panel buckle. Further research has to acknowledge this 
statement. 
 

2.5.3 Slenderness of the directly loaded panel 
 
The stiffeners are in practice always placed in the compression zone of the web of the I-girder. 
In order to withstand a shear force, research has founded that the stiffener needs to be placed 
at half the girder depth. For bending, it is found that the stiffeners are best placed at one fifth 
of the girder web, in the compression zone. [28]. In practice, this value for bending is often 
also used for an I-girder under patch loading. Experimental and laboratory studies, done by 
many researchers [28], show that an I-girder can withstand more patch loading when the 
stiffener is closer to the loaded flange than one fifth of the girder web. By placing the stiffener 
closer to the loaded flange, the slenderness of the upper part of the web decreases and the 
stresses are more uniformly distributed through the web of the girder. In the literature, the 
placement of the stiffener is most of the times described as the relationship between the 
length of the loaded subpanel (𝑏ଵ) and the total height of the girder between the flanges (ℎ௪). 
This relationship is called the relative position of the stiffener. Graciano and Edlund [28] 
researched the relationship between 𝑏ଵ and the thickness of the web (𝑡௪). This is called the 
slenderness of the directly loaded part. In this way, they tried to find new insights in the best 
placement of the stiffener by not only looking at the placement, but also the slenderness of 
the directly loaded part. 

 

 
Figure 16: Load carrying capacity versus slenderness ratio of the directly loaded sub panel 
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They conducted a finite element study on two plate girders with two extreme values of the 
ratio flange to web thickness. For both of these situations, it was found that the optimal 
position of the stiffener was less than 40 times the thickness of the web. This can be seen in 
Figure 16, where the horizontal axis gives the ratio of the extra created load capacity due to 
the stiffener over the vertical axis that gives the slenderness ratio of the directly loaded web 
panel (𝑏ଵ/𝑡௪). The two different plate girders are both represented by the relationship 
between the load carrying capacity and the slenderness ratio. 
 
If the stiffener is located below the position that there is no buckling possible in the loaded 
part, the maximum value for the load carrying position should be found there. Due to the 
limited number of tests conducted (2), these results and findings are not yet conclusive, but 
they give a good indication of where the stiffener should be best and most efficiently placed.  
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3. Numerical model 
 

3.1 Geometry of the verified model 
 
The numerical model, used for this research, must be verified to its accuracy. This was done 
based on the experiments conducted by Seitz in 2005. The experiments conducted by Seitz 
were observed as to be the closest to the set of parameters which will be researched in this 
paper. Therefore, these experiments were used to verify this model [5]. 
 
Seitz carried out a total of 7 experiments on patch loading. One of the experiments used no 
stiffeners, two experiments used two stiffeners and the remaining four experiments used one 
stiffener, some of which contained a moment [5].  
 
The first three tests were chosen to conduct the model validation. These experiments were 
conducted by applying a transverse force onto the test models. The three different test 
models can be seen in Figure 17.  
 

 
Figure 17: Experiment I, II (ℎଵ/ℎ௪ = 0.25) and III (ℎଵ/ℎ௪ = 0.30) 

The geometrical properties of these experiments are shown in Figure 18.  The ℎଵ/ℎ௪ ratio is 
0.25 and 0.30 for respectively experiments II and III. This dimension gives the location of the 
stiffener, calculated as the distance between the loaded flange and the stiffener. The thickness 
of the web is 𝑡௪ = 6 𝑚𝑚 and the height is ℎ௪ = 1200 𝑚𝑚.  The length of the girder is 𝑎 =
2400 𝑚𝑚 up to the support. However, there is an extra overlength of 240 mm on each side 
of the specimen to allow the girder to be simply supported during the experiment. Both 
flanges have a width of 𝑏௙ = 260 𝑚𝑚 and a thickness of 𝑡௙ = 20 𝑚𝑚. The stiffeners consists 
of a hollow trapezoidal shape and are 𝑡௦௧ = 4 𝑚𝑚 thick. The other geometrical properties are 
shown in Figure 18. 
 

 
Figure 18: Geometrical properties of the experiments 
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3.2 Applied numerical model 
 
The numerical model was constructed using Ansys v17.2 finite element software [29]. A 
visualization of the created model is shown in Figure 19. This figure shows the plotted areas 
used in the ANSYS model.   
 

 
Figure 19: Visualization of the created finite element model in ANSYS 

A basis numerical model was constructed by B. Kövesdi, this model was examined and 
adjusted to match the experiments carried out by Seitz [5]. 
 
The elements that are used in the mode are all shell181 elements, as can be seen in Figure 20. 
The shell181 element is a four-node element with six degrees of freedom at each node. The 
six degrees of freedom exist of translations in the x, y, and z direction and rotations around 
the x, y, and z axis. This element is well suited for linear and non-linear applications. It also 
allows large rotations and large deformations. The numerical model takes, when needed, the 
material and geometrical non-linearities into account. 

 
Figure 20: Shell181 element 
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3.3 Model properties 
 
Certain material properties were assigned to the numerical model. These properties 
correspond to the ones used in the Seitz [5] experiments. Table 4 gives a summary of the 
properties for the flange, web and stiffener for each used experiment. The yield strength (𝑓௬), 
tensile strength (𝑓௨) and Young modulus (𝐸) were experimentally determined by Seitz [5] and 
are given for each element of the girder for each separate test. 
 
Table 4: Material properties of Seitz experiments 

Experiment Structural element 𝑓௬ [N/mm²] 𝑓௨ [N/mm²] E [N/mm²] 
I  Flange 378 604 192 800 

Web 357 541 202 500 
II 
  

Flange 378 604 192 800 
Web 357 541 202 500 
Stiffener 386 538 200 100 

III 
  

Flange 363 596 192 800 
Web 357 541 202 500 
Stiffener 386 538 200 100 

 
For the verification of the numerical model, the values of Table 4 were used. However, for the 
numerical parametric study, the steel grades of steel type S355, with the corresponding 
characteristic values for the yield strength, tensile strength and Young modulus, were used. 
 
Figure 21 shows the linear material model which was used for the numerical parametric study 
in ANSYS [27]. 

 
Figure 21: Applied material model 

 
3.4 Linear buckling analysis and geometrically and materially nonlinear 

imperfection analysis 
 
First of all, a linear buckling analysis (LBA) was performed. LBA is a method that only includes 
a failure based on buckling. This model does not include any non-linearities of the material 
nor of the geometry. It also does not include imperfections. Therefore, this is a simplified 
version which can only fail due to buckling, not due to material failure. 
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Secondly, a geometrically and materially non-linear imperfection analysis (GMNIA) was 
performed. In this analysis, non-linearities of the material and of the geometry are included. 
The imperfections of the subpanels (local imperfections) and of the longitudinal stiffener 
(global imperfection) are included as well. The failure in the GMNIA can occur due to buckling 
and due to failure of the material. 
 

3.5 Finite element mesh sensitivity testing 
 
Before the parametrical study on this model is performed, it needs to be verified which mesh 
size is the most efficient for this model. This is done by running the model for test setup two 
and three, with combination five as the applied imperfections (see section 3.7.2 and 3.7.3), 
with each time a different mesh size. This is done until there is less than 1% difference 
between the load carrying resistances. This is performed for the geometrically and materially 
non-linear imperfection analysis (GMNIA) and for the linear buckling analysis (LBA). Figure 22 
and 23 shows the results for test setup two, once for the linear and once for the non-linear 
analysis. The red lines represent the 1% offset of the mesh size that is chosen. Figure 24 and 
25 are presenting the same but for test setup three.  
 

 
Figure 22: LBA model mesh sensitivity analysis for test setup 2 

 
Figure 24: LBA model mesh sensitivity analysis for test setup 3 
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Figure 23: GMNIA model mesh sensitivity analysis for test setup 2 
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It can be seen that for test setup two, the ideal mesh size, with an error margin of 1% for the 
linear and non-linear analysis, is at ℎଵ/mesh size = 15. This corresponds with a mesh size of 
20mm. For test setup three, the ideal mesh size with an error margin of 1% for the linear and 
non-linear is found at ℎଵ/mesh size = 18. This also corresponds with a mesh size of 20mm. This 
mesh size will thus be applied, for both LBA and GMNIA, in the further parametrical study. 
 

3.6 Applied imperfections 
 
Annex C5 of EN1993-1-5 [1] gives a guidance for the usage of finite element analysis. The 
Eurocode provides the possibility to use eigenmodes as the imperfections of an element. 
However, the model that was used for this research showed significant differences for the 
load carrying capacity when comparing it with the results founded by Seitz [5]. Therefore, the 
model was changed to a model where the imperfections were added manually following the 
recommendations of annex C5 of EN1993-1-5 [1]. There are several different types of 
imperfections to be found in the model. The first type is the global imperfection on the 
longitudinal stiffener with length 𝑎. It has a magnitude of min (𝑎/400 ;  𝑏/400) and it forms 
the shape of a bow. The remaining imperfections containing the model are the local 
imperfections of the subpanels with a short span 𝑎 or 𝑏. These imperfections have a 
magnitude of min (𝑎/200 ;  𝑏/200) and form a buckling shape. Both types of imperfections 
are respectively shown in Figure 26 and 27. 
 

 
By meshing the model, all of the finite element nodes were shifted out of its plane to create 
an imperfection. A mesh size of 20 mm was used. Previous research of A. László [6] showed 
that a mesh size of 20 mm would be the most efficient combination of accuracy and running 
time for the used model. This was also confirmed in section 3.5. Therefore, this mesh size was 
reused in this research for the model validation. After all the imperfections are defined, a 
combination of all these imperfections has to be made to be able to find the most accurate 
and most critical combination for each test set-up. For test set-up 1, there is only one 
imperfection (local imperfection of the web). However, for test set-up 2 and 3 there are four 
imperfections (one global imperfection of the longitudinal stiffener, and three local 
imperfections of the web-(sub)panels) for each case. The local imperfections for test set-up 
two and three are defined as following: 

Figure 27: Local imperfections of web-(sub)panel Figure 26: Global imperfection of longitudinal stiffener with 
length 𝑎 
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- Local imperfection 1: subpanel 1 between the loaded flange and the stiffener 
- Local imperfection 2: subpanel 2 at the location of the stiffener 
- Local imperfection 3: subpanel 3 between the stiffener and the bottom flange 

Each imperfection can have a positive and a negative value. Therefore, there are two 
combinations for test set-up one, and 16 combinations for test set-up two and three. For the 
validation of the model, the most accurate value will be used that is the closest to the 
experimental values of Seitz [5]. 
 

3.7 Performed tests 
 

3.7.1 Test set-up 1 
 
Test set-up 1 has only one imperfection (local imperfection of the web). Therefore, only two 
different cases must be validated, one with a positive sign for the imperfection and one with 
a negative sign for the imperfection. Figure 28 gives a visualization of the applied 
imperfections. Table 5 gives the results of the numerical analysis compared to the 
experimental load carrying resistances obtained by Seitz [5]. 
 
Table 5: Combinations of imperfections for test set-up 1 

 
 
 

 
 
 
The numerical results of test set-up 1 have an accuracy of 97,8 % when comparing them with 
the experimental values obtained by Seitz [5]. Both the cases with a positive and a negative 
imperfection result in the same value. This can be explained by the fact that both 
combinations are perfectly similar due to symmetry of the specimen. Therefore, the failure 
will be exactly the same in both cases.  
 

3.7.2 Test set-up 2 
 
Test set-up 2 has 16 different combinations of imperfections. Figure 29 to 33 give a 
visualization of all the different imperfections for test set-up 2. Table 6a and 6b presents the 
used imperfections for each case and it gives the matching value of the numerical results 
compared to the experimental results obtained by Seitz [5] for test set-up 2. 
 
Table 6a: Combinations of imperfections for test set-up 2 

Test set-up 2 #1 #2 #3 #4 #5 #6 #7 #8 
imp. (glob.) - - - - - - - - 
imp. (lok. 1) - - - + - + + + 
imp. (lok. 2) - - + - + - + + 
imp. (lok. 3) - + - - + + - + 
𝑅௡௨௠/𝐹௘௫௣ 92,8% 86,5% 90,6% 103,1% 85,8% 97,9% 106,1% 94,5% 

 

Test set-up 1 #1 #2 
imp. (lok.) + - 
𝑅௡௨௠/𝐹௘௫௣ 97,8% 97,8% 

Figure 28: Local imperfection of the web 
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Table 6b: Combinations of imperfections for test set-up 2 

Test set-up 2 #9 #10 #11 #12 #13 #14 #15 #16 
imp. (glob.) + + + + + + + + 
imp. (lok. 1) - - - - + + - + 
imp. (lok. 2) - - - + + + + - 
imp. (lok. 3) - - + + + - - + 
𝑅௡௨௠/𝐹௘௫௣ 85,4% 85,8% 84,4% 83,3% 86,2% 101,9% 97,6% 102,1% 

 

 
Figure 29: Imperfection of the longitudinal stiffener, positive and negative 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
Table 6a/b shows that the accuracy of the numerical model is between 83,3 % and 101,9 %. 
The total deviation of the results is 18,6 %. This is a significant scatter, further research could 
give an explanation for this observation. However, this will not be discussed further because 
it is not in the scope of this research. For the validation of the model, combination 14 will be 
used because it is the most accurate one. 

Figure 30: Global imperfection of the stiffener Figure 31: Local imperfection of subpanel 1 

Figure 32: Local imperfection of subpanel 2 Figure 33: Local imperfection of subpanel 3 
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3.7.3 Test set-up 3 
 
Test set-up 3 is similar to test set-up 2. The only difference is the placement of the stiffener. 
Therefore, this case will be examined in the same way as test set-up 2. Figure 29 to 33 give a 
visualization of all the different imperfections for test set-up 3. Table 7a,b are giving the used 
imperfections for each case and it gives the matching value of the numerical results compared 
to the experimental results obtained by Seitz [5] for test set-up 2. 
 
Table 7a: Combinations of imperfections for test set-up 3 

 Test set-up 3 #1 #2 #3 #4 #5 #6 #7 #8 
imp. (glob.) - - - - - - - - 
imp. (lok. 1) - - - + - + + + 
imp. (lok. 2) - - + - + - + + 
imp. (lok. 3) - + - - + + - + 

𝑅௡௨௠/𝐹௘௫௣ 87,7% 92,9% 86,5% 99,5% 86,9% 95,5% 94,9% 96,2% 
 
Table 7b: Combinations of imperfections for test set-up 3 

 Test set-up 3 #9 #10 #11 #12 #13 #14 #15 #16 
imp. (glob.) + + + + + + + + 
imp. (lok. 1) - + - - + + - + 
imp. (lok. 2) - - - + + + + - 
imp. (lok. 3) - - + + + - - + 

𝑅௡௨௠/𝐹௘௫௣ 92,7% 93,1% 91,5% 90,7% 93,7% 94,7% 92,0% 92,7% 
 
Table 7 shows that the accuracy of the numerical model is between 86,5 % and 99,5 %. The 
total deviation of the results is 13 %. For the validation of the model, combination 4 will be 
used because it is the most accurate one. 
 
In Figure 34 until 37, the cross sections of the different shapes of imperfections is shown for 
test setup 2 and 3. For test setup 2 combination 12 and 14 is represented, respectively the 
most critical and most accurate imperfection shape. For test setup 3 combination 3 and 4 is 
represented, respectively the most critical and most accurate imperfection shape. At last, 
combination 5 is showed for test setup 2 in Figure 38. This is showed because this imperfection 
shape gives the most critical values overall. This shape will be used in the parametrical analysis 
that will be conducted in this paper. The horizontal lines represent the position of the 
longitudinal stiffener.  
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3.8 Model verification 

 
The numerical model calculates the ultimate load capacity using the appropriate 
imperfections in such a way that it meets up with the conditions of the experiments conducted 
by Seitz [5]. The program calculates this ultimate load capacity by using a geometric and 
material non-linear imperfection analysis. The geometric imperfections are as described 
above and the material non-linearities are as described in Table 4. The program uses the 
Newton-Raphson algorithm (tangent method) to solve the non-linear analysis. This method 
makes a linearization of the problem at each iteration step. This is performed until the 
deviation between the linear solution and the non-linear solution is small enough (Figure 39). 
 

 
Figure 39: Newton-Raphson procedure [6, p. 48] 
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Figure 34: Test setup 2 
combination 12 

Figure 35: Test setup 2 
combination 14 

Figure 36: Test setup 3 
combination 3 

Figure 37: Test setup 3 
combination 4 

Figure 38: Test setup 2 
combination 5 
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A comparison of the results of the three experiments conducted by Seitz [5] and the 
numerically found results of the model are shown in Table 8. This table shows the values of 
the limit load capacities of the experimental (𝐹௥,௘௫௣) and numerical (𝐹௥,௡௨௠) results. It can be 
seen that the numerical results are giving a good approximation compared to the values 
obtained by the experiment. The difference is between 0,5-2,5% for the 3 experiments. The 
2,5% deviation belongs to the experiment without a longitudinal stiffener. In the case of 
experiments with a longitudinal stiffener, which is also the main topic of this research, the 
deviation is between 0,5 and 2%. These are good approximations which prove that the model, 
used for the parametric study, is correct. 
 
Table 8: Comparison of experimental and numerical results 

Test set-up Location-stiffener 𝐹௥,௘௫௣ (kN) 𝐹௥,௡௨௠ (kN) 𝐹௥,௡௨௠/𝐹௥,௘௫௣  
Test set-up 1 / 659 645 97,8% 
Test set-up 2 ℎଵ/ℎ௪ = 0,25 1034 1054 101,9% 
Test set-up 3 ℎଵ/ℎ௪ = 0,3 949 944 99,5% 

 
The finite element model shows different failure behavior as the one observed by Seitz [5] in 
his experiments (Figure 40).  
 

 
Figure 40: Displacement of the web perpendicular to the web plane obtained by Seitz 

However, for the parametric study further on in this research, the most critical imperfection 
combination will be used. Table 6a/b and Table 7a/b shows that respectively combination 12 
and combination 4 are the most critical values. However, these combinations will not be used. 
Instead, the values of combination 5 will be used because this combination is for all cases 
nearly the most critical one. This decision is also made because this combination shows similar 
failure behavior as the one observed by Seitz [5] in his experiments. 
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4. Numerical parametric test 
 
In this chapter, the results of the parametric study of all of the changing parameters will be 
discussed. There will also be an investigation on two and three stiffener cases. 
 

4.1 Numerical test Design 
 
The purpose of the numerical testing is to verify if the limited value of the stiffness of the 
longitudinal stiffener, formulated by formula 6.6 in chapter 6 of EN 1993-1-5 [1], is correct. 
This formula describes a limitation on the stiffness of a longitudinal stiffener of a girder. This 
limitation point of the stiffness will be further referred to as the optimal stiffness of the 
stiffener. This optimal stiffness is the limit value of which there will be no further patch loading 
resistance gaining when further increasing the stiffness of the stiffener. The Eurocode 
provides this formula for cases with one longitudinal stiffener. But in practice, this limit value 
is also commonly used for girders with multiple stiffeners. 
 
The first thing to do is to evaluate this formula for the optimal stiffness given by the Eurocode. 
Eq. (4.1) represents the equation stated in EN 1993-1-5 [1]. 
 

𝛾௦௧ = 10,9
ூೞ೟,೗

௛ೢ ௧ೢ
య  ≤ 13 ቂ

௔

௛ೢ
ቃ

ଷ

+ 210 ቂ0,3 −  
௕భ

௔
ቃ

 

    (4.1) 

 
The left part of this equation shows how the stiffness of a certain longitudinal stiffener is 
defined. As can be seen, the stiffness of a longitudinal stiffener depends on the moment of 
inertia of a hybrid system between a part of the web and the actual longitudinal stiffener. This 
parameter is defined as 𝐼௦௧,௟. Further, the height of the web (ℎ௪) and the thickness of the web 
(𝑡௪) are characterizing this stiffness parameter. The right side of the equation is the optimal 
stiffness as described by the Eurocode [1]. The calculation of the optimal stiffness exists of 
three parameters. The total length of the girder (𝑎), the height of the web (ℎ௪) and the length 
between the loaded flange and the first stiffener on the web (𝑏ଵ). In the parametrical study, 
the influence of these parameters will be studied on the optimal stiffness together with the 
loaded length of the patch load (𝑠௦). This study is performed for a non-linear material and 
geometry analysis (GMNIA) with imperfections and for a linear buckling analysis (LBA). All of 
the tests are performed on situations with rigid end posts on both sides and with rectangular 
closed-section stiffeners.  
 

 
Figure 41: The four investigated parameters 
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In the next section, the general test setups will be explained for the one stiffener cases, the 
changing parameters will be identified and their range will be set. 
 
Afterwards, the influence of these four parameters on the optimal stiffness will be discussed. 
First, the four parameters for the one stiffener cases will be investigated. If a certain link 
between this parameter and the optimal stiffness is observed, further research is done using 
two and three stiffeners. 
 

4.2 Numerical test setup – one stiffener 
 

4.2.1 General 
 
A parametric study was performed on girders with one longitudinal stiffener to analyze the 
influence of the stiffness of the stiffener on the patch loading resistance. The optimal stiffness 
of the longitudinal stiffener was determined for each changing parameter. 
 
For each of the four changing parameters, there were two types of failure modes tested. At 
first, the stiffener was placed at a distance of 15% of the height of the web of the loaded 
flange. With this placement, a failure in the lower subpanel was triggered. The second failure 
type that was investigated was a failure in the upper subpanel. This failure happened when 
the stiffener was placed at 30% of the height of the web of the loaded flange. Both failure 
types are shown in Figure 42. 
 

 
Figure 42: Illustrative example of failure in lower (a) and upper (b) subpanel 

 
4.2.2 Range of the changing parameters 

 
The range of the used parameters can be found in Table 9. The geometry of the girder was 
kept constant for each changing parameter. The different kinds of geometries used for each 
parameter can be found in Table 10. This table also shows the 𝑏ଵ value for both failure types. 
The first 𝑏ଵ-value was used when failure occurred in the lower subpanel. The second 𝑏ଵ-value 
was used when failure occurred in the upper subpanel. 
 
 

(a) (b) 
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Table 9: Changing parameters (1 stiffener) 

Changing parameters Range of the parameters (mm) 
𝑡௪ 6 – 9 – 14 – 16 - 18 
𝑠௦ 400 – 800 – 1000 - 1200 
𝑎 2500 – 3500 – 4500 – 5500 - 6500 

ℎ௪ 1500 – 1800 – 2100 – 2500 - 2900 
 
Table 10: Geometries for each parameter 

Parameter 𝑡௪ 𝑠௦ 𝑎 ℎ௪ 𝑏௙ 𝑡௙ 𝐹௬௙ 𝐹௬௪ 𝑏௦௧ 𝑏ଵ 
𝑡௪  800 4000 2700 400 16 355 355 180 405/810 
𝑠௦ 10  4500 2100 400 16 355 355 140 315/630 
𝑎 10 800  2700 400 16 355 355 180 405/810 

ℎ௪ 10 800 4500  400 16 355 355 180 0.15ℎ௪/0.3ℎ௪ 
 
The optimal stiffness was determined for the four different parameters shown in the tables 
above, each time for five (or four) different geometries as can be seen in Table 9. This was 
done for failure in both the upper and the lower subpanel. For example for the thickness of 
the web, the optimal stiffness of the stiffener was searched for the following values of the 
thickness of the web: 6, 9, 14, 16 and 18 mm. To find this optimal stiffness, the tests were 
performed by starting with a low stiffness of the stiffener and gradually increasing this by 
changing the thickness of the stiffener (𝑡௦). The height of the stiffener (ℎ௦௧) was kept 
constant. This was done for the non-linear material and non-linear geometry analysis (GMNIA) 
with imperfections and for the linear buckling analysis (LBA). After performing the tests, 
different patch loading resistances were obtained and linked with a specific stiffness of the 
longitudinal stiffener. These values were plotted on a graph for the GMNIA and for the LBA. 
Out of these graphs, the optimal stiffness for each case was determined.  
 

4.2.3 Determination process of the optimal stiffness 
 
This paragraph will explain how the optimal stiffness of the longitudinal stiffeners was 
determined. The optimal stiffness was determined for both the LBA and GMNIA. This was 
done to be able to compare the results for both analyses. The process which was followed to 
determine the optimal stiffness will be clarified by using two examples of our parametric 
study. Example one is for the case where the length (𝑎) is 3500 mm and example two is the 
case where the height of the web (ℎ௪) is 2100 mm. The two main principles which the 
determination process of the optimal stiffness is based on, are the relation between the 
critical buckling load (for LBA), or the ultimate load (for GMNIA), and the stiffness of the 
longitudinal stiffener. The second principle which the optimal stiffness is based on, is the 
relation between the relative displacement of the upper subpanel and the stiffness of the 
longitudinal stiffener. First, the LBA method for determining the optimal stiffness will be 
explained followed by the explanation of the GMNIA method. 
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4.2.3.1 LBA method 
 
The first principle for determining the optimal stiffness is shown in Figure 43. The load-
stiffness curve for example one can be seen based on the LBA. This represents the stiffness of 
the longitudinal stiffener with the corresponding patch load resistance of the girder. In Figure 
44, the same curve can be seen for example two. 
 

 
Figure 43: Load-stiffness curve, example one (LBA) 

 
Figure 44: Load-stiffness curve, example two (LBA) 

When observing these curves, one can see that these curves have a steep inclination in the 
beginning and are going to a maximum value at the end of the curve. The optimal stiffness is 
chosen as the point from whereon there is no significant increase anymore in the patch load 
resistance. For example one, this point is where the stiffness is 272 and where the patch load 
resistance is at 1631 kN. For example two, this point can be observed as where the stiffness is 
451 and where the patch load resistance is at 2287 kN.  
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The second main principle for determining the optimal stiffness is via the relative 
displacement of the upper subpanel. The relative displacements for both subpanels can be 
seen in Figure 45 for example one and in Figure 46 for example two based on the LBA. The 
trend of the lower subpanel for both examples will also be discussed.  
 

 
Figure 45: Relative displacement of the upper and lower subpanel, example one (LBA) 

 
Figure 46: Relative displacement of the upper and lower subpanel, example two (LBA) 

The horizontal axis gives the stiffness of the longitudinal stiffener, while the vertical axis gives 
the displacement of the upper and lower subpanel relative to the maximum displacement in 
the upper or lower subpanel. When observing the upper subpanel, it can be seen that when 
the stiffness is low, the displacement of this subpanel is at its highest point. This is because 
this part is still very flexible because of the low stiffness of the stiffener. The failure mode that 
is occuring here is a global buckling mode (Figure 6c). The stiffener is unable to separate the 
failure into multiple buckling shapes due to its low stiffness. Therefore, this stiffener can be 
reffered to as a “weak” stiffener. This “weak” stiffener causes larger displacements in the 
upper subpanel.  
When making the stiffener stiffer, the maximum displacement in the upper subpanel goes to 
a minimum. In the process of changing the stiffness, the occuring failure mode will change 
from a global failure mode to an interaction failure mode (Figure 6b). 
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From a certain stiffness on, the maximum displacement will remain constant at a minimal 
value. At this point, a local failure mode will occur (Figure 6a). The stiffener now has the ability 
to separate the global buckling shape into multiple local buckling shapes. Therefore, this 
stiffener can be refferd to as a “strong” stiffener. The stiffness from where the maximum 
displacement in the upper subpanel remains constant, results in the optimal stiffness of the 
longitudinal stiffener.  
 
A next, minor, thing to observe is the displacement in the lower subpanel. In the LBA method, 
the lower subpanel goes to a maximum displacement before decreasing and going to a 
minimal displacement.  
 
To give some context to these graphs, three points are chosen to be pointed out (before, at 
and after the optimal stiffness) with their corresponding displacement figures. These 
displacement figures can be found in Figure 47 until 49. 
 
 

 
Figure 47: LBA displacement; a) example one: point (150/1550), b) example two: point (157/2047) 

 
 
 

 
Figure 48: LBA displacement; a) example one: point (272/1631), b) example two: point (451/2287) 

(a) (b) 

(a) (b) 
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Figure 49: LBA displacement; a) example one: point (351/1641), b) example two: point (632/2293) 

 
4.2.3.2 GMNIA method 

 
The first principle for determining the optimal stiffness in the GMNIA is shown in Figure 50. 
The load-stiffness curve for example one can be seen based on the GMNIA. This represents 
the stiffness of the longitudinal stiffener with the corresponding patch load resistance of the 
girder. In  
Figure 51, the same curve can be seen for example two. 
 
The trends, visible in Figure 50, are similar to the ones that were observed in Figure 43 for the 
LBA method. The optimal stiffness is chosen as the point from whereon there is no significant 
increase anymore in the patch load resistance. For example one, this point is where the 
stiffness is 255 and where the patch load resistance is at 1561 kN. For example two, this point 
can be observed as where the stiffness is 451 and where the patch load resistance is at 1705 
kN.  
 

 
Figure 50: Load-stiffness curve, example one (GMNIA) 
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Figure 51 Load-stiffness curve, example two (GMNIA) 

 
The second main principle for determining the optimal stiffness is via the relative 
displacement of the upper subpanel. The relative displacements for both subpanels can be 
seen in Figure 52 for example one and in Figure 53 for example two, based on the GMNIA. The 
trend of the lower subpanel for both examples will also be discussed.  
 

 
Figure 52: Relative displacement of the upper and lower subpanel, example one (GMNIA) 
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The data that is shown in Figure 52 is more inconsistent than in Figure 45. This can be 
explained via the load-slip curves, generated per investigated point. For the LBA, this curve is 
a continuous linear function. When there is an uncertainty on the failure load, this results only 
in a minor decrease or increase of the according displacement. For the GMNIA, this curve is a 
linear function in the beginning, but is deflecting to a maximum value at the end. If there is an 
uncertainty on the GMNIA failure load, this results in a significant decrease or increase of the 
according slip. This is the reason why there is a sudden change in relative displacement visible 
in Figure 52 after the investigated point with a stiffness of 255.  
 
 

 
Figure 53: Relative displacement of the upper and lower subpanel, example two (GMNIA) 

 
Although, some similar trends can be observed. The three different failure modes that were 
observed in the LBA method are also visible here. When the displacement in the upper 
subpanel is at its highest point, a global buckling failure mode occurs (“weak” stiffener). 
Between this point and the optimal stiffness, the failure mode changes to an interaction 
buckling failure mode. From the optimal stiffness on, a local buckling failure mode can be 
observed (“strong” stiffener) 
 
A next, minor, thing to observe is the displacement in the lower subpanel. In the GIMNIA 
method, the lower subpanel goes to a maximum displacement and stays at a constant value. 
This is in contradiction with the observed trend in the LBA method. 
 
To give some context to these graphs, three points are chosen (before, at and after the optimal 
stiffness) with their corresponding displacement and von Mises stresses figures. These figures 
can be found in Figure 54 until 59. 
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Figure 54: Example one: point (157/1624), a) von Mises stress, b) GMNIA displacements 

 

 
 

  
Figure 55: Example one: point (255/1561), a) von Mises stress, b) GMNIA displacements 

 

 
 

 
Figure 56: Example one: point (351/1566), a) von Mises stress, b) GMNIA displacements 
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Figure 57: Example two: point (157/1624), a) von Mises stress, b) GMNIA displacements 

 

 
 

  
Figure 58: Example two: point (451/1705), a) von Mises stress, b) GMNIA displacements 

 

 
 

  
Figure 59: Example two: point (632/1706), a) von Mises stress, b) GMNIA displacements 
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4.2.4 Eurocode formula range 
 
To be able to compare the numerical test results with the optimal stiffness prescribed by the 
Eurocode formula (eq. (4.1)) [1], our investigation should be within the limits set by the 
Eurocode. These limitations are described for the buckling coefficient 𝑘ி, which includes 𝛾௦௧. 
It is stated that eq. (2.67) and eq. (2.68) of section 2.3.4 are only valid for the following criteria:  
 

0.05 ≤  
௕భ

௔
≤ 0.3 (criteria 1) and 

௕భ

௛ೢ
≤ 0.3 (criteria 2)    (4.2) 

 
The values of this research are well within this range, except for one outlier (a = 2500 mm). 
This outlier will be taken into account when reviewing the results. This outlier only accounts 
for the calculation of its optimal stiffness via the formula of the Eurocode. The numerical 
results are not limited by these criteria. The values for the two criteria used in our cases can 
be found in Table 11a/b. 
 
Table 11a: Range of criteria 1 

Parameter Failure upper subpanel:  
𝑏ଵ/𝑎 

Failure lower subpanel:  
𝑏ଵ/𝑎 

𝑡௪ 0.20 0.10 
𝑠௦ 0.14 0.07 

𝑎ଶହ଴଴ 0.32 0.16 
𝑎ଷହ଴଴ 0.23 0.12 
𝑎ସହ଴଴ 0.18 0.09 
𝑎ହହ଴଴ 0.15 0.07 
𝑎଺ହ଴଴ 0.12 0.06 

ℎ௪,ଵହ଴଴ 0.10 0.05 
ℎ௪,ଵ଼଴଴ 0.12 0.06 
ℎ௪,ଶଵ଴଴ 0.14 0.07 
ℎ௪,ଶହ଴଴ 0.17 0.08 
ℎ௪,ଶଽ଴଴ 0.19 0.09 

 

Table 11b: Range of criteria 2 

Parameter Failure upper subpanel:  
𝑏ଵ/ℎ௪ 

Failure lower subpanel:  
𝑏ଵ/ℎ௪ 

𝑡௪ 0.3 0.15 
𝑠௦ 0.3 0.15 
𝑎 0.3 0.15 

ℎ௪ 0.3 0.15 
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4.3 Test results and discussion – one stiffener 
 

4.3.1 Interpretation of the results 
 
The results of the research should be interpreted while bearing the following things in mind. 
First of all it is very difficult to compare the exact absolute values for the optimal stiffnesses 
found with the Eurocode formulation and with the numerical testing. This is the case because 
there is not an exact definition of the optimal stiffness described in the literature. Therefore, 
it is more accurate to evaluate the trend described by the Eurocode and the one found with 
the numerical testing. For the absolute values, the conclusions are based on the fact if the two 
descriptions for the optimal stiffness are in close vicinity and in the same order of magnitude. 
 

4.3.2 Main comment for one stiffener cases 
 
In the one stiffener cases, there were two failure modes investigated. During the observations 
of the cases with a failure in the lower subpanel, a discrepancy in the data could be observed. 
From a certain point on, the increase of the patch loading resistance became a linear function 
instead of a deflecting curve going to an optimal stiffness. An example for both the critical 
buckling load and the ultimate failure load is given in Figure 60 and 61. 
 

 
This phenomenon can be explained by the fact that all of the buckling problems have some 
post buckling reserve. In these cases, the lower subpanel fails, but the upper subpanel still has 
some reserve and thus some extra resistance. Because of this extra resistance, the curve keeps 
inclining instead of deflecting to an optimal stiffness. There will be found a maximum for this 
inclining curve at the point where both the lower and the upper subpanel fail. In order to still 
have a useful point for the research, the stiffness right before the curve goes to a linear form 
is chosen as the optimal stiffness of that configuration. This discrepancy only occurred for the 
cases with a failure in the lower subpanel.  
 
 
 
 
 

Figure 60: Optimal stiffness determination for critical 
buckling load (LBA) (Ss=1200) 

Figure 61: Optimal stiffness determination for ultimate 
failure load (GMNIA) (Ss=1200) 
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4.3.3 Effect of change of the loaded length (𝑆௦) 
 

4.3.3.1 Effect according to Eurocode 
 
The second part of eq. (4.1) represents the optimal stiffness of a longitudinal stiffener, this 
second part of eq. (4.1) is given below: 
 

𝛾௦௧,ா஼ = 13 ቀ
௔

௛ೢ
ቁ

ଷ

+ 210 ቀ0,3 −
௕భ

௔
ቁ       (4.3) 

 
In total, there are four parameters which are being investigated. Of these four parameters, 
the loaded length is not included in the Eurocode formulation for the definition of the optimal 
stiffness. This means that according to the Eurocode, the loaded length does not have an 
influence on the optimal stiffness of a longitudinal stiffener. The value of the optimal stiffness 
will remain constant while changing the loading length. This link between the loaded length 
and the optimal stiffness is shown in Figure 63. 
 

 
Figure 62: Visualization of changes of parameter Ss (in mm) 

4.3.3.2 Effect according to numerical results for one stiffener cases 
 

 
 

 

 
 
Figure 63: Optimal    

Figure 63: Optimal stiffness in function of the loaded length 

100

120

140

160

180

200

220

240

260

280

300

300 500 700 900 1100 1300

𝛾
st

,o
pt

(,E
C)

Loaded length (ss) (mm)



51 
 

A constant line can be observed for the optimal stiffness when the failure occurred in the 
upper subpanel for both the GMNIA and the LBA. This is in agreement with the Eurocode 
formulation. Hereby, it can be stated that for failure in the upper subpanel, the Eurocode 
describes the right trend. The absolute values of the optimal stiffness are for both analyses 
within an acceptable range and the closest to the GMNIA. 
 
For the second failure mode in the lower subpanel, a slightly declining trend can be observed. 
This accounts for both the critical buckling load analysis as for the GMNIA. All of the 
investigated points for the critical buckling load analysis are below the Eurocode formulation, 
while three out of four of the GMNIA points are above this formulation. But in general all of 
the points are very close to the Eurocode formulation. The declining trend may be explained 
by the discrepancies in the data that were described above. 
 
It can thus be stated that the Eurocode formulation describes the right trend when changing 
the loaded length. The loaded length has no influence on the optimal stiffness of a longitudinal 
stiffener. 
 

4.3.4 Effect of change of the length of the girder (𝑎) 
 

4.3.4.1 Effect according to Eurocode 
 
According to eq. (4.3), the length of the girder should have an 1/𝑎 increasing type of influence. 
This means that when increasing the length of the girder, the optimal stiffness also increases 
exponentially. This link between the length of the girder and the optimal stiffness is shown in 
Figure 65. 
 
 

 

Figure 64: Visualization of changes of parameter a (in mm) 
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4.3.4.2 Effect according to numerical results for one stiffener cases 
 

 
 

 
 
 

Figure 65: Optimal stiffness in function of the length of the girder 

 
When the failure happens in the upper subpanel, a 1/𝑎 trend is described by the Eurocode 
formulation. For the numerical results, both for the LBA and for the GMNIA, a constant value 
for the optimal stiffness is obtained. For the LBA, overall higher values were found for the 
optimal stiffness compared to the GMNIA. This observed trend is in contradiction with the 
Eurocode formulation. Thus there can be stated that when the failure happens in the upper 
subpanel, the total length of the girder has no influence on the optimal stiffness value of the 
longitudinal stiffener. As stated before, the point situated at a length of 2500 mm is out of the 
range of the Eurocode formulation. This is the reason why the trend is slightly off at this point, 
compared to the Eurocode formulation when the failure happens in the lower subpanel. But 
this point has no influence on the trend based on the numerical results an can therefore be 
included in our research results. 
 
The Eurocode formulation describes slightly higher values for the optimal stiffness when the 
failure is located in the lower subpanel, but the trends remain the same. For this failure type 
it also applies that the length of the girder has no influence on the optimal stiffness of the 
longitudinal stiffener.  
 
Thus there can be stated that the length of the girder should be excluded from the calculation 
of the optimal stiffness of the stiffness, for both failure in the upper and lower subpanel. This 
since it has no influence, according to the numerically obtained results. 
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4.3.5 Effect of change of the height of the web (𝐻௪) 
 

4.3.5.1 Effect according to Eurocode 
 
In eq. (4.3), the parameter ℎ௪ has a 1/ℎ௪³ decreasing type of influence. This means that for 
lower heights of the web, a higher optimal stiffness must be obtained, in an exponential way. 
This link between the height of the web and the optimal stiffness is shown in Figure 66. 

4.3.5.2 Effect according to numerical results for one stiffener cases 
 

 

 

 
 
 

Figure 66: Optimal stiffness in function of the height of the web 

For the failure mode occurring in the upper subpanel, a 1/ℎ௪ decreasing type of trend is 
described by the Eurocode formulation. When reviewing the numerical results, a linear 
decreasing trend is obtained, which states that the optimal stiffness declines, following a 
linear trend, when the girder length increases. This accounts for both the GMNIA method and 
for the linear buckling analysis method. It can be stated that, despite the 1/ℎ௪ decreasing 
trend versus the linear decreasing trend, the global trend described by the Eurocode, is close 
to the one obtained via the numerical analysis. However, the influence of the change of the 
height of the web should be more significant than described by the Eurocode. The difference 
of the absolute values between the Eurocode formulation and the numerical test results is 
significant. In order to describe the optimal stiffness better when changing the length of the 
girder, the influence of the length of the girder should be noticeable higher on the optimal 
stiffness formulation than it is now.  
 
The values of the numerical testing for the failure mode in the lower subpanel are showing 
the same linear trends that could be observed with the failure mode in the upper subpanel. 
The 1/ℎ௪ decreasing trend, described by the Eurocode, is more explicit here. This means that 
the increase for the lower values of the height of the web are steeper than they were for the 
failure in the upper subpanel. This effect is not visible in the numerical results. In these 
numerical results, the linear trends are the same for both the failure in the upper and in the 
lower subpanel.  
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4.3.6 Effect of change of the web thickness (𝑡௪) 
 

4.3.6.1 Effect according to Eurocode 
 
Eq. (4.3) shows that the thickness of the web has no influence on the determination of the 
optimal stiffness of a longitudinal stiffened girder according to the Eurocode. The optimal 
stiffness should thus remain constant when only changing the thickness of the web. This can 
be seen on Figure 67. Once for the upper and once for the lower subpanel failure mode.  
 

4.3.6.2 Effect according to numerical results for one stiffener cases 
 
 
 

 
 
 
 

Figure 67: Optimal stiffness in function of the thickness of the web 

If the failure happens in the upper subpanel, a 1/𝑡௪ decreasing type of trend can be observed 
when reviewing the numerical results. This means that for a lower thickness of the web, a 
higher optimal stiffness can be found. This can be stated for both the GMNIA method as for 
the LBA method. These two types of methods are also in close range to each other regarding 
their absolute values. It can be clearly observed that the trend, described by the Eurocode 
formulation, is totally in contradiction with the trend gained by the numerical investigation.  
 
For the failure mode in the lower subpanel, the same trends can be observed as described in 
the section above, but with different absolute values.  
 
The thickness of the web is the parameter where the Eurocode formulation is the least 
accurate. It describes the trend wrong and the absolute values are also not within an 
acceptable range. This is the reason why this parameter is chosen to be investigated more in 
depth. This is done by finding a link between these values and the values that are obtained by 
numerical testing on girders with two and three stiffeners. The goal is to find a new 
formulation, via a regression, where the optimal stiffness is a function of a certain ratio that 
describes the right optimal stiffness for the one, two and three stiffener cases. 
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First, the test setup and the range will be defined that was used to investigate the two and 
three stiffener cases. Next, a link will be established between the one, two and three stiffener 
cases. This is done to be able to describe the optimal stiffness independently of the amount 
of stiffeners. 
 
In the next section, the test setup for the two and three stiffener cases will be described. 
Afterwards, a ratio will be found, that includes 𝑡௪, which describes the same optimal stiffness 
for the one, two and three stiffener cases. Using this ratio, and via regression, a new 
formulation for the optimal stiffness will be produced based on this ratio.  
 

4.4 Numerical test setup – two and three stiffeners 
 
As stated before, the use of longitudinal stiffeners is in practice mostly performed with two or 
more stiffeners, instead of only one stiffener. This is done because of the fact that most of the 
used girders for steel bridges have a significant height of the web and are exposed to high 
patch loadings, which causes the girder to be extremely vulnerable for buckling. In order to be 
able to make a new formulation for the optimal stiffness of a stiffener, that is applicable for 
two or three stiffeners, the research is made more widely than only the one stiffener cases. 
This is done since EN 1993-1-5 only describes the patch load resistance of one stiffener cases. 
In order to meet the requirements of the work field, a proposal is made for the criteria of a 
“strong” stiffener, independent of the amount of stiffeners.  
 
Firstly, a ratio has to be found which describes the two and three stiffener cases with the same 
optimal stiffness. The hypothesis was that the amount of stiffeners, that is present in a test 
setup, only influences the amount of patch load favorably. However, it only has a minimal or 
a negligible influence on the optimal stiffness of each stiffener. This means that for two 
identical test setups with a constant value of the depth of the loaded subpanels, the value of 
the optimal stiffness for each individual stiffener, should remain the same. The only varying 
parameters between the two test setups are thus the amount of stiffeners and the height of 
the web. The height of the web is changing due to the fact that the dept of the subpanels 
remain constant. The stiffeners were uniformly placed along the web. The train of thought 
behind this hypothesis is the following. When placing the stiffeners uniformly along the web, 
the failure will happen in the directly loaded subpanel. In the test setup this refers to the upper 
subpanel. When the variables of this part of the girder are untouched (such as the 𝑏ଵ value 
and the 𝑡௪ value), the optimal stiffness for the stiffeners that divides the web into these 
subpanels, remains the same. The critical force although will become larger when varying the 
amount of stiffeners and the height of the web. In Figure 68, a visualization can be seen for 
one test configuration with two and three stiffeners.  
 

 
Figure 68: Configuration with constant 𝑏ଵ - value (2 and 3 stiffeners) 
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In total there were four different values of 𝑏ଵ tested, each time for two and three stiffeners. 
This process was repeated also for the three different values of the thickness of the web. Thus 
in total there were 24 cases investigated for their optimal stiffness value. TTable 12 shows a 
summary of these 24 cases.  
 
Table 12: Investigated cases for 𝑏ଵ 

𝑏ଵ (mm) Number of stiffeners Tw (mm) 
400 2 / 3 6 / 9 / 18 
500 2 / 3 6 / 9 / 18 
600 2 / 3 6 / 9 / 18 
800 2 / 3 6 / 9 / 18 

 
4.5 Test results and discussion – two and three stiffeners 

 
First of all, the analysis and investigations will be done only for the LBA.. There will be a 
formulation suggested for the optimal stiffness, via regression, for the LBA method. 
Afterwards, the same will be done but for the GMNIA method to verify the obtained 
formulation on its validity and accuracy.  
 

4.5.1 Effect of number of stiffeners on optimal stiffness, numerical results 
 
After conducting the LBA, a total of twelve pair of points were compared with each other. 
These pair of points are visualized in Figure 69. 
 

As can be seen on Figure 69, the points for the same cases of two and three stiffeners are 
mostly overlapping. In order to simplify the further research and to make a formulation for 
both two and three stiffener cases, the assumption is made that the amount of stiffeners has 
no influence on the optimal stiffness of a stiffener when keeping 𝑏ଵ/𝑡௪ constant. 
 
 

 
Figure 69: Comparison of the pairs for each b1 value for the linear buckling analyses test’s 
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4.5.2 Effect of number of stiffeners on optimal stiffness, Eurocode formulation 
 
After computing and calculating the optimal stiffnesses of the 24 cases via the numerical 
investigation, the same was done for all of the 24 cases, but now using the formula suggested 
by the Eurocode. The formula that is stated in the Eurocode, eq. (4.3), only depends on the 𝑏ଵ 
value, not on the thickness of the web (𝑡௪). Using this calculation resulted in eight unique 
values. One unique value per 𝑏ଵ-value and depending on if the case had two or three stiffeners 
since there is a change of height of the web between these two. This value remains the same 
when changing the thickness of the web. These eight values can be found in Table 13.  
 
Table 13: Optimal stiffness according to EC for b1 (2 and 3 stiffeners) 

𝑏ଵ Number of stiffeners 𝛾௦,௢௣௧,ா஼ 
400 2 245 
400 3 120 
500 2 158 
500 3 84 
600 2 110 
600 3 62 
800 2 59 
800 3 36 

 

A clear trend can be observed when this equation is used for the two and three stiffeners 
cases. If you fill in the equation for these specific cases, one can notice that for the same 𝑏ଵ-
value, the optimal stiffness is more or less half the value for the three stiffener case than for 
the two stiffener case. This is in contradiction with the previous finding where was stated that 
the amount of stiffeners only had a neglectable influence on the optimal stiffness.  
 
 
 

 
Figure 70: Optimal stiffness according to EC for 𝑏ଵ (2 and 3 stiffeners) 
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As can be seen in Table 12 and in Figure 70 and in eq. (4.3), the Eurocode formulation does 
not include an influence caused by the change of the thickness of the web. However, in Figure 
70, one can clearly see an influence on the numerical results for the optimal stiffness when 
changing the thickness of the web. This aspect will be further investigated in the section 
below. Instead of investigating this simply for 𝑡௪, a research was done for the ratio of 𝑏ଵ/𝑡௪. 
In this way, one optimal stiffness can be assigned to multiple configurations. This can be done 
since we made the simplification of the influence of the amount of stiffeners on the optimal, 
stiffness as stated before. 
 

4.5.3 Effect of 𝑏ଵ/𝑡௪ ratio on the optimal stiffness, numerical results 
 
As stated before, a clear influence of the thickness of the web on the optimal stiffness could 
be noticed in our results. To further research this parameter, a graph was made to show the 
link between the optimal stiffness and the ratio of 𝑏ଵ/𝑡௪. This graph is presented in Figure 
71 
 

 
Figure 71: Link between the optimal stiffness and the ratio 𝑏ଵ/𝑡௪ 

The next four graphs (Figure 72 until 75) shows all of the test results used for the 
determination of the optimal stiffness of each of the 24 cases. They are shown per value of 𝑏ଵ 
and are set all relatively to each critical buckling load value (𝐹௖௥) divided by the maximum 
(𝐹௖௥,௠௔௫) value for that specific case. The vertical lines represents each time the value of the 
optimal stiffness for that specific case.  
 
As stated before, the influence of the amount of stiffeners are relatively small. This can be 
seen on these graphs by the fact that the straight lines per 𝑡௪ value are close together. 
Another observation that can be made is that for a decreasing value of the thickness of the 
web, a higher optimum stiffness is reached.  
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Figure 72: Critical buckling load in function of stiffness (LBA) (𝑏ଵ = 400) 

 

 
Figure 73: Critical buckling load in function of stiffness (LBA) (𝑏ଵ = 500) 
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Figure 74: Critical buckling load in function of stiffness (LBA) (𝑏ଵ = 600) 

 

 
Figure 75: Critical buckling load in function of stiffness (LBA) (𝑏ଵ = 800) 
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4.5.4 New formulation for optimal stiffness – LBA method 
 
The formulation that will be formed, will include both two and three stiffener cases. In order 
to do this, a conservative formulation will be made. This means that for every 𝑏ଵ/𝑡௪-value, 
the highest optimal stiffness will be taken into account of the two and three stiffener cases. 
In this way, there will be no underestimation of the optimal stiffness. On Figure 76, these 
conservative points can be seen together with their corresponding trendlines.  
 

  
Figure 76: Optimal stiffness (LBA) in function of the ratio 𝑏ଵ/𝑡௪ (max values) 

In order to describe the observed trends, the slopes of the four trendlines were calculated. 
These values can be found in Table 14. To establish a new formulation for the optimal stiffness, 
a link between the values of these slopes should be found. To do that, these values of the 
slopes were plotted together with their corresponding value of 𝑏ଵ. This graph can be found in 
Figure 77.  
 
Table 14: Slopes of the four trendlines 

𝑏ଵ (mm) slope 
400 28.1 
500 18.9 
600 12.4 
800 7.3 
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As can be seen in Figure 77, a clear trend can be observed to describe the slopes of each 
different 𝑏ଵ value. This is a ଵ

௕ଵ
 – trend. This means that there is a inversely proportional 

connection between the depth of the loaded subpanel and the pace at which the optimum 
stiffness increases when the 𝑏ଵ/𝑡௪ ratio increases. This relation can be described by the 
following formula.  
 

𝑠𝑙𝑜𝑝𝑒 =
ସ∗ଵ଴ల

௕భ
భ.వలఴ        (4.4) 

 
From this relation, one can concluded that the slope gets very low for a high depth of the 
loaded subpanel, but never goes to zero or less. This means that an increase of the stiffness 
of a stiffener always has an impact. This impact becomes very small when the 𝑏ଵ-value is very 
high.  
 
The next part of the equation is the intersection point with the y-axis. This point is searched 
for the four linear trendlines. The intersection points with the y-axis (b) are shown in Table 15 
and plotted together with their corresponding 𝑏ଵ value onto Figure 78. 

Table 15: Intersection points y-axis 

𝑏ଵ (mm) b 
400 -400 
500 -333.33 
600 -250 
800 -216.67 

 
 

 
 
 
 
Through these points, a polynomial function can be found. This function is described according 
to eq. (4.5). 
 

𝑏 = −0.0013 ∗ 𝑏ଵ
ଶ  + 1.9751 ∗ 𝑏ଵ − 995.02      (4.5) 

 
Together with eq. (4.4), one equation can be made that describes the optimal stiffness in 
function of the 𝑏ଵ/𝑡௪ ratio. 
 

𝛾௦௧,௢௣௧,௅஻஺ = 𝑠𝑙𝑜𝑝𝑒 ∗
𝑏ଵ

𝑡௪
+ 𝑏 

 

𝛾௦௧,௢௣௧,௅஻஺ =
4 ∗ 10଺

𝑏ଵ
ଵ.ଽ଺଼ ∗

𝑏ଵ

𝑡௪
− 0.0013 ∗ 𝑏ଵ

ଶ + 1.9751 ∗ 𝑏ଵ − 995.02 

 

𝛾௦௧,௢௣௧,௅஻஺ = 𝑏ଵ ∗ ቀ
ସ∗ଵ଴ల

௕భ
భ.వలఴ∗௧ೢ

− 0.0013 ∗ 𝑏ଵ + 1.9751ቁ − 995.02   (4.6)  
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This formula describes the maximum values for the stiffness of a stiffener depending on the 
height of the loaded subpanel and on the thickness of the web. The next part is going to make 
a comparison between the 24 cases which were numerically found and between this 
formulation, described in eq. (4.6). 
 

4.5.4.1 Verification of the new formulation 
 
In this section, eq. (4.6) will be compared with the numerical results which were earlier 
obtained, in order to check the accuracy of this formula. Eq. (4.6) was filled in 12 times so that 
we get 12 different results. The reason that it is not done for all of the 24 cases is that in this 
formula, a difference has not been made between the two or three stiffener cases. This 
equation only depends on the height of the loaded subpanel and not on the height of the web. 
The obtained results for two similar cases, with only a change in the amount of stiffeners and 
height, remain the same. By making this formula depending on only the highest values of 
optimal stiffness between the two and three stiffener cases, a conservative formula is 
obtained which is applicable for both two and three stiffener cases. Later on, this formula will 
also be checked for one value of 𝑏ଵ for the one stiffener case to check its validity in this area. 
These results can be seen in Table 16. 
 
Table 16: Percentual difference between new formula and numerically found values 

Point 
number 

𝑏ଵ (mm) # stiffeners 𝑡௪ (mm) 𝛾௦௧,௢௣௧,௡௨௠ 𝛾௦௧,௢௣௧,௘௤.(ସ.଺) Perc. Diff. 

1 400 2 6 1500 1606 6.6% 
2 400 3 6 1500 1606 6.6% 
3 400 2 9 800 933 14.3% 
4 400 3 9 675 933 27.7% 
5 400 2 18 250 260 3.8% 
6 400 3 18 200 260 23.1% 
7 500 2 6 1250 1294 3.4% 
8 500 3 6 1200 1294 7.3% 
9 500 2 9 700 752 6.9% 

10 500 3 9 520 752 30.9% 
11 500 2 18 200 210 4.8% 
12 500 3 18 150 210 28.6% 
13 600 2 6 1000 1068 6.4% 
14 600 3 6 900 1068 15.7% 
15 600 2 9 550 631 12.8% 
16 600 3 9 400 631 36.6% 
17 600 2 18 175 177 1.1% 
18 600 3 18 140 177 20.9% 
19 800 2 6 800 785 1.9% 
20 800 3 6 700 785 10.8% 
21 800 2 9 350 441 20.6% 
22 800 3 9 350 441 20.6% 
23 800 2 18 150 97 54.6% 
24 800 3 18 90 97 7.2% 
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In the last column, the percentual difference between the numerical obtained result and the 
results via eq. (4.6) are shown. This percentage is calculated as in eq. (4.7). 
 

 𝑝𝑒𝑟𝑐. 𝑑𝑖𝑓𝑓. =
ఊೞ೚೛೟೐೜.ర.ల

ି ఊೞ೚೛ ೙ೠ೘.

ఊೞ೚೛ ೐೜.ర.ల

∗ 100%     (4.7)  

 
To verify this formula that describes these 24 cases, the percentual differences are plotted 
according to their numerical optimal stiffness values and can be seen in Figure 79. 
 

 
Figure 79: Absolute percentual difference between new formula and numerical values 

The percentual differences are expressed in their absolute values. The mean value of these 
percentual differences is 15.6% . 
 
A second way to verify the new formulation is to plot these results on the same graph which 
was used to start this investigation. This plot can be seen in Figure 80. 
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On this chart it is clearly visible that there is a good correlation between the numerical 
obtained results and the results obtained via eq. (4.6). It is also visible that the described trend 
of the new formulation is always on the conservative side and thus on the safe side.  
 
To further show that the eq. (4.6) does not underestimate the optimal stiffness, the percentual 
difference is shown between the values obtained using eq. (4.6) and the numerically obtained 
values. When the points are above the x-axis, the optimal stiffness is overestimated. When 
the points are below the x-axis, the optimal stiffness is underestimated. This can be seen in 
Figure 81. The associated values can be found in Table 17. 
 
Table 17: Percentual difference from new formulation with EC  for each case 

Point 
number Proc. Difference 

 
Point 

number Proc. Difference 
 

Point 
number Proc. Difference 

1 7.1%  9 7.4%  17 1.1% 
2 7.1%  10 44.6%  18 26.4% 
3 16.6%  11 5.0%  19 -1.9% 
4 38.2%  12 40.0%  20 12.1% 
5 4.0%  13 6.8%  21 26.0% 
6 30.0%  14 18.7%  22 26.0% 
7 3.5%  15 14.7%  23 -35.3% 
8 7.8%  16 14.7%  24 7.8% 

 

 

 
As can be seen on Figure 81 and in Table 17, there is an overestimation made for 22 of the 24 
researched points. This proves that the formulation is conservative and can be used for both 
two and three stiffener cases. The two points that are underestimated by eq. (4.6) are points 
19 and 23. Point 19 only has an underestimation of 1.9% and can be neglected. On the other 
hand, point 23 has an underestimation of 35.3 %. This is not a neglectable difference. This 
point can be defined as an outlier because it has a significant negative deviation. This is the 
only point where such a significant deviation in the negative way can be observed. 
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Figure 81: Percentual difference from new formulation with EC  for each case (LBA) 
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4.5.4.2 Testing of validity in one stiffener case 
 
The new formulation is now validated for the two and three stiffener cases. In this section, the 
validity of the formulation will be checked for the one stiffener cases. Before doing so, some 
remarks should be given regarding the one stiffener cases. The formulation that is created is 
only validated when the failure is happening in the upper subpanel. This was the case for both 
the two and three stiffener cases. When using this formula for the one stiffener cases, one 
should be careful about where the failure would take place. If the 𝑏ଵ value is chosen low and 
the height of the web is chosen high, the failure will be situated in the lower subpanel. This 
kind of failure is not in the scope of this formulation. This is different in comparison to the two 
and three stiffener cases. This is because in those cases the stiffeners were uniformly placed 
along the web. This caused that the failure would always happen in the directly loaded 
subpanel.  
 
The validation will therefore be done for a large 𝑏ଵ value, namely 𝑏ଵ = 800. This is the same 
case that was used in the research of the parameter 𝑡௪ with the one stiffener cases. The 
geometrical parameters can therefore be found in Table 18. The validation will be done for 
the cases that were obtained using the LBA method. In Figure 82, the trend of the new 
formulation is visualized, together with the points of the one, two and three stiffener cases. 
 
Table 18: Points used for validation 

Point 
number 

𝑏ଵ (mm) # stiffeners 𝑡௪ (mm) 𝛾௦_௢௣௧_௡௨௠ 𝛾௦_௢௣௧_௘௤.(ସ.଺) Perc. Diff. 

25 800 1 6 750 785 4.5% 
26 800 1 9 400 441 9.3% 
27 800 1 18 140 97 -44.2% 

 
 

 
Figure 82: Points used for validation of new formulation (LBA) 
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The formulation for this specific case of the one stiffener is correctly described by this new 
formulation. For point 25 and point 26, there is a slightly overestimation of the optimal 
stiffness which falls within an acceptable range. Point 27 has a underestimation 44.2 %, which 
is significant.  
 

4.5.5 New formulation for optimal stiffness – GMNIA method 
 
The same process, as described above, is repeated for the GMNIA method.  
Figure 83 shows the used points for determining the optimal stiffness formula. All of these 
points were the highest values between the two and three stiffener cases in order to make a 
conservative formulation. 
 

Figure 83: Optimal stiffness (GMNIA) in function of the ratio 𝑏ଵ/𝑡௪ (max. values) 

 
In order to describe the observed trends, the slopes of the four trendlines were calculated. 
These values can be found in Table 19. To establish a new formulation for the optimal stiffness, 
a link between the values of these slopes should be found. To do that, these values of the 
slopes were plotted together with their corresponding value of 𝑏ଵ. This graph can be found in 
Figure 84.  
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Table 19: Slope of the four trendlines 

𝑏ଵ (mm) slope 
400 20,3 
500 15,0 
600 9,0 
800 5,3 

 
 
 
 
 
 
 
Figure 84 shows a clear ଵ

௕ଵ
 – trend. This means there is an inversely proportional connection 

between the depth of the loaded subpanel and the pace at which the optimum stiffness 
increases when the 𝑏ଵ/𝑡௪ – ratio increases. This is exactly the same trend which was observed 
by the LBA method. The following formula was made to describe this trend. 
 

𝑠𝑙𝑜𝑝𝑒 =
ଷ∗ଵ଴ల

௕భ
భ.వలఴ        (4.8) 

 
From this relation, one can concluded that the slope gets very low for a high depth of the 
loaded subpanel, but never goes to zero or less. This means that an increase of the stiffness 
of a stiffener always has an impact with smaller web thicknesses. But this impact becomes 
very small when the 𝑏ଵ value is very high. 
 
The next part of the equation is the intersection point with the y-axis. This point is searched 
for the four linear trendlines. However, a function could not be found to describe these points 
due to the scatter in the results from the GMNIA. Therefore, the maximum value was taken 
to determine the intersection point with the y-axis. The maximum value was 135. If we take 
this value, there is only a minor part of the researched points that are slightly underestimated 
(5.1%) and the average percentual difference is within proper limits (30%). The formula for 
the optimal stiffness, applicable on the GMNIA formulation, is given in eq. (4.9). 
 

𝛾௦௧,௢௣௧,ீெேூ஺ = 𝑠𝑙𝑜𝑝𝑒 ∗
𝑏ଵ

𝑡௪
+ 𝑏 

 

𝛾௦௧,௢௣௧,ீெேூ஺ =
3 ∗ 10଺

𝑏ଵ
ଵ.ଽ଺଼ ∗

𝑏ଵ

𝑡௪
+ 135 

 

𝛾௦௧,௢௣௧,ீெேூ஺ = 𝑏ଵ ∗ ቀ
ଷ∗ଵ଴ల

௕భ
భ.వలఴ∗௧ೢ

ቁ + 135      (4.9) 

 
Therefore, eq. (4.9) now describes the maximum values for the stiffness of a stiffener 
depending on the height of the loaded subpanel and on the thickness of the web, 
independently on the amount of stiffeners. The next part is going to make a comparison 
between the 24 cases which were numerically found and between this formulation described 
in eq. (4.9). 
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4.5.5.1 Verification of the new formulation 
 
In this section, the new formulated formula for the GMNIA will be verified. This is done in the 
same way as described in section 4.5.4.1. In Table 20, all of the researched points can be seen 
together with their numerically obtained optimal stiffness, the optimal stiffness according to 
eq. (4.9) and the percentual difference between these two values. In Figure 85, the percentual 
differences are plotted with their corresponding point number. The mean value of all the 
percentual differences is also marked on this graph.  
 
 
Table 20: Percentual difference between new formula and numerical values (GMNIA) 

Point 
number 

𝑏ଵ (mm) # stiffeners 𝑡௪ (mm) 𝛾௦,௢௣௧,௡௨௠ 𝛾௦,௢௣௧,௘௤.(ସ.ଽ) Perc. Diff. 

28 400 2 6 1500 1649 9.0% 
29 400 3 6 1300 1649 21.2% 
30 400 2 9 800 1144 30.1% 
31 400 3 9 675 1144 41.0% 
32 400 2 18 450 640 29.7% 
33 400 3 18 600 640 6.2% 
34 500 2 6 1100 1355 18.8% 
35 500 3 6 1200 1355 11.4% 
36 500 2 9 600 948 36.7% 
37 500 3 9 400 948 57.8% 
38 500 2 18 200 542 63.1% 
39 500 3 18 365 542 32.6% 
40 600 2 6 1100 1158 5.0% 
41 600 3 6 900 1158 22.3% 
42 600 2 9 600 817 26.5% 
43 600 3 9 478 817 41.5% 
44 600 2 18 500 476 - 5.1% 
45 600 3 18 500 476 - 5.1% 
46 800 2 6 747 909 17.8% 
47 800 3 6 775 909 14.7% 
48 800 2 9 330 651 49.3% 
49 800 3 9 220 651 66.2% 
50 800 2 18 300 393 23.7% 
51 800 3 18 60 393 84.7% 
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Figure 85: Percentual difference between new formula and numerical values (GMNIA) 

 
As stated before, there are only two cases that have a slightly underestimation of both 5.1%. 
The rest of the points are all overestimated and thus on the conservative side. The average 
percentual difference is 30.0%. This is higher than the accuracy level obtained with the LBA 
(15.6%). This is due to the fact that the GMNIA had a lot of scatter in its data compared to the 
data obtained with the LBA. The newly made formulation is now again plotted together with 
the original obtained numerical data. This plot can be seen in Figure 86 . On this plot, it can be 
clearly seen that the new formulation is conservative for almost all of the observed values.  
 

  
 

 

 

 

 
Figure 86: Optimal stiffness (GMNIA) in function of the ratio 𝑏ଵ/𝑡௪ 
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4.5.5.2 Testing of validity in one stiffener cases 
 
In the same way as in the LBA analysis the validity of the new formulation is tested on the one 
stiffener cases. The same restrictions regarding the failure mode, as mentioned in section 
4.5.4.2, also apply here.  
 
Table 21: Points used for validation 

Point 
number 𝑏ଵ # stiffeners 𝑡௪ 𝑏ଵ/𝑡௪ 𝛾௦,௢௣௧,௡௨௠ 𝛾௦,௢௣௧,௘௤.(ସ.ଽ) Perc. Diff. 

52 800 1 6 135 500 909 45.0% 
53 800 1 9 90 300 651 53.9% 
54 800 1 14 57 175 467 62.5% 
55 800 1 16 50 125 425 70.6% 
56 800 1 18 44 100 393 74.6% 

 
 
 
From Table 21 and Figure 87 one can conclude that the absolute values are overestimated, 
this with an average of 61.3%. The trend however is correctly described by the new 
formulation. We can thus state that the formula is also valid for the one stiffener cases, 
although there has to be mentioned that there is a significant overestimation of the optimal 
stiffness. 
 
 
 

 
Figure 87: Points used for validation one stiffener cases (GMNIA) 
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4.5.6 Comparison formulation LBA vs. GMNIA 
 
When looking at the results of Table 16 and Table 20, one can see that the values obtained 
with the GMNIA and the LBA numerical analysis are matching when the thickness of the web 
is 6mm or 9mm. However, when the thickness is 18mm, the values between the GMNIA and 
LBA are not corresponding to each other. The LBA underestimates the optimal stiffnesses of 
these points. This can be explained by the fact that the system does not fails elastically 
anymore when the thickness of the web is 18mm. At that thickness, the system fails plastically. 
Therefore, a higher stiffness of the stiffener is needed in order to let the system fail plastically. 
This phenomena can also be seen when observing the two new equations that were made, 
once based on the LBA and once based on the GMNIA. The plots of these two equations can 
be seen in Figure 88. 
 

 
Figure 88: Plot of newly formed equations, LBA and GMNIA 

For a high 𝑏ଵ/𝑡௪ – ratio, the LBA and GMNIA values for the optimal stiffness are close together. 
This is the case for all of the different 𝑏ଵ – values. When decreasing the 𝑏ଵ/𝑡௪– ratio, the 
difference between the points of the optimal stiffness of the GMNIA and LBA increases. This 
is applicable for all of the 𝑏ଵ – values. This is in agreement with the numerical founded results, 
as stated before.  
 
From this graph, one can conclude that the GMNIA based formulation gives the highest values 
of the optimal stiffness. This formulation will thus be chosen as the most accurate one. It can 
thus be stated that equation 4.9 gives the optimal stiffness in function of the 𝑏ଵ/𝑡௪– ratio. 
This equation defines whether the stiffener can be classified as “strong”, when the stiffness is 
the same or higher than the one defined in equation 4.9, or “weak”, when the stiffness is lower 
than the one defined in equation 4.9.   
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5. Conclusion 
 
In this thesis, a research related to the patch load resistance of steel girders was conducted. 
This phenomon is critical when installing steel bridges via the incremental launching method. 
The EN 1993-1-5 formulation of this problem is not efficient and underestimates the patch 
load resistance of steel girders. Therefore, a new and improved equation for this problem was 
created, which separates the different failure modes which can occur. This new equation is 
only applicable when the failure mode of the girder is a local buckling failure mode. In order 
to achieve this, criteria should be made which define what a “strong” stiffener is. The 
Eurocode has such a formulation, but this formulation is not precise enough and does not 
include all of the important parameters. Therefore, a new equation was made in this thesis to 
define what a “strong” stiffener is.  
 
First of all, this thesis handles a parametric study of four relevant parameters which are: the 
length of the girder (𝑎), the loaded length of the patch load (𝑠௦), the height of the web (ℎ௪) 
and the thickness of the web (𝑡௪). These parameters were studied in function of girders with 
one stiffener. There were also two different failure modes tested. First, the stiffener was 
placed high on the web so that the failure would happen in the lower subpanel. Afterwards, 
the stiffener was placed lower on the web so that the failure would happen in the upper 
subpanel. Each parameter and failure mode was tested using the linear buckling analysis (LBA) 
and using  the  geometrically and material non-linear imperfection analysis (GMNIA). 𝑠௦ and 𝑎 
were observed as having no influence on the optimal stiffness. For 𝑠௦, this was in agreement 
with the Eurocode formulation for the optimal stiffness. For the length of the girder, this 
finding is in contradiction with the Eurocode. The Eurocode formulation stated that the length 
of the girder had an 1/𝑎 increasing type of influence. Thus the length of the girder should be 
excluded from the formulation since it has no influence according to the numerically founded 
results. The next investigated parameter was ℎ௪. Here, a linear decreasing type of influence 
was founded in the numerical results. The Eurocode however suggests a 1/ℎ௪ decreasing type 
of influence. The height of the web has an influence on the optimal stiffness according to the 
Eurocode formulation, which is true, but is wrongfully described. The last of the four 
parameters is the thickness of the web. According to the Eurocode formulation, the thickness 
of the web has no influence. This is in contradiction with the numerical found results. The 
thickness of the web was found to have a 1/𝑡௪ decreasing type of influence on the optimal 
stiffness of the stiffener. Therefore this parameter should be included in the formulation of 
the optimal stiffness. This founding was the base for the next step in the research. 
 
In the next part of the research, a relationship was founded to describe the optimal stiffness 
independent of the amount of stiffeners and depending on the thickness of the web. 
Therefore, the ratio of the length of the loaded subpanel (𝑏ଵ) over the thickness of the web 
(𝑡௪) was researched in function of the optimal stiffness. This was done for cases with two and 
three stiffeners. Using this ratio, similar numerically obtained optimal stiffnesses were found 
for the two and three stiffener cases. Therefrom was concluded that, using this ratio, the 
optimal stiffness could be described independent of the amount of stiffeners. This relationship 
was researched for different values of 𝑏ଵ. This research discovered that if the height of the 
loaded subpanel is low, increasing the thickness of the web has a higher influence on the 
optimal stiffness than when the height of the loaded subpanel was high. The influence 
between the optimal stiffness and between the ratio is increasing linearly when keeping the 
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𝑏ଵvalue constant. This relationship was converted into a formula, once for the LBA and once 
for the GMNIA. The GMNIA formulation gives the highest optimal stiffnesses and thus was 
chosen as the formula to describe the optimal stiffness of a stiffener. Using this formula, one 
can describe if a stiffener is “weak” or “strong” . This is important to predict the failure mode 
that will happen. If a stiffener is “weak”, a global buckling failure mode will occur. If a stiffener 
is “strong”, with a stiffness equal or higher than the optimal one, a local buckling failure mode 
will happen. This classification helps to further improve the design method of determining the 
patch load resistance. 
 
Even though this thesis gives a new proposal for the classification of stiffeners, a lot of further 
research needs to be done. The trends observed for the 𝑏ଵ/𝑡௪ ratio in function of the optimal 
stiffness are determined using only three different values for the thickness of the web and 
four different values for the height of the loaded subpanel. The proposed equation (eq. 4.9) 
,for determining the optimal stiffness of a longitudinal stiffener, could be improved if more 
points would be investigated. When doing this, the trends will be more clear and more 
accurate which would improve the accuracy of the proposed equation. There is also a second 
observation that could be clarified by adding more points into the investigation. There is a 
change in failure mode noticeable between the cases where 𝑡௪ = 18mm and between the 
cases where 𝑡௪ = 6mm or 9mm. For the 6mm and 9mm cases, there is an elastic failure mode 
visible. This can be seen by the fact that the optimal stiffness points for the LBA and GMNIA 
methods are almost identical for these thicknesses of the web. When reviewing the thickness 
of the web for 18mm, the GMNIA method points gives a higher optimal stiffness than the LBA 
method points. This can be explained by the fact that there is a plastic failure happening when 
the thickness of the web becomes thicker. The point where this failure mode changes could 
be determined more precisely, when more points are investigated. This could also help to 
further predict the precise failure mode which will occur. 
 
It is verified in this study that the presented equation is valid for one, two and three stiffeners. 
However, when using only one stiffener the presented equation overestimates the optimal 
stiffness which shows that the equation could still be improved in this case, despite the fact 
that most bridges are built using more than one stiffener. It could also be verified in further 
research if the equation is usable for girders having more than three longitudinal stiffeners. 
Another limitation that is applicable on this formulation is that it is only valid for one stiffener 
cases when the failure is happening in the upper subpanel. This limitation could be researched 
more in depth and criteria could be made to specify this domain. 
 
This investigation also proved that ℎ௪ had an impact on the patch loading resistance of 
longitudinally stiffened girders. Here it may be concluded that the formulation now presented 
in the Eurocode describes this influence correctly, but gives a gross underestimation of its 
optimal stiffness. This parameter should be investigated more in depth to make a new 
formulation based on this parameter.  
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