Master's Thesis Engineering Technology

2019-2020

SHEAR REINFORCEMENT OF LONGITUDINAL CRACKED GLUED LAMINATED TIMBER BEAMS USING CARBON FIBRE REINFORCED POLYMERS

Steven Liberloo

Master of Civil Engineering Technology

Due to aging or errors during calculation or execution, strength of buildings can become insufficient. Rehabilitation using FRPs can restore these buildings with a reduction in cost, waste and destruction of historical heritage compared to demolition and rebuilding. However, a lack of research for FRP application with timber prevents engineers from accurately predicting strength.

- Failure of the bond in surface of the timber or resin
- Results from testing do not fit existing equations, possibly due to limited tested configurations or lack of appropriate coefficient for glulam
- Existing equations do not fit results obtained from testing

UHASSELT

KU LEUVEN

CONCLUSION

While the 3-point bending test proves that CFRP reinforcement against shear can greatly improve a beam's strength, existing research cannot accurately predict failure strength. Future research could test more configurations with different dimensions, FRP types and timber types to reach an accurate numerical model.

Supervisors / Cosupervisors:

(UB)

Lyon 1

Prof. Emmanuel Ferrier Prof. dr. Ir. Jose Alexandre Gouveia Henriques Associate Prof. Cecile Grazide