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Abstract. Classification is an important task within machine learning,
a generalization of traditional classification is multi-label classification.
In multi-label classification, an instance is associated with a subset of
labels, this allows modelling of a broader range of real-world problems.
However, multi-label datasets introduce two major challenges, the curse
of dimensionality and label imbalances. These challenges directly reduce
the scalability and predictive performance of multi-label classifiers. In or-
der to overcome these challenges, preprocessing techniques can be applied
to reduce the dimensionality and balance of the dataset. A large variety
of preprocessing techniques are presented within the literature. Different
methods correspond to different conceptual ideas, assumptions or algo-
rithmic properties. Therefore, in this thesis, a taxonomy of preprocessing
techniques for multi-label classification is constructed by reviewing ex-
isting literature. Each categorization is described and their respective
techniques are reviewed.

Keywords: multi-label classification · preprocessing · dimensionality re-
duction · imbalanced learning

1 Introduction

Technological advancements have increased our ability to process, storage and
transmit data; consequently, the availability of data was never higher [94]. Nowa-
days, digital applications have the increasing need to discover knowledge from
this collected data [50]. To satisfy this need, the field of machine learning has
transitioned from an “academic discipline” to that of an “applied science” [63].
One of the most important tasks within machine learning is that of automati-
cally classifying data [117]. Classification is the task of training a computational
model using a set of labeled instances in order to correctly classify, never seen
before, unlabeled instances [2]. However, traditional classification is not appli-
cable to all real-world problems, a broad range of digital applications such as
text categorization [101, 173], image annotation [64, 11], scene classification [12],
video segmentation [42], protein function classification [36, 31] and music classi-
fication [90, 144], all have data instances that are naturally associated with more
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than one class label. In order to classify these real-world problems, multi-label
classification was introduced. Multi-label classifiers have the ability to predict
a subset of labels and thus are capable of modelling real-world problems with
data instances that are naturally associated with more than one class label.
The effectiveness and efficiency of multi-label classification is, like any classifica-
tion algorithm, closely related to the inherent quality of the training data [125].
Unfortunately multi-label datasets whether they are real-world or synthetic, suf-
fer from high-dimensionality in both feature and label spaces [18]. Additionally
they have an intrinsically imbalanced nature [21]. These properties increase the
difficulty of correctly classifying multi-label datasets. Therefore, the use of pre-
processing techniques play a key role in the multi-label classification process.
The goal behind preprocessing is to increase the data quality, specifically for
multi-label classification. This consists of applying data reduction techniques to
reduce the data dimensionality and balance the datasets.

In this paper, we hope to provide a starting point and reference for researchers
interested in preprocessing techniques for multi-label classification. Therefore we
present a taxonomy of preprocessing techniques taking into account the nature
of multi-label datasets. More specifically we focus on data reduction techniques
that alleviate the negative effects of high-dimensionality and label imbalance
learning. The remainder of this paper is structured as follows. In Section 2 we
briefly describe preprocessing and multi-label classification and their role within
the Knowledge Discovery in Databases process. Followed by a theoretical de-
scription of the challenges multi-label learning in Section 3. Section 4 provides
a taxonomy of methods for overcoming the challenges described in Section 3.
Section 5 discusses the categorization of dimensionality reduction techniques
and reviews existing techniques. In Section 6 we elaborate further on the cat-
egorization of resampling techniques and review existing techniques within the
literature. Finally, in Section 7, we make our concluding remarks.

2 Preliminary

Preprocessing and multi-label classification are techniques situated within the
Knowledge Discovery in Databases process. The KDD process is the nontrivial
process of identifying valid, novel, potentially useful and ultimately understand-
able patterns in data [37]. The KDD process can be divided into stages, there are
several methods to make this division, each with advantages and disadvantages
[50]. In this paper we adopt the categorization of these stages according to [40]
into six stages:

1. Problem Specification,
2. Problem Understanding,
3. Data Preprocessing,
4. Data Mining,
5. Evaluation,
6. Result Exploitation
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The KDD process can involve significant iteration and can contain loops be-
tween two stages [50]. In the following subsections we briefly describe the data
preprocessing stage and multi-label classification problem in the data mining
stage.

2.1 Data Preprocessing

Real-world data tends to be dirty, incomplete, and inconsistent [56, 50], often
it contains a lot of irrelevant, redundant, and noisy information [89]. It can be
stated that real-world data is often of low quality [56, 89, 120] and as is well-
known, the effectiveness and efficiency of the learning algorithm in the data
mining stage is dependent on the quality of data. Low quality data leads to
low-quality performance in the data mining stage and thus to a lower quality
of knowledge in general [120]. Hence, data preprocessing is a fundamental stage
in the KDD process, wherein preprocessing techniques are applied to the data
to improve data quality. As a result, the accuracy and efficiency of the learning,
conducted in the subsequent data mining stage, are improved [50, 57]. In [40],
data preprocessing methods are divided into two categories: data preparation
[118, 147] and data reduction [118, 147, 99]. The former, data preparation, com-
promises the set of techniques that initialize the raw data properly to serve as
input for a certain learning algorithm in the data mining stage [40]. Without
initializing the data, the learning algorithm might not work. Or might work in-
correctly such that the results will not make sense and thus isn’t considered as
accurate knowledge. Data preparation include data transformation, integration,
cleaning, and normalization methods. The latter, data reduction, comprises the
set of techniques that aim to simplify and clean the raw data and thus obtain a
reduced representation of the original data [40]. Although the learning algorithm
in the data mining stage will work without applying data reduction, major is-
sues arise when data reduction is skipped in the preprocessing stage. In short,
applying data reduction methods enables learning algorithms to learn faster and
perform more accurate. In this paper we focus on data reduction preprocessing
methods since these enhance the performance of learning algorithms needed to
solve multi-label classification tasks.

2.2 Multi-Label Classification

In general, classification within the data mining stage can be stated as the pro-
cess of predicting one or more class labels for an unseen instance described by a
vector of feature values by analyzing the training set [2]. In traditional classifi-
cation these training sets are composed of a set of input features and a unique
value in the output attribute, the class or label [9, 175]. However, in Multi-Label
Classification (MLC) [57, 146], the processed or predicted instance is not asso-
ciated with a single class label, instead each instance can belong to a subset of
class labels at the same time. Multi-label classification is thus, a generalization
of traditional classification, this allows it to be applicable to a wide range of
real-life domains such as: bioinformatics [36, 31, 88, 174], emotion analysis [7],
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text analysis [101, 173, 73, 108, 169, 182], image analysis [64, 11], video analysis
[12, 42], music analysis [90, 144], among others. Most MLC methods follow one
of two main approaches to deal with the multi-label classification problem [147]:

– The problem transformation approach [134, 147]: which transforms the multi-
label problem into one or several single-label classification or regression prob-
lems. This transformation allows the use of existing single-label classification
algorithms.

– The algorithm adaptation approach [134, 147]: which adapt existing algo-
rithms to make them able to handle multi-label data directly.

A review of MLC learning algorithms is provided in [72, 175]. Although multi-
label classification allows the modelling of a wide variety of real-world problems,
it also increases the difficulty of correctly classifying the patterns in the data. The
additional challenges that multi-label modelling bring are discussed in Section
3.

3 MLC Challenges

In general, all challenges faced by multi-label classification are challenges that
pre-existed within traditional classification problems. However, they are further
enhanced due to the fact that in multi-label classification, each instance can
be associated with more than one class. In general two primary challenges are
associated with multi-label classification: curse of dimensionality and label im-
balance.

The curse of dimensionality [6, 67, 170, 171] refers to problems derived from
the presence of many dimensions. As the number of dimensions increases, so
does the volume of the solution space or search space. As a consequence, data
points in this volume tend to be sparse as the dimensions grow, and distances
between them tend to be less significant. Thus, to draw meaningful conclusions
generally a larger collection of data points is needed. This implies more time
to build the classifiers and usually a degraded predictive performance by most
algorithms. Reference [57] states that multi-label classification has to account for
three possible high dimensionality spaces: instance space, feature space and label
space. While traditional classification can suffer from the curse of dimensionality
in the instance and feature space, the curse of dimensionality affects multi-label
classification even more due to the addition a third high dimensional label space.
Multi-label datasets often have hundreds or even thousands of labels resulting
in a high-dimensional label space that increases the solution space even further
and enhances the curse of dimensionality.

The label imbalance problem emerges when there are many instances be-
longing to some classes (majority classes), but only a few representing others
(minority classes). Learning from an imbalanced dataset [53] is a well-known
and researched problem in a traditional non-multi-label classification context.
In general, classifiers tend to underperform when learning from an imbalanced
dataset, this can be contributed to their design. Aimed to reduce the global
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error rate, classifiers favor the majority class, labeling new instances with this
class at the expense of the minority class [63]. Once again, the multi-label clas-
sification context further enhances this problem, this can be explained due to
the fact that multi-label datasets have an intrinsically imbalanced nature, as
was experimentally validated by Charte et al. [21]. Meaning that although the
total number of distinct labels is usually large (high-dimensional label space),
the amount of instances associated to a label isn’t (sparseness). Additionally the
labels are correlated within the multi-label dataset.

4 Categorization for MLC preprocessing

Preprocessing techniques can overcome the aforementioned challenges. However,
there is a large variety of preprocessing techniques, which correspond to different
conceptual ideas, assumptions of their underlying model, or algorithmic proper-
ties. Therefore, in this section, we provide a taxonomy of multi-label classification
preprocessing techniques. A taxonomy helps to understand the variety of tech-
niques, their interrelation and grouping. In order to construct this taxonomy we
reviewed 147 articles, resulting in 91 reviewed techniques. Figure 1 presents our
proposed taxonomy, it consists of two data reduction preprocessing categories:
dimensionality reduction and resampling.

Dimensionality reduction techniques can be further divided into two cate-
gories, single space reduction and dual space reduction [112]. Single space reduc-
tion is split into two categories: feature space reduction and label space reduction.
The former processes the initial high-dimensional feature space into a reduced
feature space. It can be achieved using feature selection [48, 74, 105] or feature
extraction [47, 135] techniques. The latter processes the initial high-dimensional
label space into a reduced label space. It can be achieved using label selection
or label embedding techniques [162]. Dual space reduction consider both the
curse of dimensionality in the feature space and the sparseness problem in the
label space jointly by reducing dimensionality in both feature and label space.
In Section 5, we review dimensionality reduction approaches which aim at re-
ducing the number of features, labels, or both in order to overcome the curse of
dimensionality. Reducing dimensionality results in a reduction of the associated
computational burden and thus improving scaling properties of the classifiers
along with their predictive performances [132].

Resampling techniques can be further divided into two categories, oversam-
pling algorithms and undersampling algorithms [23]. Algorithms in the former
group produces new samples with the minority class, while the latter removes
instances linked to the majority class. In Section 6, we review resampling tech-
niques for multi-label imbalanced learning which aim to overcome the class im-
balance problem. Applying resampling techniques to an imbalanced dataset,
results in an improved classifier performance [22].
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5 Dimensionality Reduction

Dimensionality reduction techniques are imperative for dealing with the curse of
dimensionality and large data in general. Dimensionality reduction techniques
aim to reduce the number of features, labels, or both by obtaining a reduced
or compact representation of the original data and preserving the essence of the
original data [50, 100]. The reduction of features and/or labels has the goal to
alleviate the computation burden of the classifier, resulting in an improvement
of scaling properties and predictive performances [132].

As stated in Section 4, our proposed taxonomy further divides dimension-
ality reduction techniques into two categories, single space reduction and dual
space reduction [112]. In the following subsections we elaborate on each cate-
gory and the respective reduced dimensionality spaces. Furthermore, we review
preprocessing techniques for each category and further categorize where possible.

5.1 Single Space Reduction: Feature Space Reduction

Within traditional classification algorithms, the curse of dimensionality, is tra-
ditionally associated with the input feature space. As a consequence, literature
covers many proposed techniques to deal with this problem [47]. Many of the
traditional feature space reduction techniques can be adapted to multi-label data
[57]. In general and as visualized in Figure 2, feature space reduction techniques

Fig. 2. Process of feature space reduction.

process the initial large feature space into a reduced feature space. This reduced
feature space can be later used in the data mining stage to make a classification
[132]. Note that although these methods can successfully reduce the dimension-
ality of the feature space, the resulting multi-label dataset will still suffer from
high dimensionality in the label space. Hence, the classification task might only
benefit from a sub-optimal improvement in terms of scaling properties and pre-
dictive performances.

Feature space reduction can either be achieved using feature selection [48, 74,
105] or feature extraction [47, 135] techniques. Both approaches can effectively
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reduce data dimensionality by removing irrelevant and/or redundant features,
speeding up learning algorithms without sacrificing performance [137]. The dif-
ference between the two categories lies in the reduction and representation of the
original dataset. Feature selection approach evaluates the relevance of attributes
already present in the original data, the features themselves remain unchanged.
Feature Extraction approach [47] generates new features from the original fea-
tures by transforming data into a low-dimensional space while preserving its
structure.

Feature Selection

Feature selection is a preprocessing approach that aims to find a small subset of
features that describes the dataset as well as, or even better than, the original set
of features does. It achieves this by selecting features, which provides the most
useful information to the learning algorithm. The result of feature selection is a
subset of features from the original set of features [95]. Feature selection can be
categorized according to different perspectives [72]: the label perspective, search
strategy perspective, interaction with learning algorithm perspective, and data
format perspective. For our taxonomy we closely followed the categorization
proposed in [116]. Therefore first a division is made based on the data format
perspective into: a direct approach and transformation approach. Thereafter
we consider the interaction with the learning algorithm to make a selection
of techniques applicable to multi-label classification. The interaction perspective
divides feature selection techniques in three main approaches: the filter, wrapper
and embedded approach [72]. Only the first two approaches can be performed in
the data preprocessing step; therefore, we consider the embedded approach out
of the scope of this paper [68].

– Filter feature selection methods use general properties of the dataset to re-
move irrelevant and/or redundant features from it, regardless of the learning
algorithm [57]. Since they rely exclusively on the original dataset, the selec-
tion process remains unbiased. The advantage of being classifier independent
is that the selection process only needs to be performed once for all learning
algorithms [122]. However, being classifier independent is conjointly a major
disadvantage of the filter method. That is, the selection process ignores the
effects of the selected features on the performance of a learning algorithm
and thus the selected features may be sub-optimal for a given classification
algorithm [141, 138].

– Wrapper feature selection methods; on the other hand, are designed to op-
timize the subset of features internally using a given learning algorithm in
the evaluation process [57, 136]. This makes the approach classifier depen-
dent and thus biases the learning algorithm to influence the feature selection
method. Consequently, the wrapper approach has the advantage of selecting
features that have the highest impact on the performance of the learning
algorithm. The downside of being classifier dependent is the associated high
computational cost, since for each feature set the learning algorithm has to
be called [141].
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Usually filter methods are more efficient and less complex to implement in com-
parison to wrapper methods, where as wrapper methods provide better perfor-
mance [68, 136].

The transformation approach is a two-step process that consists of trans-
forming the multi-label dataset into single-label datasets before applying a tra-
ditional feature selection technique. Note that after the transformation, we can
only use traditional feature selection methods of the filter category. The process
is described in Figure 3, initially the multi-label data is converted into a non-
multi-label dataset. This is achieved by using a data transformation approach,
note that this data transformation has some major drawbacks. Firstly, the label
correlations are often ignored and secondly, the computational costs increase ex-
ponentially with size of the label space [3]. After the data transformation, the
data consist out of instances with each a set of independent features and one
dependent label. Then, a traditional (non-multi-label) feature selection method
can be used to evaluate each feature or subset of features. This is done using a
collection of metrics, the result is a list of selected features that can be used to
remove the non-selected features from the the original multi-label dataset.

Fig. 3. Multi-label feature selection using the transformation approach.

The use of traditional (single-label) feature selection methods is a major
advantage of the transformation approach since these methods have been thor-
oughly studied and perfected over the last decades. In the literature, we find
various transformation strategies combined with traditional feature selection
approaches. Below we briefly discuss the most important transformation tech-
niques, afterwards we review the existing literature on transformation based
multi-label feature selection.

– The Binary Relevance or BR transformation [146] transforms the multi-
label dataset into a set of binary datasets or sub-problems. Afterwards the
discriminative power of features to each individual label is evaluated. Note
that the label is evaluated in isolation from the rest of the labels. Lastly
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an aggregation strategy is used to obtain a global ranking for each feature.
Features that are above a certain threshold are chosen.

– Label Power set or LP transformation [146] transform the multi-label dataset
into a multi-class dataset or sub-problem. It achieves this by mapping each
distinct label combination as class identifier in the corresponding multi-class
problem. Subsequently feature selection is performed using traditional (non-
multi-label) algorithms.

– Pruned Problem Transformation or PPT [121] is an adaptation of LP. After
the multi-label dataset is converted into a multi-class dataset, pruning is used
to discard instances with classes that occur too infrequently by considering
a predefined threshold. This ensures that all classes are represented by at
least a number of instances equal to a preset threshold.

In feature selection, feature-label dependency should be maximized so that
the remaining features give the best description of the label space. At the same
time, feature-feature dependency should be minimized so that redundant fea-
tures are removed [72, 91]. It is generally agreed upon that BR-based transforma-
tion techniques outperform LP-based transformation techniques [115, 128, 145].
A disadvantage of BR-based transformations is that they do not consider po-
tential label-label dependencies, which is a factor assumed to have an important
role in improving performance of multi-label selection. However this assumption
is controversial within the literature, several papers confirm the positive impact
of taking label dependency in consideration [85, 86, 119]. Whereas several pa-
pers claim the opposite [43, 72]. On the other hand LP-based transformations
do take into account label correlations, but struggle to deal with large label
spaces. As the label space grows, so does the high computational cost. On top
of that the LP based transformations are prone to cause imbalanced multi-class
data when faced with large label-spaces [3]. To overcome these disadvantages
of LP-based transformations, PPT-based transformations were proposed. Note
that PPT-based transformation are in itself irreversible and may result in loss of
class information [91]. Below we review the existing literature concerning multi-
label feature selection using a transformation based approach. An overview of
the reviewed methods can be found in Table 1.

The first example of using a data tranformation approach for multi-label
feature selection was given in [181]. The author combines a data transforma-
tion along with twelve single-label feature selection measures to evaluate the
usefulness of features. The feature selection measures used in the study are:

– Laplacian Score [54] is an univariate feature weighting algorithm for unsuper-
vised learning that preserves the data manifold structure. In Laplacian Score,
features are evaluated independently. Therefore, the optimization problem
defined above can be solved by greedily picking the top features, which have
the minimal Laplacian Score values. Since features are evaluated individu-
ally, Laplacian Score cannot handle feature redundancy.

– SPEC [180] is an univariate feature weighting algorithm for supervised and
unsupervised learning that extends the Laplacian Score. In SPEC, the fea-
ture relevance is measured by three different criteria to assign similar values
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to instances that are near each other. Note that SPEC also evaluates features
individually; therefore, it cannot handle feature redundancy

– Fisher score [35] is an univariate feature weighting algorithm for supervised
learning that is a special case of Laplacian Score. Fisher Score assign similar
values to the samples from the same class and different values to samples
from different classes. By greedily selecting the features with the largest
Fisher Scores, the top k features can be obtained. Note that Fisher Score
also evaluates features individually, therefore it cannot handle feature redun-
dancy.

– ReliefF [123] is an univariate feature weighting algorithm for supervised
learning. It uses a distance measurement as evaluation criterion, to select
features that contribute to the seperation of samples.

– t-score [28] is an univariate feature weighting algorithm for supervised learn-
ing. It is used for binary problems that have unequal sample size and unequal
variance.

– F-score [30] is an univariate feature weighting algorithm for supervised learn-
ing. It is used to test if a feature is able to separate samples well from different
classes by considering between class variance and within class variance.

– Chi-square Score [96] is an univariate feature weighting algorithm for su-
pervised learning. Chi-square is used in feature selection as a test of inde-
pendence to assess whether the class label is independent of a particular
feature.

– Gini Index [129] is an univariate feature weighting algorithm for supervised
learning. It is used to quantify a feature’s ability to distinguish between
classes. The smaller the Gini Index, the more relevant the feature is. Since
the Gini Index evaluates features individually, it cannot handle feature re-
dundancy.

– Information Gain [164] is an univariate feature weighting algorithm for su-
pervised learning. It is used to measure the dependence between the feature
and the class label. The higher the Information Gain, the more relevant the
feature is. Since features are evaluated individually, Information Gain cannot
handle feature redundancy.

– Fast Correlation Based Filter (FCBF) [167] is a multivariate feature set algo-
rithm for supervised learning. FCBF measures the feature-class and feature-
feature correlation to find a subset of features that are highly correlated to
the class, but not highly correlated to the other features. FCBF evaluates
features jointly; therefore, FCBF is able to handle feature redundancy.

– Correlation-based Feature Selection (CFS) [49] is a multivariate feature set
algorithm for supervised learning. CFS uses a correlation based heuristic
to evaluate the worth of features. Meaning it calculates feature-class and
feature-feature correlations using symmetrical uncertainty and then selects
a subset of features using the Best First search with a stopping criterion. The
advantage of CFS is it selects the maximum relevant feature and avoids the
reintroduction of redundancy. But the drawback is that CFS cannot handle
problems where the class is numeric.
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– Minimum-Redundancy-Maximum-Relevance (MRMR) [114] is a multivari-
ate feature set algorithm for supervised learning. MRMR is based on mutual
information and measures correlation among features and correlation be-
tween features and group using this measure. It selects features that are
mutually far away from each other, while they still have ”high” correlation
to the classification variable.

In [144] Trohidis et al. automatically detect emotions in music using a multi-
label classification algorithm. The authors apply multi-label feature selection by
first transforming the multi-label problem with the LP method into a multi-class
problem. Subsequently the Chi-square Score [96] is used to rank the features.

Doquire et al. propose the PPT-MI method in [33] to improve the classifica-
tion performance of image annotation and gene function classification. PPT-MI
is a multi-label feature selection method using the Pruned Problem Transforma-
tion (PPT) [121] to transform the multi-label dataset into a multi-class dataset,
followed by a sequential forward selection with the Mutual information (MI)
[151] as search criterion. The paper extends the preliminary results that were
presented in [32] and proposes a way to automatically select the pruning param-
eter for PPT. The PPT-MI algorithm is empirically validated and show better
classification performance than PPT+CHI.

In [137] the authors propose the use of two data transformation approaches,
BR and LP, to transform the multi-label data into single-label data. Subse-
quently, ReliefF [80, 165] and Information Gain [164] are used as feature evalua-
tion measures for each label. The resulting methods are named BR-RF, LP-RF,
BR-IG and LP-IG. These methods are then experimentally valuated. The au-
thors conclude that the main advantage of ReliefF over other strictly univariate
measures is that it takes into account the effect of interacting features. As a
result, the ReliefF based algorithms, BR-RF and LP-RF are observed to outper-
form the LP-IG and BR-IG algorithms.

In [136] an algorithm, called Label Construction for Feature Selection (LCFS)
is proposed. LCFS uses a two-step process firstly it constructs new labels based
on pairwise relations between the original labels to augment the label set of the
original dataset with second-order information. Then the augmented dataset is
submitted to a feature selection algorithm based on BR and using the Informa-
tion Gain [164] measure to select relevant features. The experimental evaluation
of LCFS shows that LCFS outperforms classifiers without feature selection, as
well as random feature selection. Additionally, LCFS is competitive with IG-BR
at the cost of slightly increasing the computational burden due to the application
of a binary operator.

Gharroudi et al. [43] propose two wrapper multi-label feature selection meth-
ods, called Binary Relevance Random Forest (BRRF) and Random Forest Label
power-Set (RFLP). Both methods firstly transform the multi-label data using
BR and LP, respectively. Then, a feature selection method based on the random
forest paradigm [14] is applied. The experimental results of the study show that
BRRF performs significantly better than PMU, RFLP and PPT-MI. Although
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the proposed methods consider label dependence, the authors conclude that this
consideration is not significantly effective in multi-label feature selection.

In the study of Reyes et al. [122] the PPT-ReliefF method is proposed. Sim-
ilar to PPT-MI [32], PPT-ReliefF firstly uses the Pruned Problem Transforma-
tion (PPT) to transform the multi-label problem into a multi-class problem.
Subsequently, the ReliefF algorithm is used to measure and rank the features
according to their usefulness in distinguishing instances. In their experiments,
the authors show that PPT-ReliefF outperforms the BR-RF [137] and LP-RF
[137] algorithms. As well as improving the performance compared to classifiers
without feature selection.

In [72] twelve transformation based multi-label feature selection methods
(BR-RF, LP-RF, BR-IG, LP-IG, BR-FSCORE, LP-FSCORE, BR-FCBF, LP-
FCBF, BR-CHI, LP-CHI, BR-CFS and LP-CFS) were experimentally validated.
The authors conclude that it was not possible to find significant difference among
the methods.

The direct approach consists of feature selection techniques that deal directly
with multi-label data, meaning there is no need to transform the dataset. Direct
multi-label feature selection methods are often an extension or adaptation of
existing single-label feature selection methods. The process of direct multi-label
feature selection can be divided into two steps. First, a metric e.g. correlation co-
efficient [48, 66], mutual information [38, 133] is used to measure the importance
of candidate features and construct an objective function. Secondly, a search
strategy is constructed to solve the given optimization function [91]. In the fol-
lowing paragraphs, we review the literature concerning direct feature selection.

As far as we know, Zhang et al. [172] were the first to propose an adapta-
tion of the traditional näıve Bayes classifiers to multi-label datasets. The pro-
posal, named Multi-Label classification with Naive Bayes (MLNB), is a wrapper
method that incorporated a two-stage feature selection strategy. In the first stage
Principeal Component Analysis (PCA) [113] is employed for feature construc-
tion, subsequently in the second stage the Genetic Algorithm (GA) [149] is used
as a heuristic approach for feature selection. The fitness function of GA includes
both hamming loss and ranking loss. MLNB suffers from three disadvantages,
firstly, due to PCA being an unsupervised method, a degradation in classifier
performance can be expected when used with multi-label datasets [104]. Sec-
ondly, the GA-based algorithms consume much time to reach the optima and
may results in premature convergence [72]. Lastly the MLNB algorithm ignores
the label interdependence.

In [84], the well-known technique FCBF [167] is extended to the multi-label
setting. The authors propose an algorithm, called Multi-Label feature Ranker
(MLfR) that employs a graphical model and applies a symmetrical uncertainty
measure to represent the correlation and interdependence between all pairs of
features and labels. Subsequently, the spanning tree of the complete undirected
graph is computed. Then, a selection is performed by choosing the vertices corre-
sponding to features whose distance from the whole set of labels is lower or equal
to a given threshold. The proposed technique is evaluated and proved to achieve
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significantly better results than applying an MLC learning algorithm directly
without reducing the feature space. Moreover, the graph built by MLfR pro-
vides a valuable representation of the correlation and interdependence between
labels and features.

In Kong and Yu’s study [79] a new technique designed for graph classification
was proposed, called gMLC. The technique is based on an efficient search for
optimal subgraph features for graph objects with multiple labels, using a pro-
posed gHSIC criterion that takes into account the dependence of the subgraph
features with multiple labels of the graphs. Then, a branch-and-bound algorithm
is proposed to efficiently search for a compact set of subgraph feature that is use-
ful for the classification of graphs with multiple labels. The paper evaluates the
proposed technique on Graph data sets and compares it to a BR-IG technique
[137]. The results of this comparison favores the proposed gMLC technique.

Various adaptation of the ReliefF algorithm [80, 165] have been proposed for
multi-label feature selection. This can be contributed due to the fact that Relief
is one of the few algorithms capable of detecting feature dependencies [148]. Kong
et al. study [78] was the first to presents MReliefF, a Relief algorithm for multi-
label feature selection. Firstly, the MReliefF technique transforms the multi-label
problem into a set of pairwise multi-label 2-class problems. Then, the cases where
the “miss” and “hit” sets contain both classes are removed. A drawback of the
MReliefF algorithms is that it only partially takes into account label correlations.
In [109], ReliefF-ML is proposed. The ReliefF-ML extends ReliefF to assign
weights to features according to their discriminative power, the feature weight
reflects the ability of the feature to distinguish class labels. Finally, Reyes et al.
[122] propose two extensions of the ReliefF algorithm, named ReliefF-ML and
RReliefF-ML. The algorithms are extended to work in the multi-label learning
context directly. The ReliefF-ML algorithm uses the same approach as in [109].
While the RReliefF-ML is based on RReliefF, a variant of the classical ReliefF
algorithm specifically designed for regression problems. The authors compare
the proposed methods transformation based counterparts: BR-RF [137], LP-RF
[137] and PPT-ReliefF [122]. The results of the comparison favores the proposed
methods in terms of classifier performance. In addition the proposed extensions
by [122] are scalable on simple and complex multi-label datasets with different
properties.

In [130] a hybrid optimization method called Hybrid Optimization based
Multi-Label (HOML), is presented. It consists of a hybrid wrapper feature se-
lection technique, combining simulated annealing, genetic algorithm and hill-
climbing to optimize the search for an optimal subset of features. By combining
these different optimization techniques to search for an optimal subset of fea-
tures, HOML has the ability to avoid being trapped in a sub-optimal solution.
HOML was compared against six other wrapper feature selection and extraction
algorithms, the result shows HOML outperforming the other algorithms.

In the work of Jungjit et al. [70] ML-CFS, an adaptation of the Correlation-
based Feature Selection (CFS) [49] technique is proposed. The algorithm is ca-
pable of evaluating a subset of features, instead of individual features. It uses
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a simple hill-climbing algorithm to perform a heuristic search in the candidate
feature space. The objective is to find feature subsets that maximize the features
predictive accuracy and minimizes their dependency. The same author proposes
two extensions of ML-CFS, called GA-ML-CFS [69] and LexGA-ML-CFS [68].
The former is a correlation-based feature selection method based on GA that
has a single objective function. The latter is an improvement of GA-ML-CFS,
which uses a fitness function with two objectives maximization of the classifi-
cation accuracy and minimization of the number of selected features. Note that
these two objectives are conflicting and may sacrifice classification accuracy.
The experimental results of the studies [70, 69, 68] show that ML-CFS, GA-ML-
CFS and LexGA-ML-CFS improved predictive accuracy, by comparison against
a baseline. However, overall there was no statistically significant difference be-
tween the results of the extensions GA-ML-CFS and LexGA-ML-CFS and the
ML-CFS method.

In [85] the PMU methods is proposed, the Mutual Information measure is
adapted to select features with the most discriminating power. A score func-
tion is devised by decomposing Mutual Information between the feature and
the label sets into a series of multivariate mutual information. Subsequently, an
incremental selection strategy that maximizes the multivariate Mutual Informa-
tion between selected features and the labels is performed by using a forward
search strategy. PMU is the first multi-label filter feature selection method that
considers label interactions in measuring the dependency of given features [72].

In Garroudi et al. [43] Random Forest Predictive Clustering Tree (RFPCT)
is proposed. RFPCT is an extension of Random Forest (RF) [14] that uses a
randomized variant of the non Pruned Predictive Clustering Tree (PCT) [10],
as a base classifier. The diversity among trees is promoted using two strategies,
bootstrap sampling of training data and random selection of feature subsets.
RFPCT is capable of predicting multiple target attributes at once by measuring
feature relevance on each PCT tree, and then averaging them over all the trees
in the forest. RFCPT is able to exploit the underlying label dependencies; how-
ever, the experimental results indicate that ignoring correlation among labels
within the feature selection process doesn’t affect the quality of the multi-label
classification, as was previously confirmed by [137].

The Max-Dependency and Min-Redundancy (MDMR) is proposed in [91].
It is a filter algorithm that uses a criterion for incremental multi-label feature
selection based on the mRMR method. Features are incrementally selected until
a predefined number of features is reached. The selection is based on a score cal-
culated using mutual information, the dependency between features and labels
and redundancy between non-selected features and the subset of the selected
features are taken into account. MDMR does not consider the inter dependen-
cies between labels. The study verifies the efficacy of MDMR by comparing its
performance with MLNB, PMU and MDDM algorithms. MDMR achieves simi-
lar classification performance compared to PMU, and is superior to MLNB and
MDDM.
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Lee and Kim [87] propose a filter method, called multi-label feature selection
based on scalable relevance evaluation (SCLS). The algorithm introduces a novel
way of measuring feature redundancy, by using an incremental selection strategy
that sequentially includes the top-ranked feature in the already selected feature
subset. The ranking is performed using mutual information to determine the
relevancy between features and label. A major drawback of SCLS is that it
ignores the label correlations while evaluating the feature relevance. The newly
proposed method is experimentally validated and the authors conclude that
SCLS outperforms other mutual information-based multi-label feature selection
methods by providing significantly better discriminating power.

A new filter method based on mutual information is proposed by Zhang et
al. in [176]. The method, named Feature Selection based on Label Redundancy
(LRFS), divides labels into independent and dependent groups. Then, a newly
proposed feature relevance term, called Label Reduncancy (LR), is used to mea-
sure mutual information between a candidate feature and each already-selected
feature. Then, based on this LR measure a ranking of features is made. A major
advantage of LRFS is that it takes into account the effect of label redundancy
on the evaluation of the feature relevance. Previous multi-label feature selection
methods based on information theory ignored the effect of label redundancy.
Various experimental results demonstrate that LRFS can effectively select the
compact feature subset from the original data set and LRFS obtains better clas-
sification result than D2F, PMU, PPT-MI, PPT-CHI, SCLS, IGMF and MIFS
alogrithms.

In [71] two novel multi-label filter feature selection methods based on the
Pareto optimal set are presented, ParetoFS and ParetoCluster. Both methods
are not inspired by any similar method in single-label feature selection and are
exclusively designed for multi-label data. Both methods select features that are
members of Pareto optimal set and investigate each label individually. The dif-
ference between the two methods is that the first one is a subset feature selection
method, i.e. the number of features to be selected is defined by the algorithm.
The second proposed algorithm is a variation of the first method, which ranks
the features and selects a specified number of features that is defined by the user.
The study performs two series of experiments to evaluate the proposed methods,
the experimental results show that both of methods have better classification
performance compared to PMU, ELA-CHI, PPT-CHI, PPT-MI, PPT-ReliefF.
Additionally, the proposed methods are amongst the least time consuming algo-
rithms.

In [51] Hashemi et al. design a fast multi-label filter feature selection algo-
rithm using the PageRank algorithm, called MGFS. Similar to [71] and unlike
previous methods, MGFS is no adaptation of a single-label feature selection
method, instead it is specifically designed for multi-label data. MGFS method
uses a multi-label graph-based theory, and the Google PageRank algorithm is em-
ployed to select the best feature subset. The MGFS algorithm is experimentally
validated and is proven to have a low computational complexity. Furthermore,
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it has better classification accuracy and less error compared to PMU, LRFS,
MDFS, PPT-MI and ParetoCluster algorithms.

Mishra et al. [104] propose a wrapper method, called Feature Selection for
Multi-Label classification using Clustering in feature-space (FS-MLC). FS-MLC
first creates clusters for features and considers these created clusters as indepen-
dent instances. Then, for each cluster a feature is selected as a representative for
all the features in that cluster. Using sample-based precision and recall measures
the representative features are ranked. FS-MLC has some positive characteris-
tics, firstly, it is a wrapper method that does not require to create a large number
of feature subsets linearly proportional to the number of labels in the dataset.
Secondly, FS-MLC is a parameter tuning free approach meaning that the num-
ber of features are selected automatically. FS-MLC is experimentally compared
to MDMR, SCLS and DFSC algorithms and has proven to be superior.

It is difficult to determine the best feature selection method because only
partial comparisons are reported in the literature and to the best of our knowl-
edge there exist no experimental studies that compare all the methods presented
above and summarized in Table 2. In choosing a competitive feature selection
method, a choice between the transformation and direct approach needs to be
made. Based on the experimental results reported in the literature, methods
based on the direct approach seem to perform better for MLC algorithms in
terms of accuracy [122, 72, 176, 71, 51]. However, for certain datasets there are
only minor performance differences with the PPT-MI method. Moreover, the
PPT-MI method has a significantly lower computational burden than direct al-
gorithms [71, 51]. This can partly be explained due to the fact that all transfor-
mation based feature selection methods are filter algorithms. Since the structure
of filter algorithms are very simple, it provides a more efficient calculation of
features relevance. On the other hand, the structure of the wrapper approach is
more complicated and thus tends to be better at maximizing predictive accuracy.
However, this improvement in predictive accuracy comes at a higher computa-
tional cost. Therefore, the literature favors filter methods for large scale datasets.
The most competitive filter feature selection method seems to be the MGFS al-
gorithm [51]. When faced with a smaller scale dataset, a wrapper approach can
be more effective in terms of classifier accuracy, the FS-MLC algorithm seems to
be the most competitive one. Note that the choice of feature selection method is
highly dependent on the nature of the datasets, given this fact and the lack of a
comprehensive experimental study, the generalization of the respective compet-
itive methods should be considered cautiously.

Feature Extraction

Feature extraction [47, 135] is a task different from feature selection [94]. In
the sense that it is a preprocessing approach that projects the original feature
space into another low-dimensional space made up of new features that are a
linear combination of the original features. Similar to feature selection, feature
extraction removes redundant and irrelevant features while preserving maximum
information of the original data set.
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Feature extraction does not support a data transformation approach because
there is no way to aggregate artificial features of the different single-label sub-
problems to get the final multi-label solution. Therefore, a large body of liter-
ature has extended single-label feature extraction algorithms to directly handle
multi-label data sets. In our taxonomy we make a division based on the exploita-
tion of label information into unsupervised and supervised feature extraction
methods. Hereby we follow the general categorization proposed in [132].

Unsupervised feature extraction methods aim to reduce dimensionality
of the feature space without taking into account the label information of each
instance. They rely on the analysis of input feature space; therefore, traditional
(single-label) methods can be applied right out of the box to multi-label data.
Although unsupervised feature extraction can be directly applied, they fail to
make use of the label information. Clearly these techniques are not ideally suited
for reducing the feature space of a multi-label dataset. As a result, they are not
the focus of this paper. For the curious reader, a brief overview of unsupervised
feature extraction techniques is provided in Table 3.

Supervised feature extraction methods exploit the label information by
using it to guide the reduction of the feature space. This strengthens the link
between the extracted reduced feature space and the label space. Since the label
space is taken into account, supervised feature extraction methods have to be
adapted in some way before being applicable to multi-label data [57]. Below we
review feature extraction methods adapted for use in the multi-label setting, an
overview of the reviewed methods can be found in Table 4.

Partial Least Squares (PLS) is a family of methods that can be used for
dimensionality reduction [124]. PLS extracts latent features vectors from the
dataset by maximizing the covariance and correlation between the reduced fea-
ture space and the label space. PLS has several drawbacks, firstly, PLS cannot
capture high order correlation information among different labels. Secondly, it
is unable to find a space with a larger dimensionality than the number of labels;
thus, its generalization performance on new dimensions of outputs is restricted
[158].

Yu et al. [166] propose the Multi-label informed Latent Semantic Indexing
(MLSI). MLSI is an extension of the traditional LSI algorithm [29]. Although
LSI is an unsupervised algorithm, MLSI is not, since it makes use of the labeling
information to build the lower dimensional feature projection. It achieves this by
computing a mapping function for both the feature space and the corresponding
labels. The final solution is obtained by solving an eigen problem where eigenvec-
tors with largest eigenvalues are directly integrated into the mapping function.
In doing so, MLSI creates a new feature space wherein the feature variances
and binary label variances are maximized. The new feature space preserves the
information of the original feature space and captures the dependencies among
the labels [91]. In the study MLSI is empirically validated and has shown to work
well on a number of tasks. Similar to PLS, a drawback of MLSI is that it fails to
capture high order correlation information among different labels. In addition,
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MLSI has a high computational burden due to the time consuming large-scale
inverse matrix computation [161]. A nonlinear kernel variant is proposed in [178],
but is not experimentally validated for multi-label applications.

In [65] Tang et al. propose the Multi-Label Least Square (MLLS) algorithm,
a general framework for extraction of shared structures in multi-label datasets.
The MLLS methods assumes that a subspace is shared among multiple labels,
it uses this assumption to extract the common features among multiple labels.
MLLS computes a linear transformation (least squares loss) to discover this
shared subspace. Then, an optimal solution can be computed via solving a gen-
eralized eigenvalue problem. An advantage of the MLLS formulation is that the
performance is not sensitive to the high dimensionality of the shared subspace, it
is, however, sensitive to low dimensionality of the shared subspace. MLLS is ex-
perimentally validated in the study, MLLS achieves a performance improvement
in comparison to the SVD algorithm. However, the authors note that MLLS is
dominated by SVD in terms of computational burden.

Zhang and Zhou [178] propose a dimensionality reduction algorithm, called
Multi-label Dimensionality reduction via Dependence Maximization (MDDM).
The algorithm projects the feature space into a lower dimensional space such
that the dependencies between the features and the corresponding labels is max-
imized. The dependency is measured using the Hilbert-Schmidt Independence
Criterion (HSIC) [46] as metric. In the process, the dimensionality reduction
problem is formulated by an eigen-decomposition problem, whose solutions con-
stitutes the reduced feature space. The study delivers two algorithms, MDDMp
that uses the HSIC with orthonormal projection directions as metric and MD-
DMf that uses HSIC orthonormal projected features respectively. Both MDDM
method are experimentally compared against other feature extraction methods,
the results show that MDDM is slightly superior to PCA and LPP and signifi-
cantly superior to MLSI.

In [152], Wang et al. propose a generalization for the LDA [34] method, called
Multi-label Linear Discriminant Analysis (MLDA). The MLDA method uses a
weighted form to estimate the label correlation instances and labels, to obtain
an optimal low-dimensional sub-space by maximizing the between-class scatter
measure and minimizing the within-label scatter at the same time. A drawback
of the MLDA method is that the low-dimensional sub-space can not exceed
the number of classes minus 1 [152]. The paper validates the proposed MLDA
method and finds that MLDA significantly reduces the feature dimensionality
as well as improve classifier performance. To overcome MLDA’s limit on the
dimensionality of the reduced space, Oikonomou and Tefas propose in [107] the
Direct Multi-label Linear Discriminant Analysis (DMLDA) method.

The MDDM method [178] has several drawbacks, MDDM uses dense matri-
ces eigen-decomposition that are computationally expensive for use with high-
dimensional data. In addition, MDDM cannot be guaranteed to capture the
correlation between multiple labels. Therefore, Shu et al. [131] proposes a new
hybrid method of MLLS and MDDMf [132], called Shared Subspace multi-label
Dimensionality reduction via Dependence Maximization (SSMDDM). The au-



20 Daan Van Rossen et al.

thors reformulates the MDDM method as a least squares problem and thus avoid
the use of direct eigen-decomposition on the large scale matrix. This allows the
SSMDDM methods to be computationally faster and effectively uncover mul-
tiple label interactions. Various experimental results demonstrate the effective-
ness of SSMDDM in both predictive and computational performance, SSMDDM
significantly outperforms the original MDDM. In [161], Xu et al. proposes the
Maximizing feature Variance and feature label Dependence (MVMD) method,
which is a hybrid method of PCA and MDDMp. Similar to [131], the authors
reformulate the MDDM method as a least squares problem. Subsequently, the
objective function of PCA is linearly combined with the objective function of
MDDMp, to both maximize feature variance and maximize feature-label depen-
dence simultaneously. The proposed MVMD method is empirically validated on
eight datasets against seven existing feature extraction methods: PCA, MD-
DMp, MDDMf, CCA, MLSI, MLDA and DMLDA. It is proven that MVMD
improves the multi-label performance and outperforms the seven existing fea-
ture extraction methods. In [132], MDDM, MVDM and SSMDDM are directly
compared against each other, it is concluded that the SSMDMM algorithm out-
performs the MVDM and MDDM algorithms in terms of F1-score and Hamming
loss. However, the authors state that the results are dependent on the choice of
datasets.

It is a challenging and active research task to search for a novel well-performed
criterion for feature extraction [162]. The results reported in the literature greatly
depend on both the used quality measures and used datasets [132]. Three algo-
rithms MVMD [161], SSMDDM [131] and MDDM [178] based on the Hilbert-
Schmidt Independence Criterion (HSIC) [46] appear to be the most competitive
supervised feature extraction methods. Of which SSMDDM seems to be the best
choice due to being computationally faster and having the ability to effectively
uncover multiple label interactions. Furthermore, a choice between feature selec-
tion and feature extraction needs to be made. From a dimensionality reduction
point of view, both approaches are effective in alleviating the curse of dimension-
ality in the feature space and improving scalability and prediction performance
of the classifier. Within the literature, few studies experimentally compare both
approaches [130, 91], and further research is needed in order to draw a conclu-
sion. However, feature extraction creates a set of new features; therefore, losing
the physical meanings of these features and limiting the further analysis. This
poses an obstacle to scientific understanding of scientific problems [130]. Feature
selection maintains physical meanings of the original features and gives models
better readability and interpretability. The choice between feature selection and
feature extraction is dependent on the need to preserve the structure (feature
extraction) and the need to know the physical interpretation of the features
(feature selection).

5.2 Single Space Reduction: Label Space Reduction

Within Feature Space Reduction, Feature Selection and Extraction Methods
were already well researched methods for traditional classification. However, the
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need to reduce label space dimension is specific to multi-label classification and
did not exist in binary and multi-class datasets [57]. Several MLC algorithms
(such as BR methods) can’t handle datasets with a high-dimensional label space
[97]. Hsu et al. [61] pose the sparseness problem in the label space, stating that
although the label space may be very high dimensional, the actual labels are
often sparse. In this subsection we aim to categorize Label Space Reduction
techniques that focus on overcoming this sparseness problem. Similar to Feature
Space Reduction, the goal of label Space Reduction is to reduce the training cost
of classification algorithms by removing irrelevant, redundant or noisy informa-
tion of labels while maintaining classification performance [27]. The reduction

Fig. 4. Process of label space reduction.

process is visualized in Figure 4. In the preprocessing stage, label space reduction
methods first reduces the original high-dimensional label space to a lower dimen-
sion label space. In the data mining stage, the multi-label classifier algorithm
is trained using the feature space and reduced label space. In the Label Space
Reduction process a additional postprocessing stage is added to reconstruct the
reduced label space to the original high-dimensionality label space [112, 162].
The ability to decompose and reconstruct the label space is a key aspect of la-
bel reduction methods. Due to the fact that all labels need to be provided to
the multi-label classifier, labels cannot simply be removed from an multi-label
datasets [57]. Dually to feature space reduction, existing label space reduction
techniques are divided into two categories: label selection and label embedding
[162]. The former group selects an informative label subset set directly from
the original label space. A major advantage of this method is the reservation
of original meaning of the labels, this allows for an improved interpretability of
the predicted results [142]. The latter group uses a linear or non-linear transfor-
mation to transform the original label space into a low-dimensional embedded
space [154, 83]. A representation of the hidden structure of the label space is kept
in the embedded space. Label embedding methods successfully save computa-
tional power and storage while improving classifier performance [93]; however, a
drawback is the loss of original label meaning [142]. There is relatively few liter-
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ature on Label Space Reduction methods and the proposed techniques all follow
a unique approach [57]. In the following paragraph we discuss these proposed
techniques, an overview of the techniques and their classification can be found
in Table 5.

To the best of our knowledge, Hsu et al. [61] proposed the first label (embed-
ding) space reduction method, called Compressed Sensing (CS). The proposed
method makes the premise that the original label space is sparse. Firstly, a linear
compression function is used to encode the label space into a small number of
linear random projections. Then, in the decoding step, an optimization problem
needs to be solved to reconstruct the labels with respect to the sparsity error.
Note that the encoding component of CS is linear, but the decoding component
is not. As a result, the decoding step can be time-consuming. A variant of the
CS method is proposed in [183]. The method, called Compressed Labeling (CL),
firstly extracts the label dependence information from the original multi-label
dataset and stores them in distilled labelsets. In the postprocessing stage these
distilled labelsets are used to reconstruct the original label space. Subsequently,
the label space is transformed into a lower dimensional space using the signs
of the linear Gaussian random projections to preserve the binary nature of the
original one. In comparison with CS, the (linear) decoding stage is faster and
more efficient. Although the encoding and decoding stages of the CL algorithm
are fast, the initial storing of label dependence information in distilled labelsets
is not [8]. Both CS and CL significantly reduce the label space using label com-
pression; thus, substantially alleviating the problem of label dependence and
high label dimensionality. Although this greatly benefits the learning task, we
have to note that both methods transform the multi-label classification problem
into another type of problem. The CS method can only be wrapped around re-
gression classifiers, whereas the CL method can only be combined with binary
classifiers. This transformation of the MLC problem limits the application range
of the CS and CL method [18].

Landmark Selection Method for Multiple Output Prediction (MOPLMS) [4]
is a label selection label reduction method based on a groupsparse problem. The
algorithm assumes that all the output labels can be recovered from a small sub-
set. The study experimentally validates that MOPLMS is able to considerably
reduce the sample complexity when the output dimensionality is high. However,
MOPLMS suffers from a major drawback, it relies on an expensive and complex
optimization problem to select labels. As a consequence, MOPLMS is often un-
feasible to run on larger datasets. Furthermore, a small drawback of MOPLMS
is that the size of the label subset cannot be explicitly controlled [8].

Tai et al. [140] found the decoding step of CS to be inefficient and pro-
posed Principal Label Space Transformation (PLST). PLST can be viewed as
the counterpart of PCA in the label space and is feature-unaware, meaning it
only considers the label information during reduction. Firstly, the original label
space is transformed into a smaller linear label space using singular value de-
composition (SVD) [45, 150]. Subsequently, using the properties of an orthogonal
matrix derived from SVD, this matrix can be used to transform the reduced label
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space back to the original space. By a number of experiments PLST was shown
to successfully improve MLC performance in both accuracy and computational
time, especially for datasets with a large number of labels. Furthermore, PLST
proved to faster and more accurate than the CS method [8, 110, 140]. A variant
of PLST, called Conditional Principal Label Space Transformation (CPLST),
is proposed in [27, 140]. The CPLST algorithm combines the concepts of PLST
and CCA [60] and attempts to improve PLST through the addition of feature
information. The goal is to simultaneously minimize both the encoding error
and training error in the reduced dimensional space. The authors experimen-
tally compare PLST and CPLST and conclude that CPLST is at least as good
as, and usually better than, PLST. However, Appice et al. [1] empirically showe
that CPLST is computationally more expensive than PLST, while CPLST has
no significant performance difference with PLST [27, 8, 1]. This suggests that
taking into account feature information only provides little information for label
transformation or selection [8].

Bi and Kwok [8] propose an efficient CSSP [13] variant called Multi-Label
Column Subset Selection Problem (ML-CSSP). ML-CSSP firstly uses a partial
singular value decomposition (SVD) on the label space to derive label weights.
Then the most relevant labels are selected using a randomized sampling algo-
rithm. Consequently, the ML-CSSP alogrithm reduces the label space dimension
by selecting labels where the sampling probability or weight of each label reflects
its performance over all the labels. Unlike regular CSSP, the ML-CSSP algo-
rithm uses an adaptive technique to determine the number of sampling trials.
The authors experimentally validate ML-CSSP and prove that their proposed
algorithm outperforms MOPLMS, PLST, CPLST and CL algorithms in terms
of classification accuracy. Additionally they state that, compared to label em-
bedding methods, ML-CSSP has a lower training error, as the selected labels are
easier to learn.

In reference [18], Charte et al. propose Label Inference for Multilabel Clas-
sification (LI-MLC). LI-MLC is a pre-/postprocessing label selection algorithm
designed to reduce label dimensionality. In the preprocessing stage, an associa-
tion rule mining algorithm is used to obtain label dependency information. The
result is a multi-label dataset with a reduced label space; thus, any existing multi-
label classifier can be used in the data mining stage to generate predictions. In
the postprocessing stage, the same set of rules allows to infer the missing labels
from the presence of others in the predicted label space. The use of any exist-
ing multi-label classifier is a major advantage compared to the above proposed
algorithms CS and CL. It allows LI-MLC to preserve the original multi-label
nature of the problem and to be applicable to broader range of applications [18].
The authors experimentally validate the LI-MLC approach and conclude that
the LI-MLC algorithm allows classifiers to be trained in less time, resulting in
simpler models and improved classification results in many cases. Note that to
the best of our knowledge, no experimental comparison between LI-MLC and
other label reduction methods can be found in the literature.
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The above described label embedding methods (CS, CL, PLST and CPLST)
and ML-CSSP perform label space reduction in a function-based manner and re-
quire an encoding function (e.g linear encoding) to be used in the preprocessing
stage [92]. However, since an optimal transformation to a lower-dimensional em-
bedded space can be complicated and even indescribable, assuming an function-
based or explicit encoding function may not well model it [93]. Lin et al. [92]
state that an end-to-end or implicit approach, namely directly learning from the
label space without using an encoding functions can be feasible and even prefer-
able. Therefore, Wicker et al. [157] proposed the first implicit label embedding
method, called Multi-Label Classification Using Boolean Matrix Decomposition
(MLC-BMaD). The proposed method uses end-to-end label space encoding via
Boolean matrix factorization [102] to factorize the label matrix into a factor ma-
trix of latent labels and a factor matrix of the interdependencies among these
labels. A classifier can then learn from the latent labels instead of the actual
labels. The predicted label space is then reconstructed by Boolean matrix mul-
tiplication using the second factor matrix. The MLC-BMaD was experimentally
validated by Wicker et al. and showed better classifier performance, compared
to the PLST [111, 132]. However a disadvantage, the MLC-BMaD method is
a feature-unaware method, meaning the correlations between the latent space
and the feature space are not considered. According to Zhou et al. [183] this
results in a less predictable latent space and thus a possibly degraded classifier
performance.

Therefore, Lin et al. [93] propose Feature-aware Implicit label space Encod-
ing (FaIE), via combining PLST and CCA linearly with orthonormal projection
labels. The proposed method directly learns a feature aware code matrix and
a linear decoding matrix via jointly maximizing recoverability of the original
label space and the predictability of the latent space. A major advantage of
FaIE is that it is an end-to-end label reduction approach that takes into account
feature correlations. In the study, FaIE is experimentally validated, the study
concludes that although FaIE has a higher computational cost, it achieves supe-
rior classification performance compared to the CS, PLST, CPLST, ML-CSSP
and MLC-BMaD algorithms. In [92] FaIE is extended into several variants that
are more efficient and effective.

Mineiro and Karampatziakis [103] developed a function-based, feature aware
label space (embedding) reduction method, named Response EMBedding via
RANDomized Techniques (Rembrandt). The proposed method uses REML [160]
to decompose the label matrix into a low-rank structure and sparse component.
The low-rank structure represents label correlations, while the sparse component
represents the outliers. The advantage of the Rembrandt algorithms is that it
works for both multi-class and multi-label problems, additionally Rembrandt
exponentially speeds up the running time compared to traditional algorithms
making it applicable to large datasets. However, to the best of our knowledge, no
experimental comparison between Rembrandt and other label reduction methods
can be found in the literature.
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In [168] the authors propose a new function-base, feature aware label space
reduction method, called Dependence Maximization based Label space Reduc-
tion (DMLR). The method uses a linear integration of PLST with MDDM
to maximize the dependence between feature vectors and code vectors via the
Hilbert–Schmidt Independence Criterion [46] while minimizing the encoding loss
of labels. DMLR differs from the above mentioned label space reduction methods
in the assumption that the objective function should consist of two components:
encoding loss and dependence loss. Whereas the latter only considers either en-
coding or dependence loss in their objective function. The study experimentally
validates that DMLR achieves superior accuracy results compared to PLST and
CPLST algorithms at the cost consuming slightly more training time.

Huang et al. [62] propose Cost-sensitive Label Embedding via Multidimen-
sional Scaling (CLEMS) algorithm. The proposed end-to-end, feature unaware
label space reduction method, firstly embeds the label and cost information into
an embedded space using a classic multidimensional scaling approach for man-
ifold learning. From the embedded space, CLEMS can make cost-sensitive pre-
dictions efficiently and effectively by decoding to the nearest neighbor within a
proper candidate set. The authors experimentally validate the CLEMS method,
the results show CLEMS outperforming the non-cost-sensitive algorithms PLST,
CPLST, and FaIE. In [139] it is stated that CLEMS can struggle on larger data
sets due to its considerable complexity.

In [155] the authors propose a novel feature aware label embedding method
for multi-label classification via maximizing global recoverability and depen-
dency, and minimizing Local Variances (ML-mLV). The function-based algo-
rithm implements, besides two existing global label embedding criteria (global
recoverability and dependency-based one), a new local label recoverability crite-
rion based on local consistency [153]. The algorithm has the objective to max-
imize the global label recoverability and dependency, and minimize the local
label recoverability. The study experimentally compares the proposed ML-mLV
with PLST, CPLST, MLC-BMaD and FaIE algorithms. The ML-mLV method
performs the best, compared with the other approaches according to two perfor-
mance metrics for large-scale label sets.

In general we can conclude that all label space reduction methods can help
to reduce the total training costs while maintaining classifier performance [168].
It is difficult to determine the best label space reduction methods because only
partial comparisons are generally reported in the literature and to the best of our
knowledge there exist no experimental studies which compare all the methods
presented above and summarized in Table 5. The choice of label space reduction
method is highly dependant on the nature and size of the dataset. Based on
the partial comparisons in the literature, we believe the ML-mLV [155] is the
most competitive label embedding method, capable of dealing with large-scale
datasets. The cost sensitive label embedding algorithm CLEMS, outperforms tra-
ditional non-cost sensitive algorithm when dealing with non-large-scale datasets.
However, a pairwise comparison between ML-mLV and CLEMS is needed be-
fore a conclusion can be drawn. In some cases, a reservation of the original label
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meaning is needed to keep the interpretability of the predicted results. In this
setting a label subset selection method should be used, literature shows that
ML-CSSP is the most competitive label subset selection method. We note that
although the LI-MLC algorithm shows great promise, further research is needed
to asses the limitations and performance of the method against existing state-
of-the-art methods.

5.3 Dual Space Reduction

The reviewed single space reduction methods in the previous subsections have
proven to be effective in improving classifier performance. Nevertheless, they are
faced with a trade-off, the use of feature reduction methods to overcome the high
dimensionality problem in the feature space fails to consider the sparseness prob-
lem [61] in the label space. Likewise, label space reduction methods overcome the
sparseness problem in the label space, but fail to consider the high dimension-
ality of the feature space. Consequently, single space reduction methods might
not be best-suited for a multi-label dataset with both a high dimensional feature
and label space. Therefore, dual space reduction methods [112] consider both the
curse of dimensionality in the feature space and the sparseness problem in the
label space. By reducing the feature and label space jointly, better performance
is achieved compared to single space reduction methods [110–112]. Dual space

Fig. 5. Process of dual space reduction.

reduction methods perform a combination of feature and label space reduction
methods; therefore, the process, visualized in Figure 5, is similar to the feature
and label reduction process. In the preprocessing stage, both the feature and
label space are reduced to a lower dimensional space. Using the reduced feature
space and reduced label space, the multi-label classifier algorithm is trained.
Finally, the reduced label space is reconstructed in an additional postprocessing
stage. Below we review the dual space reduction techniques presented in the ex-
isting literature. Pacharawongsakda and Theeramunkong [110] were the first to
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attempt to reduce both the feature and label space simultaneously. Their study
introduces two dual space reduction approaches, the first method, named De-
pendent Dual Space Reduction (DDSR), calculates the cross-covariance matrix
of feature and label spaces to represent dependency between features and labels.
Then, both matrices are projected into a single reduced space using SVD [45,
150]. The reduced space is subsequently used in the data mining stage to perform
predictions. Note that although the DDSR method considers correlation infor-
mation between features and labels, it neglects the dependency amongst features
and the dependency amongst labels. The second method, named Independent
Dual Space Reduction (IDSR), calculates the cross-variance matrix of features
and the cross-variance matrix of labels separately. Then, both matrices are pro-
jected to separate lower-dimensional spaces using independent SVD’s [45, 150].
By representing the features and labels dependency separately, we can assume
there is no linear dependency between the two matrices. As a result, we can
take into account the dependency among features and the dependency among
labels. In addition, the study examines classification performance when both
spaces are simultaneously reduced. The proposed methods, DDSR and IDSR,
transform the feature and label spaces into lower-dimensional spaces with less
computational time than other well-known methods. Moreover, they success-
fully improve classification performance in terms of accuracy compared to other
methods. However, the proposed methods suffer from a number of limitations.
Firstly the SVD method is used to project spaces into a lower dimension, SVD
is known to be computationally expensive when the dimensions are large. Sec-
ondly a threshold selection process is required, an improper selected threshold
may introduce a bias. Thirdly the use of projections may trigger information
loss of some degree.

The same authors propose an alternative dual space reduction framework in
[111] namely, Two-Stage Dual Space Reduction (2SDSR) framework. The pro-
posed framework overcomes a limitation of DDSR, which is that the number of
the reduced dimensions cannot exceed the dimensionality of the label matrix.
Therefore, DDSR cannot find the optimal reduced feature dimensions [110, 112].
The framework consists of two stages. In the first stage the dimensional label
space is projected to a lower-dimensional label space using an existing feature-
aware label space reduction method. As a second stage the high-dimensional
feature space is transformed to a reduced feature space using an existing depen-
dent feature space reduction method. In the study four dimensionality reduction
techniques MDDM, CCA, SVD and BMD are applied to the 2SDSR framework
and experimentally validated. The 2SDSR variant where MDDM and BMD were
exploited achieved the best performance.

The studies [110–112] experimentally show that simultaneously reducing both
the feature and label space achieves better classification performance compared
to traditional single space reduction methods. Additionally, there is no dual
space reduction method that performs well for all evaluation metrics [112].
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6 Resampling

To solve the problem of imbalance learning for multi-label classification, a data
resampling approach can be applied. A resampling approach is a preprocessing
approach that aims to rebalance the class distribution by deletion [81] or recre-
ation [25] of instances. Being a preprocessing approach, it has the advantages of
being independent of the classification process and thus having a broader appli-
cation range. The use of resampling techniques has been extensively researched
in a non-multi-label context [52] and has shown their general effectiveness [41].
However, traditional (non-multi-label) resampling methods are designed to work
with one output class/label only and assume that there are only one minority
and one majority class/label in the dataset. While in a multi-label dataset each
instance is associated with more than one label and additionally one instance
may have both a minority and majority label concurrently [16]. Thus, a new
multi-label resampling approach that takes into account these characteristics of
MLC problems has to be designed.

Within multi-label resampling approaches a division can be made based on
the rebalance method. In the first approach, referred to as undersampling, some
of the samples are removed from the majority class. In the second approach,
referred to as oversampling, samples are added to the minority class. Under-
sampling algorithms usually perform worse than oversampling ones [41], since
they cause a loss of information by removing instances. When undersampling
is applied to multi-label datasets, an even greater information loss occurs since
the removed instance is representing several labels instead of one. [19] In the fol-
lowing paragraph we review under- and oversampling methods that have been
proposed for multi-label datasets. An overview of the reviewed methods can be
found in Table 6.

A first approach for multi-label resampling was presented by Charte et al.
[15]. The study presents a group of measures aimed to evaluate the imbalance
level in multi-label datasets. These measures, IRlbl and MeanIR can be used to
assess the imbalance level, and indicate if the multi-label dataset needs to be
resampled. Additionally, the paper presents two random resampling techniques,
called Label Powerset Random Oversampling (LP-ROS) and Label Powerset
Random Undersampling (LP-RUS). Both LP-RUS and LP-ROS algorithms are
based on the LP transformation and considers each label combination as class
identifiers. In [21] the same author proposes two additional algorithms: Multi-
Label Random Oversampling (ML-ROS) and Multi-Label Random Undersam-
pling (ML-RUS). Both algorithms, individually evaluate the imbalance level of
each label using the IRlbl measure[15]. The paper experimentally validates the
algorithms and concludes that ML-ROS obtains the best overall results and
overall significantly improved classification results when applied to imbalanced
multi-label datasets.

In the work of Charte et al. [20] a method of Multi-Label edited Nearest
Neighbor (MLeNN) is proposed. The method is a heuristic undersampling al-
gorithm that is build upon the ENN rule [159]. It compares all instances with
classes containing a majority labels against the class of its nearest neighbours.
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Instances whose class differs from the class of two or more nearest neighbours are
removed. The authors introduce two new key ideas to adapt ENN for multi-label
classification. Note that unlike the methods proposed in [21], the samples to be
removed are heuristically selected instead of random. The study experimentally
validates the proposed algorithm and concludes that MLeNN is able to improve
classification results when applied to imbalanced multi-label datasets. Moreover,
MLeNN achieves better performance than LP-RUS [20].

In [44] the authors analyze different strategies aimed to apply the original
Synthetic Minority Over-sampling Technique (SMOTE) algorithm [26] to multi-
label datasets. The result is an heuristic oversampling algorithm, SmoteUG.
Note that SmoteUG only takes into account one minority label and thus ig-
nores the intrinsic nature of multi-label datasets [22]. In [22] an extension of
the SMOTE algorithm is presented for multi-label datasets, named Multi-Label
Synthetic Minority Over-sampling Technique (MLSMOTE). This extension over-
comes the limitation of SmoteUG and is able to take into account multiple
minority labels. The authors experimentally show that MLSMOTE achieves a
statistically significant improvement against the results obtained without prepro-
cessing. MLSMOTE is able to reduce the imbalance level in multi-label datasets
and outperforms the oversampling algorithms: ML-ROS, LP-ROS and SmoteUG
in terms of prediction results.

A major disadvantage of the above mentioned algorithms is that they use a
cloning approach, meaning the algorithm always works over a full labelset. As a
result, applying these methods to multi-label datasets with a high SCUMBLE
[16] or a high level of concurrence between imbalanced labels can be counter-
productive. To overcome this limitation, Charte et al. propose in [17] a new
method, called REsampling MultilabEl datasets by Decoupling highly ImbAl-
anced Labels (REMEDIAL). The REMEDIAL method is designed to deal with
multi-label datasets having a high SCUMBLE level. The algorithm works as
an oversampling method and as an editing technique. It decomposes instances
containing both a minority and majority label into two easier instances, one of
which merely contains majority labels and another only with minority labels.
The study experimentally shows that REMEDIAL is recommended for resam-
pling of multi-label datasets with a high SCUMBLE level and when BR or LP
based classifiers are going to be used. Under these conditions REMEDIAL is
able to improve classification results. The same authors propose an improve-
ment for the REMEDIAL technique, named REMEDIAL Hybridization, with
Resampling (REMEDIALHwR) in [24].

Finally, in [117], an extension of the standard Tomek Link resampling al-
gorithm [143], called Multi-Label Tomek Link (MLTL), is proposed. The pro-
posed algorithm can either be used as heuristic undersampling algorithm or as
a postprocessing cleaning step. MLTL uses the multi-label imbalances measure
(MeanIR) to find the samples from the majority classes in combination with
Hamming Distance to determine how different two labelsets are.

The success and effectiveness of resampling techniques is highly influenced
by how imbalanced the data is (the concurrence of minority and majority labels
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in the same instances) [16]. Within the literature it is generally agreed upon
that undersampling algorithms whether random or heuristic perform worse than
oversampling ones since they cause a loss of essential information by removing
instances[16, 21, 41]. Therefore, undersampling techniques should not be applied
to multi-label datasets, which are not truly imbalanced [20]. Literature shows
that in general ML-ROS is the most effective resampling method; however, for
the most imbalanced datasets MLTL achieves better results [117].

7 Concluding Remarks

This work aims to categorize preprocessing techniques in multi-label classifi-
cation. The preprocessing techniques in this work are grouped, based on the
multi-label classification challenges they attempt to solve: dimensionality reduc-
tion and resampling. The former tries to overcome the curse of dimensionality,
by representing the original data on a low dimensional representation. The latter
tries to overcome the challenge of learning from imbalanced data. We proposed
an original taxonomy of dimensionality reduction and resampling techniques
that could be performed independently from the choice of multi-label classifier.
Each categorisation is described and their respective techniques are reviewed.
We note that it is difficult to determine the most efficient and/or competitive
technique for each category since only partial comparisons are generally reported
in the articles. To the best of our knowledge there exist no experimental stud-
ies, which compare all the approaches within a category. Moreover, the reported
experimental results are highly dependent on the nature of the used multi-label
dataset and the chosen measures. As far as we know, up until now the dimen-
sionality reduction and resampling techniques were scattered among literature.
By collecting and categorizing the existing literature, it is our hope that this
thesis can be used as a starting point and reference for future researchers.
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