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Abstract

Malaria is a leading epidemic that has high prevalence and burden. This study acknowledges
that there are many parasites which include but not limited to Plasmodium vivax, Plasmodium
ovale, Plasmodium malariae and Plasmodium falciparum. However, in this study the focus
is on the latter. Although past studies have provided data on this parasite from different
regions, such data has not been standardized with respect to age. Therefore the current study
sought to compare mechanistic and empirical methods in modelling the relationship between
age and malaria prevalence. Data were collected in cross-sectional studies of two high-altitude
communities in Kenya that encompassed 3352 participants representing different age groups.
A rapid diagnostic test was used to scan if a participant suffered from malaria or not. A
generalized linear model with splines as basis functions and Pull and Grab model were used to
fit the data and to test the models to determine the so-called stability and generality to new
data. Generalized linear models estimates the probability of a given event occurring when the
values of explanatory variables have been provided. Pull and Grab model utilizes differential
equations based on the relationship of variable with the response variable to estimate the
parameters. The results indicated that both models captured the association between the
prevalence of malaria and age effectively.

Cross validation with 10 folds were used to validate the models. AIC and MSE criteria
selected splines with 4 degrees of freedom while the standardized MSE selected Pull and
Grab model. The comparison of the two models was done through simulating 1000 data sets
utilizing the Pull and Grab model. The average MSE, AIC and standardized MSE values with
their corresponding 95% confidence intervals were computed. The three methods suggested
Pull and Grab model as the best performing model. However, there was an overlap in the
confidence intervals indicating that the difference between the two models was not statistically
significant. In conclusion, a researcher could use splines with appropriate degrees of freedom
since it performed well even when the data were simulated utilizing Pull and Grab model.
Splines could be chosen over Pull and Grab model due to the fact that for the latter a lot
of computation is needed in coding differential equations for each variable included in the
analysis.

The current study is significant since it could enable the public health department to
guesstimate the occurrence of malaria in a given community once the age groups of the
participants are known. However, it is crucial for other similar studies to be conducted
utilizing the Pull and Grab or spline function to explain the residual variation that was
unaccounted for in the current study due to factors such as net use, anti-malarial drug use
and socioeconomic status.

Keywords: Prevalence, Standardize, Pull and grab, Splines, MSE
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1 Introduction

Malaria epidemic is a primary cause of mortality globally. Since the year 2012, 627, 000

people succumbed to the disease out of the 201 million malaria cases (Murray et al., 2012).
Possibly Africa experiences the highest morbidity due to harsh climatic conditions and low
access to quality health care. Approximately 80% of the reported infections occurred in the
continent (Organization et al., 2005). Moreover, in 2010, 24% of the infant mortality cases
were attributed to malaria. There has been significant decrease in child mortality due to the
improvement in access to health care facilities; this has reduced the incidence of the disease
by 54% from 2000 to 2012 as pointed out by Murray et al. (2012). However, the spread of the
disease has increased as the incidence rate has risen in Kenyan highlands, with an altitude
of more than 1500m, where the disease was previously rare. According to the Organization
(2003); Organization et al. (2005), cases of malaria have been reported in approximately 95

countries with 80% of the cases confined to only 15 states, which are mostly located in Africa.
The vulnerable groups are children who are younger than 5 years and expectant mothers who
have high morbidity and mortality. Approximately 306, 000 children succumbed to malaria
with 67% of the demises happening in African nations. Nearly, 90% of children mortality
could be attributed to the illness.

Malaria is among the leading diseases that have high mortality and morbidity in Kenya
(Machini et al., 2016). Carlos et al. (2014) valued that the incidence of the disease is
approximately 6.7 million and the mortality is 4000 per year, which substantially increases the
burden of malaria in the country. Greenhouse et al. (2011) observed that children were most
likely to have a high incidence and prevalence of malaria. Most of the studies have focused on
children who are below five years, which indicates that it is critical to obtain similar data
for the school-aged population since they have the highest incidence and prevalence (Beadle
et al., 1995). Additionally, children who are above the age of 5 years are likely to have a
higher threat of malaria because they could fail to sleep under a treated net (Brooker et al.,
2009; Noor et al., 2009).

The prevalence of malaria could be defined as the quantity of the population that has been
infected by a malaria parasite in a given sample. Typically, the surveys to determine prevalence
involve the collection of thick and thin blood samples from volunteer participants. Next,
the blood samples are stained with Giemsa and microscopically examined to determine the
count parasites. Use of Giemsa staining procedure is recommended for screening of malaria
parasites primarily due to its high reliability. Most of the past researchers have conducted
cross-sectional studies; however, longitudinal; research could also be performed to specifically
relate individual events with subsequent antibody responses. In Africa, data regarding the
prevalence of malaria could be obtained from the health ministries of the respective countries.
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Recent studies in Kenya indicate that over 600 surveys regarding the prevalence and incidence
of the disease have been conducted across the country. Such data could be useful in identifying
the patterns of endemicity which could improve the efficacy of the preventive and curative
policies adopted by the government to reduce the commonness of malaria.

The difficult-to-combat malaria has been attributed to its wide variation in epidemiology
and clinical manifestation (Bloland et al., 2001). Malaria is transferred indirectly from an
infected person to the next through mosquito bites. The five species of mosquitoes that are
vectors for the illness belong to the genus Anopheles. The parasites that cause malaria when
they are introduced into the bloodstream belong to the genus Plasmodium (Fana et al., n.d.;
Organization et al., 2005). The spread of Plasmodium falciparum has been interrelated to
the morbidity and mortality of malaria in Africa (Snow et al., 1998).

Bio-statisticians, in collaboration with health care facilities, have plotted accurate maps
indicating the variation in the concentration of the parasite depending on climate and other
environmental factors, which influence the epidemiology of malaria (Craig et al., 1999; Rogers
et al., 2002; Snow et al., 1999). Such maps have been utilized as resourceful tools for the
prevention, management, and estimation of the burden of malaria as they provide a potent
visual instrument to recognize zones where intended interventions and measures are most
likely to have the maximum effect. The primary limitation of the maps is that they do not
detail the prevalence of malaria, which is crucial in mitigating the incidence of the disease.
Consequently, it is crucial to develop such maps based on empirical field observation, which
could help identify areas with a high prevalence of the illness that should be prioritized in the
allocation of preventive and curative resources. Thus the maps could substantially reduce
the strain of the disease in Africa and evaluation of programs that have been implemented to
curb the illness.

Currently, Plasmodium falciparum parasite rate (PfPR), the portion of population with
parasites detectable in their blood, is not reported in standardized format. Consequently, most
of the studies report crude PfPR estimates without grouping them by the age of participants.
Subsequently the different age ranges over which studies reports PfPR makes it hard to
compare prevalence estimates at different ages and regions. However, PfPR has well-known
pattern as a function of transmission intensity and age. It is known that PfPR increases
during infancy and early childhood (Gupta et al., 1999), before settling to a plateau in older
children, and further decreases in adolescents and adults as their malaria immunity improves
(Baird et al., 1991). Since the likelihood of a person testing positive for malaria varies across
the age of the participants, age is considered as a confounder variable. A statistical way
to minimize the confounding effect attributed to age is to standardize the age. It is also
crucial to note that the crude PfPR estimates are also a function of the age distribution of
the sample population. Moreover, the crude PfPR does not contain information about the

2



age distribution of the participants, which compels the researcher to infer it.

The Plasmodium falciparum parasite (PfPR), is the most frequently used approach for
quantifying the intensity of the incidence of malaria. Several techniques for obtaining
standardized PfPR data from crude statistics have been developed. Smith et al. (2007)
achieved this aim by training and validating different candidate algorithms. Modified Pull
and Grab equations was utilized to come up with the algorithm, which was ranked the
highest in standardizing the crude PfPR. The algorithm facilitates age-standardization of
PfPR. Consequently, the technique used allows the comparison of different populations even
if the age of the participants could vary substantially. Smith et al. (2007) analysis focused on
a target age group of 2 to 10 year old children, while discarding data for other age groups.
However, the approach did not use a substantial portion of the data that weakened its ability
to make accurate predictions especially in regions with scarce data.

The predominant confounding factor for mortality from Plasmodium falciparum is the age
of individuals. The claim can be supported by several factors that could be either classified as
biological or behavioral. For instance, past studies (see Snow et al. (1997)) have revealed that
early exposure to high densities of the parasite could lead to the development of immunity
when the children get older. In contrast, the low transmission of the disease among children
could lead them to develop low immunity as they age, which could render them susceptible to
the illness even after they mature. Consequently, in the current study, it is predicted that the
lowest incidence of malaria will be observed after a reduction in transmission. The primary
reason for this is that when the transmission rate is low, the older children who had been
exposed to the disease have developed immunity. Furthermore, younger children who have not
developed immunity will be less susceptible to disease because transmission rate is low in the
general population. Consequently, as pointed out by Okiro et al. (2009), after the reduction in
the initial exposure there emerges a cohort of older children with low susceptibility to malaria.

Age has remained a critical factor in the treatment and management of the disease. Past
researchers have not prioritized the statistical methods of confounder control for investigating
the correlation between age and incidence of malaria due to two primary reasons. First, severe
malaria is quite rare in states where the disease is not considered as an endemic. Secondly,
most of the senior citizens are immune, which reduces age-based data that are available for
research. Since our study is based in Kenya which is an endemic country it is critical to
investigate the relationship between age and commonness of malaria. It is crucial to note
that low incidence among children could result in an increase in the infection rate of the older
generations due to the delay of the development of blood-stage immunity, which is termed as
age-shift. This indicates that epidemiologies such as malaria lead to endemic stability rather
than epidemics.
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The paper is divided into several sections. Section 1 describes background information and
study objectives. A data description is discussed in section 2. On the other hand, section 3
provides detailed description of the methods adopted in analyzing data and inference. Finally,
section 4 and section 5 presents the interpretation of results and conclusion, respectively.

1.1 Malaria parasites

Plasmodium parasites cause malaria. They mainly target the red blood cells of humans
leading to severe illness, which could be fatal if the appropriate intervention is not provided
fast. Typically, the parasites are transferred from an infected person to a healthy person
via Anopheles mosquito bites. The vectors are mainly active in the dawn, evening and
night. Broadly, malaria could be classified into four types that correspond to the four types
of mosquito species that transmit the pathogens. The four types of malaria parasites are
Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium
ovale. The predominant vector species in Kenya is the P. falciparum, which is responsible
for approximately 80− 90% of the infections. However, note that the other three species are
also found in the country. According to Kouznetsov et al. (1996), P. falciparum is the most
dangerous vector that should receive special attention to mitigate cases of malaria.

1.2 Life cycle of the malaria parasite

Human malaria (Plasmodium parasite) is transmitted from an infected person to another
person by Anopheles mosquitoes, as shown in Figure 1.
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Figure 1: How malaria is transmitted from one person to another. (WHO, 1996,Malaria: A
Manual for Community Health Workers)

The malaria parasite spreads by infecting two types of hosts: the female Anopheles mosquitoes
and humans. The parasite is not transmitted from humans to animals and vice versa. Instead,
it is transferred from infected people to others through the mosquito vector. The spread of the
illnesses commences when a mosquito bites a person and draws some of his or her blood, which
could contain the parasite. Once the parasites enter the body of the mosquito, they multiply
and mature within 10− 14 days. Consequently, at the expiry of the incubation period, the
organisms could leave the vector and enter into the bloodstream of other individuals infecting
them with malaria. A single mosquito could bite several people leading to a high incidence of
the illness in villages that do not use precautionary measures such as sleeping under treated
mosquito nets.

The development of malaria in humans occurs through two stages, which take place in the
liver and red blood cells. The process commences when a mosquito that has bitten an infected
person bites a healthy individual, and the malaria parasites get transferred from the saliva of
the vector to the new host. The parasites migrate to the liver and infect its cells within the
first 30 minutes. The Plasmodium parasites then begin to multiply and develop, leading to
the rapture of the liver cells, which releases the parasite to the bloodstream. The liver stage
lasts for 6 − 15 days, after which they infect red blood cells where further replication and
development continues. Again, after the number of the parasites increases significantly, they
cause the red blood cells to rapture, discharging them to the blood where they can infect
other cells over several replication cycles. Most of the pathological and clinical manifestation
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of the illness occurs at the red blood cell stage when most of the symptoms of malaria could
be observed. The two stages are visualized in Figure 2.

Figure 2: Life cycle of the malaria parasite. (WHO, 1996,Malaria: A Manual for Community
Health Workers)

The female Anopheles picks up gametocytes, which are a type of blood stage parasites during
blood meal on an infected person. The parasites then multiply in the mosquitoes and continue
to develop, and within 10 − 18 days they are located in the salivary gland of the vector.
Consequently, the mosquito could spread the parasite through subsequent bites of healthy
people. Although replication and development of the Plasmodium parasites occur in the body
of the mosquito, they do not harm the insect. Besides the transmission of malaria through
mosquitoes, the illness could also spread through other mechanisms. For instance, several
studies have indicated that mother-to-child transmission could occur during pregnancies.
Moreover, the sharing of syringes and blood transfusion could also spread malaria. However,
the infections resulting from mechanisms other than through the mosquito vector are sporadic
and could be considered unimportant in the prevention and control of malaria.

Different malaria parasites have varying incubation periods. The incubation period could be
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defined as the period from the time that a person is infected to the time that manifestation
occurs. The incubation period in days for Plasmodium falciparum is 7− 14.

2 Data description

The data that were analyzed for the study were obtained from Rachuonyo South and Kisii
Central districts located in Nyanza, Kenya. The altitude of the regions ranged 1400− 1600m
(Stuckey et al., 2012). The predominant tribe in Rachuonyo was Luo, while Kisii was Kisiis.
The three dominant mosquito species that spread malaria in the region are Anopheles
funestus, An. arabiensis and Plasmodium falciparum. The data set was collected from 8204

individuals who were enrolled in concurrent schools. Additionally, community cross-sectional
studies were carried out in 46 schools in the western Kenyan highlands. The community study
considered all the individuals (compounds) who were distributed within a 600m radius from
each school. The radius of 600m was selected to reduce the likelihood of the overlap of the
recruitment area. The specific geographic locations were determined by utilizing a personal
digital assistant (PDAs) that was equipped with the global positioning system (GPS). The
study samples included all compounds who were above the age of 6 months.

In both surveys, participants were requested to offer blood samples, which were obtained by
a finger prick. A rapid diagnostic test (RDT) was employed to test the presence of malaria
parasites in the blood sample of participants. The method is normally used in place of
microscopy services, which could be more time consuming and expensive (Ayele et al., 2012).
Additional data were obtained by issuing questionnaires, which were designed according to
the guidelines proposed by Gitonga et al. (2010) who sought to determine the participants’
economic status, travelling tendencies, and the use of malaria preventive measures. The
people who were found to be infected with malaria were prescribed altemethere-lumefantrine,
which is a commonly used malaria drug in the country.

Additionally, individuals who were anaemic were also offered haematinics to comply with the
national guidelines for the treatment and management of malaria. In order to comply with
the autonomy of the patients, children who were positively identified to be suffering from
malaria were not given drugs directly; instead, their parents were asked to visit the schools.
The chief aim of our study was to determine the causality between age and prevalence of
malaria. The study focused on community cross-sectional studies since the school surveys
may be biased due to two primary reasons. Some of the students could be absent which could
reduce the likelihood of the sample reflecting the population truly. Secondly, children with
similar socioeconomic status are likely to be enrolled in a particular school. The outcome of
interest was RDT results. Thus, the response variable is binary as it can only take two states:
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positive or negative for malaria.

3 Methods

Past research studies fitted the RDT result data using parametric methods. The models were
opted for because they are a reliable tool for modelling the causality between covariates and
response variables. Typically the function depicting the relationship is unknown or partly
unspecified, which leads to the preference of semi-parametric additive models (Ayele et al.,
2014). Hastie and Tibshirani (1987) recommended generalized additive models (GAM) which
incorporates a nonlinear component into the additive predictor link scale. This resulting
model structure is widely applied in scientific researches that seek to determine parametric
nonlinear regression relationship. Using parametric methods for covariates whose relationship
to the response is of undetermined functional form might lead to wrong conclusion since
the assumption of linearity does not always hold (Hastie and Tibshirani, 1987). Here, one
often turns to nonparametric approaches as they enhance the flexibility of the researcher in
determining the structure and connection of the data.

The data utilized in the current study were analyzed by fitting it into a generalized linear model
(GLM). The GLM was selected because it could generalize linear regression by associating
predictor and response variables through a link function and permitting the size of each
parameter to be a function of its predicted value. Additionally, the GLM model could also be
extended to accommodate random and mixed effects, correlated data, relaxing distributional
assumptions, and allowing the use of semiparametric linear predictors (Ayele et al., 2014). An
example of the GLM is the logistic regression model, which is mainly used to model binary
data.

The Plasmodium falciparum parasite rate (PfPR) that is commonly used to report the
index of malaria transmission increases after birth and plateaus after individuals develop
immunity, before declining in senior citizens. Past studies involving populations with different
age groups typically report PfPR as an average, which indicates that age is a crucial variable
when harmonizing the reported raw PfPR data. Consequently, the heterogenization confounds
simple comparisons of PfPR studies, which have been performed in different places and periods.
According to Smith et al. (2007), a so-called Pull and Grab model is useful in standardizing
the estimates of the PfPR, which is utilized in the current study in the analysis of data.
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3.1 Generalized linear models

In the current study, the binary logistic regression model, which belongs to the family of
GLM was used to fit the data. The model estimates the probability of a given event occurring
when the values of the explanatory variables have been provided. Let Y be a binary response
variable defined by the following signum function.

Yi =

1 if RDT is positive in observation i

0 if RDT is negative in observation i

Let Ai represent the age of the observation i. In this instance observation i represents a
person to be tested for malaria. Additionally, for i, Yi and πi denote the indicator for RDT
and likelihood of RDT respectively. Therefore, the odds of a participant being positive are
πi

1− πi
. Consequently, the model could be expressed as:

log

[
πi

1− πi

]
= β0 + f(Ai), (1)

where πi = Pr(Yi = 1|Ai) represents the conditional probability (given the predictors) that
the response equals 1 and f(Ai) represents a nonlinear function. In the current study f(Ai)

was fitted using splines, and Pull and Grab, which are discussed in the subsequent sections.

3.2 Splines

A general family of transformations to predictors is utilized to ensure that non-linearity is
considered in the data analysis. The flexibility of the selected family ought to be flexible
enough to adapt to various shapes but should not overfit the data. Basis function denotes a
family of transformations that can fit together to a general shape expressed in equation 2.

f(A) =
J∑
j=1

βjbj(A), (2)

where bj(A) are the basis functions which are fixed and known. There are essentially an
infinite number of basis functions to choose from. For instance, wavelets or Fourier series
can be used to construct basis functions. As an illustration, we consider polynomial basis
functions of the form:

bj(A) = Aj j ≥ 0, (3)

this results in a polynomial of variable A given as:

f(A) = β0 + β1A+ β2A
2 + β3A

3 + · · · =
∞∑
j=0

βjA
j. (4)
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Splines were utilized in the development of basis functions primarily because of their high
flexibility. The popularity of the splines has increased in the last decade because their
flexibility simplifies data analysis. Moreover, they have high generality and stability, which
could improve the performance of the selected model. According to Wahba (1990), and Wood
(2017), splines are restrictive which could simplify data analysis and facilitate parametric
estimations.

The primary weakness of the methodology mainly occurs in the selection of the number of
knots that are utilized in the development of the spline function. Goepp et al. (2018) claim
that inappropriate choice of the number of knots could reduce the performance of the model
due to overfitting or underfitting. Overfitting occurs when many data points are selected
where the variation of the given function is relatively low. In contrast, underfitting could arise
when a few data points are chosen when many points are present. However, the weakness
could be mitigated by choosing data points that minimize the residual sums of squares to
properly fit the spline function, which could enhance the performance of the predictive model.

Hastie and Tibshirani (1987) discuss several ways of selecting the number of knots, which
could enhance the performance of the model. Generally, large numbers of knots are selected
where the function is believed to vary rapidly while fewer knots are chosen where the function
seems to be more stable. This reduces the complexity of the data analysis. Moreover, one
can specify the degree of freedom and then utilize suitable computer application to place
the corresponding number of knots at uniform quantiles automatically. Alternatively, one
could also arbitrarily select a different number of knots and settle on those that produce the
closest fit curve. However, it could be necessary to utilize a more precise technique referred
as cross validation which divides data into several sets, where a portion is used to train the
model, and the reserved data is used to test the accuracy of its prediction. The choice of the
approach selected depends on the desired accuracy level of the data analysis.

The application of the least square and simple regression in the splines method is based on
several assumptions. According to Ma et al. (2015), the primary assumption of using splines
is that the average change in the predicted variable is proportional to the variation in the
predictor variable. However, the assumption does not always apply since the change in the
predicted variable could result from other factors other than the variation of the predictor
variable. Moreover, an additional error could occur when the mean change is equal for all the
variables. Nonetheless, the errors could be mitigated by utilizing the least square method,
which determines if the spline function is properly fitted using several primary criteria. For
instance, trends of dependent and independent variables that have extremely high or low
values, which are treated as outliers, signpost the lack of proper fit of the data into the model.
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3.3 Pull and Grab model

The current study utilizes the Pull and Grab model developed by Smith et al. (2007) because
their algorithm has been deemed to be reliable to standardize the age, which could transform
an estimate of PfPR over any age range into a PfPR over a standard age range. In order
to apply the algorithm, we assume that the function G(A) denotes the true prevalence and
A corresponds to age. Additionally, let H(A) represent the sensitivity of RDT, which is a
standard approach for estimating PfPR as a function of age. The H(A) function was selected
since the sensitivity decreases with the increase in age because the blood-stage immunity
improves reducing the parasite densities to a point where they could not be detected by the
RDT test (Mayor et al., 2007). Therefore, the apparent PfPR, which could be found using
the results of RDT, is p(A) = G(A)H(A).

The G(A) and H(A) functions were developed by Pull and Grab (1974), based on the
advancement of the previous work of the Ross model Ross (1911) and Muench (1959). The
variation of PfPR with age could be expressed as the function:

dπ/dA = h(1− π)− rπ, (5)

where h denotes the force of infection in terms of effective contacts per unit of time and
susceptible individual, and A is the age. In this study A will be measured in years; consequently
h, also called the parasitological inoculation rate, will be a yearly rate. r is the rate at which
infections clear and π represents the fraction of the population that tested positive in the
RDT. Consequently, when π(0) = 1, this equation could be expressed as

G(A) = π′(1− e−dA). (6)

π′ = h/(h + r) is the PfPR at equilibrium. Additionally, d = h + r represents the rate at
which PfPR approaches the equilibrium. In the current study a three parameter approach was
utilized for H(A) : 1− s[1−min(1, e−q(A−α)]. Therefore, commencing at age A, the function
declines from 1 to 1− s. Moreover, the parameter q describes the decline from 1 to 1− s as a
function of age. Consequently, this function could be regarded as the decrease in detecting an
active infection. However, the decrease in the PfPR could be attributed to the immunity, which
contributes to the real decline in h or a real increase in r. Note that in the current study the
biological reasons for the decline in the function are not relevant for achieving standardization.
The modified Pull and Grab model was fitted using the technique of maximum likelihood
estimation (MLE), though other estimation methods are probable. The underlying reason for
using MLE is due to its applicability in complicated estimation problems and its capacity to
produce more robust parameter estimates (Meng and Rubin, 1993).
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The estimation of h and r can be done by parametrizing π′ to 1/1 + r
h
. However the approach

yields an unidentifiable model. An unidentifiable model is one where different inputs could
produce an identical probability distribution. Consequently, there will be different parameter
values that will be associated with maximum likelihood of any set of the observed data.
Consequently, it is crucial to ensure that the model we use is identifiable. In order to make
our model identifiable, it is essential to estimate the ratio of r and h.

Table 1: Algorithm Parameters

d The slope, the rate that PfPR approaches the plateau
π′ PfPR in older children
α The age when PfPR begins to decline
1− s The asymptotic sensitivity of RDT
q The rate that PfPR declines with age, after age α

3.4 Model Validation and Selection

Model validation is conducted to ascertain model stability by considering how well it could be
generalized to new data and assessing if the model has low bias and variance that could arise
when it picks up too much noise (Wang and Zheng, 2013). According to Alpaydin (2014),
model validation could be considered as the process of evaluating a trained model using a
set of testing data. Training data set (TDS) is obtained from the available data to enhance
the generalization capacity of the training model (Alpaydin, 2009). Finally, the technique is
utilized to compare models and select the one with optimal performance. Cross validation is
the most commonly applied technique that involves dividing the available data into two sets
that are used to train and validate the model (Hastie and Tibshirani, 1987). The splitting
of the data set should be conducted randomly to ascertain that the two sets have a similar
distribution.

The quality of regression models could be quantified using multiple statistical metrics (Chai
and Draxler, 2014). Firstly, R-squared (R2) represents the correlation between observed
and predicted values. A high value of the parameter indicates effectiveness of the model.
Secondly, the root mean squared error (RMSE) could be applied in the evaluation of the mean
prediction error that could be generated by the model when predicting the outcome for a
given observation. Consequently, it computes the average deviation between the observed
values and predicted values as shown by the formula below:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (7)
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Effective models usually have low RMSE. Finally, the mean absolute error (MAE), could be
used instead of RMSE. The primary strength of MAE is that it is more sensitive to outliers
than RMSE. MAE indicates the absolute difference between the observed and predicted results
as given in the formula below:

MAE =
1

n

n∑
i=1

|yi − ŷi| (8)

A low MAE could indicate that the model has high performance. It is important to realize
that various validation techniques are chosen based on the number of splits of the data set as
discussed in the subsequent subsections.

3.4.1 Validation Set Approach

The validation set approach entails dividing the available set of observations into two parts, a
training set and a validation set or hold-out set (Hastie and Tibshirani, 1987). One of the
sets is used to train the model while the other is utilized for testing. The method could only
be used when a large data set is available. The primary weakness of the approach is that it is
built on a portion of the available data set, which could leave some of the important data
leading to higher bias (James et al., 2013). Based on the data that are used in the training
set or the validation set the test error rate could have high variability. When working with
small data under the validation set it is more important to assign more data points to train
the model than to test it. The primary reason for this is that most models perform better
when they have been trained with a large data set to avoid underestimating the error rate
in the validation set. However, the approach could also increase the risk of overfitting the
data. The approach is preferred because it is simple and reduces the data analysis time and
resources. However, the simplicity of the method is often overlooked due to the instability of
the data validation method, which inclines either adopting Leave One Out Cross Validation
or the K-fold method.

3.4.2 Leave One Out Cross Validation (LOOCV)

Under the LOOCV approach the number of folds or subsets is equal to the number of
observations that are contained in the data set. Consequently, only one data point is reserved
while the others are used to train the model. Additionally, the reserved data are used to assess
the test error associated with the prediction values that are observed. The overall prediction
error is determined by computing the mean of all test errors of the prediction that have
been calculated. The approach is appropriate when working with small data sets primarily
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because all the data points are used to train or test the model, which reduces the incidence
of bias. However, LOOCV, suffers from the inherent weakness of high execution time when
n is extremely large since the process is repeated for all the data points as purported by
James et al. (2013). Additionally, model performance is tested against one data point at each
iteration which could increase the variation of the predicting error due to the points that
could be considered as outliers. Consequently, it is imperative to find an alternative method
that does not suffer from the problem, such as the K-fold cross validation.

3.4.3 K-fold Cross Validation

The K-fold cross validation entails randomly dividing the available data set into k folds or
groups that are nearly equal in size. The first fold k1 is used to train the model while the
other data are employed to validate the model. Additionally, the mean squared error (MSE) is
calculated for each of the observations that are predicted in the validation set. Consequently,
the number of MSE is equal to the folds. Therefore, the reliability of the model could be
determined by finding the average of MSE. According to Hastie and Tibshirani (1987), the
formula can be derived as shown below:

CV (k) =
1

k

k∑
i=1

MSEi (9)

The K-fold validation is considered as an efficient approach for estimating accuracy of a given
model. The primary benefit of the approach over LOOCV is the reduction in the computation
time since the process is repeated k times instead of n times. Moreover, the method is superior
to LOOCV because it yields more precise approximations of the test error rate. The main
problem associated with the cross validation method is the determination of the value of
k. Selecting a low value of k could increase the likelihood of the model being biased while
selecting a high value of k could lead to a high variability of the test error rate even though it
could be less biased. However, there is a golden rule of selecting the optimal value of k. In
particular, 5 or 10 folds should be selected, as these values have been shown to minimize bias
of the test error rates (James et al., 2013).

3.4.4 Information Criteria

Several factors could make cross-validation inappropriate in training and testing the model.
For instance, lack of adequate data to fit in different models depending on the technique
used, or the computation could be cumbersome. Therefore, it could be better to utilize the
technique of Information Criteria (IC). The primary objective of IC is to apply analytical
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techniques that could minimize overfitting. Several IC exist that are based on different
statistical assumptions. The current study utilizes the Akaike Information Criteria (AIC),
which was developed by Akaike (1998), as a technique for comparing different models on
a particular outcome. AIC was selected because it creates balance between overfitting and
underfitting, which would substantially improve the performance of a given model. Although
AIC is based on information theory, it could be perceived as a criterion that selects the model
that has a good fit to the actual data with few parameters, under the heuristic approach.
Mathematically it can be expressed as

AIC = −2(ln(ll)) + 2k, (10)

where ll is the likelihood of the data given a model and k is the number of free parameters
in the model, which is often referred to as degrees of freedom or the number of estimable
parameters. According to Leeb and Pötscher (2009), the constant two remains due to historical
reasons. AIC scores, ∆AIC is the difference between the best model (with the smallest AIC)
and each of the models. Consequently, the model that has a zero ∆AIC should be selected.

The second order information criterion (AICC) which takes sample size into consideration, as
well as maximizing the model complexity when working with small data sets could also be
used.

AICC = AIC +
2k(k + 1)

n− k − 1
, (11)

where n is the sample size and k is the degrees of freedom. AIC is sufficient when the value
of n is substantially larger than k. The primary advantage of the AICC is that it has high
generality, which makes most of the data scientists to prefer using it over the AIC. However,
the primary weakness of both IC scores is that they are ordinal; thus, do not have standalone
meaning.

3.5 Simulation

In order to compare the performance of the Pull and Grab model and the splines, a simulation
study was conducted. It involves empirical computer studies where real-life events are
approximated by a given model (Freeman and Avery, 2017). The data to be utilized in the
simulation is obtained from the available data using pseudo-random sampling. The validity
and reliability of simulation is high because some of the parameters of interest are known
and utilized in the data generation process. Finally, modelling could be used to determine
the bias of a given model by determining the degree it conforms to the available life data.
Therefore, modelling is used to circumnavigate the problem of generalization that is based on
too few or too many trials.
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The primary advantage of the technique is that it reduces the cost used in studies since
random numbers are generated which eliminates the expenses of data collection. Secondly, it
consumes less time than the traditional data collection technique that allows researchers to
run more trials that could increase the accuracy of the model. Thirdly, simulation results
could accurately approximate the real-life if the hypotheses are properly formulated (Freeman
and Avery, 2017). Finally, simulations could identify high-risk areas that could necessitate
further testing. The primary weakness of the model is that it cannot perfectly reflect all
the dynamic factors that could influence the conclusion of the simulation mainly due to the
application of few data points or bias of the researcher. The weakness could be overcome by
working with relatively large data points and quantifying the uncertainty of the model and
the high-risk areas that involve outlying values.

The precision of simulation could be undermined by several factors. For instance, the choice
of the data generation model (DGM) has to be consistent with the statistical model and the
issue being investigated. Additionally, the sample size used to generate data for simulation
could influence the quality of the simulation. According to Pateras et al. (2018), the choice of
DGM determines the results of the simulation studies involving few trials to a greater extent
than those that have many data points. Consequently, the precision of the simulation model
is dependent on the quality of planning, coding, analysis and interpretation of the results.

In the current study, the Pull and Grab model was utilized to simulate 1000 data sets. The
probability distribution to be utilized in data generation process was computed employing
Pull and Grab equations. At initial stage, the analysis of data utilizing Pull and Grab model
resulted in parameter estimates which were then plugged in the equations to ensure high
validity and reliability of the simulation study. The average MSE, AIC and standardized MSE
values with their corresponding 95% confidence interval were computed.

4 Results and Interpretation

4.1 Exploratory Data Analysis

Data exploration is the initial step in analysis. It is conducted to provide an insight about the
data structure and most plausible implications to be considered during model fitting (Perer
and Shneiderman, 2008). The current study utilized community cross-sectional studies that
involved 3352 individuals. The proportion of the population in terms of the age of the group
is summarized in the graph contained in Figure 3. From the figure, it can be deduced that the
largest age group was 16− 100 years, which consisted of 1566 participants. The second most
populous age group was 5− 15 years, which comprised of 1104 individuals. The smallest age

16



group was 0− 4 years which consisted of 682 children. Therefore, the current study included
participants who belonged to different age groups.

Figure 3: Population in each age category

Figure 4 provides a scatter diagram of the malaria prevalence for average age. From the figure,
it can be deduced that from age 0 − 4 years, the prevalence of malaria initially increases
at a slow rate before increasing exponentially from age 5 years. Thereafter, the prevalence
decreases substantially before plateauing in adults. The scatter plot also indicates that the
relationship between the malaria prevalence and age is a non-linear one.
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Figure 4: Relationship of prevalence and age

4.2 Splines and Pull and Grab Model

As pointed out earlier, the first step of performing spline regression is settling on the number of
knots that will be used in training and testing the spline model. In the current study, 5 years
and 15 years were used in developing the spline function. This was biologically motivated by
the fact that malaria prevalence rises during infancy and early childhood settles to a plateau
in older children, and declines in adolescents and adults as malaria immunity develops. The
primary intention is to place the knots where the function seems to change rapidly. Therefore,
5 and 15 years were selected since the prevalence coefficient could rapidly vary in such regions.

The maximum likelihood estimation technique was utilized in fitting the Pull and Grab
model. The parameter α, which is the age when PfPR begins to decline was estimated as
(2.0936×10−7), which is very insignificant. A likelihood ratio test was performed to determine
if it was possible to set the limit value of α to zero. Therefore, the hypothesis test was
conducted involving the following null and alternative hypotheses.

H0 : α = 0

H1 : α 6= 0

The p-value that was obtained at 5% level of significance was statistically insignificant.
Therefore, it was not possible to reject the null hypothesis, hence leading to the conclusion
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that the value of α could be set to zero. Nonetheless, it was possible to estimate the other
parameters, and the results are summarized in Table 2.

Table 2: Parameter Estimation

Parameter

ratio.r.h 1.4273× 10−7

d 0.1527

q 0.1317

1− s 0.0416

Figure 5 visualizes the relationship between age and the malaria prevalence using splines
(blue) and Pull and Grab model (red). As it can be viewed from the figure, both models
captures the association between the prevalence of malaria and age effectively. It can be
deduced from the plot that the prevalence rises during early childhood and infancy settles to
plateau in older children, and declines in adolescents and adults.

Figure 5: Relationship of prevalence and age using splines and Pull and Grab model
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4.3 Model Validation and Selection

Out of the three methods of cross-validation discussed in section 3.4, the K-fold was utilized
due to two reasons. It was more effective method for estimating accuracy of a given model
and less tasking than the LOOCV. Additionally, 10 folds were selected since they had been
proved to be effective in enhancing the performance of models in several empirical studies.
Due to the need for the model to be sensitive to outlying values, we utilized the Mean squared
error (MSE) metric to quantify the overall quality of the model. The model with low MSE
indicated that it had high performance. Akaike information criteria (AIC) was also utilized to
compare the performance of several models and select the one that had optimal performance.
Ideally, the model with the lowest AIC should be selected. Also, MSE was standardized by
averaging the MSE of the different age groups. The age was binned by 5 years through age
15, and the remaining data were treated as one age group. Table 3 summarizes the validation
results of different models. k is the number of parameters in each model. Based on the two
criteria, the splines with 4 degrees of freedom was selected, while standardized MSE selected
the Pull and Grab model.

Table 3: AIC and MSE values

Model k AIC MSE MSE Standardized

Splines
df=1 4 2691.304 0.1238 0.1509
df=2 4 2691.304 0.1238 0.1509
df=3 4 2691.304 0.1238 0.1509
df=4 5 2651.715 0.1219 0.1513
df=5 6 2657.412 0.1220 0.1518
Pull and Grab 4 2659.634 0.1221 0.1504

4.4 Simulation

The average AIC values and their corresponding 95% confidence intervals of the simulated
data sets were calculated for splines with different degrees of freedom and Pull and Grab
model. The results of the computation are summarized in table 4. The analysis of the results
indicated that Pull and Grab model had the lowest AIC value, hence it had high performance.
Consequently, at 95% confidence interval there was an overlap with the splines with 5 degrees
of freedom which had the lowest AIC, indicating that there is no statistically significant
difference between the two models.
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Table 4: AIC values

Model k AIC 95% CI

Splines
df=1 4 2683.493 (2550.391, 2816.626)
df=2 4 2683.493 (2550.391, 2816.626)
df=3 4 2683.493 (2550.391, 2816.626)
df=4 5 2646.585 (2512.649, 2777.214)
df=5 6 2644.440 (2512.194, 2779.037)
Pull and Grab 4 2642.726 (2512.184, 2775.096)

The MSE and standardized MSE values were computed to determine how well the different
models fitted the given data. The average MSE and standardized MSE values with their
corresponding 95% confidence interval for the 1000 simulated data sets are summarized in
table 5. The analysis of the results indicates that the Pull and Grab model had the lowest MSE
and MSE standardized values, hence it had high performance. However, at 95% confidence
interval there was an overlap with the splines with lower MSE values that is splines with 1, 2

or 3 degrees of freedom. Therefore, it can be concluded that there is no statistically significant
difference between the two models.

Table 5: MSE and MSE Standardized values

Model MSE (95% CI) MSE Standardized

Splines
df=1 0.1363 (0.1100, 0.1628) 0.1506
df=2 0.1363 (0.1100, 0.1628) 0.1506
df=3 0.1363 (0.1100, 0.1628) 0.1506
df=4 0.1381 (0.1116, 0.1648) 0.1509
df=5 0.1383 (0.1118, 0.1651) 0.1511
Pull and Grab 0.1214 (0.1141, 0.1288) 0.1483

5 Discussion and Conclusion

The primary aim of conducting the research was to compare nonlinear models for predicting
the relationship between malaria prevalence and age. Data were fitted into the Pull and Grab
model and the generalized linear model that utilized splines as the basis function. The results
indicated that both models captured the relationship between the prevalence of malaria and
age effectively. The stability and the generality of the two models to new data were assessed
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using the cross validation technique of k-fold. A 10 fold was utilized because past studies
have verified that it has high validity and reliability (Hastie and Tibshirani, 1987). The
primary reason for selecting MSE was to quantify the variation between the predicted and
observed values, which indicates the overall quality of the performance of the selected model.
Additionally, MSE is sensitive to outlying values. On the other hand, AIC was utilized to
compare the performance of the models and select the one that had optimal performance.
The standardized MSE was calculated by averaging the difference between the predicted and
observed values for different age groups. Age was binned by 5 years through age 15, and the
remaining data were treated as one age group. The primary motivation for standardizing
MSE was to ease the comparison of prevalence of malaria between different ages and regions.
The AIC and MSE criteria selected splines with 4 degrees of freedom while standardized MSE
selected the Pull and Grab model.

In the comparison between the performance of the splines and the Pull and Grab, the latter
model was used to simulate 1000 data sets. AIC, MSE and standardized MSE values were
calculated with their corresponding 95% confidence interval. The three criteria indicated that
the Pull and Grab model had the optimal performance. However, it is crucial to note that
there was an overlap in confidence intervals hence concluding that there was no significant
difference between the two models. In conclusion, both the Pull and Grab model and the
splines could be used to model the relationship between the malaria prevalence and age, since
even when the data were simulated utilizing Pull and Grab model, splines performed well.

The findings of the study contribute to the comprehension of how prevalence of malaria varies
with age. The prevalence increases during infancy and early childhood because at this stage
they are more vulnerable due to the fact that it is their first infection. It continues to increase
up to a peak level where it remains fairly constant before the onset of adolescence. This trend
however starts declining as age increases into adolescents and adults. The reason for such
decline is that as the children grow older they develop immunity to the disease, that is they
become less susceptible to the disease. Prior studies have failed to quantify the relationship
between the two variables using high performance models such as splines. Therefore, the
current study could assist public health planners and practitioners in estimating the number
of people that are likely to be infected with malaria in a given community once their age is
known. Consequently, adequate resources could be utilized in the prevention and management
of malaria, which could reduce the burden of the disease. Finally, it is recommendable for a
researcher to use splines with appropriate degrees of freedom since it performed well even
when the data were simulated utilizing Pull and Grab model. Splines could be chosen over
Pull and Grab model due to the fact that for the latter a lot of computation is needed in
coding differential equations for each variable included in the analysis.
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However, there is need to conduct studies that focus on other factors that influence the
prevalence of malaria, such as net use, access to effective anti-malarial drugs and social
economic status. Such studies could explain some of the residual variations that remained
unaccounted for at the conclusion of the current study.
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6 SOFTWARE CODES

###Fitting binary logistic regression model###;

model1=glm(I(RDT)~bs(Age,knots = c(5,15)),data=thesis,family = "binomial")

probability<-predict(model1,newdata=data.frame(Age=1:62),type="response")

A <- thesis$Age

y <- thesis$RDT

age.breaks <- quantile(A,seq(0,1,0.05))

age.class <- cut(A,breaks=age.breaks)

prop.class <- tapply(y,age.class,mean)

age.mean.class <- tapply(A,age.class,mean)

plot(age.mean.class,prop.class,pch=20,

xlim=c(0,63),ylim=c(0,0.35),

xlab="Mean Age",ylab="Prevalence")
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lines(1:62,probability,type="l",col="red",lwd=2)

###Fitting Pull and Grab Model###

A <- thesis$Age

y <- thesis$RDT

llik <- function(theta) {

ratio.r.h <- exp(theta[1])

b <- exp(theta[2])

c <- exp(theta[3])

s <- exp(theta[4])/(1+exp(theta[4]))

P.A <- (1/(1+ratio.r.h))*(1-exp(-b*A))

F.A <- 1-s*(1-sapply(A,function(x) min(1,exp(-c*x))))

prob <- F.A*P.A

out <- sum(y*log(prob/(1-prob))+log(1-prob))

return(out)

}

theta.start <- rep(0,4)

estim<- nlminb(theta.start, function(x) -llik(x),

control=list(trace=1))

p.A <- function(A,theta) {

ratio.r.h <- exp(theta[1])

b <- exp(theta[2])

c <- exp(theta[3])

s <- exp(theta[4])/(1+exp(theta[4]))

P.A <- 1/(1+ratio.r.h)*(1-exp(-b*A))

F.A <- 1-s*(1-min(1,exp(-c*(A))))

prob <- F.A*P.A

}

p.A <- Vectorize(p.A,"A")

age.breaks <- quantile(A,seq(0,1,0.05))

age.class <- cut(A,breaks=age.breaks)

prop.class <- tapply(y,age.class,mean)

age.mean.class <- tapply(A,age.class,mean)

plot(age.mean.class,prop.class,pch=20,

xlim=c(0,63),ylim=c(0,0.35),xlab="Mean Age", ylab="Prevalence")

age.set <- seq(1,62,length=1000)

p.A.set <- p.A(age.set,estim$par)
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lines(age.set,p.A.set,col=2,lwd=2)

###K-FOLD CROSS VALIDATION for splines###

##Splines with df=i vary the df from 1 to 5###

set.seed(1993)

n <- nrow(thesis)

K <- 10

block.ID <- rep(1:K,each=n/K)

block.ID <- block.ID[sample(1:n)]

MSE1=matrix(NA,K)

for(i in 1:K){

ind.block <- which(block.ID==i)

training <- thesis[-ind.block,]

test <- thesis[ind.block,]

glmfit1=glm(I(RDT)~bs(Age,df=i),data=training,family = "binomial")

predict1 <- predict(glmfit1,newdata=test,type="response")

MSE1[i]=mean((test$RDT-predict1)^2)

}

mean(MSE1)

###K-FOLD CROSS VALIDATION FOR PULL AND GRAB MODEL###

set.seed(1993)

n <- nrow(thesis)

K <- 10

block.ID <- rep(1:K,each=n/K)

block.ID <- block.ID[sample(1:n)]

theta.hat.i <- matrix(NA,ncol = 4,nrow = K)

MSE=matrix(NA,K)

for(i in 1:K){

ind.block <- which(block.ID==i)

training <- thesis[-ind.block,]

test <- thesis[ind.block,]

# Fit Pull and Grab with training

A <- training$Age

y <- training$RDT

llik <- function(theta) {

ratio.r.h <- exp(theta[1])

b <- exp(theta[2])

c <- exp(theta[3])
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s <- exp(theta[4])/(1+exp(theta[4]))

P.A <- (1/(1+ratio.r.h))*(1-exp(-b*A))

F.A <- 1-s*(1-sapply(A,function(x) min(1,exp(-c*x))))

prob <- F.A*P.A

out <- sum(y*log(prob/(1-prob))+log(1-prob))

return(out)

}

theta.start <- rep(0,4)

estim.i <- nlminb(theta.start, function(x) -llik(x),

control=list(trace=1))

theta.hat.i[i,] <- estim.i$par

}

# Predict the test

p.A <- function(A,theta) {

ratio.r.h <- exp(theta[1])

b <- exp(theta[2])

c <- exp(theta[3])

s <- exp(theta[4])/(1+exp(theta[4]))

P.A <- 1/(1+ratio.r.h)*(1-exp(-b*A))

F.A <- 1-s*(1-pmin(1,exp(-c*(A))))

prob <- F.A*P.A

MSE <- mean((test$RDT-prob)^2) # MSE

MSE

}

MSE <- rep(NA,K)

for(i in 1:K){

ind.block <- which(block.ID==i)

test <- thesis[ind.block,]

MSE[i] <- p.A(test$Age,theta.hat.i[i,])

}

mean(MSE)

# LRT for alpha equals zero

A <- thesis$Age

y <- thesis$RDT

llik <- function(theta) {
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ratio.r.h <- exp(theta[1])

b <- exp(theta[2])

c <- exp(theta[3])

s <- exp(theta[4])/(1+exp(theta[4]))

alpha <- exp(theta[5])

P.A <- 1/(1+ratio.r.h)*(1-exp(-b*A))

F.A <- 1-s*(1-sapply(A,function(x) min(1,exp(-c*(x-alpha)))))

prob <- F.A*P.A

out <- sum(y*log(prob/(1-prob))+log(1-prob))#positive

return(out)

}

theta.start <- rep(0,5)

estim2 <- nlminb(theta.start, function(x) -llik(x),

control=list(trace=1))

llik0 <- function(theta) {

ratio.r.h <- exp(theta[1])

b <- exp(theta[2])

c <- exp(theta[3])

s <- exp(theta[4])/(1+exp(theta[4]))

P.A <- (1/(1+ratio.r.h))*(1-exp(-b*A))

F.A <- 1-s*(1-sapply(A,function(x) min(1,exp(-c*x))))

prob <- F.A*P.A

out <- sum(y*log(prob/(1-prob))+log(1-prob))

return(out)

}

theta.start <- rep(0,4)

estim0 <- nlminb(theta.start, function(x) -llik0(x),

control=list(trace=1))

1-pchisq(-2*(estim2$objective-estim0$objective),1) #p-value from LR test

###CROSS VALIDATION FOR DIFFERENT AGE RANGES###

##SPLINES WITH df=i vary the df from 1 to 5 for all age ranges###

age1<-thesis[which(thesis$Age>=0& thesis$Age<=4.9999),]

age2<-thesis[which(thesis$Age>=5& thesis$Age<=9.9999),]

age3<-thesis[which(thesis$Age>=10& thesis$Age<=14.9999),]
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age4<-thesis[which(thesis$Age>=15& thesis$Age<=101.9999),]

set.seed(1993)

n <- nrow(age1)

K <- 10

block.ID <- rep(1:K,each=n/K)

block.ID <- block.ID[sample(1:n)]

MSE_age1=matrix(NA,K)

for(i in 1:K){

ind.block <- which(block.ID==i)

training <- age1[-ind.block,]

test <- age1[ind.block,]

glmfit1=glm(I(RDT)~bs(Age,df=i),data=training,family = "binomial")

predict1 <- predict(glmfit1,newdata=test,type="response")

MSE_age1[i]=mean((test$RDT-predict1)^2)

}

mean(MSE_age1)

###Pull and grab validation using different age ranges###

set.seed(1993)

n <- nrow(age1)

K <- 10

block.ID <- rep(1:K,each=n/K)

block.ID <- block.ID[sample(1:n)]

theta.pull.i <- matrix(NA,ncol = 4,nrow = K)

MSEpull1=matrix(NA,K)

for(i in 1:K){

ind.block <- which(block.ID==i)

training <- age1[-ind.block,]

test <- age1[ind.block,]

# Fit Pull and Grab with training

A <- training$Age

y <- training$RDT

llik <- function(theta) {

ratio.r.h <- exp(theta[1])

b <- exp(theta[2])

c <- exp(theta[3])

s <- exp(theta[4])/(1+exp(theta[4]))

P.A <- (1/(1+ratio.r.h))*(1-exp(-b*A))
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F.A <- 1-s*(1-sapply(A,function(x) min(1,exp(-c*x))))

prob <- F.A*P.A

out <- sum(y*log(prob/(1-prob))+log(1-prob))

return(out)

}

theta.start <- rep(0,4)

estimpull.i <- nlminb(theta.start, function(x) -llik(x),

control=list(trace=1))

theta.pull.i[i,] <- estimpull.i$par

}

# Predict the test

p.A <- function(A,theta) {

ratio.r.h <- exp(theta[1])

b <- exp(theta[2])

c <- exp(theta[3])

s <- exp(theta[4])/(1+exp(theta[4]))

P.A <- 1/(1+ratio.r.h)*(1-exp(-b*A))

F.A <- 1-s*(1-pmin(1,exp(-c*(A))))

prob <- F.A*P.A

MSEpull1 <- mean((test$RDT-prob)^2) # MSE

MSEpull1

}

MSEpull1 <- rep(NA,K)

for(i in 1:K){

ind.block <- which(block.ID==i)

test <- age1[ind.block,]

MSEpull1[i] <- p.A(test$Age,theta.pull.i[i,])

}

mean(MSEpull1)

###SIMULATION STUDY###

###Calculating probability using the pull and grab equations

P.A <- (1/(1+ratio.r.h))*(1-exp(-b*A))

F.A <- 1-s*(1-sapply(A,function(x) min(1,exp(-c*x))))

prob <- F.A*P.A

###P.A1
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ratio.r.h <- 1.4273* 10^(-7)

b <- 0.1527

P.A1 <- (1/(1+ratio.r.h))*(1-exp(-b*A))

###FA

c<-0.1317

s<-0.9584

F.A1 <- 1-s*(1-sapply(A,function(x) min(1,exp(-c*x))))

probab<-P.A1*F.A1

y<-rbinom(nrow(thesis),1,probab)

set.seed(19902986)

x<-replicate(1000,{y<-rbinom(nrow(thesis),1,probab)})

z<-data.frame(x)

A<-thesis$Age

sim<-cbind(z,A)

###Fitting models using simulated data###

###Splines with different degrees of freedom vary df=i from 1 to 5###

N<-1000

AIC1=c(1:N)

for (i in 1:N) {

model2=glm(I(sim[,i])~bs(sim$A,df=i),family = "binomial")

AIC1[i]<-model2$aic

}

hist(AIC1)

mean(AIC1)

(conf1<-quantile(AIC1,probs=c(0.025,0.975)))

##Pull and Grab model

N<-1000

A <- thesis$Age

aic.hat.i<-c(1:N)

for(i in 1:N){

llik <- function(theta) {

ratio.r.h <- exp(theta[1])

b <- exp(theta[2])

c <- exp(theta[3])
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s <- exp(theta[4])/(1+exp(theta[4]))

P.A <- (1/(1+ratio.r.h))*(1-exp(-b*A))

F.A <- 1-s*(1-sapply(A,function(p) min(1,exp(-c*p))))

prob <- F.A*P.A

out <- sum((x[,i])*log(prob/(1-prob))+log(1-prob))

return(out)

}

theta.start <- rep(0,4)

simulated.i<- nlminb(theta.start, function(p) -llik(p),

control=list(trace=1))

aic.hat.i[i]<-simulated.i$objective

}

hist(AIC)

mean(aic.hat.i)

AIC<-(aic.hat.i*2)+8

mean(AIC)

(conf<-quantile(AIC,probs=c(0.025,0.975)))

###K-FOLD CROSS VALIDATION for splines###

##Splines with df=i vary i from 1 to 5###

set.seed(1993)

n <- nrow(sim)

N<-1000

K <- 10

block.ID <- rep(1:K,each=n/K)

block.ID <- block.ID[sample(1:n)]

MSE2=matrix(NA,ncol=N,nrow=K)

for (j in 1:N) {

for(i in 1:K){

ind.block <- which(block.ID==i)

training <- sim[-ind.block,]

test <- sim[ind.block,]

glmfit1=glm(I(sim[,j])~bs(sim$A,df=i),data=training,family = "binomial")

predict1 <- predict(glmfit1,newdata=test,type="response")

MSE2[i,j]=mean(((test[,j])-predict1)^2)

}

}
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mean(MSE2)

(confint1<-quantile(MSE2,probs=c(0.025,0.975)))

###MSE standardized for different splines

##SPLINES WITH df=i vary i from 1 to 5 for all age ranges###

set.seed(1993)

n <- nrow(age1)

N<-1000

K <- 10

block.ID <- rep(1:K,each=n/K)

block.ID <- block.ID[sample(1:n)]

MSE11=matrix(NA,ncol=N,nrow=K)

for (j in 1:N) {

for(i in 1:K){

ind.block <- which(block.ID==i)

training <- age1[-ind.block,]

test <- age1[ind.block,]

glmfit1=glm(I(age1[,j])~bs(age1$A,df=i),data=training,family = "binomial")

predict1 <- predict(glmfit1,newdata=test,type="response")

MSE11[i,j]=mean(((test[,j])-predict1)^2)

}

}

mean(MSE11)

(confint11<-quantile(MSE11,probs=c(0.025,0.975)))

###PULL AND GRAB MODEL VALIDATION

set.seed(1993)

n <- nrow(sim)

K <- 10

N<-1000

a<-list()

block.ID <- rep(1:K,each=n/K)

block.ID <- block.ID[sample(1:n)]

theta.hat2.i <- data.frame()

MSE=matrix(NA,N)

MSEK=matrix(NA,nrow=K,ncol=N)

for (j in 1:N) {

for(i in 1:K){

ind.block <- which(block.ID==i)
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training <- sim[-ind.block,]

test <- sim[ind.block,]

# Fit Pull and Grab with training

A <- training$A

y <- training[,j]

llik <- function(theta) {

ratio.r.h <- exp(theta[1])

b <- exp(theta[2])

c <- exp(theta[3])

s <- exp(theta[4])/(1+exp(theta[4]))

P.A <- (1/(1+ratio.r.h))*(1-exp(-b*A))

F.A <- 1-s*(1-sapply(A,function(x) min(1,exp(-c*x))))

prob <- F.A*P.A

out <- sum(y*log(prob/(1-prob))+log(1-prob))

return(out)

}

theta.start <- rep(0,4)

estim.2 <- nlminb(theta.start, function(x) -llik(x),

control=list(trace=1))

a[[1]]<- estim.2$par

list<-t(sapply(a, unlist))

theta2 <-data.frame(list)

theta.hat2.i<-rbind(theta.hat2.i,theta2)

p.A <-function(A,theta) {

theta <- as.numeric(theta)

ratio.r.h <- exp(theta[1])

b <- exp(theta[2])

c <- exp(theta[3])

s <- exp(theta[4])/(1+exp(theta[4]))

P.A <- 1/(1+ratio.r.h)*(1-exp(-b*A))

F.A <- 1-s*(1-pmin(1,exp(-c*(A))))

prob <- F.A*P.A

MSE <- mean((test[,j]-prob)^2) # MSE

return(MSE)

}

MSEK[i,j] <- p.A(test$A, theta2)

}

MSE[j]<-mean(MSEK[,j])
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}

mean(MSE)

(ci<-quantile(MSE,probs=c(0.025,0.975)))

###Pull and Grab for all different age ranges

set.seed(1993)

n <- nrow(age1)

K <- 10

N<-1000

a<-list()

block.ID <- rep(1:K,each=n/K)

block.ID <- block.ID[sample(1:n)]

theta.hat2.i <- data.frame()

MSEA1=matrix(NA,N)

MSEA1K=matrix(NA,nrow=K,ncol=N)

for (j in 1:N) {

for(i in 1:K){

ind.block <- which(block.ID==i)

training <- age1[-ind.block,]

test <- age1[ind.block,]

# Fit Pull and Grab with training

A <- training$A

y <- training[,j]

llik <- function(theta) {

ratio.r.h <- exp(theta[1])

b <- exp(theta[2])

c <- exp(theta[3])

s <- exp(theta[4])/(1+exp(theta[4]))

P.A <- (1/(1+ratio.r.h))*(1-exp(-b*A))

F.A <- 1-s*(1-sapply(A,function(x) min(1,exp(-c*x))))

prob <- F.A*P.A

out <- sum(y*log(prob/(1-prob))+log(1-prob))

return(out)

}

theta.start <- rep(0,4)

estim.2 <- nlminb(theta.start, function(x) -llik(x),

lower = 0, upper = Inf,

control=list(trace=1))
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a[[1]]<- estim.2$par

list<-t(sapply(a, unlist))

theta2 <-data.frame(list)

theta.hat2.i<-rbind(theta.hat2.i,theta2)

p.A <-function(A,theta) {

theta <- as.numeric(theta)

ratio.r.h <- exp(theta[1])

b <- exp(theta[2])

c <- exp(theta[3])

s <- exp(theta[4])/(1+exp(theta[4]))

P.A <- 1/(1+ratio.r.h)*(1-exp(-b*A))

F.A <- 1-s*(1-pmin(1,exp(-c*(A))))

prob <- F.A*P.A

MSEA1 <- mean((test[,j]-prob)^2) # MSE

return(MSEA1)

}

MSEA1K[i,j] <- p.A(test$A, theta2)

}

MSEA1[j]<-mean(MSEA1K[,j])

}

mean(MSEA1)

(c2<-quantile(MSEA1,probs=c(0.025,0.975)))
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7 Appendix

Figure 6: Relationship of prevalence and age
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