
Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Query guided anomaly detection in event data

Pieter Olaerts
Scriptie ingediend tot het behalen van de graad van master in de informatica

2019
2020

PROMOTOR :

Prof. dr. Frank NEVEN

De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee
universiteiten in twee landen: de Universiteit Hasselt en Maastricht University.

Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Query guided anomaly detection in event data

Pieter Olaerts
Scriptie ingediend tot het behalen van de graad van master in de informatica

PROMOTOR :

Prof. dr. Frank NEVEN

Acknowledgements

First of all, I would like to thank my promoter Prof. Dr. Frank Neven for the good supervision
throughout the thesis. In addition, I would also like to acknowledge Kris Peeters and Data-
Minded for providing the problems they experience in practice and the necessary data sets to
perform tests on. As a result, they not only provided the incentive to conduct research in this
very interesting topic, but also made it possible to do this with the necessary resources.

As this thesis marks the end of a 6 year education at the University of Hasselt, I would like
to thank my parents for always supporting me and being ready when needed. In addition, a
special thanks to my fellow students Erik, Niels and Mathias, who I now can call friends and
have ensured that I can look back on this period with a big smile.

i

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research questions . 2

2 Data platforms 5
2.1 Data lake . 5
2.2 Data mesh . 6

2.2.1 Data and distributed domain . 7
2.2.2 Data and product thinking convergence 8
2.2.3 Data and self-serve platform design convergence 9

2.3 Conclusion . 9

3 Data cleaning in theory 11
3.1 Outlier detection . 11

3.1.1 Taxonomy of outlier detection methods 11
3.1.2 Statistics-based outlier detection . 13

3.2 Clustering . 15
3.2.1 Clustering techniques . 15
3.2.2 K-means . 15

3.3 Data profiling . 17
3.3.1 Single-Column analysis . 17
3.3.2 Dependency Discovery . 18
3.3.3 Metanome . 21

3.4 Machine learning approach . 21
3.4.1 Introduction . 21
3.4.2 Machine learning for data deduplication 22
3.4.3 Conclusion . 22

3.5 Limitations of data error detection . 23
3.5.1 Current state . 23
3.5.2 Setup . 24
3.5.3 Evaluation . 25
3.5.4 Conclusion . 25

4 Data cleaning in practice 27
4.1 Trifacta . 27
4.2 Tableau . 28
4.3 OpenRefine . 29
4.4 Tamr . 29
4.5 Deequ . 30
4.6 Great Expectations . 31
4.7 Conclusion . 31

iii

iv CONTENTS

5 Anomaly detection in event data 33
5.1 Data . 33

5.1.1 Event data . 33
5.1.2 Data structure: NMBS . 33

5.2 Aggregation . 34
5.3 Challenges . 35

5.3.1 Queries . 35

6 A query ranking algorithm 37
6.1 Based on statistics . 37

6.1.1 Approach . 37
6.1.2 Implementation . 39
6.1.3 Results . 40

6.2 Based on clustering . 40
6.2.1 Approach . 40
6.2.2 Implementation . 41
6.2.3 Results . 43

6.3 Based on consistency . 43
6.3.1 Approach . 43
6.3.2 Implementation . 44
6.3.3 Results . 45

7 A monitoring system 47
7.1 Initialisation . 47

7.1.1 Cleaning and filtering the data set . 48
7.1.2 Searching for clusters . 48
7.1.3 Selecting the best queries . 48

7.2 Monitoring . 49
7.2.1 Adding a new day . 49
7.2.2 Summarize the results . 49
7.2.3 Recalculations . 50

7.3 Extensions . 50

8 Experiments 53
8.1 NMBS . 53
8.2 DeLijn . 54

8.2.1 Data . 55
8.2.2 Implementation . 56
8.2.3 Results . 56

8.3 Conclusion . 58

9 Conclusion 63

10 Future work 65

Appendices 67

A System specifications 69
A.1 Setup . 69

A.1.1 System overview . 69
A.1.2 Installation . 69
A.1.3 Metanome . 70

A.2 Structure . 70

CONTENTS v

A.2.1 Algorithms . 70
A.2.2 Projects . 70

A.3 API . 71
A.4 Screenshots . 80

B Nederlandse Samenvatting 93
B.1 Inleiding . 93
B.2 Aanpak . 94

B.2.1 Event data . 94
B.2.2 Aggregaties . 95
B.2.3 Uitdagingen . 95
B.2.4 Query . 96

B.3 Algoritmen . 96
B.3.1 Filteren . 96
B.3.2 Clusteren . 97
B.3.3 Consistentie . 97

B.4 Conclusie . 98
B.5 Vervolg . 99

vi CONTENTS

Chapter 1

Introduction

1.1 Motivation

Today, every company produces data in all kinds of structures, coming from the di↵erent depart-
ments (sales, marketing,..) of the company. Nowadays in the so-called modern companies there
is also internet data, such as clickstreams, which contain the behavior of visitors on the company
web page. All this data ends up in data warehouses or data lakes, both can be seen as one large
database. This data can then serve for analysis or for use in machine learning (ML), but before
this can happen, it must first be made usable. Making it usable mainly consists of cleaning the
data, this is very important in both cases. The data used for analysis may indirectly influence
future business decisions. When used in ML, however, the data can be used in multiple phases.
In all phases, non-clean data has a bad influence on the accuracy of the model [14]. For example,
the functions found when training the model depend on the used training data. And in a later
phase, it is necessary that the data fed to the model is similar to the training data. To clean
the data, there are dozens of tools that can be divided into several categories, one may focuses
more on a specific aspect of data cleaning, while another may o↵er more general functionalities.
An example of this is Trifacta [22], a very popular tool with a wide range of options:

• Detect outliers in a numeric column.

• Detect length deviations in an alphanumeric column.

• Detect data type deviations in a column (e.g. a string in a numeric column).

• Recognize a common pattern and detect deviations from this pattern.

• ...

This tool is therefore used daily by many companies for data cleaning. Part of data cleaning is
thus the detection of outliers, or so-called anomalies. The data type or the number of (unique)
values is then checked for each column, among other things. Furthermore, dependencies can
be imposed between columns that must apply throughout the data set. However, these data
cleaning tools lack the ability to define rules regarding the actual content of the data set. For
example: the train from Genk to Blankenberge runs 10 times every day or every month an
average of 100 euros is spent on Jef’s bank account in the ’Sports & Culture‘ category. These
rules can be partly expressed on the basis of an aggregation in the form of a query. For example,
one can find out, from the data, how many times the train from Genk to Blankenberge has
traveled with the following query:

SELECT COUNT(DISTINCT train number)

FROM data

GROUP BY route

WHERE route = "Genk to Blankenberge"

1

2 CHAPTER 1. INTRODUCTION

Then, one need a predetermined timetable or historical data to check whether the result of
this query can be considered ’normal’. This approach causes some problems:

• In most cases there is a need for a domain expert to select the interesting queries.

• Data sets nowadays quickly take on a considerable size, making it not feasible to manually
search and define all interesting queries.

1.2 Research questions

The aim of this thesis is to investigate whether it is possible to find an algorithm that can (semi-)
automatically detect interesting queries. So that outliers can then be detected and monitored
based on these queries. We will focus on a particular type of data, namely event data. This
gives us the following research questions:

• Can we filter out queries without executing them?

• Can we cluster the data (of several days) based on queries?

• Can we detect interesting queries?

– How relevant are recommended queries? Are these meaningful?

– How unique are these queries? Are there any queries with the same meaning?

• Can we monitor these queries?

This work consists of two main parts: the first part provides the necessary background
to understand the full story (Chapters 2,3 and 4), the second part provides a solution to the
problem (Chapters 5,6,7 and 8).

In Chapter 2 we first see that Data warehouses were previously used for data storage and how
this has evolved into Data lakes. The latter appears to show the same defects as its predecessors.
The second part of this chapter provides an answer in the form of a solution to the current pain
points.

Chapter 3 then provides a summary of all kinds of data cleaning techniques. For example,
various outlier detection techniques are discussed, such as statistics-based outlier detection. In
addition, we also look at data profiling, which is closely related to data cleaning. Subsequently,
it is briefly discussed how ML can be of help. Finally, we see what limitations there are currently
regarding data error detection.

Next, in Chapter 4 some well-known and less well-known data cleaning tools are discussed.
For example, we go over the functionalities of Trifacta and Deequ. The conclusion we could
draw from this, brings us to the problems that we are trying to solve in this work.

In Chapter 5, we first discuss what event data actually entails and which data we used. Then
it is explained, in more detail, how we want to solve the problems and what challenges there
are.

Then, in Chapter 6, the process that tries to derive interesting queries using various tech-
niques is discussed. For example, one of these techniques attempt to exclude queries early on
the basis of column statistics. For each technique, the general approach is first explained, then
it is looked at how it was implemented and finally the results that could be achieved with it are
discussed.

Thereafter, in Chapter 7 we see how all techniques form previous chapter are brought together
in one system. The elaborated system consists of two phases: initialization and monitoring. In
the first phase, a new project is created and the user selects some queries from the list of queries
proposed by the system, among other things. The second phase consists of daily monitoring

1.2. RESEARCH QUESTIONS 3

of these selecting queries and detecting any outliers. At the end of the chapter, some possible
extensions of the system are suggested.

The system was continuously tested with the data set that was available. In Chapter 8, we
discuss the final results of one of the experiments. So here an answer is provided to the question
of which queries are now being proposed as interesting by the system. In addition, we also test
another data set, to see which adjustments are needed and how well the system still works. This
is to get a better idea of how the system should be adapted in the future to be able to process
other similar data.

Finally, in Chapters 9 and 10, we make a final conclusion and we look ahead in which areas
the problem can be further investigated in the future.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Data platforms

This current chapter is an adaption of [4]. Many companies today are trying to become a data-
driven organization. This means that they use data and analytics to improve business processes
and business decisions. But despite the investments in building data and intelligence platforms,
the organisations find the results mediocre. In this chapter we will first look at the history of
data platform architectures, then we will gain a better insight in the failures of the previous and
current generation. In the last section we introduce a (possible) new enterprise data architecture,
called data mesh.

2.1 Data lake

In a first attempt to get more value from the di↵erent data sources of a company, a system was
created where all the generated data was first brought together, called data warehouses. Then
infer business intelligence from this collected data, which may help the company improve their
processes and business decisions. One of the disadvantages of a data warehouse is that it works
on structured (with a data scheme) and processed data. Due to the increasing demand to also
store and analyze unstructured (raw) data, a new concept, the data lake was introduced. A
data lake is capable of handling large amounts of unstructured data at low costs. Furthermore,
data lakes provided a more flexible environment, every data analyst who uses a certain data
file can clean and transform it to his needs. This generation is now evolved into a system to
meet modern requirements, such as analyzing real-time data, cloud-based storage services, ML
platforms and many others.

But despite the improvements of the current generation of data platforms, they have the
same characteristics that led to the failure of previous generations. The consequences of this are
that, among other things, the data platforms are di�cult to maintain and need specialized data
engineers. These characteristics are:

• Centralized and monolithic

• Coupled pipeline decomposition

• Siloed and hyper-specialized ownership

Centralized and monolithic

Although domain-driven design and bounded contexts are successfully applied in operational
systems nowadays, these domain concepts are ignored in the data platforms. One data platform
where all data, in all kinds of formats, from di↵erent departments of the company comes together.
That subsequently must be processed (clean, enrich, transform) in order to meet the needs of
the various consumers. So instead of domain oriented data ownership, data platforms have

5

6 CHAPTER 2. DATA PLATFORMS

Figure 2.1: Siloed hyper-specialized data platforms team

centralized domain agnostic data ownership. This may work for organizations that have a
smaller and simpler domain, but it will fail for companies that have a rich domain with a large
number of (data) sources and a diverse set of consumers. In other words, the current solution
does not scale organizationally.

Coupled pipeline decomposition

To create a scalable data platform that can withstand the constant growth of new resources and
new data platform users, architects split the data platform into a pipeline of data processing
stages. A pipeline that, at a high level, provides functional cohesion around the technical
implementation of processing data. This model provides a certain level of scalability by assigning
teams to each stage of the pipeline. But this results in high coupling between the stages of the
pipeline to deliver value, the teams are dependent on each other. Whenever something needs to
be changed in the data platform, it has to be synchronized with all the teams. This limits the
ability to achieve higher speed and scale in response to new consumers and data sources.

Siloed and hyper-specialized ownership

The platform is built and is maintained by a group of hyper-specialized data engineers (as
shown in Figure 2.1). Data engineers who know how to deal with big data, but have little or
no knowledge of the business and the domain. Nevertheless, they must process the data and
convert it into meaningful and correct data that must serve di↵erent purposes. If we look into
practice we find disconnected source teams, frustrated users and an overloaded data platform
team.

2.2 Data mesh

To solve the problems mentioned in the previous section, there is a need for a paradigm shift
in the next generation of data platforms. A data platform architecture is proposed that is
a convergence of the following techniques: Distributed domain driven architecture, self-serve
platform design and product thinking with data. Techniques that each had a positive impact on
modernizing the technical foundations of the operational systems.

2.2. DATA MESH 7

Figure 2.2: Decomposing the architecture and teams owning the data based on domains - source,
consumer, and newly created shared domains

2.2.1 Data and distributed domain

Domain oriented data decomposition and ownership

To move away from the monolithic data platform, one must stop centralizing all data from each
domain in one place. Domains (as shown in Figure 2.2) need to host and serve their data sets
themselves in an easily consumable way. So a push and ingest model gives way to a serving and
pull model across all domains.

Source oriented domain data

Source domain data sets are the most foundational data sets, when created they are close to
the raw data and are not yet suitable for usage by a consumer. Because business facts do not
change that frequently and the source domain data sets are based upon it, they change less
often. These data sets are expected to be always available and always up-to-date. This way,
when developing a data-driven and intelligence services, the organization can always fall back
on the business facts and create new aggregations or projections.

Consumer oriented and shared domain data

Consumer domain data sets and the teams responsible for these sets aim to satisfy a number
of related use cases. Compared to the source domain data sets, the consumer domain data sets
have to undergo some structural changes. A team in the domain-oriented data platform should
be able to easily generate such a data set given the source.

Distributed pipelines as domain internal implementation

Now that the domains themselves own their data, the data pipeline becomes an internal com-
plexity and implementation of each domain (as shown in in Figure 2.3). A source domain must
provide the data pipeline stages such as cleansing and deduplicating itself, a consumer domain
will implement aggregations itself. So each domain is responsible for the implementation of their
own data pipeline and the quality of the data that they ultimately deliver.

8 CHAPTER 2. DATA PLATFORMS

Figure 2.3: Moving the pipeline and the internal implementation of the domain to the domains
themselves

2.2.2 Data and product thinking convergence

Now the business domains have control over the data ownership and the data pipeline implemen-
tation, applying product thinking is one of the things that is important to continue to provide
accessibility, usability and harmonization of the distributed data sets. In the form of APIs, ac-
cessible to the rest of the organization, operational domain teams have already applied product
thinking in the last decade. Each team strives to create the best developer experience for their
domain APIs. The APIs are the building blocks for creating and providing higher order value
and functionality. The domain data teams must also apply this way of thinking for the data sets
they provide to form a successful data platform. Their data sets are the products for the rest
of the organization that need to be delivered with the best possible service. In order to reach
this kind of service, the domain data products need to have the following characteristics:

Discoverable

Data consumers, engineers and scientist in an organisation must be able to find a dataset of
their interest easily. This can be done by a data catalogue of all available data products with
their meta information such as their source, owners, samples, etc.

Addressable

It is self-serving for any organization to clearly define standards for addressability of data sets in
order to remove the friction that arises in a multiform environment, when finding and accessing
information. Consequently providing each data product with a unique address according to a
global convention should make it straightforward to access a data product, once it is discovered.

Trustworthy and truthful

It is important that consumers have confidence in the data products. To improve this, every
data product must be provided with acceptable service level objectives. This concerns the
reliability of the data, how closely the data represents the truth or the probability that the data
was generated. Applying techniques such as cleansing, testing data integrity and making useful
metadata available can help achieve this goal. The service level objectives of course depend on
the product.

2.3. CONCLUSION 9

Self-describing semantics and syntax

Quality products can be independently discovered, understood and consumed. Ideally, each
data set should have well-described semantics and syntax, along with some data samples as an
example. This is the starting point to deliver self-serve data assets.

Inter-operable and governed by global standards

To e↵ectively correlating data across domains and merge them together, in a distributed do-
main data architecture, raises the need for certain standards and harmonization rules. These
rules need to be determined on global scale to enable interoperability between polyglot do-
mains. Interoperability and standardization of communications, governed globally, is one of the
foundational pillars for building distributed systems.

Domain data cross-functional teams

To enable each domain to o↵er their data as a product, each domain must be occupied by a
cross-functional team consisting of data product owners and data engineers. A data product
owner makes all decisions regarding the evolution of the data product. Continuously verifying
and improving data quality and keeping consumers satisfied are some of a data product owner’s
tasks. Data engineers are necessary in order to build and operate the internal data pipelines of
the domains.

2.2.3 Data and self-serve platform design convergence

Since each domain now owns its data, each domain must also maintain its own data pipeline
technology stack. In order to avoid unnecessary duplication, there is a need for a common data
infrastructure platform, which provides the necessary technology for the domains to capture,
process, store and serve their data product. It is then necessary that the data infrastructure
platform does not contain domain specific concepts or business logic, hides all underlying com-
plexity and serves the data infrastructure components in the form of self-service. The self-service
ensures that new data products can be implemented quickly.

2.3 Conclusion

The datamesh platform is therefore a distributed data architecture where management is central-
ized and there is inter-operability between the di↵erent polymorphic entities through standard-
ization. All this is possible through the shared and harmonized self-service data infrastructure.
The data lakes and data warehouses that we all know can actually be used as the nodes of
this system. The data lake may no longer be the center of the entire system, but some of its
principles will still be applied. An example of such a principle is the provision of immutable
data for analysis to the source oriented domain data products. It is now up to the engineers and
business leaders of the organizations to realize that the existing paradigm will again stumble
over the same problems as previous generations of data platforms.

10 CHAPTER 2. DATA PLATFORMS

Chapter 3

Data cleaning in theory

The first part of this chapter is a summary of all kinds of techniques that are used in data
cleaning, among other things. Section 3.1 provides an overview of outlier techniques, 3.2 briefly
discusses clustering and 3.3 is more about data profiling, which is closely related to data cleaning.
This knowledge is required to fully understand the applications in the second part of the thesis
used to create the tool. The second part of the chapter briefly discusses how machine learning
can be used for data cleaning, Section 3.4, and what limitations are encountered in the search
for data errors in the last section, 3.5.

3.1 Outlier detection

An outlier is an observation that deviates from the other data point in consideration and therefore
exhibits abnormal behavior. As a result of this, outliers can sometimes strongly influence the
results and cause that the wrong analyzes are ultimately made. This is the reason why it is
important that outliers can be identified and possibly be excluded in a later phase. There are
di↵erent methods for detecting outliers, each with its pros and cons. A suitable method should
be selected depending on the application domain. The following section will give an overview
of the di↵erent methods of outlier detection. Thereafter, in Section 3.1.2, the statics-based
detection method will be discussed in more detail, as it is the most appropriate method for the
created tool. More details can be found in [9], of which this section is a summary.

3.1.1 Taxonomy of outlier detection methods

Outlier detection methods mainly di↵er in how they define normal behavior. They can be split
into 3 categories (Figure 3.1):

• Statistics-based outlier detection

• Distance-based outlier detection

• Model based outlier detection

Statistics-based outlier detection

Statistics-based outlier detection considers a stochastic model and assumes that normal data
points occur in the high probability regions, while outliers would appear in the low probability
regions of the stochastic model. This detection technique can be further divided into two cat-
egories, hypothesis testing and fitting distribution. Hypothesis testing methods first calculate a
test statistic based on the observed data points. This test statistic is then used to determine if
the null hypothesis (there are no outliers) should be rejected. The Grubbs Test and the Tietjen-
Moore test are examples of the hypothesis testing method.

11

12 CHAPTER 3. DATA CLEANING IN THEORY

Figure 3.1: A taxonomy of outlier detection methods

The other category tries to derive a probability density function (pdf) based on the observed
data. Data points that have a low probability according to the pdf are considered outliers.
This fitting distribution technique can be further divided into a parametric and non-parametric
approach. The parametric approach assumes that the observed data is generated according to
a certain underlying distribution and attempt to retrieve the parameters of this distribution.
In the non-parametric case, attempts are made to find out the distribution of the data without
making any assumptions in advance.

Pros:

• Statistical techniques usually provide a confidence score, the score can be used while
making a decision for a data point as additional information.

• Unsupervised: without any need for labeling data etc..

Cons:

• Relies on the assumption that the data is generated from an underlying distribution. This
assumption does not always hold (high-dimensional real datasets).

• Choosing the best test statistic is often not a straightforward task.

Distance-based outlier detection

In distance-based outlier detection, a distance measure between data points is defined, which is
used to describe normal behavior. A data point that behaves normally is close to many other
points. Data points are considered abnormal, and therefore as outliers, if they do not exhibit
this behavior. Depending on which population is used to determine whether a point is an outlier,
the method is classified as local or global distance-based outlier detection. The global method
uses the entire data set, while the local method uses only nearby points (neighbors) to determine
if a point is an outlier.

Pros:

• Data driven (no assumptions).

• Easy to adapt to di↵erent data types, need only to define an appropriate distance measure.

Cons:

• Will fail when normal data points have not enough close data points or when abnormal
data points have many close data points.

3.1. OUTLIER DETECTION 13

• High computational complexity, distance between every pair must be computed in the
testing phase.

Model-based outlier detection

Model-based outlier detection technique uses a classification model. This model is trained with
a set of labeled points and then applied to check whether a data point is an outlier. The tech-
nique is classified as one-class or multi-class model based, depending on the labels used to train
the classification model. One-class model-based techniques assume that the labeled points from
the training data set belong to one normal class, while multi-class techniques assume multiple
normal classes.

Pros:

• Uses powerful algorithms to distinguish instances belonging to di↵erent classes.

• Fast testing phase.

Cons:

• Relies on the accuracy of the labels for the classes.

3.1.2 Statistics-based outlier detection

Hypothesis testing for outlier detection

Grubbs test Grubbs test is an example of hypothesis testing and is used to detect a single
outlier in a univariate dataset with an approximately normal distribution.

Algorithm:

1. Define a null hypothesis and an alternative hypothesis

2. Calculate the mean and the standard deviation of the dataset

3. Calculate the Grubbs test statistic G

The Grubbs test statistic is the largest absolute deviation from the sample mean Y in
units of the sample standard deviation s.

maxi=1,..,N |Yi � Y |
s

4. Calculate Gcritical (with the significance level)

If G > Gcritical: reject null hypothesis; else: accept

Tietjen-Moore Test is a generalization of the Grubbs test for more than one outlier (number
of outliers must be specified).

Fitting distribution: parametric approach

Univariate Univariate outlier detection calculates the z-score for every element in the data.
The z-score is described as the number of standard deviations away an element is from the mean.
So, to calculate the z-score we first need to calculate the mean and the standard deviation,
assuming the data follows a normal distribution (= fitting to a normal distribution). Data
elements that have a z-score greater than a predefined threshold are declared to be outliers.

z � score(xi) =
|xi � µ|

�

14 CHAPTER 3. DATA CLEANING IN THEORY

Figure 3.2: Equi-width histogram for outlier detection

Robust Univariate Statistics Outliers sometimes have a major impact on the mean. As
a result, certain outliers are missed when the mean is used to detect the outliers. A more robust
approach is the use of the median absolute deviation (MAD). The MAD is defined as the median
or the absolute deviations from the data’s median. In contrast to the standard deviation, which
is influenced by large deviations (caused by outliers), the deviations of some outliers are of no
great importance because the MAD uses the median of the absolute deviations.

MAD = mediani(|xi �medianj(xj)|)

Multivariate Some outliers are not detectable if we only look at one dimension. Outliers
that are only visible if we consider multiple dimensions are called multivariate outliers. The
mahalanobis distance is the multidimensional generalization of measuring how many standard
deviations away a point is from the mean of the population. The mahalanobis distance of a
point x to the mean vector µ is defined as:

Mahalanobis(x) =
q
(x� µ)T⌃�1(x� µ)

Robust Multivariate Statistics As with Univariate, outliers can strongly influence the
multivariate mean and covariance matrix since they are not robust. The Minimum Covariance
Determintant (MCD) is the most popular method for the robustification of multivariate mean
and covariance matrix.

Fitting distribution: non-parametric approach

Histograms A histograms (Figure 3.2) represent the graphical distribution of the numerical
data values. To create a histogram, the range of values must first be split into a series of intervals
(consecutive and non-overlapping). The number of values per interval is then counted. If all
intervals are of equal size, a bin is created with a height corresponding to the frequency (the
number of values in the interval). These types of histograms are called equi-width histograms.
If the intervals are chosen so that all intervals have the same frequency, the histogram is called
an equi-depth histogram.
Equi-width histograms can be used to detect outliers. Bins that have a very low frequency
contain data points that are propably outliers. The main challenge with this detection method
is to choose the right size of intervals. If the intervals are too narrow, most bins will have a low
frequency and normal points will possibly be marked as outliers. Otherwise if the intervals are
too wide, most bins will have a high frequency and outliers will be absorbed in bins with normal
points.

3.2. CLUSTERING 15

3.2 Clustering

The purpose of applying clustering to a collection of data points is to group these data points
so that similar points are in the same group. The equivalence between the di↵erent data points
is determined by a well-chosen distance measure. For example, if we want to group coordinates,
we can literally calculate the distance between the di↵erent points and thus group the di↵erent
points. Similar points, i.e. coordinates with a small distance between each other, then end
up in the same group, also known as cluster. In this example it is not di�cult to define a
good distance measure for the given data points, unfortunately this is not always the case. The
following section, based on [16], will first give an overview of the di↵erent clustering techniques.
Then a point assignment algorithm, named K-means, will be discussed in more detail.

3.2.1 Clustering techniques

Clustering algorithms can be divided into two groups that have fundamentally di↵erent strate-
gies: hierarchical and point assignment clustering. But they can also be divided based on what
space they assume: Euclidean or non-Euclidean space.

Hierarchical algorithms

In hierarchical algorithms, also called agglomerative algorithms, each point is first placed in a
cluster separately. The clusters closest to each other are then combined based on the selected
distance measure. This joining process is repeated for a predefined reason. Examples of such
reasons: a predetermined number of clusters is reached or a predetermined form of compactness
is exceeded when clusters are joined.

while it is not time to stop do
pick the best two clusters to merge;
combine those two clusters into one clusters;

end
Algorithm 1: Pseudo code of a hierarchical algorithm

Point Assignment

The other class of algorithm use point assignment. After the initial clusters have been deter-
mined, all points are assigned to the nearest cluster based on the chosen distance measure.
This process can vary, sometimes clusters may still be split or some points may not be assigned
because they are outliers.

(Non-)Euclidean space

In the Euclidean case, it is possible to summarize the set of points within a cluster as the average
of the points, called the centroid. In non-Euclidean space it is not possible to summarize the
points into a centroid. So, the cluster must be summarized in another way. This can be done
by calculating a clustroid, the point of the cluster closest to the rest of the points in the cluster,
which then can be used to represent the cluster.

3.2.2 K-means

K-means is one of the most famous clustering algorithms in the class of the point-assignment
algorithms. In order to be able to apply K-means, it is assumed that we work in an Euclidean
space and that the number of clusters is known in advance. There are some techniques to derive

16 CHAPTER 3. DATA CLEANING IN THEORY

Figure 3.3: If there are to few clusters the average diameter or another measure of quality will
rises quickly

the number of clusters for a given data set. One of these techniques, called the elbow-technique,
will be discussed later in this section.

The algorithm

In the first step of the algorithm, k points are chosen to represent the clusters. These points are
best chosen in such a way that there is a good chance that they will eventually end up in di↵erent
clusters. One way to find these points is to run the clustering algorithm on a small subset of the
data and select one point from each found cluster. After we have chosen k points that represent
the centroids of the clusters, we arrive at the most important part of the algorithm. In this
part, each point is considered and assigned to the nearest cluster, that is, the cluster whose
centroid is closest to the given point. An optional next step is to recalculate the centroids for
each cluster and reconsider all points and assign them to the nearest cluster. Often most points
end up in the same cluster again. The latter strongly depends on how well those initial k points
are chosen.

Initially choose k points that are likely to be in di↵erent clusters;
Make these points the centroids of the clusters;
for each point p do

Find the centroid to which p is the closest;
Add p to the cluster of the nearest centroid;

end
Algorithm 2: Pseudo code of the basic k-means algorithm

Determining the right value of K

It is not always obvious to know in advance how many clusters there will be in a given data
set. But by running the K-means algorithm several times, for a di↵erent number of clusters, we
can more or less determine how many clusters are present in the given data set. It is possible
to calculate the quality of the clusters using a certain parameter. Examples of such parameters
are the average radius or diameter of the clusters, this value usually grow steadily as long as
we have more clusters than the actual number. But once there are too few clusters, this value
will increase exponentially. When these results are plotted in graph, a clear kink is visible
(Figure 3.3), the so-called elbow. No further explanation is needed as to why this is called the
elbow technique.

3.3. DATA PROFILING 17

3.3 Data profiling

3.3.1 Single-Column analysis

Single column analysis is one of the most simple profiling tasks in which individual columns are
analyzed independently. In this part, which is based on [2, 3], the most common single-column
profiling tasks will be discussed briefly.

Cardinalities

Cardinalities refer to the numbers that summarize simple metadata.

• Number of rows: gives important information about the number of entities which are
present in the table, and is collected by most database management systems (DBMS) to
estimate the query cost or to assign storage space.

• Number of null values (within a column): gives more information about the data com-
pleteness and therefore data quality

• Number of distinct values (or entities): together with the total number of rows, the column
uniqueness can be calculated, which indicates if the column is a candidate key.

Almost all the above statistics can be computed in a single pass, besides the counting of distinct
values, which can be done using sorting or hashing.

Value distribution

Profiling tasks that summarize the distribution of values within a column.

• Histogram: A common way to represent the distribution of values within a column is by
using histograms. As already seen in Section 3.1.2, they are also used to detect outliers.
More, histograms are very useful to users as they summarize the distribution’s mass and
shape which makes them easy to interpret. DBMS use histograms for query optimization
where they provide a more accurate estimate for queries or operators than other naive
methods (e.g. assuming a uniform distribution).

• Extremes: In a numeric column the extremes are described by its maximum and minimum
values. These values support the identification of outliers.

• Constancy : The frequency of the most frequent value divided by the total number of values
is the constancy of a column. A high constancy may indicate that the most frequent value
is a (pre-defined) default value.

• Entropy : The entropy of a column indicates the average level of information. In other
words, the entropy is the amount of storage space (e.g. the number of bits) it takes to
store all values. This can be intuitively seen as the amount of information in that column.
There are several formulas to calculate entropy (each applicable for a particular domain).
A frequently used formula in this domain is Shannon’s formula, with Pi the probability
that value at position i in the list of size M occurs.

H = �
MX

i=1

Pi log2 Pi

In Figure 3.4, the entropy of a coin toss is visualized. In this case there are always 2
possibilities: heads or tails. The entropy (y-axis) depends on the chance (x-axis) that the
coin will land on one of the two sides.

By use of the correct methods (sorting or hashing) each of these statistics can be computed in
a single pass, with the exception of equi-depth histograms.

18 CHAPTER 3. DATA CLEANING IN THEORY

Figure 3.4: Visualization of the entropy of a coin toss (2 possible values). If the coin were to
land always on the same side, this would result in an entropy of 0.

Data types, patterns and domains

Profiling tasks that focus on data types, patterns and domains.

• Basic data type: The basic data types: numeric, alphabetic and alphanumeric, can be
verified by the presence or absence of numeric or non-numeric characters. The other two
types, date and time, can be detected by checking for numbers within certain ranges and
for groups of numbers separated by special characters, for example a time can be presented
as: 2 digits - a colon - 2 digits (multiple possible formats).

• Data management system data type: These systems allow more specific data types, which
can be checked in a similar way as the basic data types. Here it is important that the
most specific data type is selected, e.g. a Boolean column can be evaluated as an integer,
but the Boolean type is preferred. To distinguish data types as decimal, float and double,
one must first determine maximum size and the number of decimals. This is also the case
for alphanumeric column, but then with various lengths.

• Patterns: If the data type of a column is know, one can look for frequently occurring
patterns of values that can indicate that a column e.g. consists of telephone numbers
(pattern: +(dd) ddd dd dd dd). It is very likely that the data set contains some errors
and outliers, thus it is enough that most values within a column satisfy the frequent
pattern.

• Domains: Identifying the semantic domain involves figuring out the meaning or interpre-
tation of the data rather than its semantic properties and is therefore the most di�cult
task. The presence of certain regular expressions may suggest a semantic domain tele-
phone number, but it may also correspond to fax numbers. This task is not, and usually
can not be fully, automated.

3.3.2 Dependency Discovery

Traditionally, constraints such as keys, foreign keys and functional dependencies, have been con-
sidered predetermined constraints of a schema, acknowledged when designing the data schema.
However, today there are many data sets for which these constraints are unknown. Consequently
there is a need for algorithms that can derive these constraints from data sets. Especially, be-
cause these constraints are also very useful for detecting logical errors in data sets. Errors that

3.3. DATA PROFILING 19

cannot be traced by other data cleaning tasks, for example impossible ZIP code and place name
combinations in an address. This section, which is based on [8, 9], gives an overview of the
di↵erent kind of dependencies.

Functional dependencies

A functional dependency (FD) is defined as A!B, with A and B attributes from a relational
schema R. The FD is valid in R if for any two tuples X and Y: if X[A] = Y[A], then X[B] =
Y[B]. In order words, A!B asserts that all tuples with the same value in attribute A must also
have same values in attribute B. Thus, values in B functionally depend on the values of A.

Violations against the FD may indicate that there are some errors in the data set. For
example, given the FD: ZIP Code!Place name. If for a certain tuple the zip code 3600
translates to GENK and some other tuple this same zip code translates to HASSELT. Then,
one of these tuples must be incorrect and is cleaning needed.

There are two types of approaches for detecting FDs: schema-driven and instance-driven.
The schema-driven approach usually has a schematic way of listing all candidate FDs and an
e�cient way of checking whether an FD is valid or not based on the enumeration. TANE is an
example of a schema-driven algorithm, it uses a level-wise strategy for candidate generation and
pruning, and checks the validity of the FDs using a linear algorithm. The data-driven approach
starts with creating a summary of the data sets and then searches for valid FDs based on that
summary. An example of this approach is FASTFD, which first calculates the di↵erence sets
of the data and then applies a heuristic driven depth-first search algorithm to find all covers of
di↵erence sets. Both algorithms have their advantages and disadvantages. For example, TANE
is sensitive to the size of the schema, while FASTFD is sensitive to the size of the instance.

Conditional Functional dependencies

Sometimes it is not necessary that a FD holds for all the data, but just from some part(s). This
can not be expressed with a FD, but can with a conditional functional dependency which is an
extension of FDs. A conditional functional dependency (CFD) can be defined as (A!B, Tp),
with A!B a FD from a relational schema R and Tp a pattern tableau.

A pattern tableau can be seen as some kind of table, where for every attribute of the FD is
specified for which values the FD is valid. These values can be constants (a value in the domain
of the given attribute) or wild cards (-).

For example, suppose we have a data set of sales, where each record consists of the at-
tributes: name, type, country, price and tax. The following FD was drawn up for this data set:
name, type, country ! price, tax. The FD does not apply to the entire data set, but it does in
these 3 cases:

• The type is clothing

• The country is France and the type book

• The country is United Kingdom

This can then be expressed by the CDF (name, type, country! price, tax, Tp), with Tp, as
shown in table 3.1.

Similar techniques are used to detect CDF as for FD discovery. Examples of such algorithms
are CDFMiner, CTANE and FASTCDF, each with their advantages and disadvantages. Two
major challenges emerge during the detection. The first, which also applies to FD discovery,
is that the number of possible FDs is exponential with the number of attributes present in the

20 CHAPTER 3. DATA CLEANING IN THEORY

Name Type Country Price Tax
- clothing - - -
- book France - 0
- - UK - -

Table 3.1: Pattern tableau Tp of the CDF: name, type, country ! price, tax

schema. The second challenge is that the number of possibilities (of constants) in the pattern
tableau are enormous.

If an FD is given, the CDFs problem equals generating the best possible pattern tableau.
The quality of the pattern tableau then depends on the support and confidence. The support
of a pattern tableau is determined by the fraction of tuples in the data set corresponding to the
LHS of the pattern tuples in the tableau. The confidence of a pattern tableau is defined as the
maximum fraction of tuples in the data set corresponding to the tableau.

Denial constraints

With FDs and CDFs many rules can be expressed, but they are still not capable of expressing
many real-life data quality rules. For example, If 2 people are a�liated with the same telephone
company, the person with fewer calling minutes has to pay less or The net salary is less than
the gross salary. Denial constraints (DC), a universally quantified first order logic formalism,
are able to express this kind of rules. It is even possible to write FDs and CFDs as DCs.

For example, the rule that states that two persons with the same zip code live in the same
town can be expressed as:

c : 8t↵, t� 2 R,¬(t↵.ZIP = t� .ZIP ^ t↵.ST 6= t� .ST)

This rule says that there should not be 2 tuples (t↵, t�) in the data set (R) where the
postcodes are the same and the towns are di↵erent.

In the case of DC discovery, the schema-driven approach, as seen with FD discovery, is less
useful. This is mainly due to the fact that DCs are more complex: FDs only contain equality,
while DCs can also contain predicates such as greater than and less than. Consequently, it
is di�cult to systematically check the validity of the space of all DCs. The currently most
used algorithms for DCs discovery are: FASTDC (instance-driven, similar to FASTFD for FD
discovery) and Hydra (Hybrid algorithm, similar to HYFD for FD discovery).

Others

There are of course many other types of constraints, each designed for a di↵erent purpose:

• Inclusion dependencies: used for detecting inconsistencies or information incompleteness
and for schema matching.

• Matching dependencies: generalize the equality condition used in FDs by use of similarity
measures, to support record linkage across two tables.

• Metric functional dependencies : capture small data variations (specialization of matching
dependencies).

• Numeric functional dependencies: capture interesting constraints involving numeric at-
tributes.

3.4. MACHINE LEARNING APPROACH 21

• Editing rules: detect and correct errors, the latter by use of a master table.

• Fixing rules : detect and correct errors, the latter if there is enough evidence present
indicating how to correct the error.

• Sherlock rules: mark the correct and erroneous attributes, and precisely tell how to fix the
errors by referencing master tables.

3.3.3 Metanome

The metanome project [7, 13] is a collaboration between the Hasso-Plattner-Institut (HPI) and
the Qatar Computing Research Institute (QCRI). It is a framework that o↵ers a range of e�cient
algorithms related to data profiling on one common platform. It is possible as a user to expand
the system with self-developed data profiling algorithms. The algorithms can be applied to both
existing (internal) data sets and external data sets indicated by the user. All this makes the
tool ideal for both algorithm engineers and data scientists.

Input sources

• Databases: DB2, MySQL, Oracle,...

• Files: txt, tsv, csv, xml,...

Profiling algorithms

• Unique column combinations: HyUCC, DUCC

• Inclusion depencency: BINDER, SPIDER, MANY, FAIDA

• Functional dependency: HyFD, DFD, Tane, Fun, DepMinder,...

• Matching dependencies: HYMD

• Denial constraints: Hydra, DCFinder

• Basic statistics: SCDP

In practice

Metanome has often been used for this work, among other things to calculate statistics of the
columns and dependencies of the various data sets. A very handy tool, just a pity that it also has
some flaws. For example, Metanome uses outdated software (Java JDK 1.8, Maven 3.1.0) and
does not work on newer versions of this software. In itself this is not really an insurmountable
problem, but it does become very di�cult because it is also not easy to get this outdated software
(Maven 3.1.0). In addition, the internal algorithms are all very memory intensive, which means
that the program quickly gets into trouble with the larger data sets and it takes either a very long
time to generate the result or the execution stops / crashes completely. So, if you want to quickly
find out more information about a relatively small data set and you can install Metanoma, it is
an excellent tool.

3.4 Machine learning approach

3.4.1 Introduction

Due to the increase in popularity and availability of resources to build large-scale machine
learning (ML) solutions, the use of ML techniques for data cleaning has increased. In a ML

22 CHAPTER 3. DATA CLEANING IN THEORY

environment, data cleaning is viewed as a probabilistic database problem, where static and prob-
abilistic interpretation of data errors can lead to more general solutions for detection and repair.
This approach has been used for years, but only for numerical outlier detection techniques. The
biggest advantage of applying a probabilistic view is that it is possible to handle di↵erent types
of data errors in one platform. This is ideal, because in reality data errors in databases are not
limited to one specific type. Studies have also shown that the application of multiple tools, each
for one type of error, on a dirty database has a bad influence on the results.

Many ML concepts and techniques are used today to build data cleaning solutions. For
example, factor graphs are used to record the correlation between the di↵erent features and
signals, and to predict the most likely value for a faulty cell in the database. Active learning is
used to involve experts in labeling data used to train ML models.

This section reviews briefly the findings made in [9], where they focused on the cleaning task
data deduplication.

3.4.2 Machine learning for data deduplication

ML solutions can be used to detect duplicate records in the data, with similarities scores as
features, which is by definition a binary classification problem. When there is a shortage of
su�ciently labeled data with examples of duplicate and non-duplicate records, a good classifier
cannot be taught. In this case, active learning can be a fully-fledged alternative. Also deep
learning (DL) can be useful in some data deduplication scenarios.

Active learning in data deduplication

The general idea is that user feedback is requested for unlabeled record pairs. When labeled by
the user, they are most useful in the training process. A well-known solution to this is ALIAS
[17]. The main problem is that the accuracy of the classification model for data duplication is
highly dependent on the quality of the training data. After all, the training data should have
a balanced number of both cases (duplicates and non-duplicates) and ideally also examples of
cases that are likely to be misinterpreted.

Deep learning in data deduplication

In a recent study [11], several DL solutions were compared for matching records. This study
showed that the DL solutions are certainly not much better than the traditional ML solutions
for structured EM (Entity Matching) tasks, where the entities have the same scheme and the
attribute values are clean. However, DL solutions significantly outperform traditional ML solu-
tions on textual EM tasks (entities only contain text attributes) and dirty EM tasks (attribute
value of entities contain errors).

But here too is the lack of high-quality training data a problem. Most models require large
amounts of labeled data to learn a particular classification task. The labeling of data can be
done by a domain expert, but their time is far too precious to be concerned with this. As a
result, models that require less training data are preferred over others. In addition, there is a
lack of explanation for the decisions made for the obtained output, this explanation is necessary
in some cases.

3.4.3 Conclusion

There are still some stumbling blocks that must be overcome before ML can be o↵ered as the
number one solution for data cleaning. Especially the shortage of su�cient qualitative training
data is a big problem. But the use of ML solutions for developing better data cleaning solutions
is certainly promising.

3.5. LIMITATIONS OF DATA ERROR DETECTION 23

3.5 Limitations of data error detection

As indicated earlier, data today is used to support decisions in companies and is necessary in
ML environments. It is clear that data has become a very important asset, more specifically
clean data. The demand for clean data has led to numerous tools. In [1], a study was conducted
to answer the following two questions: (1) Are the current tools robust enough to record most
errors in real data sets? (2) What is the best strategy to holistically implement multiple tools to
optimize the detection e↵ort? The main findings are summarized in this section. First we look
at the current state of data cleaning tools and what challenges there are in this research. Then is
described which types of errors and which data sets were considered, together with the di↵erent
tools that were compared. Finally, an overview is given of the most important conclusions from
this paper.

3.5.1 Current state

Tools

The available data cleaning tools can be divided into 4 categories:

• Rule-based detection algorithms

– Rules can range from very simple (e.g. not null) to more advanced constraints (e.g.
functional dependencies) or user-defined functions.

– Example(s): DC-Clean

• Pattern enforcement and transformation tools

– Tools that look for certain patterns in the data, these patterns can be both syntactic
and semantic in nature. By use of these patterns errors can be detected, in other
words cells that do not follow the found patterns.

– Example(s): Trifacta, OpenRefine, Katara, etc.

• Quantitative error detection algorithms

– Algorithm that detects outliers in the data

– Example(s): dBoost

• Record linkage and deduplication algorithms

– Algorithm that detect duplicates in the data

– Example(s): Tamr

Challenges

When researching these tools, a number of challenges emerge:

• Synthetic data and errors : Data (synthetic or real) with synthetic added errors are often
used to evaluate the tools. This gives a good picture of the correct functioning of the
algorithm, but not of the e↵ectiveness of the tool on real errors in data. Which makes it
di�cult to assess the existing tools.

• Combination of type of errors and tools: Real data usually contains errors of di↵erent
types. In addition, the same error can be traced by multiple tools. So when only one type
of algorithm is considered, the opportunity to gather evidence from di↵erent types of tools
is missing.

24 CHAPTER 3. DATA CLEANING IN THEORY

• Human involvement : In almost all tools there is a need for people who draw up rules,
verify the detected errors or give feedback to the ML model. It is desirable to keep human
involvement as minimal as possible.

3.5.2 Setup

Types of data errors

A value is referred to as an error if it has a deviation from the basic truth value. The following
types of errors are considered in this study:

• Outliers: are the values that deviate from the distribution of values in a column of a given
table.

• Duplicates: are multiple di↵erent records that refer to the same entity. If not all values of
the di↵erent attributes match, this could indicate a possible error.

• Rule violations: are the values that does not meet a predefined integrity constraint.

• Pattern violations : are the values that do not meet predefined syntactic or semantic con-
straints.

Certain errors may belong to more than one type.

Data sets

For the study, a number of data sets were used, which were obtained from a number of orga-
nizations active in di↵erent sectors, consisting of real data. Of which one dataset consists of
artificially manufactured errors.

Data cleaning tools

The data cleaning tools were chosen so that all types of errors discussed earlier could be detected
by at least one tool. So for some types of errors, multiple tools were chosen, usually each focusing
on a di↵erent subcategory (e.g. semantic vs. syntactic). Furthermore, the selection of tools
consisted of both commercial and publicly available tools. To ensure that every tool was used
as optimally as possible, each tool was first fine-tuned. Below an overview of the tools that were
used per type.

• Outlier Detection: dBoost

• Rule-based Error Detection: DC-Clean

• Pattern-based Detection: OpenRefine, Trifacta, Katara, Pentaho and Knime

• Duplicate Detection: Tamr

Multiple tools

In addition to evaluating the e↵ectiveness of each tool on the data sets, the e↵ect of combining
several di↵erent tools was also investigated. Two simple strategies were used to combine multiple
tools: Union all and Min-k. The first strategy, Union all, simply takes the union of all errors
detected by all tools. The second strategy, Min-k, considers all errors detected at least by k-
tools. Therefore, the errors that are not detected by k-tools are disregarded. Furthermore, a
third more sophisticated ordering based strategy was also tested, in which the users evaluate
a sample of detected errors. On the basis of this evaluation, a sequence of tools can then be
determined in which they must be applied. More details about this last strategy can be found
in the paper.

3.5. LIMITATIONS OF DATA ERROR DETECTION 25

3.5.3 Evaluation

To determine the e↵ectiveness of each tool, the accuracy of finding potential errors was measured
based on precision and recall. Precision is defined as the fraction of cells correctly identified as
error and recall as the fraction of true errors. The final score of a tool is the harmonic mean of
the precision and the recall.

Individual e↵ectiveness

It was remarkable that all tools performed very well on the data to which errors had been added
in a synthetic way. So in later work, to determine the e↵ectiveness of tools, one should certainly
not use a data set to which errors have been added in a synthetic way. It was also noticeable
that no tool performed well on all data sets, so this is very dependent on the type of errors that
occur. For example, Tamr (duplicate detection) was very e↵ective on data that contained many
duplicates and not on any other data sets.

Combination e↵ectiveness

When using the union strategy, the recall naturally increases and is better than for any of the
tools separately, which makes sense since more types of errors can be detected. Unfortunately,
this also results in more false positives and therefore a decrease in precision.

The loss in precision can be counteracted by using the k-min strategy which increases preci-
sion, but decreases recall. Furthermore, it could be determined that there is no k, which is most
e↵ective for all data sets. So the e↵ectiveness of the k-min strategy depends on the chosen k,
the data set and the tools used.

When using the ordering based strategy, the user has to evaluate a significantly lower number
of errors detected, with the result that only a few real errors are lost compared to the union
strategy. So a fraction of recall is sacrificed for less human involvement.

3.5.4 Conclusion

The main points to be taken from this paper are:

• There is no single dominant tool for all data sets and all di↵erent types of errors.

• The correct order of applying tools can improve precision and reduce the necessary human
input.

• Domain specific tools can achieve better precision and recall compared to general tools.

• Data enrichment can positively impact rule-based systems and duplicate detection.

26 CHAPTER 3. DATA CLEANING IN THEORY

Chapter 4

Data cleaning in practice

In this chapter a better insight is gained in the world of data cleaning and profiling tools (as
shown in Figure 4.1) and what they can and can not do. Because there are too many, only the
most popular/interesting tools will be get a closer look.

4.1 Trifacta

Trifacta [22] is an online platform that provides software to explore, transform and join diverse
data for analysis more e�cient. This in the first place for organisations, but also for individuals.
Data sets can be imported in all kind of di↵erent formats (CSV, plain text, parquet, JSON,
XML, etc.) and also from several external sources (database, file system, app or cloud storage)
in case you own the PRO version. After the data is imported in, flows can be created by merging
data and adding recipes. Recipes in Trifacta are a list of operations that are executed on the
data sets. Examples of such operations are filtering, sorting, renaming, restructuring and many
more. Afterwards, if a flow is completed, they can be scheduled and shared. The output is in
CSV or a JSON format.

Trifacta has its own data wrangling process that consists 6 steps, each step is characterized
by the tasks that are possible.

1. Discovering

• Suggestions: transformations, counts,...

• Filtering: hide/remove columns

• Locating outliers (single-column)

• Calculate metrics across columns

• ...

Figure 4.1: An overview of a small part of the di↵erent data cleaning (and profiling) tools

27

28 CHAPTER 4. DATA CLEANING IN PRACTICE

2. Validation

• Find bad data

• Find missing data

• Manage null values

3. Structuring

• Split columns

• Create aggregations (on groups)

• Pivot data

4. Cleansing

• Remove data

• Deduplicate data

• Standardize using patterns

• Applying conditional transformations

• ...

5. Enrichment

• Two columns: add one into another, add selective values from one into another, add
two columns into a new column,...

• Adding lookup data

• Joining and appending data

• Inserting metadata

6. Publishing

4.2 Tableau

Together with Trifacta, Tableau [19] is one of the more popular tools for data visualisation
and cleaning among data scientists. Tableau is mainly know as the data visualisation tool.
But in fact, Tableau consists of several products. Tableau Desktop is the one that everyone
knows as Tableau, the visualisation tool. An other useful product is Tableau Prep where data
can be combined, shaped and cleaned in an visual and direct way. Tableau prep is actually a
combination of 2 sub-products: Tableau Prep Builder and Tableau Prep Conductor.

• Tableau Prep Builder

– Row level data, profiles of each column and the preparation process are presented in
3 coordinated views.

– Works on millions of rows of data, each action will be instantly visible on the data.

– Repetitive tasks, like grouping by pronunciation are turned into one click operations
by employing fuzzy clustering.

• Tableau Prep Conductor

– Flows can be run and published in your server environment.

– The execution of flows can be scheduled when you need them - day or night.

4.3. OPENREFINE 29

– Data sources can be shared securely.

– Data prep processes can be automated, so there is always fresh data that is prepped
and ready to be analyzed.

Tableau also has other interesting products to support you with your data management, but
these will not discussed here.

4.3 OpenRefine

OpenRefine [21], previously known as Google Refine, is an open-source tool that comes in handy
when dealing with messy data and cleaning, transforming or extending needs to be done. Open-
Refine consist of 4 steps:

1. Importing, format will be guessed based on the file extension

2. Faceting, explore data by applying filters

• Default text facets: e.g. counts of each element in a column

• Multiple facets: combine multiple facets (intersection)

• Custom facets: program a facet

3. Editing

• Cell editing: by use of text facets, transformations, splitting, clustering or search &
replace

• Column editing: move, add, delete, merge or split by use of string, length or regular
expression

• Row editing: remove

4. Exporting, to TSV, CSV, Excel or HTML table

4.4 Tamr

By use of limitless power of probabilistic human-guided machine learning, Tamr [20] makes it
fast and easy to replace labor and time-intensive, rules-based data cleaning and preparation. In
Tamr three kind of projects are possible:

• Mastering

– Solves the tasks of finding records that refer to the same entity within and across
input data sets.

– Other names for this type of task are data mastering, entity resolution or record
linkage.

• Golden records

– Solves the task of creating golden record from a cluster of records that refer to the
same entity.

– Golden records can be created on clusters obtained from a mastering project or can
be created for any data set containing a grouping key.

– This task is also known as entity consolidation.

• Schema matching

30 CHAPTER 4. DATA CLEANING IN PRACTICE

– Allows to map attributes from many input data sets into a set of attributes known
as a single unified schema.

– A unified schema can be a list of attributes or fields associated with an entity, such
as a customer, or an organization across multiple datasets.

4.5 Deequ

Deequ [18, 10] is a library that can be used to detect errors early in large datasets. It can work
on all kinds of tabular data, for example CSV files, database tables, logs, flattened JSON files,
basically anything that can fit into a Spark dataframe. The user can create its own assumptions
in the form of a unit-test for data. If errors are found in the dataset, these will be quarantined and
the user can fix them before the the data is used in an other application. Deequ’s functionalities:

• Storing computed metrics

– Calculate and store metrics.

– Query stored metrics by use of a tag or timestamp.

• Single column profiling

– Understanding and cleaning of a raw dataset.

– Profiling of a column:

⇤ Completeness

⇤ Number of distinct values

⇤ Inferred datatype

⇤ Descriptive statistics (e.g. minimum, maximum, mean, etc.) for numeric columns

⇤ Value distribution (only for columns with a low number of distinct values)

– Scales to large datasets with billions of rows.

• Anomaly detection (Deequ contains a number of built-in strategies)

– Batch Normal

⇤ Detects anomalies based on the mean and standard deviation of all available
values.

⇤ Assumes that the data is normally distributed.

– Online Normal

⇤ Detects anomalies based on the running mean and standard deviation.

⇤ Assumes that the data is normally distributed.

– Rate of change

⇤ Detects anomalies based on the rate of change of values.

– Simple threshold

⇤ Checks if values are in a specified range.

• Automatic suggestion of constraints

– Profiles first the data and applies then a set of heuristic rules to suggest constraints.

– The constraints that can be suggested for a column are: datatype, completeness and
the number of distinct values.

4.6. GREAT EXPECTATIONS 31

4.6 Great Expectations

Great expectations [5] is an open-source tool that executes automated testing on data sets.
The user formulates its own expectations to create a testing pipeline. This pipeline shall then
monitor data and guard against upstream data changes. The key features are:

• Expectations: provide a flexible, declarative language for describing expected behavior

• Data profiling (automated): explore data faster, and capture knowledge for future docu-
mentation and testing

• DataContexts and DataSources : provide convenience libraries to introspect most common
data stores

• Tooling for validation: store validation results to a shared bucket, summarize results, post
notifications to slack, handle di↵erences between warnings and errors, etc.

4.7 Conclusion

As mentioned earlier, at the beginning of this chapter, there are many other tools (e.g.: Tibco
clarity, Data ladder, DataCleaner, WinPure, Drake, Cloudingo, Reifier) for data cleaning and
profiling that are not discussed here. These tools contain either similar functionality or focus
on a specific aspect of data cleaning. The aim of this search was mainly to get a better picture
of what functionalities these tools have to o↵er today. It is quite clear that there are plenty of
tools and that they o↵er a wide range of functionalities that can help users clean their data.

However, based on what we have seen in this chapter and Chapter 3, we can conclude that
all of these tools lack the ability to write/discover rules based on aggregations. On the basis of
aggregations you can write more substantive rules, which must apply in the data set, such as:

• Train A stops every day at 10 stations.

• Every month maximum 100 euros is spent on sports & culture on Jef’s bank account.

• An average of 10000 customers order an action movie every week.

We assume that these tools do not support the discovery of such rules because there are too
many options and it would be too di�cult to choose, if they were generated. In the following
chapters, we will describe an approach to find such rules in event data and how they can be
monitored.

32 CHAPTER 4. DATA CLEANING IN PRACTICE

Chapter 5

Anomaly detection in event data

This chapter discusses how we try to apply anomaly detection to event data. First, the concept
of event data is defined and the data that was used in the first phase of the development process
is described. Then we explain how we try to detect anomalies in this data. Finally, we look at
the challenges involved.

5.1 Data

5.1.1 Event data

In this work, the focus was on detecting anomalies in event data. The event data that was
considered consists of events that are logged during a certain period of time, usually this is done
per day. These events are repeated (several times) every day. A good example of this is the
data of trains or buses. Every day (mostly) the same trains and buses run and stop at the same
stations and stops. These events are all recorded and maintained today and form the event data.

5.1.2 Data structure: NMBS

In the first phase of the development process, NMBS train data was used as a representative
example of event data. This data was used to test ideas and work out the final system. At a
later stage, other data was also used to fine-tune the system for general use. The NMBS event
data is kept per day and has the following structure:

• The NMBS event data (of 1 day) is kept in a CSV file.

• Each file usually consists of 70,000 rows on average, and thus 70,000 events.

• Each event represents a passage of a train at a stop.

• 18 attributes are maintained for each event (= 18 columns).

The attributes of each train event are:

• Datum van vertrek (DATE): The date of departure

• Treinnummer (SMALLINT): The number of the train (id of the train)

• Relatie (VARCHAR[16]): The abbreviated value describing the route the train is following

• Spoorwegoperatoren (VARCHAR[16]): The organizer/owner of the train

• Spoorlijn van vertrek (VARCHAR[16]): The railway on which the train departs

33

34 CHAPTER 5. ANOMALY DETECTION IN EVENT DATA

• Uur van reele aankomst (TIME): The hour the train arrived

• Uur van reele vertrek (TIME): The hour the train departed

• Uur van geplande aankomst (TIME): The hour the train should arrive

• Uur van geplande vertrek (TIME): The hour the train should depart

• Vertraging bij aankomst (REAL): The delay that the train has on arrival at the stop

• Vertraging bij vertrek (REAL): The delay that the train has on departure at the stop

• Richting van de relatie (VARCHAR[48]): The full value that describes the route the train
is following

• Naam van de halte (VARCHAR[32]): The name of the stop

• Spoorlijn van aankomst (VARCHAR[16]): The railway on which the train arrives

• Datum van geplande aankomst (DATE): The date the train should arrive

• Datum van geplande vertrek (DATE): The date the train should depart

• Datum van reele aankomst (DATE): The date the train arrived

• Datum van reele vertrek (DATE): The date the train departed

The following functional dependencies can be derived:

• Treinnummer!Richting van de relatie

• Treinnummer!Relatie

• Treinnummer! Spoorwegoperatoren

5.2 Aggregation

For the rest of this work, we assume that events are tracked per day in a specific data structure
to which aggregations can be applied.

As mentioned earlier in this work, the detection of anomalies (Section 3.1) is the detection
of abnormal behavior. Examples of possible deviations in the train data we work with are:

• Normally 10 trains run from Genk to Bruges on Tuesday, today only 8 trains did.

• Train 25 normally rides 5 times on Monday. However, it only drove 4 times today.

• An average of 5,000 trains run on a weekday and 3,000 trains on a weekend. At the end
of the day only 2,000 trains ran.

We can extract these examples and other results from the event data by using aggregation.
An aggregation operation can be applied to one or more columns (e.g. the count operation,
to calculate the number of occurrences of each entity in a specified column). Those aggregated
values can then be used to subsequently check whether there are any anomalies. This is achieved
by comparing the result of today’s aggregation with the historical aggregated data. The historical
aggregation consists out of the aggregation applied daily to a predetermined number of previous
days. The comparison uses an appropriate outlier detection technique to determine whether or
not the last (aggregated) value deviates from historical aggregated data.

5.3. CHALLENGES 35

To apply the aggregations to the data, SQL queries are used. For example, to check if there
are some routes with a deviating value in the number of distinct trains that have run for a given
day, we have to write a query (see below) that aggregates all routes summing the number of
distinct trains, by use of the COUNT-operator.

SELECT relatie, COUNT(DISTINCT treinnummer)

FROM event_data_tuesday

GROUP BY relatie

5.3 Challenges

In order to be able to perform anomaly detection day by day, it is first necessary to determine
which things must be monitored. Checking every possible aggregation every day is neither feasi-
ble (1) nor interesting (2). The first, because there are a huge number of possible aggregations:
each aggregation consists of an operator that is applied to one or more columns. The num-
ber of possible aggregations therefore quickly increases as the number of columns in the data
set increases. So, there is a need for a way to exclude uninteresting aggregations in advance
without calculating results. The second, because it is possible that aggregations either never or
always give outliers. So we have to look for a way to follow-up only the interesting aggregations.
Since interest is something subjective, there is no general definition of an interesting aggrega-
tion. In this work, an interesting aggregation is defined as follows: An aggregation is considered
interesting if it almost always gives the same result, but sometimes not. In other words, every
aggregation must be checked if it is consistent. To do this, there is a need for historical data
(which later also serves to detect any outliers) and a way to determine the consistency of an
aggregation. Supposing we have a way of calculating the consistency of an aggregation, there
is an additional problem, we cannot simply consider every day equally. If we look at the data
of the trains, we see that not the same number of trains are scheduled every day. For example,
fewer trains run on weekends than during the week. Therefore, if we were to regard all days
as equal, we would possibly unfairly exclude potentially interesting aggregations. So there is a
need for:

• Filtering of uninteresting aggregations

• Selecting interesting aggregations, i.e. calculating the consistency of the results of an ag-
gregation

• Grouping of days based on event data

5.3.1 Queries

To somewhat reduce the complexity of this work, we focused on a certain type of aggregation
(from now on called query). For this, we looked at what kind of information in the train event
data is interesting from a data scientist’s point of view and what the queries for this information
look like. Things that may be interesting in the train event data are:

• How many trains run in a day? (and which)

• How many routes are served by trains? (and which)

• How many trains run a given route?

• How many times does a train stop?

• The average (or minimum, maximum) delay at departure/arrival per train

36 CHAPTER 5. ANOMALY DETECTION IN EVENT DATA

• The average (or minimum, maximum) delay on departure/arrival per route

• ...

This showed that a certain type of query is often needed:

SELECT columnA, COUNT(DISTINCT columnB)

FROM event_data

GROUP BY columnA

For the rest of this work, this type of query will be referred to as the GBC-query ,GroupBy-
Count query. At a later stage, the types of queries were expanded to queries of a similar format:

SELECT columnA, AVG(columnB)

FROM event_data

GROUP BY columnA

SELECT columnA, COUNT(DISTINCT columnB)

FROM event_data

Other similar queries that can easily be added:

SELECT columnA, MAX(columnB)

FROM event_data

GROUP BY columnA

SELECT columnA, MIN(columnB)

FROM event_data

GROUP BY columnA

Chapter 6

A query ranking algorithm

This chapter covers the process of trying to find out the interesting queries. This process uses
di↵erent techniques discussed in each of the following sections. Each section discusses first which
approach (the idea behind the technique) is used, then how it is implemented and finally the
results that were achieved with it.

6.1 Based on statistics

6.1.1 Approach

The first thing we want to do in the search for interesting queries is to pre-reduce the number of
possible queries that need to be evaluated, because as mentioned earlier, there are quickly too
many. An initial filtering, that is applied, is based on column statistics. It analyses each column
separately and gives it a score for every possible position in the query. So for the GBC-query,
it might not be interesting to perform a GROUPBY operation on a particular column, because
the column only contains distinct values and therefore the operation has no e↵ect. However this
column may be interesting to apply the COUNT operation. As one can see, in this phase no
exact science is applied and we will rather intuitively exclude queries. Whether or not a query
is excluded is based on the following elements:

• Data Type: The data type plays an important role. Grouping or counting unique column
cells with type TEXT or TIMESTAMP is clearly not an interesting case. Since these
are column types that almost always contain only unique values and have little meaning
after one of the operations has been applied to them. Other types such as SMALINT or
VARCHAR[16] are more likely to be interesting for the GROUPBY or COUNT operation.

• Entropy: The entropy provides a good indication of the distribution of the data in a col-
umn. The smaller the entropy value the better. This is mainly the case for the GROUPBY
operation, because you would rather have a limited amount of values after applying the
GROUPBY.

• Number of Distinct Values: In addition to entropy, we also look at the exact number of
di↵erent values. As indicated with entropy, you prefer to keep a limited number of values.
But since entropy is expressed in percentages, it can sometimes give a wrong impression.
Therefore it is useful to also look at the number of di↵erent values specifically.

• Number of Null Values: If a column has many empty cells or zero cells, this may
already indicate that it is considered less important.

• Functional Dependencies: FDs tell more about the relationship between selected columns.
This relationship can be used to identify and exclude less interesting queries. We demon-
strate this with the following example. Take the following FD: Treinnummer !Relatie.

37

38 CHAPTER 6. A QUERY RANKING ALGORITHM

Figure 6.1: GBC-query that translates to “the number of routes a train runs” and its result,
which is always 1 because of the FD.

Figure 6.2: GBC-query which translates to “the number of trains serving a route” with the
result of it. This could be a potentially interesting query.

It tells us that if you know the Treinnummer, you also know the Relatie, the route this
train serves. If we fill in these two columns in the GBC-query, with GROUPBY on Trein-
nummer and COUNT on Relatie, we see that it results in a COUNT of 1 for each train
number (Figure 6.1). This is a logical consequence of the FD. This query can not be
consider interesting due the fact that the results never change as long as the FD is valid.
The reverse query, with COUNT on Treinnummer and GROUPBY on Relatie, in contrast
may be interesting (Figure 6.2). So in general, if A!B is a functional dependency, then
a GROUPBY on A and a COUNT on B is not desired.

It was also noteworthy that columns that appear as a dependent in an FD are more often
suitable for applying the GROUPBY, while columns that appear as a determinant in an
FD are more suitable for applying the COUNT. It has not been investigated whether there
is actually a direct connection (outside the scope of this work), therefore this element has
only a small influence.

Those characteristics, together with the position of the column in the query, determine the score
of the column. After each column has been scored, the score of the query can be calculated by
multiplying the scores of the columns. Multiplication is applied so that a low score of a column
has a large influence on the final score of the query. Based on a pre-defined threshold, we can
filter the queries whose score falls below this threshold. In this phase, the main aim is to exclude
queries that are surely not interesting, so we may still include a few queries that prove to be not
interesting later on.

6.1. BASED ON STATISTICS 39

6.1.2 Implementation

In the current implementation, each column is given a score of 8 for each position. All the
elements discussed therefore do not all weigh equally on the final score. The final score of the
entire query is then recalculated to 100 (instead of 64).

A column for the GROUPBY position is scored as follows:

• Data type (3):

– 3 points, in case of data types SMALLINT, INT and VARCHAR[16].

– 1 point, in case of data type VARCHAR[32].

– 0 point, all data types not mentioned.

• Entropy (2):

– 2 points, in case the entropy is less than 6, but greater than 0.

– 1 point, in case the entropy is less than 12, but greater than 6.

– 0 point, in all other cases.

• Number of distinct values (1):

– 1 point, if the number of distinct values is not 1.

– 0 point, otherwise.

• Number of null values (1):

– 1 point, in case there are no zero values.

– 0 point, otherwise.

• Functional dependency (1):

– 1 point, in case the column is a dependent in a valid FD.

– 0 point, otherwise.

A column for the COUNT position is scored as follows:

• Data type (3): Same as GROUPBY.

• Entropy (2):

– 2 points, in case the entropy is less than 12, but greater than 6.

– 1 point, in case the entropy is less than 6, but greater than 0.

– 1 point, in case the entropy is less than 15, but greater than 12.

– 0 point, in all other cases.

• Number of distinct values (1): Same as GROUPBY.

• Number of null values (1): Same as GROUPBY.

• Functional dependency (1):

– 1 point, in case the column is a determinant in a valid FD.

– 0 point, otherwise.

For example, the total score of the query in Figure 6.2 can be calculated by multiplying the
scores of the columns Relatie and Treinnumer, each for their position in the query. So if we
assume that the score of Treinnummer for its position in the query is 8 and that of Relatie 6,
it gives a total score of 48/64 or after recalculation 75/100.

40 CHAPTER 6. A QUERY RANKING ALGORITHM

REMARK This rating system is the result of many iterations, which works properly to
exclude uninteresting queries in the context of event data used in this work. It is not guaranteed
that this system will produce equally good results for other domains. In that case the query
filtering can be changed to a more applicable filter procedure.

6.1.3 Results

If we apply this in practice, we see that approximately ±85% of the queries can be excluded.
Everything, of course, depends on the threshold that is set in advance that the potentially
interesting queries must exceed. Depending on how strict the selection must be in this first
phase, the threshold can be increased or decreased.

It is very di�cult to determine how well this algorithm performs. One can look at the queries
that are excluded and see if there are any interesting ones. Or one can look at the percentage
of queries that are ultimately considered interesting in the last step. But in the end it turns out
that this is all subjective and can be very di↵erent from person to person.

6.2 Based on clustering

6.2.1 Approach

After su�cient queries are excluded in the previous step (pre-reduction), it is now feasible to
execute the remaining queries on the data. Based on the results of those queries, it can then be
determined whether a query is consistent or not. Due to the fact that consistency checks need
to know which types of days to compare (as we will see in Section 6.3), the data files need to be
divided into clusters. A cluster in this case represents one type of day. If we look at the train
event data, there are some types of days that may have di↵erent schedules:

• Ordinary days in a normal week;

• Saturday and Sunday (Weekend);

• Days during a holiday period;

• Days during a strike period;

• Days during a lockdown period due to a virus.

In order to divide the di↵erent days into clusters, it must first be determined based on which
subdata this happens. As established before, it is not feasible to compare the complete data sets
with each other. It was, subsequently, decided to use the results of the queries themselves as
subdata. Thus, each query is executed on the set of daily event files (representing the di↵erent
days) and based on the query results, the clusters are formed. This gives a good idea on which
data the cluster best can be calculated. In this phase, the clusters of each query are calculated
to:

• Determine the clusters of the data set

• To (possibly) exclude more queries

– Case 1: If no clusters can be found, this means that the results are always di↵erent.

– Case 2: If only one cluster is found, this means that the results are always the same.

Neither case is what we are looking for in the search for interesting queries

6.2. BASED ON CLUSTERING 41

6.2.2 Implementation

Algorithm

To find the clusters, a self-implemented iterative K-means algorithm (see also Section 3.2) is
used. Since it is not known in advance how many clusters there are, the standard K-means
algorithm can not be applied, because it expects the number of clusters as a parameter. As a
solution, the K-means algorithm is run multiple times. In the first run the algorithm tries to
create one cluster. In the second run it will try to form two clusters. This way the number of
clusters is gradually increased until the correct number of clusters is found. The elbow technique
is used to determine the correct number of clusters. As mentioned earlier, it uses a well-chosen
parameter (e.g. cluster radius or diameter) to measure the quality of the clusters found. By
starting with one cluster and increasing the cluster amount, the selected parameter will drop
exponentially until the correct number of clusters is reached, after which the parameter remains
more or less constant. When calculating how much the value has dropped in a given step, the
reference point is always the value of the first run. Specifically the calculation is the following:

drop = ((lastDiameter � currentDiameter)/firstDiameter) ⇤ 100.

Tests

Tests were conducted to determine the percentage above which it can be assumed that the value
of the selected parameter will no longer drop exponentially, as there is no generally accepted
value. For this purpose, data sets with the number of clusters known in advance were used to
determine the percentage. More specifically, it determined to what extent the percentage drops
after the ideal number of clusters is exceeded in the next run. This was done for two di↵erent
parameters: diameter and distortion. The diameter of a cluster is the maximum distance between
two data points of the cluster, and here the average diameter of all clusters is used. The distortion
is the average distance from the data points to the centroid/clustroid of the cluster where they
belong to. The results of the tests, using two data sets, are shown in Tables 6.1 and 6.2. The
first data set consists of 47 train event files and contains 2 clusters. The second data set consists
of 117 train event files of and contains 3 clusters. In both cases, it can be seen that distortion
is the most reliable parameter, as it does not drop more than 2% in subsequent runs, after the
right number of clusters is reached. This is less the case with the diameter, where this value
fluctuates even after the number of clusters is exceeded in subsequent runs. Due this result, the
distortion was used as parameter to determine the number of clusters. The threshold was set at
6%, this means as soon as the distortion drops below 6%, the number of clusters in the data set
is said to be found.

Clusters
Diameter Distortion

Value Drop (%) Value Drop (%)
1 46596 / 15162 /
2 12746 73 3549 77
3 10798 4 3203 2
4 9159 4 2939 2
5 6387 6 2663 2

Table 6.1: Results for the first data set with 2 clusters and 47 files. The diameter value does
stagnate temporarily and finally increases after the right number of cluster found in run 2. The
Distortion is more reliable as it stays around 2%.

42 CHAPTER 6. A QUERY RANKING ALGORITHM

Clusters
Diameter Distortion

Value Drop (%) Value Drop (%)
1 57813 / 16161 /
2 23654 59 5266 67
3 16699 12 3411 11
4 11605 9 3093 2
5 11032 1 2885 1

Table 6.2: Results of the second data set which contains 3 clusters and 117 files. Both parameter
show a slow drop after the right number of clusters is found. But the rate of change is much
lower for the distortion.

A B C D
10 8 2 20

A B D F
10 5 20 3

Table 6.3: Examples of two data points consisting of key-value pairs.

In these tests it was noticed that a lot depends on the data set used. It is important that
they are large enough, in order to the clusters can be determined correctly. If a data set contains
too few files, the correct clusters are not found and often each file ends up in a separate cluster.
The reason for this is that the parameter never really stabilizes if there are too few data files.
This is because the reassignment of a data file to another cluster has in this case an too great
influence.

Data representation

The representation of the data points has an influence on how to determine the distance between
two data points. In case the data points consist of a single value, the calculation is fairly
straightforward. But in case of the GBC-query (and also other possible aggregations), the data
used to determine the clusters consists of key-value pairs. So, the di↵erence between two data
points cannot simply be calculated by subtracting two values. It was then chosen to see the
distance between two data points as the number of changes that have to be made to equalize the
2 points. Adding/removing a key counts as much as increasing/decreasing a certain value. For
example, the di↵erence between the two data points shown in Table 6.3, consisting of key-value
pairs, can be calculated as follows:

abs(10� 10) + abs(8� 5) + abs(2� 0) + abs(20� 20) + abs(0� 3) = 8

Because of the key-value pairs, it is not self-evident to calculate the centroid of a cluster. One
possibility is to work with average values for every key that occurs, but this requires besides extra
memory and complexity (representation of the centroids), a lot of calculations every iteration.
That is why, it was decided to work with clustroids instead of centroids, so each cluster is
represented by the data file closest to all others (in the cluster).

An additional motivation for the above choice is that at the beginning of the algorithm for
each file a list is created with the distances to all other files. This is because the files are very
often compared and then the distance between these files does not have to be recalculated every
time. Since the distances between all files are already available, no new calculations have to be
made when determining the clustroid each iteration.

6.3. BASED ON CONSISTENCY 43

read data files;
calculate distances between data files;
numberOfClusters = 1;
while !(distortionDrop < 6%) do

run K-Means algorithm for numberOfClusters (a number of times) ;
select best clustering (of all runs);
calculate distortionDrop;
numberOfClusters++;

end
Algorithm 3: Pseudo code of the iterative k-means algorithm for 1 query

6.2.3 Results

Queries that use di↵erent columns of the data set or queries of a di↵erent type generate di↵erent
data to cluster on, which may lead to other clusters being found. The clustering result for each
query separately can, therefore, be used to mark any queries as not interesting (as explained
in Section 6.2.1). From the clustering results of all queries, one must be chosen, which counts
as clustering for the entire data set. For this, the most common clustering, i.e. the clustering
found by most queries, will be selected as the clustering of the data set

The most common clustering of the event data of the trains, is found by more than 1/3 of
all remaining, possible interesting, queries. If we increase the threshold in the previous filtering
step and thus have fewer queries, it is noticeable that the percentage of queries that give the
same clustering increases. The following clusters are found:

• Weekdays

• Weekdays during a holiday period

• Weekend days

The algorithm has been tested on various data sets and the results are very promising. It is
able to derive the di↵erent logical clusters and even identify in some cases files that are outliers,
e.g. incomplete data files, by placing them in separate clusters. Furthermore, the algorithm
is written in such a way that it can be extended with all kinds of queries that can be used to
cluster the data.

But there are, of course, also some limits when using this algorithm. For example, the event
data of the trains di↵ers slightly from day to day during the week, and the algorithm is not able
to distinguish this. A distinction can only be made once there is a clear di↵erence, as is the case
for week and weekend days. In addition, as already mentioned, when there are too few data files
in the data set, the algorithm is not always able to recognize the correct clusters. The minimum
number of files generally required is di�cult to determine as it depends on data set used. Tests
has shown that with a minimum of 20 to 30 files, it can be assumed that the algorithm is capable
of successfully deriving the clusters. Finally, the algorithm is not parallel. As the number of
queries and/or files in the data set increases, the execution time will also increase. There are
possibilities to improve the algorithm in terms of speed, e.g. the di↵erent K-means algorithm
runs, for the same number of clusters, can be run side by side.

6.3 Based on consistency

6.3.1 Approach

Given that it is known which files belong to which cluster and which files need to be compared,
the consistency of the query can be calculated. This is not a trivial task, as there are many

44 CHAPTER 6. A QUERY RANKING ALGORITHM

possible ways to calculate consistency of a query. At the level of the clusters, it must be
determined if consistency of a query is calculated for one or all clusters. In the case of one
cluster, this result is taken as consistency for the entire clustering. If all clusters are used, it
must be determined if the average, minimum, maximum or some other aggregation of all values
is chosen as final consistency result (which applies to the entire clustering of the query). At the
level of the results within a cluster, in case of the GBC-query, we are dealing with key-value
pairs. This entails some choices that need to be made:

• Which measure is used to calculate the consistency of values?

• How is the consistency of a key determined?

• When is a key inconsistent?

• How to calculate the final consistency of the cluster?

Di↵erent answers are possible to all these questions and it is di�cult to determine which is the
best option. It is, nonetheless, important that all factors are taken into account. For example,
if you only look at the values of the keys to calculate consistency, the results may be biased.
To illustrate this, suppose that keys themselves are not consistent, i.e., they only occur once in
10 times. If only that one is considered, then the key can not be indicated as inconsistent. So,
determining when the results of a query can be considered consistent, or not, is not something
that can be addressed quickly.

6.3.2 Implementation

In this implementation, the final consistency of a query is chosen to be the average value across
all clusters. In the case of key-value pairs in the cluster, the keys are first assessed separately,
and are considered consistent if they occur in at least 75% of the results. If a key is considered
consistent, and only then, its values are considered. The median and MAD of these values are
then determined, which decide if a value is seen as an inconsistency, i.e. an outlier. After each
key and its values has been processed, the average number of normal values per key is considered
as the final consistency of the query within that cluster. In case the cluster simply consists of
a series of values, the median and MAD are determined directly on them, which again decides
whether a value is considered as an inconsistency. The percentage of non-outliers is then taken
as the final consistency of the query.

percentage = 0;
for k in keys do

get all values of key k;
count values of key k;
if k is consistent then

calculate MAD of all values;
calculate MEAN of all values;
calculate percentage of values of key k that are considered outliers;
update percentage;

else
update percentage (inconsistent key);

end

end
calculate average percentage of all keys;

Algorithm 4: Pseudo code of the calculation of the consistency of a query.

6.3. BASED ON CONSISTENCY 45

6.3.3 Results

Now that the consistency is known over several days, it can be determined whether a query
should be labeled as interesting or not. If we look at the two extremes that can be achieved, it
is noticeable that both are not interesting:

• 0% consistency: The results of the query change daily.

• 100% consistency: The results of the query never change.

In general, it can therefore be assumed that queries are interesting if they achieve a high per-
centage in terms of consistency, but not 100%.

If we look again at the event data of the trains, there are some queries that are consistent.
Some of the queries are even 100% consistent, so they are not interesting. Of the other part of
the queries, there are many queries that achieve a percentage between 82-97% and are therefore
certainly eligible to be selected.

46 CHAPTER 6. A QUERY RANKING ALGORITHM

Chapter 7

A monitoring system

After discussing the algorithms in Chapter 6 to detect interesting queries, we will now see how
this all fits together in one system. A system capable of providing these interesting queries, then
detecting anomalies and finally displaying the results. The system consists of 2 parts: initializing
and monitoring. In the initialization everything happens from uploading the data set to finally
selecting the queries to be monitored and is covered in Section 7.1. The monitoring consists of
first uploading a new daily file and finally analyzing the found anomalies, and is explained in
Section 7.2. At the end of this chapter, in Section 7.3, we discuss what possible extension the
system can undergo.

7.1 Initialisation

At the beginning of the initialization of a new project, some necessary things need to be done:

• Name the new project

• Uploading a sample file: Such that for later calculations there is certainly a file that is
known to be a good representative example of the daily event data. If a file is randomly
selected from the initial data set, there is a chance that it may not be a good example
of the event data (e.g. a file with missing or bad data). This could eventually lead to
incorrect results.

• Uploading the statistics of the sample file: The statistics of (preferably) the sample file,
generated by the Metanome tool. The system here expects the statistics in the (JSON)
format that Metanome generates them, otherwise they cannot be parsed. In principle,
some of these statistics could be calculated by the system itself using existing libraries
and the sample file. The main reason that Metanome is used is that it can recognize the
di↵erent types of columns better than other tools/libraries.

• Uploading the functional dependencies of the sample file: The functional dependencies of
(preferably) the sample file, generated by the Metanome tool. The system here expects
the FDs in the format that Metanome generates them, otherwise they cannot be parsed.
The self-search for FDs in the sample file is not self-evident, but could possibly be later
added as an extension of the system.

• Uploading the initial data set : The data set required to determine the clusters in the event
data and can be used as the first historical data. The files can be delivered in both CSV
and PARQUET format. When uploading CSV files, it is important to clearly specify which
delimiter must be used to parse the files.

47

48 CHAPTER 7. A MONITORING SYSTEM

7.1.1 Cleaning and filtering the data set

In this step, after the necessary files have been uploaded, the data set is named and cleaned up
if necessary:

• Name the data set : This means that a date must be assigned to each file. This is mainly
necessary to display the history in a correct and clear manner in the monitoring phase.
The system is (for the time being) unable to deduce this itself and sometimes it is not
even possible to extract it automatically from the files.

• Clean up data set : Before the data set is used to find the interesting queries, it is checked
for bad files. By bad files we mainly mean incomplete or corrupt files (e.g. wrong columns).
So, first is derived from the data set what the event data files normally look like and based
on this, files may be marked as a possible error. It is then up to the user to determine
whether this is actually the case. At this point, the system mainly checks the number of
columns and rows, which can be expanded if necessary.

Subsequently, an initial ranking can be made of all possible queries, this is done as discussed in
Section 6.1. So all columns get a score for every possible position in the queries. The queries
whose total product (of the columns used) is above the defined threshold are taken to the next
step. The other eliminated queries are no longer considered.

7.1.2 Searching for clusters

The clustering is then calculated, as seen in Section 6.2, for any query left after the filtering.
Depending on the number of queries and the size of the intimate data set, this can take some
time. The most common clustering, the clusters identified by the majority of the queries, is
presented to the user. As mentioned earlier, the system is limited to a certain level of detail to
distinguish the types of days. Therefore, the user is given the opportunity to verify the clustering
found and make changes if desired.

7.1.3 Selecting the best queries

Once the clustering is known, the consistency for each query can be calculated, as indicated in
Section 6.3. Thus, each query must be executed on all data of each cluster and its results must
be assessed, in order to obtain a joint score of all clusters which represents the consistency of the
query. Ultimately, the user gets an ordered list of the queries that the system finds interesting.
Each query in the list has the necessary information attached so that the user can make a good
choice:

• The written query

• Example output : An example of the output the query generates, to help the user under-
stand the query better

• Consistency score

• Data score: The score of the query that was given to filter in the first step (based on the
statistics)

• Similarity : The similarity that the clustering of the query itself has with the ultimately
selected clustering of the data set. Logically, queries that have similar clustering are more
likely to be consistent. The similarity has a small influence on the final score.

• Final score: The final score where consistency has the largest share. As mentioned earlier,
a query that is 100% consistent is not interesting (since it never has outliers), so such a
query won’t score high as a result.

7.2. MONITORING 49

Figure 7.1: Example of the historical data of a simple COUNT-query

After the scores for each query have been determined, the centroid is calculated and saved for
each cluster. The calculation is based on the top-rated query, which also has a similar clustering
to that selected by the user in the previous step. The centroids serve to identify the nearest
cluster of a new event data file more quickly during the monitoring phase. This avoids having
to recalculate the entire clustering (unnecessary) every day.

In addition, for each selected query, a sort of summary is already made per cluster, which
will serve as the quickly accessible historical data. This should ensure that as soon as the cluster
of a new day is known, it is not necessary to query every data file in the cluster every day to
collect all the previous results and detect any outliers more quickly. In Figure 7.1, an example
is shown of what this data would look like from a simple COUNT-query, containing only one
value for each day, in this case the number of trains that ran.

7.2 Monitoring

Once everything is set up, daily monitoring of any outliers can begin.

7.2.1 Adding a new day

When a new day is uploaded, the structure of the file will be checked first, as is also the case
in the initialization phase. This is to prevent the use of an incomplete or corrupt file. If the
structure of the file is correct, the user can go to the next step where the cluster of the new day
is determined. This is done on the basis of the stored centroids of the selected clusters. The
nearest centroid determines the cluster, which is presented to the user. The user is subsequently
given the option to agree to the proposed cluster or select another one. As soon as the cluster
of the new day is known, then it can be checked if there are any outliers. This is done for all
selected queries in the initialization phase and is based on the generated history (historical data)
stored for each of the queries. This history consists of a fixed number of days of that cluster
and is updated when a new day is added. This ensures that any bad days with many deviations
will not a↵ect the expected values forever. In the previous step, the user has also the option
to indicate whether or not to add the new day to the existing history. This option allows the
user to compare a day with the history of a particular cluster, without influencing the historical
data.

7.2.2 Summarize the results

To determine possible outliers of the monitored queries, the mean and standard deviation of the
historical data are used. Each outlier is than classified based on how many standard deviations
the value deviates from the mean. So that, at a later stage, a distinction can be made in the
type of warning that must be given. The user may not be interested in any small deviations
that may occur. The output for each query is given in the form of a histogram, so that the
trend of the last days in the cluster is quickly visible (each bar represents a value for a specific
day). The color of each bar in the histogram may vary depending on whether the value is an
outlier or not. In the case of an outlier, a further distinction can be made in color, by varying
it according to the number of standard deviations that this value is removed from the mean. In
Figure 7.2 an example is shown.

50 CHAPTER 7. A MONITORING SYSTEM

Figure 7.2: The output of a monitored query, where the expected value (colored green) is 39:
small deviations are colored yellow, while greater deviations are colored red.

7.2.3 Recalculations

If the correct cluster is not suggested when adding a new day, the centroids of certain clusters
may be close together. If this is the case, it is recommended to recalculate the centroids.
Based on the new days added to each cluster, a more accurate centroid for each cluster may be
calculated. In principle, the recalculations may happen every day, but it is not necessary if the
centroids of the clusters are accurate enough. The recalculation of the centroids is currently not
yet supported.

7.3 Extensions

The current system can be seen as a kind of prototype or basic tool that can be further expanded.
Below is a list of possible extensions in response to certain shortcomings of the current system.

• The system uses metanome to derive the types of the di↵erent columns in the event data.
A possible extension is that this can be implemented as part of the the system (possibly
using an existing library if there exists one for this). This is also the case for deriving FDs.

• At this time, the dates of each file have yet to be specified, although this may be derived
automatically in some cases.

• When cleaning the data set, an overview is given of all files present and the columns in
these files. A possible addition is to give more detail about the columns, such that the
user may be given the option of already designating some columns as not interesting.

• When cleaning the data set, very simple error detection is now done based on the number
of columns and rows. A possible extension is to check if the column names in all files are
the same, as one would expect. (This can be done with the sample file)

• When selecting the clustering, only the most common clustering is shown. Extend this so
that the user can choose from several common clusterings.

• The possibility to indicate that a particular query, which is not presented as interesting
by the system, should be monitored daily.

7.3. EXTENSIONS 51

• Once a day has been added to the history of a particular query for a given cluster, it can
no longer be deleted.

• For each query per cluster, history is currently maintained for a fixed number of (10) days.
Allowing this number to be set dynamically is a possible addition.

• The recalculation of the centroids is currently not yet supported and can be implemented.

• Exporting the results of one or more monitored queries

52 CHAPTER 7. A MONITORING SYSTEM

Chapter 8

Experiments

Chapters 6 and 7 already mentioned which intermediate results were achieved with the event
data of the trains in the di↵erent steps (filtering and clustering). In Section 8.1, the final results
are discussed. So, which queries are considered interesting and can possibly be monitored. Then
Section 8.2, the data set of DeLijn is tested with the implemented system. In principle, it can
be assumed that this data is fairly similar since it is the data of buses instead of trains. These
tests can provide more insight into how the system can get a more general setup that also works
for data from other domains. As last, in Section 8.3, we summarize our findings about the
results of both data sets.

8.1 NMBS

This experiment made use of available event data from the months June 2019 and July 2019.
The initial data set consists of 27 files, so clearly a lot of data is missing. However, this data
set normally contains all possible types of days that one can expect. In the first filtering step,
2 files are identified as possible outliers. Our own analysis shows that these files can considered
as normal, so they are not removed from the data set. In the next step, the clusters are found
as described in 6.2.3: weekdays, weekdays during a holiday period and weekend days. After the
proposed clustering has been approved, we can deduce the following from the list of suggested
queries:

• The next 2 queries achieve the highest scores, both queries are expected to be presented
as interesting:

(A) SELECT Relatie, COUNT(DISTINCT Treinnummer)

FROM train_event_data

GROUP BY Relatie

This query indicates how many trains are running each route. The high recommendation
is due to the consistency of 83% and maximum scores on the other aspects.

(B) SELECT Treinnummer, COUNT(Treinnummer)

FROM train_event_data

GROUP BY Treinnummer

This query indicates how many times each train stops. The high recommendation is due
to the consistency of 84%, 100% similarity of the clusters (clusters of query vs. selected
clusters) and a data score of 75%.

53

54 CHAPTER 8. EXPERIMENTS

• This query ranks high, but this is not within expectations:

(C) SELECT Relatie, COUNT(DISTINCT Spoorwegoperatoren)

FROM train_event_data

GROUP BY Relatie

The reason for which Query C should not be recommended, is because one should expect a
valid FD (Relatie!Spoorwegoperatoren) to be found for these columns. This query gives
the number of railway operators per route. Since each route designation is unique per
railway operator, this results in a logical 1-to-1 mapping. As discussed in Section 6.1.1,
this is an uninteresting query. Because this query is not filtered out and therefore scores
a high consistency of 97%, the query is highly recommended. The reason the FD is not
found remains unclear.

• There are queries that give a similar, or even exactly the same result:

(D) SELECT Relatie, COUNT(DISTINCT Spoorlijn_van_vertrek)

FROM train_event_data

GROUP BY Relatie

(E) SELECT Relatie, COUNT(DISTINCT Spoorlijn_van_aankomst)

FROM train_event_data

GROUP BY Relatie

The above two queries give a very similar result with a slight deviation. After all, it is
logical for a train to have the same number of departure tracks as arrival. The scores of
these two queries are therefore equal. We assume that the reason for the slight deviation
may be due to missing data.

(F) SELECT Treinnummer, COUNT(DISTINCT Naam_van_de_halte)

FROM train_event_data

GROUP BY Treinnummer

Although this query does not use the same columns, it still gives the exact same result
as Query A, which gives the number of stops per train. This is not illogical, since every
stop happens at a stop, with the result that the numbers are identical. If there occurs
a deviation in the number of stops, outliers will be detected for both queries. The lower
recommendation of this query is due to a lower data score, the other scores are of course
the same as the high recommended query.

8.2 DeLijn

This section first discusses the data set of DeLijn. Then is looked at the adjustments that were
necessary in the implementation. And finally, the results of the system with this data set are
discussed.

8.2. DELIJN 55

8.2.1 Data

Description

Although both data sets contain stops of vehicles, DeLijn’s data is less readable compared to
that of NMBS. The data set contains many columns of IDs that refer to entities described in
other data sets. This makes the data very cryptic, with the result that, for example, a data
scientist will not be able to derive many useful information based on this data set alone.

Structure

The event data of DeLijn is kept, like the event data of NMBS, per day and has the following
structure:

• The event data (of 1 day) is kept in multiple parquet files (There drive a lot more buses
than trains).

• Each file consists of ±250000 rows, usually there 4 files a day, so on average more than
1000000 events take place per day.

• Each event represents the passage of a bus at a stop.

• 24 attributes are stored for each event (= 24 columns).

The attributes of each bus event are:

• Partition (SMALLINT): public number of the route the bus is driving

• PartitionKey (DATE): date of the event

• RowKey (VARCHAR[32]): composition of the PartitionKey and the Partition/internalLi-
neNumber

• blockId (VARCHAR[32]): block id (no more info available)

• blockidentifier (DATE): date of the block

• delay (REAL): measured delay of the bus at the stop

• destination (TEXT): final destination of the bus

• directionCode (SMALLINT): code indicating the direction of the ride (no more info avail-
able)

• distanceToNextTrip (INT): distance to the next trip, in which unit (number of stops or
number of kilometers) is not clear.

• entitynumber (SMALLINT): number of the region in which the bus runs, in this case this
is done at the level of the provinces

• internalLineNumber (SMALLINT): internal number of the route the bus is running

• loadTime (SMALLINT): loading time of the data (no more info available)

• nextTripId (VARCHAR[32]): ID (rowKey) of the next trip that the bus is driving

• p (VARCHAR[16]): indicates if the bus open to the public (’y’ = yes)

• realTime (TIME): time the bus arrives at the stop

56 CHAPTER 8. EXPERIMENTS

• scheduleTime (TIME): time the bus was scheduled to arrive at the stop

• sequence (SMALLINT): number of the stop, of that ride

• stopId (ID): ID of the stop

• t (TIME): current time

• timeOfFirstStop (TIME): time when the bus started its ride

• timeOfLastStop (TIME): time when the bus ended its ride

• tripStopIndex (REAL): number of the stop, of that ride (starts count from 0)

• tripnumber (SMALLINT): number on the bus during the ride, visible to travelers

• vrtnumber (INT): number of the bus

The following functional dependencies can be derived:

• Rowkey! blockId

• RowKey!Partition

• nextTripId! distanceToNextTrip

• internalLinenumber! entitynumber

8.2.2 Implementation

The implementation of the system, as described in the Chapter 7, is the result of the tests with
the event data of the buses. Since the system was designed for the event data of the trains, some
small additions were needed to fully support the event data of the buses.

• Supporting multiple Parquet files, which are later merged into one file

• Adding the scores for the column types that did not appear in the event data of the trains
(INT, TEXT, VARCHAR [32], ...)

8.2.3 Results

DeLijn’s experiment uses the available event data from the period August 18, 2019 - September
14, 2019. This initial data set consists of 28 files, so no files are missing. None of these files are
later marked as possible outliers.

Performance

The event data of the buses consists of more than 1000000 events daily, which is 17 times more
than in the case with the trains. In addition, 6 additional attributes are kept per event. This
means that all steps in the developed system, logically, take much longer. Although the time
required during initialization is not of such great importance, for data sets of this size it may
be interesting to add parallelizations. Obviously, the most important thing is that interesting
queries are presented at the end of the process.

8.2. DELIJN 57

Intitialisation

As indicated earlier, it is di�cult to say how well the filtering is done. But for this data, with 24
attributes and more than a 1 million events per day, this step is of utmost importance. Otherwise,
it would not be feasible to test and use all possible interesting queries in a considerable amount
of time, taking into account di↵erent columns or di↵erent types in the following steps. Just as
with the data of the trains, about 84% of the queries can be excluded.

Clustering works very well, as was the case for the event data of the trains. This time
however, the weekend days are placed in separate clusters. In the end, the following clusters are
identified:

• Weekdays

• Weekdays during a holiday period

• Saturdays

• Sundays

Some of the queries are able to distinguish even Wednesdays from the rest of the weekdays.
While this clustering is not considered the most common, it does show how using query results
can lead to very solid clustering results.

Next, if we look at the queries presented by the system, we see that a noticeable number
of queries score high and are therefore recommended. The main reason for this is that they
achieve a very high consistency, which is closely related to the fact that almost all find the same
clustering as the one selected in the previous step. The fact that this data set is more complete
compared to NMBS ’s data set certainly plays a role. In addition, it can be assumed that the
events are generally more consistent in this data set. At NMBS, 20 queries were recommended,
here are 100 queries with a significant score. Below is an overview of some noteworthy queries.

• Some queries that are interesting according to our point of view and also are recommended
by the system:

(A) SELECT entitynumber, COUNT(DISTINCT internalLinenumber)

FROM bus_event_data

GROUP BY entitynumber

Query A is one of the highest recommended queries, with almost a maximum score. This
query indicates how many line numbers there are per region.

(B) SELECT internalLinenumber, COUNT(DISTINCT stopId)

FROM bus_event_data

GROUP BY internalLinenumber

This query above indicates how many stops there are on each line. The data score of this
query is not that high (56%). But due to its high consistency (98%) and similarity (100%),
it is still recommended.

(C) SELECT COUNT(DISTINCT internalLinenumber)

FROM bus_event_data

58 CHAPTER 8. EXPERIMENTS

For now we only showed recommended GBC-queries, but there are also other types of
queries that are recommended. Query C indicates how many di↵erent line numbers there
are in total.

• A query whose meaning is not entirely clear to us, but is recommended:

(D) SELECT directionCode, COUNT(DISTINCT internalLinenumber)

FROM bus_event_data

GROUP BY directionCode

The meaning of this last query is not very clear to us. Of course it indicates how many
line numbers there are per direction code. But the exact meaning behind each direction
code is unknown to us. All we know for sure is that the query gives very consistent results,
and therefore, is recommended. A domain expert of DeLijn’s data will most likely be able
to clarify this query.

Monitoring

If high-scoring queries are selected, the monitoring of queries from the event data of buses di↵ers
little from that of the trains. The correct clusters are suggested when adding new days, and
the results are correctly displayed in the form of histograms. As a test, we looked at a query
that is not recommended by the system, i.e. a query with a low end score: the GBA-query
(GroupBy-Average query) that gives the average delay per bus stop.

SELECT stopId, AVG(delay)

FROM bus_event_data

GROUP BY stopId

This is not a good idea, especially because the consistency of this query is far too low.
This entails that, with the addition of a new day, many outliers are found, and for all of these
a seperate histogram must be drawn. This, obviously, takes a lot of time and requires much
memory. If you, then, want to look at the outliers of the query for that day, it can be seen that
there are outliers for almost every key (bus stop). In addition, there are many bus stops, which
means that the overview is completely lost. A query that focuses more on bus stops within a
certain area might be a better option. However, this type of query is currently not supported
by the system.

SELECT stopId, AVG(delay)

FROM bus_event_data

GROUP BY stopId

WHERE entitynumer = 4

8.3 Conclusion

Both data sets obtained very similar results for both filtering (Table 8.1) and searching for
clusters. However, the biggest di↵erence with the NMBS was the number of queries that received
a high recommendation in the last step of the initialization. As indicated earlier, this is due to
the fact that there is more consistency in the daily event data (Figure 8.1). This was certainly
not the case with NMBS, so consistency was implemented as a crucial factor in the calculation
of the final score. As a result, many queries with the data from DeLijn now receive the same
assessment (Figure 8.2). We are sure that among these queries there are certainly some very
interesting ones. A specification of the data, which we do not currently have available, could

8.3. CONCLUSION 59

provide a better picture of how many of the suggested queries are meaningful. In addition, it
was possible for NMBS to determine similar queries manually. For DeLijn this is an impossible
task because of the larger number of queries.

#columns #queries #queries (after filtering) queries filtered out
NMBS 18 666 79 88%
DeLijn 24 1176 184 84%

Table 8.1: Overview of filter results of data sets NMBS and DeLijn

Furthermore, we could see that a query with a low score at DeLijn is neither interesting nor
feasible to monitor clearly. A new threshold to prevent such queries from being suggested by the
system seems necessary. It makes sense to do this only based on consistency, as it has a direct
influence on the number of outliers. However, this value should also depend on the data set
or the column on which the GROUPBY operation is applied. For NMBS, a threshold of 85%
would exclude many queries that can still be clearly monitored. The data set is much smaller
and contains many columns with a limited number of di↵erent values. So, a lower threshold
still provides a number that can be monitored. This is not the case with DeLijn, this data set
is much larger and contains a lot of columns with many di↵erent values. Therefore, a higher
threshold is more desirable. In short, the threshold should depend on how many values outliers
occur. As long as this number can be clearly displayed, the query can be recommended. After
this, it is up to the user to select his preferences.

60 CHAPTER 8. EXPERIMENTS

(a) NMBS

(b) DeLijn

Figure 8.1: Distribution consistency

8.3. CONCLUSION 61

(a) NMBS

(b) DeLijn

Figure 8.2: Distribution scores

62 CHAPTER 8. EXPERIMENTS

Chapter 9

Conclusion

Current data cleaning tools lack the functionality to write and/or detect rules in the form of ag-
gregations. However, based on these aggregations, more substantive deviations can be detected
in data. In this work, we have attempted to develop a system that is able to detect interesting
aggregations in event data (Section 5.1.1) and monitor their outliers. The aggregations can be
expressed by use of queries (Section 5.2). In order to subsequently determine whether the result
of the query contains outliers, historical data is needed. This historical data then consists of
previous results of this query performed on the data.

The final developed system consists of two parts: initialization and monitoring. The first part
searches for interesting queries. This process mainly consists of applying 3 algorithms: filtering,
clustering and consistency calculation. At the end of this process it is known what the clusters
of the data set are and which queries need to be monitored. The second part consists of mon-
itoring the queries selected. First a new day is added. Subsequently it is determined, among
other things, to which cluster this new day belongs. Outliers are then detected based on the
historical data of the corresponding cluster.

In the first step of the initialization, all possible queries are filtered (Section 6.1.1), because
it is not feasible nor interesting to test them all (Section 5.3). By applying this filtering, an
average of 80% of the queries can be classified as uninteresting (Section 6.1.3). These are there-
fore no longer considered in the following steps. This step is crucial, especially as the data sets
increase in size, to complete the process in an acceptable time. Even though the tests we per-
formed did not filter out interesting queries in this step, we assume that there is a small chance
that this can happen. To avoid this, it might be possible to test some of these filtered queries
after the last step. Suppose it is still unfeasible to test them all, we see two possible options.
The first option is to lower the threshold, so that more queries still reach this threshold. The
other option is to select a random sample of queries from the set of excluded queries. Both
options can be repeated if necessary, as long as interesting queries are found.

The next step is to look for the clusters of the data set, by use of the remaining queries (Sec-
tion 6.2.1). The clusters are calculated for each query, the most common clustering is then
suggested to the user. The results of this were very good (Section 6.2.3). Many queries are
able to find the same and logical clusters. As we increased the threshold in the filtering step,
the percentage that found the same and expected clusters increased. If this is an indication that
there are more interesting queries left, we leave it in the middle, but we do assume that there
are more queries that are meaningful. Furthermore, we could see that this technique also has its
limits. For example, no distinction can be made between the di↵erent weekdays in the case of
train days. The main reason for this, we believe, is similarity and inconsistency. The di↵erent
weekdays di↵er very little from each other, which makes it di�cult to distinguish them by data.

63

64 CHAPTER 9. CONCLUSION

In addition, we noticed that there is little consistency in the data set, which means that, for
example, two Tuesdays can already di↵er a lot from each other. If the found clusters are not
su�ciently detailed or even completely wrong according to the user, he has the option to change
the clusters. If the clusters are changed by the user, chances are that there is no good query
that will also find these clusters. This can then cause that, when adding a new day, the correct
cluster is not always suggested by the system. This can possibly be improved by continuously
recalculating the centroids, after adding a new day. This allows the system to better estimate
which cluster it concerns over time.

In the last step the consistency is calculated, which plays a crucial role in determining whether
a query is highly recommended or not. The final formula used for this is the result of a few
iterations and takes all necessary factors into account (Section 6.3.1). The calculation is done
for all queries by the same algorithm, so even if there is an error margin here, it is the same for
all queries.

After the consistency has been calculated, the scores of all queries that remained after the
filtering in the first step are displayed. This was mainly to get a better idea of which queries
were highly recommended and which were not, and how much di↵erence there is in scores be-
tween the di↵erent queries. For the data from NMBS, very good queries, with a clear meaning,
were highly recommended (Section 8.1). This is not illogical, since the system was built on the
basis of this data. The recommended queries from DeLijn (Section 8.2.3) were not always clear
due to the cryptic form of the data (Section 8.2.1). A domain expert is required to get a better
idea of what each query is and if it is meaningful.

Very remarkable in the tests with DeLijn was that more queries achieved a high score com-
pared to the data from NMBS. The main reason for this is that these queries all achieve a high
consistency and therefore score high. The high consistency is mainly due to the fact that the
events at DeLijn are more consistent. It was also noticed that certain queries are similar or
even give completely the same result. This will automatically ensure that when such queries are
monitored, they will always give outliers at the same time. If only a limited number of queries
are recommended, this can still be checked manually. From the moment there are a more, as
was the case with DeLijn’s data set, this is impossible to do manually. So it would be good if
similar queries could be indicated and/or grouped by the system.

In addition, if this system were to be used e↵ectively, there is a need for a new threshold that
the queries must reach. For example, we saw that queries with too low a consistency should not
be selected. The main reason is that these will give too many outliers on a daily basis, making
it di�cult to maintain an overview. So, a consistency threshold seems to be the best option, as
the other factors do not play a direct role in the number of outliers. The value of this thresh-
old is di�cult to determine in advance, as it depends on the data set used. For smaller data
sets, this threshold can be a bit lower. As long as it remains feasible to clearly display all outliers.

To summarize it all, the developed system is able to find interesting queries by use of the
implemented process and certainly has a lot of potential. But there are clearly a number of
points for improvement, which we have mentioned throughout this chapter.

Chapter 10

Future work

In the conclusion, but also throughout the thesis, a lot of points for improvement have already
been mentioned. In addition, we see some more general things that can happen in further
research to derive interesting queries from data. First and foremost, the system must be tested
with other data sets, so that we get a better idea how robust the system is and which adjustments
must be made to support more types of data. In addition, it must be examined which other
types of queries are interesting to support. For example, queries that further split data based
on an element from an extra column (Section 7.2). This may increase consistency, so that this
data can ultimately be monitored. If one wants to support more queries, filtering becomes even
more crucial in the process. So in the field of filtering, it must be further investigated which
other factors determine whether a certain column is suitable for use in an aggregation. Another
direction one can take to support more types of queries is to improve speed in the other steps of
the process. For example, parallelizations can be applied in the other phases of the process. Such
as, for example, when searching for the clusters or calculating the consistency of the queries.

65

66 CHAPTER 10. FUTURE WORK

Appendices

67

Appendix A

System specifications

This appendix first provides a brief explanation in A.1 of how the system is structured and how
it can be executed. Then in A.2, an overview is given where one can find the implemented
algorithms in the back-end and how all information of a project is stored. Next, A.3 gives an
overview of the available services of the API and how to call them. Finally, A.4 shows the
visualization of the di↵erent steps of the implemented system.

A.1 Setup

A.1.1 System overview

The system, as shown in Figure A.1, consists of 2 main parts: a back-end and a front-end.
The back-end consists mainly of the previously described algorithms that were implemented
in Python. In addition, the Flask framework [12] is used to provide an API that o↵ers the
functionality. The front-end is written in the Angular framework [6] and makes additional
use of Primeng [15]. The latter provides ideal support for the implementation of various UI
components.

A.1.2 Installation

To start the back-end, run the following commands in the corresponding folder:

1. Install virtualenv

2. Create a new virual environment

3. Run pip3 install -r requirements.txt

4. Run source env/bin/activate (so that the virtual environment is started)

Figure A.1: System structure with used frameworks for each part

69

70 APPENDIX A. SYSTEM SPECIFICATIONS

5. Run python3 api.py

6. The back-end starts up on (port 5000)

REMARK The back-end can also be run without virtual environment, please install the
missing libraries specified in requirements.txt.

To start the front-end, run the following commands in the corresponding folder:

1. Install Angular

2. Run ng serve --open

3. Run python3 api.py

4. The Front-end starts up (port 4200)

A.1.3 Metanome

To obtain the necessary files from Metanome for a data set, following Metanome built-in algo-
rithms are recommended:

• Basic statistics: SCDP

• Functional dependencies: HyFD (with the maximum determintant size at 1)

A.2 Structure

A.2.1 Algorithms

The following python scripts can be found in the back-end folder:

• check.py : checks the files, in the initial data set, for any outliers (#columns, #rows)

• ranking.py : calculates the data score for columns and the consistency of queries for a set
of days.

• clustering.py : clusters the files

• process.py : processes the selected queries and generates, for each query, the centroid and
its history.

• process.py : processes the selected queries and generates, for each query, the centroid and
its history.

• new.py : processes new files and determines the outliers, of the selected queries.

A.2.2 Projects

All created projects are kept in the projects folder (Back-end). Each project has an ID that is
also used to name the folder of each project. After the initialization process, the project contains
the following files:

• columns.json: overview of the columns that occur in the data set.

• outliers.json: overview of the files that were identified as possible outlier in the initial data
set.

A.3. API 71

• cluster.json: the selected clustering by the user.

• clustering.json: overview of the di↵erent clusterings found and through which queries this
happened.

• r scores.json: overview of the calculated data score per query.

• c scores.json: overview of the calculated consistency per query.

• scores.json: overview of all proposed queries with the di↵erent scores and their example
output.

• days.json: overview of the days added after the initialization process, each with an ID, a
filename, a date and the cluster it belongs to.

A.3 API

This section gives an overview of all implemented API calls.

/project

• GET: get list of all projects with ID and name

– Responses:

⇤ 200 OK:

{
"projects": [

{
"id": project.id,

"name": project.name

},
..

]

}

/project/create

• POST: create a new project

– Responses:

⇤ 200 OK:

project.id

/project/{id}

• GET: get project name

– Parameters: ID of project

– Responses:

⇤ 200 OK:

project.name

72 APPENDIX A. SYSTEM SPECIFICATIONS

⇤ 404 NOT FOUND

• DELETE: delete project

– Parameters: ID of project

– Responses:

⇤ 204 NO CONTENT

⇤ 404 NOT FOUND

/project/{id}/name

• PUT: set project name

– Parameters: ID of project

– Body:

{
"name": project.name

}

– Responses:

⇤ 200 OK

⇤ 400 BAD REQUEST

/project/{id}/days

• GET: get all added days of the project

– Parameters: ID of project

– Responses:

⇤ 200 OK:

{
"days": [

{
"id": day.id,

"filename": day.filename,

"date": day.date,

"cluster": day.cluster

},
..

]

}

⇤ 404 NOT FOUND

/project/{id}/day/{dayid}

• GET: get an overview of the outliers per monitored query for a day

– Parameters: ID of project, ID of day

– Responses:

⇤ 200 OK:

A.3. API 73

{
"queries": [

{
"queryType": query.type,

"queryParams": [paramA,..],

"nStdType": [A,B,C],

"outliers": [

{
"columns": [columnA,..],

"index": key,

"values": [X,..],

"type": outlier.type,

"mean": mean,

"std": std,

"min": min,

"max": max

},
..

]

},
..

]

}

⇤ 404 NOT FOUND

• PUT: create a new day to be processed/monitored (search for outliers)

– Parameters: ID of project, ID of day

– Body:

{
"date": date,

"cluster": cluster,

"add": true

}

– Responses:

⇤ 200 OK

⇤ 400 BAD REQUEST

• DELETE: delete a processed day

– Parameters: ID of project, ID of day

– Responses:

⇤ 204 NO CONTENT

⇤ 404 NOT FOUND

/project/{id}/file/new/{delimiter}

• POST: add new file for monitoring

– Parameters: ID of project, delimiter (necessary to parse the files correctly)

74 APPENDIX A. SYSTEM SPECIFICATIONS

– Body: Files in CSV or parquet format

– Responses:

⇤ 200 OK:

{
"id": file.id,

"cluster": file.cluster

}

⇤ 400 BAD REQUEST

/project/{id}/file/data/{delimiter/id}

• POST: add a file to the initial data set

– Parameters: ID of project, delimiter (necessary to parse the files correctly)

– Body: Files in CSV or parquet format

– Responses:

⇤ 200 OK:

1

⇤ 400 BAD REQUEST

• DELETE: delete a file from the initial data set

– Parameters: ID of project, ID of File

– Responses:

⇤ 204 NO CONTENT

⇤ 404 NOT FOUND

/project/{id}/file/data/info

• GET: get all info from files from the initial data set

– Parameters: ID of project

– Responses:

⇤ 200 OK:

{
"files": [

{
"id": file.id,

"name": file.name,

"filename": file.filename,

"date": file.date

},
..

]

}

⇤ 404 NOT FOUND

• PUT: set all info form files from the intial data set

A.3. API 75

– Parameters: ID of project, ID of File

– Body:

{
"files": [

{
"id": file.id,

"name": file.name,

"filename": file.filename,

"date": file.date

},
..

]

}

– Responses:

⇤ 200 OK

⇤ 400 BAD REQUEST

/project/{id}/file/example/{delimiter}

• POST: add a representative sample file of the data set

– Parameters: ID of project, delimiter (necessary to parse the file correctly)

– Body: File in CSV or parquet format

– Responses:

⇤ 200 OK:

1

⇤ 400 BAD REQUEST

/project/{id}/file/statistics

• POST: add file with statistics (from sample file)

– Parameters: ID of project

– Body: File in JSON format

– Responses:

⇤ 200 OK:

1

⇤ 400 BAD REQUEST

/project/{id}/file/fds

• POST: add file with functional dependencies (from sample file)

– Parameters: ID of project

– Body: File (Metanome format)

– Responses:

⇤ 200 OK:

1

⇤ 400 BAD REQUEST

76 APPENDIX A. SYSTEM SPECIFICATIONS

/project/{id}/file/setup

• GET: get info about the setup files

– Parameters: ID of project

– Responses:

⇤ 200 OK:

{
"stats": stats.json,

"fds": fds.fd,

"example": example.parquet

}

⇤ 404 NOT FOUND

/project/{id}/columns

• GET: get columns of the data set

– Parameters: ID of project

– Responses:

⇤ 200 OK:

{
"number_of_columns": number,

"column_names": [columnA,..]

}

⇤ 404 NOT FOUND

/project/{id}/outliers

• GET: get outliers (files) of the data set

– Parameters: ID of project

– Responses:

⇤ 200 OK:

{
"outliers": [

{
"type": type,

"mean": mean,

"std": std,

"files": [

{
"name":file.name,

"deviation": deviation

},
..

]

},
..

]

}

A.3. API 77

⇤ 404 NOT FOUND

/project/{id}/cluster

• GET: get the clustering of the project

– Parameters: ID of project

– Responses:

⇤ 200 OK:

{
"cluster": [

{
"name": name,

"files": [

{
"id": id,

"name": name,

"filename": filename,

"date": date

}
,

..

]

},
..

]

}

– 404 NOT FOUND

• PUT: set the clustering of the project

– Parameters: ID of project

– Body:

{
"cluster": [

{
"name": name,

"files": [

{
"id": id,

"name": name,

"filename": filename,

"date": date

}
,

..

]

},
..

]

}

78 APPENDIX A. SYSTEM SPECIFICATIONS

– Responses:

⇤ 200 OK

⇤ 400 BAD REQUEST

/project/{id}/queries

• GET: get suggested queries

– Parameters: ID of project

– Responses:

⇤ 200 OK:

{
"queries": [

{
"type": type,

"params":[paramA,..],

"consistency": consistency,

"simalarity": simalarity,

"rScore": rscore,

"fScore":fscore,

"example": [

{
"index":index,

"value": value

},
..

]

},
..

]

}

⇤ 404 NOT FOUND

/project/{id}/queries/selected

• GET: get selected queries

– Parameters: ID of project

– Responses:

⇤ 200 OK:

{
"queries": [

{
"type": type,

"params":[paramA,..],

"consistency": consistency,

"simalarity": simalarity,

"rScore": rscore,

"fScore":fscore,

"example": [

A.3. API 79

{
"index":index,

"value": value

},
..

]

},
..

]

}

⇤ 404 NOT FOUND

• GET: set selected queries

– Parameters: ID of project

– Body:

{
"queries": [

{
"type": type,

"params":[paramA,..],

"consistency": consistency,

"simalarity": simalarity,

"rScore": rscore,

"fScore":fscore,

"example": [

{
"index":index,

"value": value

},
..

]

},
..

]

}

– Responses:

⇤ 200 OK

⇤ 400 BAD REQUEST

80 APPENDIX A. SYSTEM SPECIFICATIONS

A.4 Screenshots

The visualizations of the di↵erent steps in the system are shown in this section.

• Figure A.2: Shows the overview of the created projects. Here, the user gets the possibility
to view/delete a project or to create a new one.

• Figure A.3: Shows the first step during the initialization process of a new project. In this
step, the user can name the project and upload the necessary files.

• Figure A.4 & A.5: Show the second step during the initialization process of a new project.
Here, the user must associate the uploaded files with a date. In addition, it is given the
option to remove any files from the data set that are considered as outliers by the system.

• Figure A.6: Shows the third step during the initialization process of a new project. In this
step, the user must validate the suggested cluster.

• Figure A.7: Shows the last step during the initialization process of a new project. Here, the
user can choose from the various queries proposed by the system, which must be monitored
later. For each suggested query one can view the di↵erent scores and an example output.

• Figure A.8 & A.9 & A.10: Show all steps to add a new day. The date of the new day
must be specified in the first step. Then, one or more files can be uploaded. Finally, the
cluster (name) proposed by the system can be changed. In this last step, the user can also
indicate if this day should be included in the history of the cluster.

• Figure A.11: Shows the overview of already added days. Per day you can immediately see
both the date of the day and the cluster to which the day belongs. The user is given the
option to view/delete a day or add a new day.

• Figure A.12: Shows the overview of all queries that were monitored for the selected day.
Per query you can immediately see in which category, and how many, outliers occurred.

• Figure A.13: Shows the history of values per outlier by use of a histogram.

A.4. SCREENSHOTS 81

Figure A.2: Overview of the di↵erent projects

82 APPENDIX A. SYSTEM SPECIFICATIONS

Figure A.3: Creating a new project: setup project (step 1)

A.4. SCREENSHOTS 83

Figure A.4: Creating a new project: naming files (step 2)

84 APPENDIX A. SYSTEM SPECIFICATIONS

Figure A.5: Creating a new project: filtering files (step 2)

A.4. SCREENSHOTS 85

Figure A.6: Creating a new project: clustering files (step 3)

86 APPENDIX A. SYSTEM SPECIFICATIONS

Figure A.7: Creating a new project: selecting queries (step 4)

A.4. SCREENSHOTS 87

Figure A.8: Adding a new day: setup day (step 1)

88 APPENDIX A. SYSTEM SPECIFICATIONS

Figure A.9: Adding a new day: loading file(s) (step 2)

A.4. SCREENSHOTS 89

Figure A.10: Adding a new day: selecting cluster (step 3)

90 APPENDIX A. SYSTEM SPECIFICATIONS

Figure A.11: Overview of the di↵erent days of a project

A.4. SCREENSHOTS 91

Figure A.12: Overview of the monitored queries (with outliers)

92 APPENDIX A. SYSTEM SPECIFICATIONS

Figure A.13: Overview of the outliers of a monitored query

Appendix B

Nederlandse Samenvatting

B.1 Inleiding

De dag van vandaag produceert elk bedrijf data en dit in allerlei structuren, komende van de
verschillende afdelingen (sales, marketing, . . .) uit het bedrijf. Tegenwoordig in de zogenaamde
‘moderne’ bedrijven komt daar ook nog eens internetdata bij, zoals onder andere clickstreams,
die het gedrag van bezoekers op de bedrijfswebpagina bevatten. Al deze data komt samen
terecht in data warehouses of data lakes, die beide gezien kunnen worden als één grote database.
Deze data kunnen dan dienen voor analyse of voor het gebruik in machine learning (ML),
maar daarvoor moet deze data eerst bruikbaar gemaakt worden. Het bruikbaar maken bestaat
voornamelijk uit het proper maken van de data. Dit is voor beide toepassingen zeer belangrijk.
De data die gebruikt worden voor analyse, bëınvloeden namelijk mogelijk indirect toekomstige
bedrijfsbeslissingen. Bij gebruik in ML kan de data echter gebruikt worden in meerdere fases,
in alle fases heeft niet propere data een slechte invloed op de accuraatheid van het model. Zo
zijn de functies die gevonden bij het trainen van het model, afhankelijk van de training data
die gebruikt worden. En in een latere fase is het noodzakelijk dat de data die aan het model
gevoerd worden, gelijkaardig zijn aan de gebruikte training data. Om de data proper te maken
bestaan er tientallen tools, die opgedeeld kunnen worden in meerdere categorieën, de ene focust
zich namelijk meer op een specifiek aspect van data cleaning, terwijl een andere dan weer meer
algemene functionaliteiten aanbiedt. Een voorbeeld hiervan is Trifacta, een zeer populaire tool
met een breed aanbod:

• Uitschieters detecteren in een numerieke kolom.

• Afwijkingen in lengte detecteren in een alfanumerieke kolom.

• Afwijkingen van datatype detecteren in een kolom (bv. een string in een numerieke kolom).

• Een veelvoorkomend patroon herkennen en afwijkingen op dit patroon detecteren.

• ...

Deze tool wordt dan ook door veel bedrijven dagdagelijks gebruikt voor data cleaning. Een
onderdeel van data cleaning, is dus de detectie van uitschieters. Van elke kolom wordt dan
onder andere het datatype of het aantal (unieke) waarden gecontroleerd. Verder kunnen er
afhankelijkheden, in de vorm van regels, tussen kolommen worden opgelegd die in de gehele data
set moeten gelden. Echter ontbreekt in deze tools de mogelijkheid om regels omtrent de eigenlijke
inhoud van de data set te definiëren. Bijvoorbeeld: ‘de trein van Genk naar Blankenberge rijdt
elke dag 10 keer ’ of ‘elke maand wordt er op het bankaccount van Jef, gemiddeld 100 euro
uitgegeven aan sport en cultuur ’. De regels kunnen deels uitgedrukt worden aan de hand van
queries. Je kan namelijk uit de data halen hoeveel keer de trein van Genk naar Blankenberge
heeft gereden met volgende query :

93

94 APPENDIX B. NEDERLANDSE SAMENVATTING

SELECT COUNT(DISTINCT treinnummer)

FROM data

GROUP BY traject

WHERE traject = "Genk naar Blankenberge"

Vervolgens heb je nood aan een vooraf bepaalde dienstregeling of historische data om te control-
eren of het resultaat van deze query als ’normaal’ beschouwt kan worden. Deze aanpak zorgt
voor enkele problemen:

• Er is in de meeste gevallen nood aan een domeinexpert om de interessante query te se-
lecteren.

• De data sets van tegenwoordig nemen al snel een aanzienlijke grote aan, waardoor het niet
haalbaar is om alle interessante queries manueel te zoeken en te definiëren.

• Er kunnen tal van soorten queries geschreven worden, gebruik makend van verschillende
kolommen in data set. Het is niet haalbaar al deze queries dagelijks (semi-) automatisch
te controleren en te kijken als er iets interessant voorvalt.

Het doel van deze thesis is om te onderzoeken of het mogelijk is om een algoritme te vinden dat,
(semi-) automatisch, interessante queries kan detecteren. Zodat vervolgens op basis van deze
queries uitschieters gedetecteerd en gemonitord kunnen worden. Hierbij zullen we ons focussen
op één bepaald type data, namelijk event data. Dit geeft ons volgende onderzoeksvragen:

• Kunnen we queries filteren zonder deze uit te voeren?

• Kunnen we de data (van meerdere dagen) clusteren op basis van queries?

• Kunnen we interessante queries detecteren?

– Hoe relevant zijn aanbevolen queries? Zijn deze betekenis vol?

– Hoe uniek zijn deze queries? Zijn er queries met dezelfde betekenis?

• Kunnen we deze queries monitoren?

B.2 Aanpak

In dit deel wordt besproken hoe we anomaliedetectie proberen toe te passen op event data. Eerst
wordt het begrip event data gedefinieerd. Daarna wordt uitgelegd hoe we juist anomalieën in
deze data proberen te detecteren. Als laatst kijken we naar de verschillende uitdagingen.

B.2.1 Event data

In dit werk lag de focus op het detecteren van afwijkingen in event data. De event data die
beschouwd werd, bestaat uit events die gelogd worden gedurende een bepaalde tijdsperiode,
meestal gebeurt dit per dag. Deze events worden elke dag (meermaals) herhaald. Een goed
voorbeeld hiervan is de data van treinen of bussen. Elke dag rijden namelijk (meestal) dezelfde
treinen en bussen en stoppen deze aan dezelfde stations en haltes. Deze gebeurtenissen worden
tegenwoordig allemaal geregistreerd en vormen de event data.

In de eerste fase van het ontwikkelingsproces werd de treindata van de NMBS gebruikt als
een representatief voorbeeld van event data. Deze data werd gebruikt om ideeën te testen en
het uiteindelijke systeem uit te werken.

B.2. AANPAK 95

B.2.2 Aggregaties

Gegeven de event data van de treinen, zijn we gëınteresseerd in het detecteren van bijvoorbeeld
volgende afwijkingen:

• Normaal rijden er op zondag 10 treinen van Genk naar Brugge. Deze zondag reden er
slechts 8 treinen.

• Trein 25 stopt normaal 5 keer op maandag. Echter, deze maandag stopte deze 7 keer.

• Gemiddeld rijden er 5000 treinen op een weekdag en 3000 in het weekend. Op deze dag
reden er minder dan 2000 treinen.

We kunnen de gegevens van deze voorbeelden uit de event data halen door het toepassen van een
aggregatie. Een aggregatie kan het toepassen zijn van een operatie op een of meerdere kolommen
(b.v. de tel operatie, om het aantal voorkomens van elke entiteit in een gespecifieerde kolom
te berekenen). Om vervolgens na te gaan of er sprake is van anomalieën vergelijken we het
resultaat van de aggregatie met de historische data. De historische data bestaat steeds uit de
resultaten van deze aggregatie toegepast op alle of een vooraf bepaald aantal voorgaande dagen.
In de vergelijking wordt gebruikt gemaakt van een gepast uitschietersdetectietechniek om na te
gaan of we al dan niet te maken hebben met een afwijkende waarde.

Om de aggregaties toe te passen op de data, wordt er gebruik gemaakt van SQL-queries. Om
bijvoorbeeld het eerste voorbeeld van daarjuist te controleren, moet het aantal ritten berekent
worden die trein 25 gemaakt heeft op maandag. Deze aggregatie ziet er als volgt uit in SQL-
formaat:

SELECT relatie, COUNT(DISTINCT treinnummer)

FROM event_data_dinsdag

GROUP BY relatie

B.2.3 Uitdagingen

Om anomalie detectie dag per dag te kunnen uitvoeren, moet er eerst bepaald worden welke
zaken juist opgevolgd en vervolgens gemonitord moeten worden. Elke dag, elke mogelijk aggre-
gatie controleren is niet haalbaar en niet interessant. Het eerste omdat er een enorm aantal aan
mogelijke aggregaties zijn: elke aggregatie bestaat immers uit een operator die toegepast wordt
op één of meerdere kolommen. Het aantal mogelijke aggregaties loopt dus al snel op als het
aantal kolommen in de data set toeneemt. Er is dus nood aan een manier om oninteressante
aggregaties vooraf uit te sluiten zonder de resultaten ervan te bereken. Het tweede omdat het
mogelijk is dat aggregaties nooit oftewel altijd uitschieters geven. Dus moet er opzoek gegaan
worden naar een manier om enkel de interessante aggregaties op te volgen. Aangezien “interes-
santheid” iets subjectief is, bestaat er geen algemene definitie van een interessante aggregatie.
In dit werk, is een interessante aggregatie als volgt gedefinieerd: Een aggregatie wordt als in-
teressant beschouwd als deze bijna altijd hetzelfde resultaat geeft, maar soms niet. Met andere
woorden, er moet voor iedere aggregatie gecontroleerd worden als deze consistent is. Om dit te
kunnen doen, is er nood aan historische data (die later ook kan dienen om eventuele afwijkingen
op te sporen) en een manier om de consistentie van een aggregatie te bepalen. Stel dat we een
manier hebben om de consistentie van een aggregatie te bereken, is er nog een bijkomend prob-
leem: we kunnen niet zomaar elke dag als gelijke beschouwen. Als we naar de treindata kijken,
zien we dat niet elke dag dezelfde hoeveelheid treinen ingepland staan. Zo rijden bijvoorbeeld
in het weekend veel minder treinen als door de week. Indien we dus wel alle dagen als gelijke
zouden beschouwen, zouden we potentiele interessante aggregaties, wegens inconsistentie, mo-
gelijk onterecht uitsluiten.

Dus er is nood aan:

96 APPENDIX B. NEDERLANDSE SAMENVATTING

• Filteren van oninteressante aggregaties.

• Clusteren van dagen op basis van event data.

• Selecteren van interessante aggregaties, m.a.w. het berekenen van de consistentie van de
resultaten een aggregatie.

B.2.4 Query

Om de complexiteit van dit werk enigszins te verminderen, hebben we ons gefocust op een
bepaald type aggregatie (vanaf nu query genoemd). Hiervoor hebben we gekeken naar wat
voor soort informatie in de event data van de treinen interessant is vanuit het oogpunt van
een datawetenschapper en hoe de queries naar deze informatie eruitzien. Hieruit bleek dat een
bepaalde soort vorm van query vaak nodig is:

SELECT kolomA, COUNT(DISTINCT kolomB)

FROM event_data

GROUP BY kolomA

Voor de rest van dit werk wordt dit type query de GBC-query, GroupBy-Count-query ge-
noemd. In een later stadium zijn de soorten queries uitgebreid naar queries van een vergelijkbaar
formaat.

B.3 Algoritmen

Dit deel behandelt het proces dat de interessante queries probeert te achterhalen. Dit proces
maakt gebruik van verschillende technieken, waarvan de algemene aanpak in de volgende secties
besproken wordt.

B.3.1 Filteren

Het eerste wat we willen doen in de zoektocht naar interessante aggregaties, is het vooraf ver-
minderen van aantal mogelijke aggregaties die geëvalueerd moeten worden (omdat zoals eerder
aangehaald, het er al snel te veel zijn). Een eerste filtering die toegepast wordt, gebeurt op basis
van kolomstatistieken. Hierbij kijken we naar elke kolom apart en gegeven we deze een score
voor elk mogelijke positie in de aggregatie. Dus voor onze GBC-query kan het zijn, dat het niet
interessant is om op een bepaalde kolom een GROUPBY -operatie uit te voeren, omdat de kolom
enkel unieke waarde bevat en de operatie dus geen invloed heeft. Deze kolom is mogelijks dan
wel weer interessant om de COUNT -operatie op toe te passen. Zoals men kan zien, wordt in
deze fase geen exacte wetenschap toegepast en zullen we queries intüıtief uitsluiten. Of een query
al dan niet wordt uitgesloten, is gebaseerd op de volgende elementen van de kolom: data type,
entropie, aantal verschillende waarden, aantal nul-waarden en functionele afhankelijkheden van
en tussen kolommen. Deze elementen bepalen, samen met de positie van de kolom in de query,
de score van de kolom. Nadat voor elke kolom zijn scores bekend zijn, kan de score van de query
worden berekend door de scores van de kolommen te vermenigvuldigen. De vermenigvuldiging
wordt toegepast zodat een lage score van een kolom, een grote invloed heeft op de uiteindeli-
jke score van de query. Op basis van een vooraf gedefinieerde drempel, kunnen we de queries
wegfilteren waarvan de score onder deze drempel valt. In deze fase is het belangrijkste doel om
queries uit te sluiten die zeker niet interessant zijn, dus het kan zijn dat we alsnog enkele queries
opnemen die later niet interessant blijken te zijn.

B.3. ALGORITMEN 97

B.3.2 Clusteren

Nadat er voldoende queries uitgesloten werden in vorige stap, is het nu wel haalbaar om de
overgebleven queries uit te voeren op de data. Op basis van deze resultaten kan er dan bepaald
worden of een query al dan niet consistent is. Aangezien er bij het controleren van consistentie
geweten moet zijn welke dagen met elkaar vergeleken moeten worden, moeten de databestanden
van de verschillende dagen eerste geclusterd worden, als de clusters niet gekend zijn. Om de
verschillende dagen op te delen in clusters moet er eerst bepaald worden op basis van welke
‘deeldata’ dit gebeurt. Dit aangezien, het niet haalbaar is om de volledige data sets steeds
met elkaar te vergelijken. Er is vervolgens gekozen om de resultaten van de aggregaties zelf, te
beschouwen als ‘deeldata’. Dus, iedere query wordt uitgevoerd om de reeks dagen die geclusterd
moeten worden en de clusters worden berekend op basis van de resultaten van elke query. Dit
geeft vervolgens een goed beeld op basis van welke data, welke clusters berekend kunnen worden.
Dus in deze fase worden de clusters van iedere aggregatie berekent om:

• De consistentie te berekenen.

• Om (mogelijks) nog aggregaties uit te sluiten.

– Geval 1: Indien geen clusters gevonden kunnen worden, betekent dit dat de resultaten
steeds verschillend zijn.

– Geval 2: Indien één cluster gevonden wordt, betekent dit dat de resultaten steeds
gelijk zijn.

Beide gevallen zijn wat we zoeken in de zoektocht naar interessante aggregaties.

B.3.3 Consistentie

Nu geweten is welke bestanden tot welke cluster behoren en dus welke bestanden met elkaar
vergeleken moeten worden, kan de consistentie van de query berekend worden. Er zijn verschil-
lende manieren mogelijk om de consistentie van elke query te bepalen. Op het niveau van de
clusters moet er bepaald worden als de consistentie voor één of alle clusters berekend wordt.
In het geval van één cluster, wordt deze waarde genomen wordt als consistentie voor de gehele
clustering. In het geval van alle clusters, moet er vervolgens bepaald worden als het gemiddelde,
minimum, maximum of een andere aggregatie van alle waarden gekozen wordt als de uiteindeli-
jke consistentie, die geldt voor de volledige clustering van de query. Als er naar de resultaten
binnen een cluster gekeken wordt, dan hebben we in het geval van de GBC-query, te maken met
key-value paren. Dit zorgt opnieuw voor enkele keuzes die gemaakt moeten worden:

• Welke maatstaf wordt gebruikt om de consistentie van waarden te berekenen?

• Hoe wordt consistentie van de key bepaalt?

• Wanneer is een key inconsistent?

• Hoe bereken je de uiteindelijke consistentie van de cluster?

Op al deze vragen zijn verschillende antwoorden mogelijk en het is moeilijk te bepalen welke
nu meer juist is dan de andere. Belangrijk is wel dat er rekening gehouden wordt met alle
factoren. Bijvoorbeeld, als je enkel naar de waarden gaat kijken van de keys om de consistentie
te bereken, dan zou je wel eens vertekende resultaten kunnen krijgen. Zo kan het zijn dat keys
zelf niet consistent zijn en dat ze bijvoorbeeld, maar eenmaal op de tien keer voorkomen. Indien
er dan enkel naar die ene waarde gekeken wordt, dan kan de key op basis van deze waarde niet
aangeduid worden als inconsistent. Dus het bepalen of de resultaten van een query consistent
zijn in de loop van tijd is niet zo voor de hand liggend.

98 APPENDIX B. NEDERLANDSE SAMENVATTING

B.4 Conclusie

In dit werk hebben we getracht een systeem te ontwikkelen die in staat is om interessante aggre-
gaties te detecteren in event data en de uitschieters hiervan vervolgens te monitoren. Huidige
data cleaning tools missen namelijk de functionaliteit om regels in de vorm van aggregaties te
schrijven en/of te detecteren. Op basis van deze aggregaties zouden er echter meer inhoudelijke
afwijkingen gedetecteerd kunnen worden in de data. De aggregaties kunnen aan de hand van
queries uitgedrukt worden. Om vervolgens te bepalen of het resultaat van de query uitschieters
bevat, is er nood aan historische data. Deze historische data bestaat dan uit eerdere resultaten
van deze query uitgevoerd op de data.

Het uiteindelijke ontwikkelde systeem bestaat uit 2 grote delen: initialisatie en monitoring.
In het eerste deel wordt er gezocht naar de interessante queries, dit proces bestaat voornamelijk
uit het toepassen van 3 algoritmes: filteren, clusteren en consistentie berekening. Op het eind
van dit proces is geweten wat de clusters van de data set zijn en welke queries gemonitord
moeten worden. Het tweede deel bestaat uit het monitoren van de queries die geselecteerd
werden. Eerst wordt een nieuwe dag toegevoegd. Hierbij wordt onder andere bepaald tot welke
cluster deze nieuwe dag behoort. Vervolgens worden uitschieters gedetecteerd op basis van de
historische data van de overeenkomstige cluster.

In de eerste stap van de initialisatie worden al de mogelijke queries gefilterd, dit omdat het
onhaalbaar en oninteressant is om ze allemaal te testen. Door het toepassen van deze filtering,
kan er gemiddeld 80% van de queries gemarkeerd worden als oninteressant. Deze worden dan
ook niet meer beschouwd in de volgende stappen. Deze stap is cruciaal, zeker naarmate de
data sets in grote toenemen, om de volgende stappen in aanvaardbare tijd af te werken. Ook al
werden in de door ons uitgevoerde testen, geen interessante queries weg gefilterd in deze stap,
nemen we aan dat er en kleine kans bestaat dat dit toch gebeurt. Het zou dan eventueel mogelijk
zijn om na de laatste stap toch enkele van deze weg gefilterde queries te testen. Stel dat het
onhaalbaar om ze allemaal te testen, zien we twee mogelijk opties. De eerste optie is om de
drempel te verlagen, zodanig dat een meer queries toch deze drempel halen. De andere optie is,
om een willekeurige sample van queries te selecteren uit deze set. Beide opties kunnen eventueel
herhaald worden, moesten er toch nog interessante queries gevonden worden.

In de volgende stap gaat men opzoek naar de clusters van de data set, waarbij gebruik gemaakt
wordt van de overgebleven queries. Voor elke query worden de clusters berekent, de meest
voorkomende clustering wordt vervolgens voorgesteld aan de gebruiker. De resultaten hiervan
waren zeer goed. Veel queries zijn namelijk in staat om dezelfde en verwachte clusters te vinden.
Naarmate we de drempel in de filteringstap verhoogde steeg zelfs het percentage dat dit deed.
Als dit een indicatie is dat er meer interessante queries overhouden laten we in het midden, wel
nemen we aan de er meer queries overblijven die betekenisvol zijn. Verder konden we zien dat
deze techniek ook zijn limieten heeft. Zo kan er bijvoorbeeld geen onderscheid gemaakt worden
tussen de verschillende weekdagen in geval van de treindagen. De voornaamste reden hiervoor
zijn volgens ons gelijkheid en inconsistentie. De verschillende weekdagen verschillen namelijk
zeer weinig van elkaar, wat maakt dat er een moeilijk een onderscheid gemaakt kan worden.
Daarnaast hebben we gemerkt dat er in de data set weinig consistentie aanwezig is, wat maakt
dat bijvoorbeeld twee dinsdagen al veel van elkaar kunnen verschillen. Indien de gevonden clus-
ters niet voldoende gedetailleerd zijn of zelfs helemaal verkeerd zijn volgens de gebruiker, heeft
deze de mogelijkheid om de clusters te wijzigen. Indien de clusters door de gebruiker gewijzigd
worden, is de kans groot dat er dan geen goede query bestaat die deze clusters ook vindt. Dit kan
er vervolgens voor zorgen, dat bij het toevoegen van een nieuwe dag, niet altijd de juiste cluster
wordt voorgesteld door het systeem. Dit kan mogelijk verbeterd worden door de centroids die
hiervoor gebruikt worden, na het toevoegen van een dag, steeds opnieuw te berekenen. Hierdoor

B.5. VERVOLG 99

kan het systeem na verloop van tijd waarschijnlijk beter inschatten om welke cluster het gaat.

In de laatste stap wordt de consistentie berekent, deze speelt een cruciale rol in het bepalen
of een query hoog aanbevolen wordt of niet. De uiteindelijke gebruikte formule hiervoor is het
resultaat van enkele iteraties en houdt rekening met alle nodige factoren. De berekening gebeurt
voor alle queries door hetzelfde algoritme, dus ook al zou hier eventueel een foutmarge inzitten,
dan is deze voor alle queries gelijk.

Nadat de consistentie berekend is, worden de scores van alle queries weergegeven die na de
filtering in de eerste stap overbleven, dus niet alleen dit interessante. Dit was voornamelijk om
een beter beeld kregen welke queries hoog aanbevolen werden en welke niet, en hoeveel verschil
er is in scores tussen de verschillende queries. Voor de data van NMBS, werden zeer goede
queries hoog aanbevolen met een duidelijke betekenis. Dit is ergens niet onlogisch, aangezien
het systeem gebouwd werd op basis van deze data. De aanbevolen queries van DeLijn, waren
door de cryptische vorm van de data, niet altijd even duidelijk. Een domeinexpert is vereist om
een beter idee te krijgen wat elke query juist inhoud en als ze betekenisvol zijn.

Zeer opvallend bij de testen met DeLijn was dat veel meer queries een hoge scoren haalde
in vergelijking met de data van NMBS. De voornaamste reden hiervoor is dat deze queries
allemaal een hoge consistentie behalen en bijgevolg ook hoog scoren. De hoge consistentie is
op zijn beurt te wijten aan het feit dat de events bij DeLijn meer consistent zijn. Verder
viel ook op dat bepaalde queries gelijkaardig zijn of zelfs helemaal hetzelfde resultaat geven.
Dit zal er automatisch voor zorgen dat wanneer zo queries gemonitord worden, deze altijd op
hetzelfde moment uitschieters zullen geven. Indien er slechts een beperkt aantal queries worden
aanbevolen, kan dit nog manueel nagegaan worden. Vanaf dat dit er wat meer zijn, zoals het
geval was bij de data set van DeLijn, is dit manueel ondoenbaar. Het zou dus goed zijn als
gelijkaardige queries door het systeem aangegeven en/of gegroepeerd kunnen worden.

Daarnaast, als dit systeem e↵ectief gebruikt zou worden, dan is er nood aan opnieuw een
drempel die de queries moeten halen. Zo zagen we dat queries met een te lage consistentie
best niet geselecteerd worden. De voornaamste reden is dat deze bij het monitoren dagelijks te
veel uitschieters zullen geven, waardoor het moeilijk wordt om het overzicht te bewaren. Dus
een drempel op consistentie lijkt de beste optie, de andere factoren spelen namelijk geen directe
rol in het aantal uitschieters. De waarde van deze drempel is moeilijk om op voorhand vast te
leggen, aangezien we aannemen dat deze afhankelijk is van de gebruikte data set. Voor kleinere
data sets, mag deze drempel gerust wat lager liggen. Zolang het maar overzichtelijk blijft om
alle uitschieters weer te geven.

Om het allemaal samen te vatten, het ontwikkelde systeem is in staat om interessante vragen
te vinden door gebruik te maken van het gëımplementeerde proces en heeft zeker veel potentie.
Maar er zijn duidelijk een aantal verbeterpunten, die we in dit deel hebben benoemd.

B.5 Vervolg

In de conclusie, maar ook doorheen de hele thesis, werden al een heleboel verbeterpunten aange-
haald. Daarnaast, zien we nog aantal meer algemenere zaken die kunnen gebeuren in verder
onderzoek om interessante queries uit data af te leiden. Zo moet het systeem eerst en vooral
getest worden met andere data sets, zodat duidelijker wordt hoe robuust het systeem is en welke
aanpassingen moet gebeuren om meer soorten data te ondersteunen. Daarnaast moet er gekeken
worden welke andere soorten queries interessant zijn om te ondersteunen. Bijvoorbeeld queries,
die data nog eens verder opsplitsen op basis van een element uit een extra kolom. Hierdoor
stijgt mogelijks de consistentie, waardoor uiteindelijk deze data toch gemonitord kan worden.
Als men meer queries wil ondersteunen, wordt de filtering nog cruciale in het proces. Dus op

100 APPENDIX B. NEDERLANDSE SAMENVATTING

vlak van filtering moet verder onderzocht worden welke andere factoren bepalen of een bepaalde
kolom geschikt is om te gebruiken in een aggregatie. Een andere richting die men kan uitgaan
als men meer soorten queries wil ondersteunen, is verbeteren op vlak van snelheid in de andere
stappen van het proces. Zo kunnen er in de andere fases van het proces, parallellisaties toegepast
worden. Zoals bijvoorbeeld, bij het zoeken naar de clusters of het berekenen van de consistentie
van de queries.

Bibliography

[1] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas, Mourad
Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. Detecting data errors: Where
are we and what needs to be done? Proc. VLDB Endow., 9(12):993–1004, August 2016.

[2] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock. Data profil-
ing. Synthesis Lectures on Data Management, 10(4):1–154, 2018.

[3] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, USA, 2006.

[4] Zhamak Dehghani. How to move beyond a monolithic data lake to a distributed data mesh.
Blog published on website martinfowler.com. https://martinfowler.com/articles/data-
monolith-to-mesh.html (Accessed: 2020-01).

[5] Great expectations. Always know what to expect from your data. https://

greatexpectations.io/. Accessed: 2020-03.

[6] Google. Angular: One framework. mobile & desktop. https://angular.io/. Accessed:
2020-04.

[7] Hasso-Plattner-Institut. Metanome: Data profiling. https://hpi.de/naumann/projects/
data-profiling-and-analytics/metanome-data-profiling.html. Accessed: 2020-03.

[8] Ihab F. Ilyas and Xu Chu. Trends in cleaning relational data: Consistency and deduplica-
tion. Found. Trends Databases, 5(4):281–393, October 2015.

[9] Ihab F. Ilyas and Xu Chu. Data Cleaning. Association for Computing Machinery, New
York, NY, USA, 2019.

[10] Amazon Web Services Labs. Deequ: Unit tests for data. https://github.com/awslabs/
deequ. Accessed: 2019-10.

[11] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park, Ganesh
Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. Deep learning for entity
matching: A design space exploration. Proceedings of the 2018 International Conference
on Management of Data, 2018.

[12] Pallets. Flask: Web development, one drop at a time. https://flask.palletsprojects.
com/en/1.1.x/. Accessed: 2020-04.

[13] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and Felix Naumann.
Data profiling with metanome. Proc. VLDB Endow., 8(12):1860–1863, August 2015.

[14] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich. Data lifecycle
challenges in production machine learning: A survey. SIGMOD Rec., 47(2):17–28, December
2018.

101

https://greatexpectations.io/
https://greatexpectations.io/
https://angular.io/
https://hpi.de/naumann/projects/data-profiling-and-analytics/metanome-data-profiling.html
https://hpi.de/naumann/projects/data-profiling-and-analytics/metanome-data-profiling.html
https://github.com/awslabs/deequ
https://github.com/awslabs/deequ
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/

102 BIBLIOGRAPHY

[15] PrimeTek. Primeng: Angular ui component library. https://www.primefaces.org/

primeng/. Accessed: 2020-04.

[16] Anand Rajaraman and Je↵rey David Ullman. Mining of Massive Datasets. Cambridge
University Press, USA, 2011.

[17] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using active learn-
ing. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’02, page 269–278, New York, NY, USA, 2002. Associa-
tion for Computing Machinery.

[18] Sebastian Schelter, Felix Biessmann, Dustin Lange, Tammo Rukat, Phillipp Schmidt,
Stephan Seufert, Pierre Brunelle, and Andrey Taptunov. Unit testing data with deequ.
pages 1993–1996, 06 2019.

[19] Tableau Software. Business intelligence and analytics software. https://www.tableau.

com/. Accessed: 2020-02.

[20] Tamr. Enterprise data mastering at scale. https://www.tamr.com/. Accessed: 2020-02.

[21] Metaweb Technologies. Openrefine: A free, open source, powerful tool for working with
messy data. https://openrefine.org/. Accessed: 2020-02.

[22] Trifacta. Data wrangling software and tools. https://www.trifacta.com/. Accessed:
2020-02.

https://www.primefaces.org/primeng/
https://www.primefaces.org/primeng/
https://www.tableau.com/
https://www.tableau.com/
https://www.tamr.com/
https://openrefine.org/
https://www.trifacta.com/

	Introduction
	Motivation
	Research questions

	Data platforms
	Data lake
	Data mesh
	Data and distributed domain
	Data and product thinking convergence
	Data and self-serve platform design convergence

	Conclusion

	Data cleaning in theory
	Outlier detection
	Taxonomy of outlier detection methods
	Statistics-based outlier detection

	Clustering
	Clustering techniques
	K-means

	Data profiling
	Single-Column analysis
	Dependency Discovery
	Metanome

	Machine learning approach
	Introduction
	Machine learning for data deduplication
	Conclusion

	Limitations of data error detection
	Current state
	Setup
	Evaluation
	Conclusion

	Data cleaning in practice
	Trifacta
	Tableau
	OpenRefine
	Tamr
	Deequ
	Great Expectations
	Conclusion

	Anomaly detection in event data
	Data
	Event data
	Data structure: NMBS

	Aggregation
	Challenges
	Queries

	A query ranking algorithm
	Based on statistics
	Approach
	Implementation
	Results

	Based on clustering
	Approach
	Implementation
	Results

	Based on consistency
	Approach
	Implementation
	Results

	A monitoring system
	Initialisation
	Cleaning and filtering the data set
	Searching for clusters
	Selecting the best queries

	Monitoring
	Adding a new day
	Summarize the results
	Recalculations

	Extensions

	Experiments
	NMBS
	DeLijn
	Data
	Implementation
	Results

	Conclusion

	Conclusion
	Future work
	Appendices
	System specifications
	Setup
	System overview
	Installation
	Metanome

	Structure
	Algorithms
	Projects

	API
	Screenshots

	Nederlandse Samenvatting
	Inleiding
	Aanpak
	Event data
	Aggregaties
	Uitdagingen
	Query

	Algoritmen
	Filteren
	Clusteren
	Consistentie

	Conclusie
	Vervolg

