
Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Mediating Conflicts in the Near future of IoT

Mathias Van Ginneken
Scriptie ingediend tot het behalen van de graad van master in de informatica

2019
2020

PROMOTOR :

dr. Davy VANACKEN

De transnationale Universiteit Limburg is een uniek samenwerkingsverband van twee
universiteiten in twee landen: de Universiteit Hasselt en Maastricht University.

Faculteit Wetenschappen
School voor Informatietechnologie

master in de informatica
Masterthesis

Mediating Conflicts in the Near future of IoT

Mathias Van Ginneken
Scriptie ingediend tot het behalen van de graad van master in de informatica

PROMOTOR :

dr. Davy VANACKEN

Samenvatting

Introductie

Het Internet of Things groeit, en het doet dat niet alleen in populariteit. Elke dag
worden er steeds meer en meer apparaten toegevoegd, en nog meer opportuniteiten
verijzen om omgevingen te creëren die de kwaliteit van ons leven verbeteren. Smart
homes zijn een voorbeeld van hoe deze zogenaamde “dingen” een deel worden van
ons dagelijkse leven. Hun doel is om onopvallend ons te helpen en te ondersteunen
in alles wat we doen. Met andere woorden, ze horen ons leven eenvoudiger te maken.
Door eindgebruikers in staat te stellen om hun eigen apparaten en hun gedrag te
programmeren, wordt de controle van deze omgevingen volledig gegeven aan hen.
Tools zoals IFTTT zijn dan ook speciaal ontworpen om dat programmeren voor deze
gebruikers veel gemakkelijker te maken. Aan de hand van deze tools kan men regels
maken die beschrijven welke acties uitgevoerd moeten worden wanneer een bepaalde
gebeurtenis plaatsvindt of wanneer er aan een bepaalde conditie wordt voldaan. Dit
brengt echter ook wel weer problemen met zich mee. Systemen die opgebouwd
zijn uit zulke regels, die door eindgebruikers zijn samengesteld, kunnen al snel zeer
complex worden wanneer deze hoeveelheid aan regels toeneemt. Dit zorgt er dan ook
voor dat een overzicht van alle regels houden en het opvolgen van alles wat er in het
systeem gebeurt een moeilijke taak wordt. Daarentegen introduceert het hebben
van veel regels ook een grotere kans op het hebben van conflicten tussen regels.
Om zulke conflicten te voorkomen in regel-gebaseerde systemen werden verscheidene
tools ontwikkeld die de eindgebruikers zouden moeten helpen tijdens het creëren van
nieuwe regels. Deze tools controleren, wanneer een nieuwe regel wordt gecreëerd, of
deze mogelijks in een conflict zou kunnen komen met al reeds bestaande regels in het
systeem. Als dit het geval zou zijn, dan wordt de gebruiker hierover gewaarschuwd
en krijgt deze de mogelijkheid om de regels alsnog toe te voegen of onmiddellijk
een oplossing te maken. Het oplossen van zo een conflict vereist echter wel dat
eindgebruikers tijdens het aanpassen van regels rekening moeten houden dat het
gewenste gedrag nog steeds bekomen kan worden in elke mogelijke situatie. Paterno
zei hierover het volgende:

“It may be very difficult for developers to predict all possible context-
dependant scenarios, because there may be (at design time) unforeseen
requirements that need to be supported when the application is actually
used.” [56]

Aangezien wij leven in heel dynamische en onvoorspelbare omgevingen, wordt het
dus erg moeilijk om tijdens het creëren van regels rekening te houden met alle mo-

1

2

gelijke contextuele veranderingen die er zouden kunnen optreden. Daarnaast zijn
conflicten ook erg complex. Ze kunnen voorkomen op apparaten of beleid, ze kun-
nen veroorzaakt worden door een enkele gebruiker of meerdere gebruikers, ze kunnen
gedetecteerd worden tijdens de run-time of nog voor dat ze eigenlijk voorkomen en ze
kunnen genegeerd of opgelost worden. Ondanks dat er vele tools bestaan, focussen
de meeste van hen op het detecteren en oplossen van conflicten tijdens het creëren
van nieuwe regels. Door gebruik te maken van verschillende visualisatie methoden
kunnen gebruikers de conflicten beter begrijpen en zelfs onderzoeken waarom een
regel al dan niet in een conflict is verwikkeld. Wanneer conflict detectie gebeurt tij-
dens de run-time, worden eindgebruikers meestal uitgesloten uit het hele detectie- en
oplossingsproces aangezien deze systemen automatisch een oplossing genereren wan-
neer een conflict zich voordoet. Wanneer conflicten automatisch opgelost worden,
maakt het systeem meestal gebruik van prioriteiten om te bepalen welke regels al
dan niet uitgevoerd mogen worden. Deze prioriteiten moeten echter wel op voorhand
al gedefinieerd en in het systeem gebracht worden.

Hieruit volgt dus dat het grootste deel van conflicten oplossen al reeds moet
gebeuren tijdens het opstellen van de regels, of het nu is door extra regels en condities
toe te voegen of door prioriteiten te definiëren. Eenmaal de regels opgeslagen en
toegepast worden in het systeem, hebben gebruikers geen enkele controle meer over
conflicten wanneer deze zich voordoen. In dit werk onderzochten wij een alternatieve
en aanvullende aanpak voor de reeds bestaande tools. In plaats van conflicten te
detecteren tijdens het creëren van nieuwe regels en een gebruiker deze onmiddellijk
te laten oplossen, stellen wij een oplossing voor waarbij in realtime eindgebruikers
verwittigd worden wanneer conflicten zich binnenkort zullen voordoen en wordt de
eindgebruiker de mogelijkheid aangeboden om deze in-situ op te lossen aan de hand
van de huidige situatie. Hierdoor kan men eenmalige uitzonderingen maken op regels
door tijdelijk acties te snoozen of custom acties te maken die het nabije conflict
zouden oplossen. Om dit alles te verwezenlijken voorspellen we de statussen van
de apparaten in de nabije toekomst, detecteren we of er daarin mogelijke conflicten
voorkomen en presenteren we dit aan de gebruiker aan de hand van de uCoRe
applicatie. Met gebruik van deze applicatie kan het conflict dan opgelost worden,
wat er dan toe zal leiden dat de gewenste status van het apparaat op dat moment
gezet zal worden.

Contributies

In dit werk worden volgende contributies gemaakt:

• Conflicten detecteren en oplossen at run-time in een IoT smart home omgeving.

• Oplossingen worden verkregen door acties tijdelijk te activeren of te snoozen
of door custom acties te definiëren.

• Een applicatie geeft de controle over de conflict oplossingen in de handen van
de eindgebruiker die in-situ beslissingen kan maken.

• Een studie die gebruiksvriendelijkheid en succes in het oplossen van conflicten
evalueert voor de applicatie.

3

uCoRe App: conflicten detecteren en oplossen

Dit werk bestaat uit vier grote delen: het voorspellen van de nabije toekomst, con-
flict detectie, conflicten oplossen en een applicatie dat dit alles samenbrengt in de
handen van de eindgebruiker. Veranderingen van apparaatstatus worden voorspeld
via het FORTNIoT framework en binnen dit framework hebben wij de functionaliteit
uitgebreid zodat het ook in staat is om conflicten te detecteren en op te lossen tijdens
het voorspellen van de statusveranderingen van apparaten in de nabije toekomst.

Tijdens het voorspellen wordt er een voorspellingsboom gemaakt die de nabije
toekomst voorstelt. Elke knoop in de boom representeert een statusverandering
en elke boog representeert een gevalideerde en uitgevoerde regel. Bij het opstellen
van deze boom wordt conflict detectie meermaals toegepast door, elke keer wanneer
nieuwe knopen gevonden worden, de boom af te vlakken en de acties te markeren die
dezelfde apparaten rechtstreeks bëınvloeden. Eenmaal conflicten gevonden worden
zal er in de bestaande conflictoplossingen gezocht worden naar een oplossing wiens
set van conflicterende acties een exacte match vormt met de huidig gevonden set van
conflicterende acties. Wanneer zo een oplossing gevonden wordt, zal dit resulteren
in custom acties die toegevoegd worden aan de boom alsook acties die gemarkeerd
zullen worden als “snoozed”.

De voorspelling van statusveranderingen hoort correct te verlopen en een goede
representatie te zijn van de mogelijke nabije toekomst. Dit betekent dat in de voor-
spelling enkel statusveranderingen mogen opgenomen worden waarvan het systeem
zeker is dat deze statussen zullen worden toegepast gegeven de huidige informatie.
Statussen die betrokken zijn in een conflict zouden bijgevolg er niet voor mogen
zorgen dat andere regels getriggerd worden, wat zou resulteren in nieuwe statussen.
Als dit wel het geval zou zijn, zou dit betekenen dat de representatie van de nabije
toekomst totaal zou kunnen veranderen eenmaal het conflict wordt opgelost. Het
is om deze reden dat de conflict detectie niet post-voorspelling kan gebeuren, maar
tijdens de voorspellingsfase moet worden gedaan. Zodra conflicten worden gede-
tecteerd, worden deze gelogd en de betrokken acties worden gemarkeerd als con-
flicterend, waarna die voorspelling opnieuw zal moeten starten.

In plaats van regels aan te passen door bijvoorbeeld condities toe te voegen,
hebben wij ervoor gekozen om te werken met de acties van de regels om zo oplossin-
gen voor conflicten te bekomen. Dit stelt ons meer in staat om flexibel om te gaan
met de regels en de uiteindelijke wensen van de eindgebruiker. Het is bijgevolg per-
fect mogelijk dat regels nog steeds getriggerd worden, maar in plaats van dat alle
acties uitgevoerd worden zoals de regel definieert, kan er geselecteerd worden welke
acties de gebruiker precies uitgevoerd wil hebben en welke niet. Dit is mogelijk
doordat acties gemarkeerd kunnen worden als actief of snoozed, wat er voor zal
zorgen dat tijdens de voorspellingsfase, de voorspellings-engine statussen zal kun-
nen activeren of negeren wanneer de actie die die status genereerd gemarkeerd is.
Oplossingen voor conflicten moeten ook toegepast worden tijdens de voorspellings-
fase omdat statussen dat geactiveerd worden door toegepaste oplossingen, op hun
beurt weer regels kunnen triggeren en dus nog meer nieuwe statussen genereert, wat
uiteindelijk leidt tot een meer complete voorspelling van de nabije toekomst.

Wat conflictoplossingen zo complex maakt is de verbinding maken tussen de

4

oplossing en het conflict dat de gebruiker wenst op te lossen. Doordat het systeem
de toekomst voorspelt, is het mogelijk dat deze toekomst kan veranderen bij de
volgende voorspelling. Het is daarom ook plausibel dat conflicten in eerst kunnen
voorkomen en daarna niet meer. Meer nog, een conflict zou zelfs kunnen schuiven
in tijd met bijvoorbeeld een aantal minuten tot zelfs uren. In dit werk maken wij
gebruik van de set van conflicterende acties als identificatie voor een bepaald conflict.
Dit zorgt ervoor dat een oplossing niet gebonden is aan een bepaald tijdstip en het
bijgevolg mogelijk maakt om doorheen de tijd mee te bewegen met conflicten die
de dezelfde set van conflicterende acties bevatten. Deze aanpak heeft echter ook als
bijwerking dat een oplossing meermaals kan matchen met conflicten doorheen de
tijd, wat kan leiden tot ongewenst gedrag.

In vergelijking met andere methodes die conflicten detecteren en oplossen tijdens
de run-time, worden eindegebruikers wel betrokken in onze aanpak door gebruik van
de uCoRe applicatie. Eindegebruikers worden gëınformeerd over de statusveran-
deringen van hun apparaten in de nabije toekomst, en wanneer er zich conflicten
voordoen, worden deze gemarkeerd door het systeem. Drie types van conflicten
worden afgehandeld: inconsistenties, redundanties en loops (lussen). Hoewel het
systeem redundanties en loops automatisch oplost tijdens de voorspellingsfase, kri-
jgen eindgebruikers nog steeds de mogelijkheid om deze oplossingen aan te passen
naar hun eigen wensen. Door gebruik te maken van iconen, afbeeldingen en tekst
probeert de applicatie op een zo eenvoudig mogelijke manier relevante informatie,
zoals conflict details en oplossing details, duidelijk te communiceren.

In onze online within-subject studie kregen deelnemers vijf scenario’s, welke elk
een type conflict bevatte, en werd hen gevraagd deze op te lossen aan de hand
van twee methoden: regels aanpassen, wat mogelijk was via een gedeeld Google
document, en het gebruik van de uCoRe applicatie, waar participanten bevelen
moesten geven aan de facilitator om de applicatie te bedienen. De uCoRe applicatie
bewees eenvoudiger en subjectief aangenamer in gebruik te zijn dan de methode van
de regels aan te passen. Deelnemers moesten minder denken over het echte conflict,
maar konden zich eerder focussen op het gewenste resultaat. Dit zorgde dan ook voor
een hoger succes in het oplossen van conflicten wanneer de applicatie werd gebruikt.
Om eenmalige conflicten op te lossen of om eenmalige statusveranderingen door te
voeren wordt de uCoRe applicatie verkozen boven de regel-aanpassen methode.

Beperkingen van het huidige werk

Aan dit huidige werk zijn ook nog een aantal beperkingen gevonden. Conflict detec-
tie vindt enkel plaats binnen een tijds tick. Dit houdt in dat tijdens het voorspellen,
conflicten alleen gedetecteerd worden voor apparaat statussen die op hetzelfde mo-
ment veranderen. Wanneer de lamp bijvoorbeeld aan gaat en binnen een minuut
weer uit, zou dit door een gebruiker beschouwt kunnen worden als een conflict.
Echter op dit moment kan het systeem zulke conflicten, waar dus enige tijd tussen
zit, niet detecteren.

Oplossing voor conflicten worden momenteel enkel gevormd door een combinatie
van het activeren en snoozen van acties. Dit omwille van de verhoogde flexibiliteit
dit het oplevert. Het zou echter completer zijn moesten operaties op regels ook

5

mogelijk zijn.
In dit werk waren we voornamelijk gefocust op drie types van conflicten, namelijk

inconsistenties, redundanties en loops. Deze drie types hoeven echter niet de enige
conflicten te zijn die het systeem zou moeten kunnen oplossen. Een interesse conflict
zou bijvoorbeeld kunnen ontstaan wanneer het systeem de status van een apparaat
verandert maar de gebruiker dit eigenlijk niet wenst. In het beste geval zou de
eindgebruiker dus steeds in staat moeten zijn om eender welke status die het systeem
voorspelt te overschrijven met de gewenste status van de gebruiker.

Een van de grootste beprekingen op dit moment is om op een zo correcte manier
mogelijk ervoor te zorgen dat oplossing mee veranderen met conflicten wanneer deze
schuiven in de tijd. De manier hoe we dit nu aanpakken heeft de bijwerking dat deze
oplossing meermaals toegepast kan worden wanneer een de set van conflicterende
acties van het conflict overeenkomt met de set van conflicterende acties waarvoor er
een oplossing bestaat, resulterende in ongewenst gedrag. Het zou op een of andere
manier mogelijk moeten zijn om oplossingen toch ergens enigszins in een tijdsrange
af te baken en ervoor te zorgen dat deze slechts eenmalig worden uitgevoerd.

Wanneer een conflict wordt opgelost, wordt deze oplossing opgeslagen in het
framework. Wanneer statusveranderingen verplaatsen door een nieuwe voorspelling,
kan het mogelijk zijn dat het conflict niet meer bestaat. Dit zorgt ervoor dat de
gekozen oplossing voor dat eerdere conflict niet toegepast kan worden en dus de
status van dat apparaat kan verschillen met wat de gebruiker zou verwachten dat
er zou gaan gebeuren. Op dit moment houdt het systeem niet bij welke conflicten
er eerst voorspelt zijn geweest en of dat deze veranderd zijn door een nieuwe voor-
spelling. Hierdoor kunnen eindgebruikers niet gëınformeerd worden wanneer zoiets
zou gebeuren.

Conclusie

Er is nog steeds veel vooruitgang te boeken in het Internet of Things en de smart
home omgevingen. In het werk dat wij hebben geleverd is nog veel ruimte voor ver-
betering, vernieuwing en uitbreiding. Mogelijke uitbreidingen zouden dan bestaan
uit het toevoegen van Artificiële Intelligentie, het gebruik van nieuwe visualisatie
technieken zoals AR of VR en het gebruik maken van feedforward technieken om
gebruikers nog meer te informeren over hun acties vooraleer ze deze bevestigen.

Om te besluiten draagt ons werk bij door aan conflict bemiddeling te doen in
een IoT smart home omgeving at run time, gebruik makende van technieken om
acties te activeren of te snoozen en de eindgebruikers daarover de controle te geven.
Onze studie toonde aan dat onze applicatie verkozen wordt boven het aanpassen
van regels wanneer het gaat over eenmalige conflicten en uitzonderingen maken op
de status van een apparaat. Dit alles opent uiteindelijk een heleboel mogelijkheden
voor toekomstig onderzoek.

6

Abstract

Within the Internet of Things and smart home environments, end users are given the
tools to create and customize the behaviour of devices in their environment. This
is done by creating trigger-action rules that describe what actions should be taken
when an event occurs or a condition is met. Problems arise when multiple defined
rules are triggered at the same time and influence the same device. These conflicts
can leave the involved devices in an unknown state. Therefore tools are created to
detect and resolve these conflicts. With existing tools focusing on creating a conflict
free environment by detecting and resolving conflicts through changing rules at
creation time, we propose an additional approach that detects conflicts at run time
in the near future and facilitates the user into solving these one time specific conflict
situations by temporarily disabling actions in rules without it having a long-term
impact on the smart home system. These solutions would involve snoozing actions
or creating custom actions. We build the uCoRe application that interfaces this
conflict detection and resolution method. In a within-subject study we compared our
approach with a rule editing method and evaluated its ease of use and success rate.
The results not only show a higher success rate in favor of the application, the uCoRe
application is also preferred by participants for solving one time specific conflicts and
making one time state exceptions. Our work is the first step towards giving end-
users the control over device state conflicts in their smart home environments at run
time. This opens up a lot of opportunities for further research.

7

8

Acknowledgement

I would like to thank my promoter dr. Davy Vanacken en PhD student Sven Coppers
for their guidance and support during the year. I am very thankful for the time they
took to discuss our progress and to be involved in every step along the way. It was
a really interesting and fun topic to work on and this team only made it even more
engaging.

9

10

Contents

1 Introduction 13

2 Related work 15
2.1 Internet of Things . 15
2.2 Smart Home . 15
2.3 Trigger-Action . 17
2.4 Conflicts . 20

2.4.1 Conflict types . 20
2.4.2 Existing tools . 22

3 uCoRe: A Conflict Resolution Application 29
3.1 Introduction . 29
3.2 Visualizing status, conflict and solution 30

3.2.1 Status . 31
3.2.2 Conflict . 32
3.2.3 Solution . 33

3.3 Predicting status: Near Future Prediction 35
3.4 Conflict detection . 39

3.4.1 Data structure . 40
3.4.2 Conflict detection algorithm 41

3.5 Conflict resolution . 44
3.5.1 Data structure . 45
3.5.2 Apply a solution . 47

3.6 Limitations . 51

4 Executing a User Study 53
4.1 Study design . 53

4.1.1 Experimental Design and Measurements 53
4.1.2 Participants . 55

4.2 Analysis and results . 55
4.2.1 Scoring understanding of the conflict 55
4.2.2 Solving the conflict . 56
4.2.3 Subjective Usability Scale . 59

4.3 Discussion . 60
4.3.1 Summary of key findings . 60
4.3.2 Limitations and future work 61

11

12 CONTENTS

5 Conclusion 63

Appendices 67

A Executing a User Study 69
A.1 Training document . 69
A.2 Scenarios . 74
A.3 Questionnaires . 76

A.3.1 Understanding the conflict questionnaire 76
A.3.2 Observation questionnaire . 79
A.3.3 SUS and preference questionnaire 83

Chapter 1

Introduction

The Internet of Things is growing. More and more devices are added each day,
and even more opportunities arise to create environments that would improve our
quality of life. Smart homes are an example of how these so called “things” become
part of our day to day living. Their goal is to not be intrusive but to aid and support
us in everything we do. Thus, making our lives easier. End users are given control
over their own environment by letting them “program” their devices on their own.
Tools like IFTTT are created to make that programming a lot easier. However,
using these tools to create rules that describe what actions should be taken when
an event occurs or a condition is met, introduces issues. The more rules are part of
the system, the more complex the system becomes. Therefore, keeping track of all
the rules and everything that is going on in the system becomes difficult. Having
a lot of rules also introduces more chances of rules conflicting with one another. In
order to prevent conflicts from occurring in such rule-based systems, different tools
were created to aid users in their rule creation at design time. These tools check,
when new rules are added, whether they can possibly be in a conflict with some
other rule(s) in the system. If so, users can ignore these warnings or solve them
immediately by adding more conditions or adding more rules. This requires end
users to think ahead of every possible situation that might occur, making sure that
every rule that they create exactly does what they want them to do. As Paterno
once said:

“It may be very difficult for developers to predict all possible context-
dependant scenarios, because there may be (at design time) unforeseen
requirements that need to be supported when the application is actually
used.” [56]

Since we interact with our applications in such very dynamic and unpredictable
environments, it is not possible to foresee at design time how an application should
react to all the possible contextual changes that can occur during its use.

Not to mention that conflicts are complex. They can occur on resources or on
policies, they can be caused by a single user or multiple users, they can be detected
at run-time or even before they occur (e.g. at design time) and they can be avoided
or resolved. Nonetheless, these conflicts can be classified into three main classes:
loops, redundancies and inconsistencies.

13

14 CHAPTER 1. INTRODUCTION

Although many tools exist, most of them focus on detecting and resolving con-
flicts at design time. Using different ways of visualization, users can understand
and even investigated why or why not a rule is in conflict. When conflict detection
is done at run-time, however, users are most of the time left out, because these
systems use automated resolution of conflicts. When resolving conflicts is done au-
tomatically, the system uses most of the time a form of prioritization of some sorts.
Thus letting users define in advance which rules or people are more important than
others.

A lot of conflict solving has to be done at design time, whether it is by creating
or changing rules, or by assigning priorities. Once the rules are saved and applied,
users don’t have control anymore over the conflicts that might arise. In this work
we considered an additional approach to the existing tools. Instead of detecting
conflicts at design time and letting the user solve them immediately, we propose
a solution whereby at real-time end users get notified of upcoming conflicts and
in-situ can solve them according to the situation at hand. Thus letting them make
exceptions on the rules by temporary snoozing actions or creating custom actions
on their own. To accomplish all of this, we predict the near future of device states,
detect conflicts and present them to the user using the uCoRe application. Through
this application the conflict can be solved, resulting in the desired states at the right
time.

In Chapter 2 we discuss the related work of conflict detection and resolving in
IoT. In Chapter 3 we present our work and discuss the four main components: State
prediction, Conflict detection, Conflict resolution and the uCoRe application. After
that, a small study is conducted in Chapter 4. In the end we close with a conclusion
and some perspectives on the future in Chapter 5.

Chapter 2

Related work

2.1 Internet of Things

The term Internet of Things (IoT) was first mentioned by Kevin Ashton in 1999
in the context of supply chain management [7]. Since then, the Internet of Things
grew in interest and popularity, extending not only to supply chain management
but also to other domains like health, transport, logistics, smart homes and smart
cities [20]. The Internet of Things can be described as a network of interconnected
everyday objects that not only harvests information from the environment (sensing)
and interacts with the physical world (actuation/command/control), but also uses
existing Internet standards to provide services for information transfer, analytics,
applications, and communications [14].

Although many definitions have been formed throughout the years, all agree on
the potential of this emerging paradigm. Not only can it make people live and work
smarter then before, it offers us the possibilities to gain even more control over our
lives and our environments [64]. For example, in a business context, IoT enables a
company to monitor their business processes in real time, or even automate some of
them. Saving them time and money. Even in our personal lives, our homes, more
of these smart objects (things) can be found and improve our quality of life. Think
of a smart thermostat, which can sense the temperature of the room and adjust it
in an autonomous way, making sure that when people are not home, the heating is
off. Saving energy costs. With all these new smart devices, it becomes important
to understand how users operate with them, as well as the applications and services
that are being used. In order to do that, analyzing the IoT data generated is crucial
in helping us improve these systems [45, 25].

2.2 Smart Home

A smart home is one of the domains where IoT has been changing the way we think
of living with technology. According to Investopedia, a smart home refers to a con-
venient home setup where appliances and devices can be automatically controlled
remotely from anywhere with an internet connection using a mobile or other net-
worked device [62]. The purpose of a smart home, and home automation in general,
is to support inhabitants in their daily lives through technological means. Areas

15

16 CHAPTER 2. RELATED WORK

of interest include security functions like access control and surveillance systems,
resource management with regard to water and electricity, multimedia functions for
ubiquitous content streaming, and comfort functions like light and heat manage-
ment [21, 28].

It is Rogers that argues for more engaging technologies that “enables people to
do what they want, need or never even considered before by acting in and upon
the environment” [5]. However, an inhabitant can never have the feeling that they
are not in control, because this can lead to an inhabitant not trusting his own
home. Therefore it becomes a challenge of balancing home automation and user
control. Besides, an inhabitant can vary in age and ability, resulting in a wide
variety of possible users of such systems. This diverse user profile makes interaction
design and development for smart homes incredibly challenging. On the one hand,
solutions should be ubiquitous and refrain from impacting the user’s life; on the
other hand, people expect a certain degree of control over what is going on in their
own homes [11, 15, 18, 19, 21].

Different smart home systems and platforms have been developed to optimize
user control and understanding of a smart home [29, 39, 44]. For example, Castelli
et al. developed a smart home system featuring predefined visualizations and a
visualization creation tool for even more customization [29]. On the other hand,
Purmaissur et al. developed a platform for smart home control and energy moni-
toring, interfaced with augmented reality (AR) [44]. In Figure 2.1, this platform is
used in combination with AR to show live energy usage of electrical components.

(a) width=7cm

(b) width=7cm

Figure 2.1: AR energy monitoring [44].

Even though these kind of tools have been developed, tailoring them for every
user or possible smart home inhabitant is difficult. As people we have our own

2.3. TRIGGER-ACTION 17

habits, preferences, goals and values, and as mentioned before, a smart home should
be able to support us in every need. It is therefore not interesting for a developer to
create smart home applications that will need to be adapted for every user’s specific
needs. By giving users the opportunity to created their own applications, they gain
full control over their home and can personalize it in any way they want. A more
specific term for this is End-User Development.

End-user development (EUD) aims to put the applications development in the
hands of the people who are most familiar with the actual needs to be met (e.g.,
domain experts). Its goal is to allow non-professional developers to create or modify
their applications so that they can meet their diverse and frequently changing needs
better then before [4]. As Paterno and Alawadi pointed out, there is an emerging
need to support personalization of IoT environments [56]. And this can be done in
many different ways. Barricelli et al. describe and map all the research that has
already been conducted in this area of end-user development [48].

It is by understanding the user and its use cases, that rule-based and process-
oriented paradigms were formed. Rule-based notations are ways for a user to express
what they want the system to do given some event that occurred. For example, if
Sarah is home then turn on the music. The system will then know that when
Sarah is home, it should play some music. Many rules can be created in this way.
Although rule-based notations are sufficient to express these simple automation
tasks, it can be limiting for more complex use cases. Therefore process-oriented
notations can be very useful. Instead of, for example, modelling a whole business
process, which can be complex, into many different rules, process-oriented notations
help to overcome these limitations. According to participants that used the process-
oriented notation, expressiveness was greatly valued and they presented them with
more complex use cases involving more devices in their homes [28]. The downside of
these process-oriented notations, however, is that it is often coupled to more complex
user-interfaces, making it thus harder for an end user to use.

Because of this, many research proposed an end-user development solution based
on trigger-action rules [13, 55, 56]. Ur et al. even provided evidence that average
users can successfully engage in trigger-action programming with multiple triggers
and actions [23]. In the following section we will dive deeper into this.

2.3 Trigger-Action

Within the Internet of Things domain, the Trigger-Action paradigm has been widely
adopted in the last few years, because it allows end users without programming
experience to describe how their application should react to many events that can
occur in such very dynamic contexts. This paradigm makes use of the “if . . . , then
. . . ” paradigm, where in the if-part an event or condition is described (trigger)
and in the then-part an action is described to be executed. A trigger is thus an
event, which is corresponding to a context change (e.g., if the TV is turned on), or
condition, which is more of a prolonging state (e.g., while Sarah is home).

As mentioned in the previous section, giving users the means to describe to the
system how they want it to interact with them and the environment, empowers them,
letting them do the personalization themselves. By defining rules, an end user can

18 CHAPTER 2. RELATED WORK

specify how they want certain things to be done. Many tools and editors have been
created in order to help end users do this in a very simple way. IFTTT1 (If This
Then That) is such an (commercial) application tool that enables end users to do
just that. By creating “if . . . , then . . . ” rules, in this environment also called recipes,
existing services can be coupled to one another in a one-on-one connection. A rule
or recipe could look something like this: “IF it is raining tomorrow, THEN send me
an email”. It is actually really easy to do. Ur et al. confirmed this by expressing
the growth of trigger-action programming in the IFTTT environment, pointing out
that most users create “recipes” not for immediately sharing it with the whole
world, but to fill the gaps in their own lives, customizing their environments using
end-user programming[27]. Due to the simplified way of IFTTT for customizing the
environment, creating complex use cases can become very difficult because of the
limited expressiveness it offers. Debugging such a system is therefore not possible
in this environment.

In research many alternatives have been created in order to deal with some of
the limitations these commercial tools have. In the work of Cabitza et al., different
existing rule-based tools were compared with each other [26]. The work presented
in [12] even describes a usability study with 16 participants, which compares three
composition paradigms for smart environments:

• filtered lists, where condition-response compositions are obtained by selecting
conditions and responses from respective lists

• wiring composition, which is based on the metaphor of coupling and wiring
together separate user interface components

• jigsaw puzzle composition, where users specify compositions by combining
puzzle-like user interface elements representing trigger or response components

From this study, it emerges that the approaches based on the wiring and the jig-
saw puzzle present issues concerning composition readability and overview; whilst,
filtered lists communicate more effectively the overall picture of compositions.

Many tools use the filtered lists composition paradigm. Some examples are:
IFTTT, TARE [34], EUPONT [30], E-Free [31] and E-Wizard [31]. All have in
common that they look similar and are based on IFTTT. Although TARE, EU-
PONT, E-Free and E-Wizard are all trying to improve the expressiveness by adding
more semantics (specific information) about the triggers and the actions using the
5W-model (Who, What, When, Where, Why) [31], they also are a bit different from
one another. TARE is a web-based authoring tool that can combine multiple trig-
gers using boolean operators, and it can even differentiate between an event and a
condition. Figure 2.2 shows the editor user interface that was created. EUPont, on
the other hand, is a semantic web ontology that enables users to meet their needs
with fewer, higher-level rules that can be adapted to different contextual situations
and as-yet-unknown IoT devices and services. Even though it is similar to IFTTT,
besides adding more semantics, it strives to be simpler and more expressive.

1https://ifttt.com/

2.3. TRIGGER-ACTION 19

Figure 2.2: The TARE editor user interface [34].

A popular tool implementing the wired paradigm is Node-RED2. Besides offering
a set of predefined services, it allows users to register personal smart objects by
invoking their RESTful interfaces. In addition, Node-RED supports the creation of
complex automation rules characterized by:

• multiple services that trigger events and multiple services that react by per-
forming actions

• special nodes, used for example to control the communication flow among
services by means of custom JavaScript code

• debug functionality to simulate and check the rules under creation

However, such features often require technical skills and thus they are not adequate
for non-technical people [6, 9, 10]. That is way E-Wired also used this graph-like
notation, but simplified it, for creating a customized environment [31].

My IoT Puzzle is a tool to compose and debug IF-THEN rules based on the Jig-
saw metaphor [52]. The tool interactively assists users in the composition process by
representing triggers and actions as complementary puzzle pieces, and by providing
real-time feedback to test on-the-fly the correctness of the rule under definition. In
the next section we will look closer to the visualization and debugging features of
this tool.

The goal of all these tools is to help the end user in personalizing their environ-
ments, and being able to do this in a simple way that is instructive and informative

2https://nodered.org/

20 CHAPTER 2. RELATED WORK

when it needs to be. Although this sounds easy, it is hard to get it right. With a lot
of different triggers and actions, many candidate rules exist for non-programmers to
generate or chose from. Thus, making trigger-action programming often a complex
task. A recommendation system could improve both the reuse and the definition
of trigger-action rules, thus helping the users to easily customize their smart de-
vices [56]. The goal of RecRules [53] is to recommend by functionality: it suggests
rules based on their final purposes (e.g., light up a place), thus overcoming details
like manufacturers and brands. Still, it only solves one thing of many. Another way
of making trigger-action programming easier can be by using natural language in-
stead of the IF-THEN paradigm. Huang et al. introduced InstructableCrowd [54],
a crowd-powered system that allows users to program their devices via conversa-
tion. The user verbally expresses a problem to the system, in which a group of
crowd workers collectively respond and program relevant multi-part IF-THEN rules
to help the user. Yet, even with simplifying the way of trigger-action programming,
or using a recommendation system, users can still make mistakes and create buggy
rules. In the next section we will dive deeper into conflicts between rules and the
tools that are created to help end users better understand these problems and fix
them.

Lastly, when creating tools for end-user development it is important that the
focus is on the user, their understanding of the system and the control they have
over the system. Analyzing tools can help in order to visualise end users and their
behaviour. Corcella et al., for example, created a visual tool for analysing IoT
Trigger-Action Programming using the TARE editor [50]. The goal of this tool is
to provide better understanding of what end users’ personalization needs are, how
they are expressed, how users actually specify rules, and whether users encounter
any issues in interacting with the personalization features offered by the editors.

2.4 Conflicts

In a smart home environment, a conflict can be understood as the system doing
something that the inhabitant does not want or expect. For example, in such an
environment it is possible for the lights to turn on or off automatically. When the
inhabitant expects that the lights should go on, and it doesn’t happen, something
probably went wrong. Within research, some studied the different ways of how
these conflicts are formed, and tried to come up with solutions to detect, prevent
and resolve them.

2.4.1 Conflict types

When addressing conflicts in the trigger-action paradigm, we specifically look at con-
flicts that arise between trigger-action rules. First of all, an understanding of the
different types of conflicts is needed before even starting to fix them. Brackenbury
et al. synthesised a taxonomy of ten bugs likely to impact Trigger-Action Program-
ming [49]. Resendes et al. even created a taxonomy of conflict, which is organized
according to their classification dimensions, possible types and respective meaning
(see Figure 2.3) [17]. However, when a conflict occurs and is classified according

2.4. CONFLICTS 21

Figure 2.3: A four-dimensional taxonomy of conflict, organized according to their
classification dimensions, possible types and respective meaning [17].

to this taxonomy, a conflict still can be subdivided into three main classes that are
defined as loops, inconsistencies and redundancies [40]. Loops are formed when two
or more rules chain together, leading to the last rule in the chain triggering the first
rule again. As an example, the following rules form a loop:

• R1. IF I post a photo on Facebook, THEN store it in my iOS library

• R2. IF I store a photo in my iOS library, THEN post it on Instagram

• R3. IF I post a photo on Instagram, THEN post it on Facebook

Once a photo gets stored or posted, it enters a cycle of storing and posting the same
photo over and over again. An inconsistency conflict occurs when the actions of
two or more rules operate on the same device, and result in an opposing state. The
following rules, when executed at the same time, result in two different states of the
lamp (on or off), leading to unpredictable behaviour.

• R4. IF I come home, THEN turn on the lights

• R5. IF the TV is turned on, THEN turn off the lights

Redundancy conflicts are almost the same as inconsistency conflicts, but instead of
resulting in opposing states, the actions result in doing a similar thing. Again, the
following rules give an example of how this would look.

• R6. IF my Android GPS detects that I exit the home area, THEN set the
Nest thermostat to Away mode

• R7. IF the entrance door is locked, THEN set the Nest thermostat to Away
mode

It is possible that both rules are executed at the same time, resulting in two actions
that do the same thing. Results show that participants perceived redundancies as
less dangerous than loops and inconsistencies [40, 51]. For example, by looking at a

22 CHAPTER 2. RELATED WORK

redundancy that simultaneously posted on Twitter two tweets about the same topic,
i.e., “I listened to the new song of Ed Sheeran on YouTube” and “I listened to the
new song of Ed Sheeran on Spotify”, two users said “this is not a problem for me,
the two tweets are different so I want to save the rule anyway”. Although depending
on the domain, redundancies can be very dangerous if they occur. In healthcare, for
example, a redundancy can result in giving a medicine dose twice, which could lead
to an overdose with tragic consequences. Even though these three main classes are
defined, depending on the domain, more or less classes can be created and used to
define and specify the different conflicts that can occur in such a system[35].

2.4.2 Existing tools

To make sure that no conflicts can occur when the rules are executed, many devel-
oped tools to not only guide users in the creation of their trigger-action rules, but
also to immediately notify them when a rule they just created is in conflict with
another rule that already exists in the system. Here follows a brief overview of all
the different research and tools we examined:

ICAP [3] considered two possible levels of conflicts: potential conflicts at design
time and actual conflicts detected at run time. At design time, when rules are
saved, it checks whether any of the saved rules could potentially conflict and, if any
conflict occurs, the concerned rules are highlighted to the user to resolve the conflict
or ignore it. If rules conflict at run time, iCAP, by default, executes the rule most
recently updated rule.

ITAD (Interactive Trigger-Action Debugging) [43] is a tool that supports
the Interrogative Debugging paradigm approach [2] for trigger-action rules. This
approach lets users ask “why” and “why not” questions to know the reason why
a rule is (respectively: is not) verified. Moreover, this tool integrates a conflict
analysis functionality able to highlight potential conflicts between rules that are
simultaneously verified (see Figures 2.4 2.5). ITAD also helps users better under-
stand the difference between events and conditions. Indeed, on the one hand a rule
is presented as verified only if the user specifies the right option between event and
condition and provides the correct values to use in the simulation. On the other
hand, when a rule is not verified, in the explanation associated with ‘why not’ the
tool highlights in red the elements that do not match, to inform the user about the
reason why the rule is not verified (see Figure 2.4).

EFESTO-5W [31, 32, 38] is a web-based platform that, by means of a visual
composition paradigm, allows non-technical end users to synchronize the behavior
of multiple smart devices; and it is a platform for the specification and execution of
trigger-action rules, introduced in [34]. A solution for integrating end user debugging
features in such an approach is presented in [43].

EUDebug [51] is a system for debugging trigger-action rules that allows the user
to compose a new rule, view any problems that the rule may generate, further

2.4. CONFLICTS 23

(a) (b)

Figure 2.4: ITAD simulation of rules [43]. a) A detection of a conflict, which is
pointed out by the system by marking the values and boxes that cause the problem;
b) Revised interface where also textual feedback is given for better understanding.

Figure 2.5: ITAD: conflict detection and analysis tool, giving an overview of what
causes the conflicts [43].

24 CHAPTER 2. RELATED WORK

Figure 2.6: EUDebug is a system for debugging trigger-action rules that allows the
user to: a) compose a new rule; b) view any problems that the rule may generate;
c) further investigate each problem with a step-by-step simulation; and d) edit the
rule to fix the problem or save it anyway [51].

investigate each problem with a step-by-step simulation and edit the rule to fix
the problem or save it anyway (see Figure 2.6). During rule composition phase,
EUDebug automatically detects potential problems with no user intervention. At
the end of the composition process, EUDebug shows any conflicts that the composed
rule may generate by interacting with the previously defined trigger-action rules, and
allows users to further investigated why the problem happens. They use Semantic
Colored Petri Net in order to detect problems in rules and characterizes problems
in trigger-action rules as loops, inconsistencies and redundancies.

My IoT Puzzle [52] is a tool to compose and debug IF-THEN rules based on the
Jigsaw metaphor. The tool interactively assists users in the composition process by
representing triggers and actions as complementary puzzle pieces, and by providing
real-time feedback to test on-the-fly the correctness of the rule under definition.
Puzzle pieces, for example, deteriorate over time according to their usage, while the
tool is able to warn users of conflicts, namely loops, inconsistencies and redundancies.
Furthermore, the tool empowers end users in resolving problems through textual
and graphical explanations. Following the Interrogative Debugging paradigm [2],
for instance, the tool is able to answer questions such as “why it is not working?”,
thus providing the user with a textual explanation of the detected problem.

Out of research they discussed three categories for End-User Development tools:
form-filling (wizard-based languages such as IFTTT, EUDebug, . . .), block program-
ming (such as Scratch [8] and the Jigsaw metaphor), and data-flow (process-oriented
nature and makes them one of the best choices for complex use cases). My IoT Puz-

2.4. CONFLICTS 25

Figure 2.7: The user starts to compose a new rule by dragging a new trigger on the
Drop Area. The tool provides the user with an initial feedback: the piece of puzzle
is worn, since it has been already used in other rules [52].

zle uses a block programming approach for composition of IF-THEN rules, because
they are less restrictive and stimulate the users creativity, in spite of form-filling
approaches which are, although intuitively, more perceived as restrictive because
of their closed form [36, 37]. They also use a data-flow visual language for repre-
senting the behaviour of multiple trigger-action rules, with the aim of helping users
understand and identify unwanted run-time behaviours.

Wrong operations are prevented by the shape of the puzzle pieces, e.g., two trig-
ger pieces cannot be connected. Furthermore, as shown in Figure 2.7, the dropped
trigger piece is worn, since it is already be used in other rules. Puzzle pieces deteri-
orate over time according to their usage history. Using the same trigger in multiple
rules, in fact, means that the involved rules will be executed at the same time, thus
increasing the chances of introducing conflicts such as redundancies and inconsis-
tencies.

If a rule is created that forms an inconsistency with previously saved rules, red
feedback is given to the user (see Figure 2.8). In order to gain a better understanding
of the conflict, a Resolve Problems area is provided with textual and graphical
explanation of the inconsistency (see Figure 2.9). In order to resolve the problem,
the rule has to be changed.

AutoTap [58] lets users specify desired properties for devices and services, in-
stead of just adding trigger-action rules, which it translates to linear temporal logic
(LTL), and both automatically synthesizes property-satisfying trigger-action rules
from scratch and repairs existing trigger-action rules. Figure 2.10 demonstrates the
problem AutoTap tries to solve with this method. When a user wants the windows

26 CHAPTER 2. RELATED WORK

Figure 2.8: The user connects to the trigger an action that is inconsistent with some
previously saved rules. The system gives a warning using a red feedback [52].

Figure 2.9: By opening the Resolve Problems area, the user can see textual and
graphical explanation of the inconsistency, and can resolve the problem by changing
the rule [52].

2.4. CONFLICTS 27

Figure 2.10: AutoTap: On the left: a (buggy) trigger-action rule.; On the right:
a proposed trigger-action property. The trigger-action rule (left) cannot guarantee
the property (right) [58].

to be closed when it starts raining, the rule on the left is probably what the user will
create. But if another rule should exist that opens the windows when it is too warm
in the house, the windows could be open when it is raining. Resulting in behaviour
that the user does not want. Therefore, by specifying the desired properties as seen
on the right side of the figure, the system creates the rules themselves to make sure
everything happens the way the user wants.

CityGuard [35] detects and resolves conflicts in a city, even among actions of
different services, considering both safety and performance requirements. They de-
tect different types of conflicts by intercepting actions ahead of time, analyzing the
details of the actions and then running simulations to predict potential conflicts
with a temporal and a spatial range. They primarily focused on conflict detection
for environmental conflicts. In addition, conflict resolution is based on priority and
performance.

DepSys [22] specifies, detects and resolves specific conflicts in the smart home.
These conflicts are a result of interdependency problems between a number of appli-
cations who share physical world entities. It uses priority of groups (health, security,
entertainment, energy) to solve these conflicts.

IoTC2 [46] uses a formal method approach for detecting conflicts using Prolog.
Finding conflicts is done by an iterative deepening strategy.

CLIPPER [24] is a framework for novel rule-conflict detection and resolution
algorithms. It requires the syntactic structure of the rules and the rule clauses to be

28 CHAPTER 2. RELATED WORK

presented in Event Calculus format [1]. CLIPPER uses a rule-based device priority
system to handle conflict resolution, and as a result disables rules temporarily.

Shah et al. [57] detect and resolve conflicting and incomplete rules and can also
detect conflict where actions nullify each other (For example, Turn on the heater
and turn on the air-conditioner). A set of rules are considered incomplete if, for any
actuator, a sensor value range exists for which the actuator’s action is not defined.
Meaning that when a rule is created that turns on the heating when the temperature
is lower than 15 ◦C, another rule must exist that covers the temperatures above 15 ◦C.
Rules are converted into its DNF (disjunctive normal form) form. After that, for
each actuator, they find overlapping DNF terms from the rules and if those rules
perform conflicting actions, those rules are marked. To detect incomplete rules, a
variant of the covering polygon problem is used. Their resolution system is also
more or less based on priority.

ABNA [47] utilizes agents and applies negotiation, enabling services with con-
trary features to work simultaneously, doing this at run-time. It avoids applying
priority between services or house residents’ preferences whenever a space for a
compromise exists. The mechanism of ABNA is based on the use of a hierarchy
of features based on their contribution to the function of the service or on the im-
portance of these features to house residents. To achieve a compromise between
conflicting services, ABNA models services and residents by using agents, and im-
plements a negotiation algorithm that allows services with conflicting features to
work simultaneously.

Although many tools exist, most of them focus on detecting and resolving conflicts
at design time. It therefore isn’t possible to make occasional exceptions that are
caused by the context of a situation. Even doing conflict detection and letting users
resolve them at run time is something that is not possible in the current tools.

Chapter 3

uCoRe: A Conflict Resolution
Application

3.1 Introduction

With the growth of IoT, the growing amount of devices and the opportunities it
brings into our homes, giving users the tools to program and control their environ-
ment becomes more and more important. With the focus on end-user development
within IoT, many looked at ways to create relationships between events/conditions
and actions, as well as the visualization and presentation of it all.

Previous work (Sections 2.3 and 2.4) proposed different ways of creating trigger-
action rules, but only a few ways of debugging such a system. Most of them have in
common that the debugging stage is part of the creation of new rules. Which results
in resolving a conflict at design time. Although this might seem more than fair, it
requests users to specify every situation as good as they can by creating even more
rules or adding more conditions in order to avoid conflicts. Once the rules are saved,
the system takes over and a user loses control over any conflict that will occur.

In this chapter we propose an additional approach in conflict detection and re-
solving. Instead of detecting and resolving conflicts at design time, we predict at
run-time the near future of device states, we detect conflicts in the near future and
let the user resolve them at run-time. This work contains four major components:
the predicting of device states, the conflict detection, the conflict resolution and an
application as mediator between the user and the Home Assistant. Figure 3.7 gives
the overall structure of our work. By extending the FORTNIoT prediction engine
and combining it with an application for visualizing and solving conflicts, a new
approach is formed.

In this work, we focused on conflicts that occur on resources in a single user
environment, where the detection is done a priori and thus a conflict can be avoided
(conflict taxonomy as seen in Section 2.4). To aid us in discussion of this work, we
use three scenarios.

Scenario 1. During the day, Sarah likes to enjoy as much sunlight as possible.
Therefore she wants all the rolling shutters to be raised when she is home. To save
some money, she does not want the lights to be on when there is enough sunlight

29

30 CHAPTER 3. UCORE: A CONFLICT RESOLUTION APPLICATION

already in the house. To achieve this, she created the following rules in her home
system.

• R1.1: IF the sun comes up, THEN turn off all the lights

• R1.2: IF the lights are off AND Sarah is home, THEN raise the rolling shutters

• R1.3: IF the rolling shutters are raised, THEN turn off all the lights

Scenario 2. Alex has only a few things he wants his house to do for him. When
he is home, the TV should always be on because he likes the background noise.
Every time he watches TV, his rolling shutters should be lowered and the lights
should be turned off, otherwise light would reflect in the screen. And lastly, every
evening when the sun goes down, he wants his rolling shutters to lower as well. The
following rules were created to achieve this:

• R2.1: IF the sun goes down, THEN lower the rolling shutters

• R2.2: IF the TV is on, THEN lower the rolling shutters AND turn of the lights

• R2.3: IF Alex is home, THEN turn on the TV

Scenario 3. Michael automated his home some time ago. He started off with some
simple things. For example, when he is home and the rolling shutters are lowered,
he wants all the lights in the house to be turned on. When he is watching TV, light
should not be reflected in the screen. In order to achieve that, the rolling shutters
should be lowered and the lights should be off. Thus creating a nice environment to
watch a movie.

Lately Michael started to work from home, but he does not like it when it is
totally quiet. So every time Michael is home during the day, he likes to have some
background noise. He achieves this by turning on the TV. The following rules are
created in his home system:

• R3.1: IF the sun comes up AND Michael is home, THEN turn on the TV

• R3.2: IF the TV is on, THEN lower the rolling shutters AND turn off the
lights

• R3.3: IF Michael is home AND the rolling shutters are lowered, THEN turn
on the lights

3.2 Visualizing status, conflict and solution

It was in a study on smart home intelligibility by Jakobi et al., that the needs of
IoT control and accountability were explored [41]. They found that participants
initially looked for in-depth awareness information from their dedicated web-based
dashboard. In the later phases of appropriation, however, their interaction and in-
formation needs shifted towards management by exception on mobile or ambient

3.2. VISUALIZING STATUS, CONFLICT AND SOLUTION 31

(a) (b)

Figure 3.1: Overview of Michael’s state changes: a) a list of state changes, describing
the entity that changes, the relative time when it changes, the new state and eventual
markings when part of a solution or conflict; b) once a state is selected and part of
a conflict or solution group, all states involved will light up.

displays – only focusing on the system when things were “going wrong”. The ap-
plication we created has the purpose to aid users in this management by exception
stage.

3.2.1 Status

In Scenario 2, mentioned in the previous section, three rules are created. Knowing
what trigger-action rules are (see Section 2.3), when a trigger occurs (e.g., the sun
comes up), an action will be executed (e.g., turn off all the lights). The result of
an executed action is a device state (e.g., lamp 1 = off). This would mean that in
Scenario 2, when the sun comes up, rule R2.1 will be executed, and all the lights
will be turned off. So every light in the house will have the state off. These states
can then be displayed in the application.

Instead of displaying the state of every devices at all times, with management
by exception in mind, we are more interested in when the state of a device will
change and into what new state it will enter. Therefore the application displays
state changes of devices. To be more specific, as we mentioned earlier, we predict
and display the near future and all the state changes that might happen in it. How
the prediction is done, will be discussed in Section 3.4.

Let us now take a look at Michael (Scenario 3). Within the application, the first
thing Michael will see is an overview of all the state changes in the near future. In
Figure 3.1 the overview of Michael’s state changes are shown. Here you can see that

32 CHAPTER 3. UCORE: A CONFLICT RESOLUTION APPLICATION

(a) (b) (c)

Figure 3.2: Overview of state information: Michael can see the state (a), more
specific details about the state (b) and the details of the conflict the state is part of
(c).

every state change is presented by the name of the device on which the state change
occurs, the state itself and the relative time of when it will happen. Besides the
obvious information of a state change, icons are also used to mark them in special
occasions.

When Michael selects the state of the living spots being off (see Figure 3.1b), he
can get more information about that state by pressing on the Details button. Once
pressed, the application visualizes the status of the device after the state change
and the conflict information it is involved with (see Figures 3.2b and 3.2c). To
visualize the status of the device, it is important to identify all the information that
is relevant to the user. As we can see in Figure 3.2a, an image and text are used to
communicate the state of the device to the user.

3.2.2 Conflict

When a conflict between states occur in the system, the application communicates
this to the user. As seen in Figure 3.1a, Michael can see that the living spots appear
twice in the list and both are marked by a red cross icon.

In general, a conflict is typically marked by using this red cross icon. Every state
change that is involved in a conflict will be marked. In Michael’s case, both state
changes occurring on the living spots are being marked. When multiple conflicts
are found, many state changes can have the same marking, and thus it can become
rather difficult to see which state changes are in conflict with one another. To aid
the user on that regard, we use a secondary marking method to group state changes
from the same conflict. As seen in Figure 3.1b, once a state change is selected and
it is part of a conflict, every other state change that is part of the same conflict will
be highlighted.

3.2. VISUALIZING STATUS, CONFLICT AND SOLUTION 33

(a) (b)

Figure 3.3: By selecting the desired state for the living spots, the system gets notice
of the users preference for solving this conflict. (a) the lights can be turned off, or
(b) the lights can be turned on and a desired color for the light can be selected.

As mentioned before (see Subsection 2.4.1) there are different types of conflicts.
The visualization should make it clear to the user what kind of conflict the system
is dealing with. In Figure 3.2c a conflict is displayed by pointing out which device is
involved in the conflict, as well as the rules or actions that are causing this conflict
to exist. It is at this screen the user gets the opportunity to first inform themselves
about the conflict before solving it. Michael can see in Figure 3.2c that the conflict
is caused by two rules, R3.2 and R3.3.

3.2.3 Solution

Using the application, a solution can be selected for the conflict at hand. In Fig-
ure 3.3, Michael (Scenario 3) can solve the conflict on his living spots by selecting the
desired state for that moment. How this solution is exactly applied will be further
discussed in Section 3.5. Once a solution is applied by the system, the application
makes sure the user is aware of this. As seen in Figure 3.4a, Michael can see that
the state of the living spots turning on is marked by a green check icon.

In general, a solution is marked by using the green check mark icon. Every state
change that is involved in, and thus the result of, the same solution will be marked.
Again we use the same method as with conflicts to group solutions when selecting
them. As seen in Figure 3.5, Sarah (Scenario 1) can see that two state changes are
part of the same solution. When a state change is part of a solution as well as part
of a new conflict, they will appear to have both markings. On selection, conflict
grouping gets priority over solution grouping.

34 CHAPTER 3. UCORE: A CONFLICT RESOLUTION APPLICATION

(a) (b)

Figure 3.4: Once Michael applies a solution, this overview is displayed with the
solution state change marked with a green check mark (a), and more details about
the solution can be requested (b).

Figure 3.5: Sarah (Scenario 1) can see that both state changes belong to the same
solution.

3.3. PREDICTING STATUS: NEAR FUTURE PREDICTION 35

(a) (b) (c)

Figure 3.6: In the details of a solution, more information is presented about the
conflict (conflict type and conflicting rules) it solved, as well as the chosen action to
be executed.

When Michael selects the state of the living spots turning on and clicks on the
Details button, he will see an extra tab that holds the information of the solution
that has been applied (see Figure 3.4b). Here the user can find all the information
to understand what kind of conflict has been solved and how. As we can see in
Figure 3.6, this information contains the type of conflict, the date when this conflict
will occur, the rules that are involved in the conflict and the actually actions that
will be executed as a result of the applied solution. It is important to point out
that it is definitely possible for multiple devices to be involved in a solution (as
seen in Figures 3.5 and 3.6a). Therefore it is also important for a user to get an
overview of all the involved devices and applied actions on them when they are part
of the solution. Michael can see that the selected state was the result of solving an
inconsistency conflict (see Figure 3.4b). If Michael does not like the applied solution,
he is offered the chance to edit the solution, thus changing it to his preferred state.

3.3 Predicting status: Near Future Prediction

In order for us to detect conflicts at run time before they actually happen, a major
component is needed to predict this potential future. Sven Coppers et al. introduce
FORNTIoT [63], a framework that is built on top of Home Assistant [59], that
provides an approach to predict future smart home behaviour. Figure 3.7 presents
their proof-of concept implementation of FORTNIoT. This architecture consists of
three main components: The Context Manager that keeps track of the current states
of all the entities, a custom Rule Manager that allows the simulation of trigger-
condition-action rules and the Prediction Engine which implements the prediction
algorithm.

To predict the future, the framework uses all the data it receives from the different

36 CHAPTER 3. UCORE: A CONFLICT RESOLUTION APPLICATION

Figure 3.7: Proof-of-concept implementation of FORTNIoT, built on top of Home
Assistant [59], an existing middleware platform to manage IoT entities in a smart
home. A custom rule manager was implemented to allow the simulation of trigger-
condition-action rules. The uCoRe App offers visualization and resolving means for
conflicts.

sensors and information sources, and then validates which rules will get triggered
and thus which actions are executed, resulting in new state changes of the devices.
For example, the framework can exactly know whenever a sun rise or sun set will
occur or even when something is planned in the calendar of the inhabitant. All these
different events happen at a specific time, and some of them might even occur at
the same time. Using time ticks, the prediction engine groups these events based
on the time of occurrence. Once events are grouped in their specific time tick, the
prediction of all the other states starts.

In Figure 3.9 a visual example of Scenario 2 is given of the algorithm predicting
new states starting from events in a single time tick. In this specific example, the
time tick starts with the following events: the sun goes down and Alex is home
(Figure 3.9a). These are the starting nodes and form the first layer. All nodes in
a single layer are visited and activated (Figure 3.9b), resulting in potential rules
that could be triggered (Figure 3.9c). Once the condition of a rule is satisfied, for
example Alex is really home, the rule is executed, resulting in new states, thus new
nodes. From there, the following layer is next. In combination with all states earlier
generated from all nodes above, the new nodes are visited and activated, the rules
are triggered and validated and new nodes are acquired. This keeps on going until
no new nodes are found. Then, the engine moves on to the next time tick until that
runs out as well.

During the prediction stage, two things are very important to be aware of: that
is race conditions and loops. Race conditions occur when two rules are executed at
the same time, and thus race to be the first executed. This results in not always
getting the same order of nodes and states in the tree as presented in Figures 3.8
and 3.9. Since states (nodes) can trigger rules, and if we would visit those nodes
one by one, the prediction engine could be sensitive to the consequences of race
conditions, leading to different rules or no rules at all to be executed due to the
order of execution. By developing the tree layer by layer, treating all the nodes
in the same layer at the same time, race conditions are prevented. Due to this, it
does not matter in which order the nodes are within a layer. Once in that layer,
all the states of the nodes within that layer are known and used, and together

3.3. PREDICTING STATUS: NEAR FUTURE PREDICTION 37

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: Scenario 1: near future prediction of a single tick. Beginning with the
starting nodes (a), they are visited and activated (b), resulting in triggering rules
(c) which leads to new nodes (d). This process is repeated for the next layers until
no new nodes are found (e - i).

38 CHAPTER 3. UCORE: A CONFLICT RESOLUTION APPLICATION

(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.9: Scenario 2: near future prediction of a single tick. Beginning with the
starting nodes (a), they are visited and activated (b), resulting in triggering rules
(c) which leads to new nodes (d). This process is repeated for the next layers until
no new nodes are found (e - h).

Figure 3.10: The core principal of FORTNIoT. Based on self-sustaining predictions
and trigger-condition-action rules, additional predictions about the future can be
deduced.

3.4. CONFLICT DETECTION 39

Figure 3.11: The three components of the Prediction Engine: Future state changes
are predicted, then conflict detection is started and once conflicts are found existing
solutions are applied.

they trigger the rules, resulting in new nodes (states). A loop would cause the
prediction to get stuck, and thus always find a new node. Scenario 1 is an example
of a system which contains a loop, and Figure 3.8 is the visual example of how the
prediction algorithm would handle this. When looking closely, Figures 3.8e and 3.8i
are practically similar. The same node is visited and activated, which in both cases
will result in triggering the same rule (R1.2), leading back to Figure 3.8f. Loops are
a type of conflict, and thus we will discuss this further in the next Section 3.4.

3.4 Conflict detection

Before being able to visualize a conflict and solve it, it needs to get detected by
the system first. The conflict detection does not take place in the application it-
self, rather it is implemented in the FORTNIoT framework, written in Java. This
framework uses near future prediction in order to come to a possible future, con-
taining device states, rule executions, conflicts and applied solutions. We therefore
extended the Prediction Engine (as seen in Figure 3.11), which now does three main
things: predicting the future state changes, detecting conflicts during the prediction
and resolving conflicts during the prediction. Figure 3.12 visualizes the flow of the
prediction in a single time tick. We argue that there are multiple reasons for doing
the conflict detection during the prediction stage instead of in the application, post
prediction.

The main reason would be the conflicts themselves. Loops have the tendency to
keep on going, so they have to be detected and stopped once they occur, otherwise
the prediction will get stuck. Therefore a detection mechanism must be in place
in order to achieve this during the prediction stage. Inconsistencies, however, do
not contribute in any way during the prediction stage. As we already mentioned
before (see Subsection 2.4.1), an inconsistency occurs when the actions of two or
more rules operate on the same device, and result in an opposing state (e.g. lights

40 CHAPTER 3. UCORE: A CONFLICT RESOLUTION APPLICATION

on vs lights off). If the state of a device is unknown during the prediction stage
because of an inconsistency, it is impossible and illogical to predict any other states
by executing the rules that have the conflicting entity as a condition. For example,
when in Scenario 3 the TV would be turned on and turned off at the same time
due to a conflict, the state of the TV becomes unknown because it can not be both.
Therefore rule R3.2, which has the TV state as its condition, should not be executed,
and thus prevented from generating new state changes (nodes). When it comes to
redundancies during the prediction stage, they do not change the behaviour of the
prediction, because both actions in this type of conflict do the exact same thing,
resulting in the same rules being executed. In that case, no prevention is really
needed.

Besides the problems conflicts bring during the prediction stage, they are also
tied to that specific future and the predicted states. When a new prediction is made
about the future, and thus future state changes are updated, potential conflicts
should be updated as well. With all the information about the state changes, and the
rules and triggers that caused them, inside the prediction engine, conflict detection
could use it to give more precise feedback of all the responsible entities that caused
the conflict in the first place.

As already mentioned, resolving a conflict also happens during the prediction
stage, but in order to resolve conflicts during prediction the system should first be
able to find them. More about resolving conflicts in the next Section 3.5.

Figures 3.8 and 3.9 show the structure that is created during the prediction of
state changes in the same time tick. Conflicts will be found in this structure. A
conflict is identified when more than one node contains the same device, meaning
that more than one state change occurs on the same device. We go more into detail
about the exact algorithm in Subsection 3.4.2.

3.4.1 Data structure

In order to store and communicate conflicts between the framework and the appli-
cation, we used JSON and the Jackson library to do any (de)serialisation from and
to Java objects. Conflicts are not permanently stored in the system, but are always
recreated with every new prediction the system makes.

When observing the JSON object in listing 3.1, a conflict is defined by an entity
id on which the conflict occurs, a timestamp that identifies the moment in time when
this conflict will take place and the conflicting actions themselves. Each of these
actions are represented by their action id and rule id. It is possible for conflicting
actions to not have a rule id. The reason for that is because it can be possible to
have actions in the system that aren’t bound to any rule, but still can be executed
is some way, and thus become part of a conflict.

A conflict is identified by its entity id and the set of actions that are in conflict
with one another. Although for inconsistencies and redundancies this looks exactly
the same, loops, however, contain not only the actions that affect the same entity,
but also contain every other action that is part of the same loop. It is perfectly
possible that the actions in a conflict not all affect the same device. When this
happens, the conflict depicts a loop.

3.4. CONFLICT DETECTION 41

1 {
2 "entity_id": "light.living_spots",

3 "datetime": "2019-12-10T14:02:39.265+01:00",

4 "actions": [

5 {
6 "action_id": "actionId1",

7 "rule_id": "rule.sun_rise"

8 },
9 {

10 "action_id": "actionId3",

11 "rule_id": "rule.person_at_home"

12 }
13]

14 }

Listing 3.1: JSON representation of a conflict. A conflict is represented by the id of
the entity the conflict occurs on, the time the conflicts occurs and the actions that
are in conflict with one another, identified by the action id and rule id to which the
action belongs to.

3.4.2 Conflict detection algorithm

Figure 3.12: The flow of the prediction algorithm. First, given the starting node,
new nodes are predicted. Then, conflict detection will be done over all the gathered
nodes up until that moment. At last, solutions are created or found and applied if
conflicts were found. Using the newly found nodes, this process repeats itself until
no new nodes are found.

42 CHAPTER 3. UCORE: A CONFLICT RESOLUTION APPLICATION

There are three different types of conflicts that can be found during the prediction:
inconsistencies, redundancies and loops. All three types are found in the structure
that is created as shown in Figures 3.8 and 3.9. Let us start off with Scenario 1 and
Figure 3.8. This scenario contains a loop and its rules are the following:

• R1.1: IF the sun comes up, THEN turn off all the lights

• R1.2: IF the lights are off AND Sarah is home, THEN raise the rolling shutters

• R1.3: IF the rolling shutters are raised, THEN turn off all the lights

When the sun comes up and Sara is home at the same time, the time tick of this
prediction would start with the nodes as seen in Figure 3.8a. These nodes are visited
and activated, meaning that their state changes are applied and thus will trigger
potential rules. In this instance, only rule R1.1 will be triggered. After validating
the condition (e.g. the sun is indeed up), new nodes are added to the tree-like
structure (Figure 3.8d). Before visiting and activating the new layer of nodes, it is
important to look for conflicts among all the nodes gathered so far. This is done
before activating a new layer, in order to make sure that no rules are triggered when
there are conflicts present.

This detection is done by flattening the tree and grouping the nodes that affect
the same device. When more than one node affects the same device, we consider it
a conflict. In Scenario 1 this occurs for the first time in Figure 3.8h. This results in
marking the nodes as a conflict and group them together (see Figure 3.13a). Once a
conflict is found, it is important to determine what type of conflict it is. When the
nodes in the conflict affect the same device and have opposite states (e.g. light on
vs light off) an inconsistency is found. In this scenario, however, both nodes contain
the same state change (e.g. turn the lights off). This could mean two things: the
conflict is a redundancy or it is a loop. The algorithm checks if it is a loop by
starting with the highest node of these conflicting nodes in the overall structure.
From there it follows the arrows down until it finds the other conflicting node or no
node at all. In Figure 3.13b we can see that in this scenario both nodes reach each
other, meaning that a loop is found.

When the type of conflict is determined, the Prediction Engine logs the conflict
and tries to find solutions for it if there are any (see Section 3.5). If no solutions are
found, the Engine wants to prevent the tick from having potential nodes that were
resulting out of conflicting nodes. To be sure that no unwanted nodes, resulting from
conflicting states, are in the prediction, the prediction restarts again from the first
nodes in that same time tick (Figure 3.8a). The difference now would be that once
the same nodes that occurred in the conflict are found in the prediction, they are
ignored, meaning that they are not activated and thus can not trigger other rules.
This prevents the system from generating state changes that can be affected by an
earlier found conflict. So in a second run for this specific scenario, the first node
with the state change “lights off” (Figure 3.8d) will be found, but not activated as
in Figure 3.8e. This results in the end of the prediction for this time tick.

In Scenario 2 and Figure 3.9 a redundancy conflict can be found. The rules of
this scenario are the following:

• R2.1: IF the sun goes down, THEN lower the rolling shutters

3.4. CONFLICT DETECTION 43

(a) (b)

Figure 3.13: Scenario 1: During the prediction a conflict is detected because two
nodes affect the same device (a), and starting from the highest node in the conflict
a loop check is done by following the arrows down (b). If the other node of the
conflict is found, a loop is detected.

• R2.2: IF the TV is on, THEN lower the rolling shutters AND turn of the lights

• R2.3: IF Alex is home, THEN turn on the TV

When the sun goes down and Alex is home at the same time, both will appear as
starting nodes in the same time tick as seen in Figure 3.9a. Again, these nodes
are visited and activated, resulting in potential rule executions. Once the rules are
validated, new nodes are added to the tree-like structure. After adding the new
nodes, but before visiting and activating them, conflict detection is done. It is only
until Figure3.9f that a conflict can be found on the rolling shutters (see Figure 3.14a).
To determine the type of the conflict, the state changes of the involved nodes are
inspected, leading to the findings that both nodes affect the same device with the
same state change. Again, a loop check is done but this time no loop is found (see
Figure 3.14b). Because a conflict is found, the prediction of this specific time tick
starts all over again from the starting nodes, ignoring all nodes that are marked as
a conflict along the way. Conflict detection for Scenario 3 would look similar to that
of Scenario 2, with the difference that state changes now have opposite actions on
the same device.

All these scenarios are simple examples of the different types of conflicts, but
things can become more complex when more nodes are added. In all these scenarios
only two nodes appear to be in a conflict with each other, but it is perfectly possible
for more than two nodes to be in a conflict with one another. It is therefore important
to group all the nodes affecting the same device, making the largest group possible,
in order to best represent all the rules and actions that conflict with each other at
that given time.

Although in the end all three types of conflicts are looked for during each predic-

44 CHAPTER 3. UCORE: A CONFLICT RESOLUTION APPLICATION

(a) (b)

Figure 3.14: Scenario 2: During the prediction a conflict is detected because to
nodes affect the same device (a) and starting from the highest node in the conflict,
a loop check is done by following the arrows down (b). No other node of the conflict
is found, thus a redundancy is detected.

tion time tick, not all of them are done at the same time. Loops and inconsistencies
are detected for every layer, once the new nodes are added to the tree-like structure,
as seen in the examples previously. This for the simple reason that, as mentioned at
the beginning of this subsection, both affect the ongoing prediction of state changes
in the time tick. Loops do not stop for themselves and inconsistencies bring uncer-
tainty inside the prediction, and thus both need to be detected as soon as possible
and prevented from doing any harm. Redundancies, however, are detected only
once the full structure has been found. This means that in the end of predicting a
time tick, redundancies are found as in Scenario 2 and logged. If such a conflict is
found in the end, the Prediction Engine would start the prediction of that time tick
one more time all over again to filter out all the nodes that contain the same state
change as the ones in the redundancy conflict. The main reason why redundancies
are detected at the end of the prediction tick is not only as being it a more efficient
way of doing this type of detection, but also because of all the complications it could
give during the detection and the applying of solutions as we will discuss in the next
Section 3.5.

3.5 Conflict resolution

Resolving a conflict can be achieved in two different ways. A conflict can be au-
tomatically resolved in the prediction stage by the Engine itself, or a solution for
the conflict has to be created using the application (see Subsection 3.2.3). The way
the conflict resolution is achieved is dependant on the type of conflict. Loops and
redundancies are both detected and solved immediately by the Prediction Engine,
during the prediction of state changes. They both do not require any user feedback
to solve. Loops just have to be executed once and then stopped, while redundancies
are actually multiple state changes that achieve exactly the same thing (e.g. all turn
the lights off). Inconsistencies, on the other hand, require a user’s input in order

3.5. CONFLICT RESOLUTION 45

(a) (b)

Figure 3.15: Predictions of state changes (SC) can shift in time. (a) shows the
predictions of a few state changes, where in the next prediction (b) state change 1
(SC1) moves in time.

for the system to know what action should be taken (e.g. light on vs light off), thus
our application is needed to provide an interface for it.

It speaks for itself that a solution solves a specific conflict. This would mean
that a solution is tied to that one conflict. In Scenario 3, Michael has to deal with a
conflict on the living spots, which is a result of two rules and actions that result in
an inconsistency (see Figure 3.2c). By using the application’s solver, he decides to
turn on the living spots (see Figure 3.3b). What this means is that for this specific
conflict, that is the result of these two actions, the preferred state of the living spots
is to turn them on. To be able to identify this specific conflict, we decided to use
the entity id and the set of conflicting actions occurring together. For now, we do
not use the time as an identifier for the conflict because of the following reason:
we detect conflicts in state change predictions of the near future. These are not all
just facts, thus it is not guaranteed that these state changes are really happening
in the future at the predicted time. Figure 3.15 gives an example of some state
changes that are predicted at a given time, but at a later prediction update some
state changes moved in time. A good example of this might be the prediction of
when someone comes home. At one point in time the system would predict that
Michael is home around 5pm, while the next time this prediction can be moved up if
Michael would get stuck in travel. Because state changes can move in time, conflicts
can move with them as well. As mentioned before, a solution should be tied to a
conflict, even when it moves in time. Therefore a solution uses only the entity id
and the conflicting actions as identifiers for the conflict.

3.5.1 Data structure

In order to store and communicate solutions for conflicts between the framework and
the application, we used JSON and the Jackson library to do any (de)serialisation
from and to Java objects, similar to conflicts. In contrast to conflicts, a solution is
permanently stored in the system, unless the user removes the solution from it.

When observing the JSON object in listing 3.2, a solution is defined by an entity
id on which the conflict occurred, the actual actions which contributed to the conflict
itself, the actions which are active or snoozed and custom actions. Each of these
actions, except for the custom actions, are represented by their action id and rule id.
Custom actions contain more information about the specific type and the attributes
of the action that has to be recreated in the framework.

46 CHAPTER 3. UCORE: A CONFLICT RESOLUTION APPLICATION

1 {
2 "solution_id": "light.living_spots_actionId10

_actionId12",

3 "entity_id": "light.living_spots",

4 "conflicting_actions": [

5 {
6 "action_id": "actionId10",

7 "rule_id": "rule.

nobody_home_lights"

8 },
9 {

10 "action_id": "actionId12",

11 "rule_id": "rule.blinds_up"

12 }
13],

14 "snoozed_actions": [

15 {
16 "action_id": "actionId10",

17 "rule_id": "rule.

nobody_home_lights"

18 },
19 {
20 "action_id": "actionId12",

21 "rule_id": "rule.blinds_up"

22 }
23],

24 "active_actions": [],

25 "custom_actions": [

26 {
27 "deviceID": "light.living_spots",

28 "actionID": "actionId0",

29 "id": "actionId0",

30 "description": "Custom solution

action",

31 "enabled": true,

32 "action_name": "sven.phd.iot.

rules.actions.LightOnAction",

33 "start_time_disable": [],

34 "stop_time_disable": []

35 }
36]

37 }

3.5. CONFLICT RESOLUTION 47

Listing 3.2: JSON representation of a solution. A solution is identified by its own id
and contains more information about the specific conflict it solves, using the entity
id of the entity that is in conflict and the conflicting actions upon it, as well as the
actions that the solution will execute in order to solve the conflict. This latter is
represented by the snoozed actions, active actions and custom actions.

3.5.2 Apply a solution

Before applying any solution to a conflict, it is first good to understand what a
solution really does. As seen in the previous Subsection, a solution contains three
different actions it can execute to solve a conflict; snoozed actions, active actions
and custom actions.

Snoozed actions are actions that will not be activated and executed when they
appear during the prediction stage. They do not trigger any rule and appear to
be snoozed, thus they do not lead to generating other nodes during prediction. In
Scenario 2, for example, rule R2.3 states that “IF Alex is home, THEN turn on the
TV”. The action that turns on the TV can be marked as a snoozed action, which
would mean that during the prediction of this time tick, instead of activating the
node (like in Figure 3.9e), leading to the execution of rule R2.2 (see Figure 3.9f),
this node is ignored and not added to the prediction.

Active actions are actions that will be activated and executed once they appear
during the prediction stage. These actions actually do not alter the normal behaviour
of the Prediction Engine, which always visits and activates all the nodes in a new
layer, except for conflicting actions or snoozed actions.

A custom action is an action that can be created by a user using the application,
and represents an action that was not originally in the conflict. In Scenario 3,
Michael can solve a conflict on the living spots by selecting the preferred state of
the living spots. He can chose to turn off the lights or turn them on. The latter
gives him the option to customize the color of the light (see Figure 3.3b). The actual
actions that caused the conflict turned the light off or turned it on and set the color
to blue. When he decides to turn the lights on and set the color to green, a new
action is needed to represent this wanted behaviour, because this was not an original
conflicting action. This can be also the case in Scenario 2, where the redundancy
conflict only contains actions that lower the rolling shutters. If Alex wants the
rolling shutters to be raised, a custom action has to be created to represent that
behaviour, because in the original conflicting actions no action exists that raises the
rolling shutters. Therefore custom actions are created and used to let the Prediction
Engine know that these states are not the result of generating nodes and executing
rules, and thus needs to be handled differently. So instead of activating or snoozing
nodes, a custom action results in a new node being created and added to the first
layer. In Scenario 2, for example, a node that raises the rolling shutters would be
added in Figure 3.9a, next to the nodes “SUN” and “ALEX”. Of coarse, a solution
consists of a combination of snoozed actions and active- and/or custom actions.

We mentioned previously that solutions can be created automatically or by the
user using the application. In Scenario 1 and 2, solutions are created automatically,

48 CHAPTER 3. UCORE: A CONFLICT RESOLUTION APPLICATION

Figure 3.16: Solving a loop conflict during prediction: active actions are marked
green, and keep being executed, while snoozed actions are marked grey, meaning
that these nodes will be ignored and not be added to the prediction again after a
restart of the prediction tick.

because the system solves a loop and a redundancy conflict. Let us take a closer
look at both scenarios. Scenario 1 contains a loop. During the prediction stage a
loop gets detected by the engine as previously discussed in Subsection 3.4.2. Once
the loop is detected, a solution is created immediately (see Figure 3.12). We also
mentioned earlier that a loop conflict is the only conflict that contains conflicting
actions that affect more than one device. In this scenario, the conflicting actions are
affecting the living spots and the rolling shutters. The solution tries to achieve that
the loop is executed once, but stops after that. In order to achieve this, every action
belonging to a node, starting from the highest node in the loop chain, is marked as
an active action, except for the last one, which turns the lights off again. This last
action is snoozed, thus preventing the loop from getting started again. This can
be visualized as in Figure 3.16, where active actions are marked green and snoozed
actions are marked in grey. Once a solution is applied, a restart of the prediction is
required in order to adequately add the right nodes and actions to the prediction of
the future.

Scenario 2 is an example of a situation that contains a redundancy. We mentioned
in the previous section that redundancies are only detected at the end of a prediction
tick, once every node is found, and every other conflict is detected and/or already
solved. There are a few reasons for that. One of them is solving a redundancy
results in the conflict being logged (with these specific actions as the cause) and
one action being marked as active and the others as snoozed. If this would be
done during prediction it might look something like in Figure 3.17: in the first run a
redundancy is found on the living spots and solved by marking one action as active

3.5. CONFLICT RESOLUTION 49

(a) (b)

(c)

Figure 3.17: First run of fictive redundancy scenario where redundancy is found in
the second layer (b) and automatically solved by marking the first action as active
and the second action as snoozed (c).

(a) (b) (c)

Figure 3.18: Second run of fictive redundancy scenario where new redundancy is
found in the second and third layer (b) and automatically solved by marking the
first action as active and the second action as snoozed (c).

50 CHAPTER 3. UCORE: A CONFLICT RESOLUTION APPLICATION

and the others as snoozed. In the rerun (see Figure 3.18), the solution is applied
but its active action will end up in another redundancy conflict. Again, this will
automatically be solved by the Engine. In general what should happen is that there
is only one redundancy conflict on the living spots, and it is solved only once. By
detecting and solving redundancies for every layer instead of only once at the end,
is not only inefficient, it also logs the existence of multiple redundancy conflict at
the same time on the same device, thus solving all of these conflicts multiple times
as well.

Solving redundancies during prediction also changes the identification of other
conflicts. As mentioned previously, a conflict is identified by the entity on which
the conflict occurs, as well as all the actions that are involved in the conflict or are
causing the conflict. If an inconsistency conflict occurs because action1, action2 and
action3 are all happening at the same time, we want to see this reflected in the
identification of the conflict. But if action1 and action2 are also a redundancy, the
identification of the inconsistency conflict can take many different forms. Possible
identifications for this conflict are the following:

• action1 - action2 - action3: this occurs when the inconsistency is found before
the redundancy

• action1 - action3: redundancy is found before inconsistency and solved by
marking action1 as active

• action2 - action3: redundancy is found before inconsistency and solved by
marking action2 as active

All three of these identifications are possible and sensitive to race conditions. Not
only is it possible that the identification of a conflict is more generalised (simplified)
and not very specific anymore for that situation, as the last two examples show, tying
a solution to a conflict whose identification is dependant on the order of execution is
not desired. Besides, having a redundancy conflict during prediction is not a problem
because it does not alter the behaviour of the engine during its prediction. No other
rules would or would not be executed if the redundancy is solved or not, because
these actions and their state changes are doing the exact same thing, triggering
the same rules, and thus generating the same nodes. Therefore we decided to do a
redundancy conflict detection at the end of a prediction tick.

Inconsistency conflicts are solved a bit differently. These conflicts are not solved
automatically but need the user’s feedback on how to handle this conflict. Once the
user solved the conflict using the application, the solution is stored in the FORT-
NIoT framework. During prediction, when an inconsistency conflict is found, the
system looks for a solution that exactly matches the identification of that conflict.
It compares entity id’s and the conflicting actions. When a perfect match is found,
the custom actions in the solution are added to the first layer of the prediction and
the actions that should be snoozed are marked. The solution is applied. After that,
the prediction of that time tick starts all over again.

3.6. LIMITATIONS 51

3.6 Limitations

Some limitation can also be found in this work. To start off, conflict detection across
time ticks is not possible due to the fact that conflict detection is only done during
the prediction stage inside and bound by a time tick. Thus, actions have to occur at
exactly the same time for it to be a conflict. If a user would find it a conflict if the
light is turned on and, for example, one minute later turned off again, the system
will not be able to detect that and solve it.

Solutions only exist out of operations on actions: activating, snoozing and cre-
ating customs. We decided that this way of solving conflicts gave more room to
customize behaviour for a specific moment in time. For example, rules with two
actions can still be triggered, but instead of executing both actions, it only executes
one of them, making this approach more flexible than doing operations on rules
instead. However, combining both methods might be interesting and more complete
for a user to have and use.

In this work we focused on three types of conflicts: loops, redundancies and
inconsistencies. All three of these are detected during the prediction stage in a time
tick. Users, then, have the opportunity to control the desired state of these devices
that are part of a conflict, by solving the conflict, as well as devices that are part
of a solution, by being able to edit them. When a state change is predicted but not
part of a conflict or solution, it can not be changed to the desired state of the user,
resulting in a conflict of interest. The system can not deal with that at the moment.

One of the biggest limitations at the moment is making sure that if a conflict
shifts in time, the solution shifts with it. In this work we generalized the conflict, by
only looking at the entity id and conflicting actions, leaving time out of the picture.
However, the goal of the application is to solve one time specific situational conflicts,
but by generalizing the binding between a conflict and solution in order for it to
shift with the conflict in time, the solution can be applied multiple times. It thus
not only solves the conflict it was designed for, but also potential other conflicts
that look the same. This can result in unwanted behaviour.

Besides that, if a conflict occurred and the user created a solution for it, this
solution is stored in the framework. When state changes shift in the next prediction
update, that previous conflict could be not existing anymore. Because there is no
conflict anymore, no solution will be applied, which might result in behaviour that
the user is not expecting. At the moment, the system does not keep track of earlier
existed conflicts, and cannot inform users if a previous conflict, that was solved
before, disappeared because of an updated prediction.

52 CHAPTER 3. UCORE: A CONFLICT RESOLUTION APPLICATION

Chapter 4

Executing a User Study

We performed a small study to evaluate our conflict resolution method. In this
experiment we were interested in how users experience the application for conflict
detection and resolution and compared these results to a rule editing method.

4.1 Study design

We performed a within-subject study to evaluate the subjective satisfiability and
ease of use of the uCoRe application for detecting and solving conflicts in the near
future. We postulated following hypotheses:

• H1. The uCoRe application has a higher success rate for conflict solving
than rule editing.

• H2. The uCoRe application is easier to use for conflict solving than rule
editing.

• H3. The uCoRe application is subjective more satisfiable for conflict
solving than rule editing.

4.1.1 Experimental Design and Measurements

We compared two methods for resolving conflicts: rule editing and the uCoRe ap-
plication. In the rule editing method, participants could add, remove or change
rules. Changing rules was done by altering the conditions of the rules, or by adding
actions to or removing actions from the rules. The rules were presented to the
participants using a Google document, and the rule editing was done in the same
document as well. In the application method, participants would see the current
state of the scenario, and use the application to solve conflicts if there were any.
Due to the COVID-19 pandemic [61], our study was shifted to one-on-one remote
video calls between the participant and facilitator. A shared Google document was
used between the participant and facilitator to present the different use cases, as
well as solving the conflicts using the rule editing method. The facilitator shared
the application on his screen and the participants were asked to command the fa-
cilitator to do preferred actions on their behalf in the application. The procedure

53

54 CHAPTER 4. EXECUTING A USER STUDY

Use case Conflict Type # Conflicts # Rules # Entities # Wishes
Scenario 1 Inconsistency 1 3 4 3
Scenario 2 Inconsistency 2 4 7 6
Scenario 3 Redundancy 1 4 5 4
Scenario 4 Redundancy 1 3 5 3
Scenario 5 Loop 1 3 4 2

Table 4.1: Overview of the scenarios used and their differences in complexity, mea-
sured by type of conflict, number of conflicts, number of rules, number of entities
and number of wishes. Users wishes are present for participants to understand what
the environment is supposed to do.

Figure 4.1: The procedure of the within-subject study.

of the study is outlined in Figure 4.1: after the informed consent, participants filled
in a pre-questionnaire about their demographics and experience. During the tuto-
rial, participants read a short manual about trigger-condition-action rules and the
two methods they were going to use (Appendix A.1). To compare ease of use and
subjective satisfiability between the two methods, participants answered questions
related to smart home scenarios presented in five use cases (Appendix A.2). All
of these use cases contained a set of three to five rules, a few user’s wishes (e.g.
Michael wants the door to be unlocked when he comes home) and one or two con-
flicts of the same type (two inconsistencies, two redundancies, one loop) (Table 4.1).
For each use case, participants were presented with the rules and user’s wishes,
and were requested to think aloud about what would go wrong in the scenario and
why. Participants were then asked to express their understanding of the conflict
in the scenario using a 5-point Likert scale, and they were asked how they would
tackle the problem (Appendix A.3.1). Afterwards, participants tried to solve the
conflicts using both methods, each method followed by questions about their trust
in the achieved solution and how easy it was to solve the conflict using that specific
method (Appendix A.3.2). These questions were also scored on a 5-point Likert
scale.

We decide against imposing any time limit for detecting and solving the conflicts.
The facilitator continuously monitored the screen and took notes about participants’
think-aloud reasoning. In a final post-questionnaire, we queried participants about
the two methods using the System Usability Scale [60], and we asked about their
tool preferences for achieving certain goals (Appendix A.3.3).

4.2. ANALYSIS AND RESULTS 55

Figure 4.2: Before solving the conflicts, participants were asked to score themselves
from 1 to 5, indicating how well they think they understand the conflict in the given
scenario.

4.1.2 Participants

Via social media we recruited 10 participants with with varying backgrounds (6
students, 1 retail, 2 computer science and 1 unemployed). No prior knowledge
about coding, trigger-condition-action programming or IoT was required. Although
4 participants were experienced to very experienced with programming, only 1 was
experienced with trigger-condition-action programming and IoT. In total, 8 male
and 2 female participants partake in this study.

4.2 Analysis and results

For binomial data (e.g. whether or not a participant solved a conflict), we used
McNemar’s test to determine statistical significance. We used Wilcoxon Signed-
rank tests to evaluate differences for Likert-scale ratings about the user experience.
In order to measure Usability of both methods, we used the System Usability Scale
(SUS) and combined it with a Paired T-test to determine statistical significance.
Written qualitative remarks were grouped by the facilitator using thematic analysis.

4.2.1 Scoring understanding of the conflict

When asked participants to score themselves in their understanding of the conflict
(Figure 4.2), in four out of five scenarios, 50% or more of the participants were
confident in their understanding of the conflict (scoring 4 or 5). Only in Scenario
3, participants showed and expressed that they did not really understand or saw a
conflict at all (four participants).

Across all scenarios, although confident, every participant mentioned at least
once that they were still unsure if they understood everything, pointing out that
it is always possible to miss something (Table 4.2). In scenarios that contained
a redundancy (Scenario 3 and Scenario 4), four out of ten participants did not
notice any problem or conflict at all, commenting “I don’t see a problem” (four

56 CHAPTER 4. EXECUTING A USER STUDY

Participants
Confident Unsure

(% participants scoring 4 or 5) (% out of confident participants)
Scenario 1 50% 20%
Scenario 2 60% 67%
Scenario 3 30% 0%
Scenario 4 60% 33%
Scenario 5 90% 44%

Table 4.2: An overview of every scenario and the percentage of participants that
were confident about their understanding of the conflict. Still, these confident partic-
ipants mentioned that they were still unsure, resulting in the percentage of confident
participants that are still unsure about them really understanding the conflict.

participants) or “To me, this is not a problem” (P5). Although participants scored
themselves fairly well in their understanding of the conflict, this not always reflected
their real understanding. P3 and P8 scored themselves high (respectively 5 and 4),
each in one scenario, while they actually did not understand the conflict.

When asked how they would tackle the conflict, for inconsistency scenarios, par-
ticipants chose to edit rules and/or use priorities, while for redundancy scenarios
four to five participants out of ten wanted to ignore the conflict. In the loop sce-
nario, stopping the loop automatically (two participants) or adapting rules were the
chosen solution. There was one participant (P2) that, after using the application
once, from that point on, mentioned that he wanted to use it before trying to figure
something out for himself.

4.2.2 Solving the conflict

All participants were able to solve the conflicts using the application (Table 4.3).
When asked why they were able to solve it, participants responded by saying the
application was “Straightforward to use” (four) or even mentioned that it was “eas-
ier than the rule editing method” (P4). Using the Google docs rule editing method,
however, this was not always possible. Our McNemar’s test with continuity correc-
tion revealed that the number of the participants that solved the conflict significantly
changed between the two methods (χ2 (1, N = 50) = 26.036, p <0.01). At first,
we thought that this might be because in three of the five scenarios a solution was
automatically reached by the application, solving the redundancies and the loop for
them. When looking at the individual scenarios, we noticed that for Scenario 2, 3
and 4 a significance was found. Scenario 5 (loop) was solved by eight participants
using the rule editing method. Possibly this loop was easy to solve because the
last rule that created the loop could be simply removed without having unwanted
side effects or a conflict with the user’s wishes. Participants had difficulties, using
the rule editing method, to solve redundancies (five participant) while fulfilling all
the wishes (three participants) or they chose to not solve it because they wanted
to ignore the conflict (P7). Scenario 2 contained the most entities, the most wishes
and the highest amount of rules, therefore it is possible that this made it harder for

4.2. ANALYSIS AND RESULTS 57

uCoRe
Solved Not solved

Rule Edit

Scenario 1
Solved 5 0
Not solved 5 0

Scenario 2
Solved 4 0
Not solved 6 0

Scenario 3
Solved 3 0
Not solved 7 0

Scenario 4
Solved 4 0
Not solved 6 0

Scenario 5
Solved 8 0
Not solved 2 0

Overall
Solved 24 0
Not solved 26 0

Table 4.3: For every scenario, participants were capable to solve the conflict or not.
An overview is given of both methods and the ability for participants to solve the
conflict.

participants to create a solution. Four participants even mentioned that there were
a lot of conditions and a lot to look at, making it hard to solve.

In order to understand how sure participants were about their solution, they
were asked how much they trusted their created solution if it would solve the current
conflict only once in this specific situation, or this solution would be used to solve
this conflict every time it reoccurs (Figure 4.3).

The medians of the Google docs rule editing method and the uCoRe application
were 4 and 5, respectively. A Wilcoxon Signed-rank test shows that there is a
significant effect of method for trusting the solution for one time use (W = 1, Z =
-4.3394, p <0.05, r = 0.43394), for trusting the solution for multiple time use (W =
1, Z = -3.4428, p <0.05, r = 0.34428) and for ease of use for solving the conflict (W
= 1, Z = -5.7666, p <0.05, r = 0.57666). Although this is the case over all scenarios,
this does not hold up when looking at each scenario individually.

Trust the solution once

In three out of five scenarios, +80% of the participants trusted their solution fairly
well (neutral or up) using the rule editing method. Only in Scenario 3 and 4, both
containing redundancy conflicts, participants mentioned having more difficulties.
This was a result of not seeing any problem to be fixed (P7) or noticing that multiple
factors were part of the situation, that made it difficult to come up with a solution
(three participants). In the scenarios with an inconsistency, participants mentioned

58 CHAPTER 4. EXECUTING A USER STUDY

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.3: Overview of the results after solving the conflicts. Participants scored
their trust in their own solution, which they created by using one of the two methods.

4.2. ANALYSIS AND RESULTS 59

that it was difficult to know what the system will do and how it works (three
participants). When participants used the uCoRe application, all of them trusted
their solutions (agree or higher), because of the following reasons: “it only happens
once” (P3), “redundancies do not need solving” (nine participants) or “the system
told me that everything was fine” (five participants). Only in Scenario 4 a significant
effect of method was found (W = 1, Z = -2.563, p <0.05, r = 0.5731042), with both
medians 4 and 5 respectively to rule editing and the uCoRe application.

Trust the solution always

For trusting the system in applying their created solution every time the conflict
would occur, participants became a bit more hesitant. “Depending on the situa-
tion” or “Depending on the users need” were answers that were given across all
the scenarios when asked why they scored their trust in the way they did. Again
with redundancies, participants mentioned that they did not need any solving (six
participants). In scenarios that contained an inconsistency (Scenario 1 and 2), only
when using the uCoRe application, participants mentioned that their solution is
dependant on the situation and therefore have difficulties to trust it for applying
it more than once (four participants). Again only in Scenario 4 a significant effect
of method was found (W = 1, Z = -2.3968, p <0.05, r = 0.5359408), with both
medians 4 respectively.

Easy to solve

Participants pointed out that Scenario 4 was the hardest to solve and required a
lot of thinking (four participants) using the rule editing method (70% scored a
disagree or less). Across all scenarios, using the rule editor, other mentions were
that “understanding how the system would think is hard” (two participants), “too
many conditions were presents” (two participants) or “it was difficult to visualize
the problem” (P5). Using the application, however, Scenarios 3 to 5 were all solved
automatically by the application, and thus did not require participants to solve the
conflicts themselves. However, from time to time participants mentioned that they
were confused that the system solved redundancy conflicts and marked them as
solved, because they did not agree with the redundancy conflict being an actual
conflict (three participants). On the other hand, solving the loop automatically
resulted in the expected behaviour of the participants. When participants were asked
how easy it was for them to solve the conflict using a certain method, participants
had to give a score from 1 (very difficult) to 5 (very easy). In Scenario 2 (W = 1, Z
= -2.8226, p <0.05, r = 0.6311525), Scenario 3 (W = 1, Z = -2.6925, p <0.05, r =
0.6020613), Scenario 4 (W = 1, Z = -2.8308, p <0.05, r = 0.6329861) and Scenario
5 (W = 1, Z = -2.4227, p <0.05, r = 0.5417322) a significant effect of method was
found. Only for Scenario 1 this was not the case.

4.2.3 Subjective Usability Scale

At the end of the study, participants scored both methods using the Subjective
Usability Scale (SUS). The SUS score mean of the rule editing method was 44.75,

60 CHAPTER 4. EXECUTING A USER STUDY

Figure 4.4: Overview of participants tool preferences for certain goals. Overall the
application scores really well.

while the SUS score mean of the application was 85.75. A score of 68 is considered
average, a score of 80.3 or higher is considered an A (top 10% of scores), while a
score below 51 is considered an F (bottom 15%). With a Paired T-test, we found
a significant difference in the means between the two methods (t = 8.13, p <0.05,
Cohen’s d = 2.57) with the application outperforming the Google docs rule editing.

When asked to express their tool preferences for achieving certain goals, the
application scored best for solving a one time specific conflict, or making one time
state exceptions (Figure 4.4).

4.3 Discussion

4.3.1 Summary of key findings

Based on the results of this study, we revisit the three hypotheses from Section 4.1:

H1. The uCoRe application has a higher success rate for conflict solving than
rule editing. Using the uCoRe application, all participants were able to solve all the
conflicts presented in the scenarios. This was not the case for participants using the
rule editing method. Using the application was “straightforward” and helped them
making the conflict easier to visualize and understand.

H2. The uCoRe application is easier to use for conflict solving than rule editing.
All participants were only able to solve all conflicts correctly using the application.
Combined with the results from the Subjective Usability Scale, the application scores
high for ease of use. Some participants even mentioned this method to be easier
than the rule editing method.

H3. The uCoRe application is subjective more satisfiable for conflict solving
than rule editing. The uCoRe application shows greatly improved scores on the

4.3. DISCUSSION 61

Subjective Usability Scale. For certain goals participants even prefer the application
instead of the rule editing method.

To elaborate upon the latter, participants preferred the uCoRe application best
for solving one time specific conflicts or making one time state exceptions. These
results reinforce our motivation for the uCoRe application.

4.3.2 Limitations and future work

As with the implementation of the uCoRe application (Section 3.6), the evaluation
also has a few limitations that present opportunities for future work.

Due to the COVID-19 pandemic [61], we shifted to an online study. As a result,
it was hard to measure time accurately and draw any conclusions from it. Besides
that, we noticed that during the study, in the first scenario presented, although par-
ticipants had a training in advance, they were still overwhelmed by the rule editing
method. Even when using the application for the first time, some participants (three
participants) had difficulties knowing how to operate the system. This was due to
the fact that they had to command the facilitator for making moves on their behalf.
However, both could be avoided when the training would not only contain reading a
manual but also a small scenario for the participants to solve in order to get the edge
off. Another thing that could solve the problem for the application would be to have
participants being able to control the application themselves instead of commanding
the facilitator.

Participants also mentioned that it was hard to know what was possible to do
in the system using the rule editing method (five participants). Because the rule
editing was done in a Google document, there was not many help or guidance with
entities or possible actions during the solving stage. This could be resolved when
an actual tool or application can be used to do the rule editing with.

Loop and redundancy conflicts are solved automatically in the application. As
a result, in three out of the five scenarios participants solved the conflict correctly
without having to do anything. Although in most cases this automatic solution
might be the desired outcome for these two types of conflicts, our study did not
include scenarios where a different outcome was preferred. In a future study, sce-
narios should be incorporated that challenge the participant to make an exception
on the normal behaviour for these two types of conflicts. These scenarios would then
require a participant to edit a solution, which in the recent study, was not needed
and thus not observed.

Lastly, instead of comparing the uCoRe application to other methods for conflict
detection and resolution, a longitudinal study could be set up where participants
would live in a smart home and use the application in their day to day lives. This
would bring opportunities to see how useful the application would be in a real
environment.

62 CHAPTER 4. EXECUTING A USER STUDY

Chapter 5

Conclusion

In this work we presented an alternative approach for conflict detection and reso-
lution in an IoT smart home environment. Previous work focused on preventing
conflicts to enter the system, by doing conflict detection and resolution at the time
of creation for new rules. Instead, we proposed an at run-time conflict detection
method that uses near future prediction. This method grants users the ability to
in-situ decide what they want their system to do in the near future, providing them
with the opportunity to make one-time exceptions on rules by snoozing actions or
creating custom ones of their own.

Our work contains four major components: the prediction of near future de-
vice states, conflict detection, conflict resolution and an application to bring it all
together in the hands of the user. Device state changes are predicted by the FORT-
NIoT framework [63] and within this framework we extended its functionality so
that it can detect conflicts and resolve them during the prediction of the near future
device states. The prediction is done by creating a prediction tree, where the nodes
are state changes and the edges are the validated and executed rules. During the
creation of this tree, conflict detection is done by flattening the tree and marking
actions that are affecting the same devices. Once conflicts are detected, a solution is
found by matching the set of conflicting actions and results in custom actions being
applied and the others being snoozed.

In order to make sure that the prediction of state changes is as honest as it can
be, meaning that only state changes are predicted when the system is sure that
these states will be applied given the current information, states that are involved
in a conflict should not trigger other rules and result in new states. If they would, a
representation of the future would be given to the user that might be totally different
once the conflict is solved. It is due to this reason that the detection of conflicts can
not happen post prediction, but instead needs to be done during the prediction of
new states. Once conflicts get detected, they are logged and marked and lead to a
restart of that specific prediction tick.

For solving these conflicts, we chose to use operations on actions instead of
altering, editing or disabling rules. Doing operations on actions instead of doing
them on rules gives more flexibility in the sense that rules can still be triggered,
but instead of all their actions being executed as a result, only the actions that the
user prefers can and will be executed. By marking actions as active or snoozed, the

63

64 CHAPTER 5. CONCLUSION

prediction engine can visit or ignore a found state that is caused by an action during
the prediction stage. Applying solutions must also be done during the prediction
stage because the states that these solutions activate can trigger rules that add even
more states to the future, thus resulting in a more complete prediction of the future.
What makes solutions so complex is tying them to the conflict that the user wants
to solve. Because the system predicts the future, it is possible that this future can
change with the next prediction. Therefore it is evenly possible that conflicts can
occur once, can be gone the next time or even shift in time with a few minutes or
even hours. In this work we used the set of conflicting actions as the identification of
a conflict, which makes it possible for solutions to find these matching conflicts and
shift with them through time. The side effect with our approach, however, is that a
solution can be applied multiple times, leading to possible undesired behaviour.

In comparison with other at run-time methods, in our approach users are in-
volved with this at run-time conflict detection and solving process by using the
uCoRe application. Users get informed about the future state changes through
this application, and conflicts get marked by the system. Three types of conflicts
are dealt with: inconsistencies, redundancies and loops. Although the system solves
redundancies and loops automatically during the prediction stage, users are still pre-
sented with the opportunity to edit the solution according to their own preferences.
By the use of icons, images and text, the application tries to find the easiest way
of clearly communicating relevant information such as conflict details and solution
details.

In our online within-subject study, participants were given five scenarios where
each scenario contained one of the three types of conflicts and were asked to solve
them using two different methods: a rule editing method, which was done using a
shared Google document, and the uCoRe application, for which participants had
to command the facilitator to operate the application on their behalf. The uCoRe
application proved to be easier to use and subjectively more satisfiable than the
rule editing method. Participants had to think less about the actual conflict and
could focus more on the desired outcome, resulting in a higher success rate of the
application for conflict solving. For solving one time specific conflicts or making one
time state exceptions, participants preferred the application over the rule editing
method, confirming and reinforcing our motivation for the uCoRe application.

There is still a lot of progress to be made in the Internet of Things and the
smart home environment. In Section 3.6, we discussed a few limitations of the
application and the system at the moment. All these limitations need improving
and can be considered as future work. However, we want to extend this future work
even further. We will shortly discuss other visualization methods such as AR and
VR, the role of AI and intelligibility.

In this work we decided to develop an Android application prototype to get an
overview of the devices in the system and their state changes. However, if a lot
is happening in the home and a lot of devices are present, it is important to keep
a good overview of things when they go wrong. Filter techniques (e.g. show only
conflicts, show only solutions, . . .) can be used to help with that, but it might also
be interesting to look at how AR or VR might aid with this. Promising work has
already been done by using AR to inform users about the system [42] or to control

65

devices [16], and even in VR visual programming is used and a debug system is
created [33]. Although VR proves to be useful in some case, in a smart home
environment this might not be the first tool a user wants to use to debug their
system. AR, however, is useful as a selection method to identify devices by pointing
at them and getting more information about its state or even control its settings.
It might be even more useful than using a list of devices when a lot of devices are
present in the environment. Therefore this seems interesting to incorporate in the
application as a device controlling mechanism in a smart home with a lot of devices.
If this can also attribute to the conflict detection and conflict resolution aspects of
the application still remains an open question.

One of the big things for understanding users and their patterns and habits
is using Artificial Intelligence (AI). When a smart home environment can learn
more about its inhabitants, it can tailor itself even more to their needs. At the
moment our system uses calendar events, sensor information, information from the
internet (e.g. sun set and sun rise), etc. . . . to predict the future. User patterns’,
however, such as certain routines that people have, are programmed into the system.
But patterns can change, and therefore these routines should be able to change
dynamically as well. When the home can learn its users’ patterns on its own, it
frees up users to update their routines in the system by hand. In our system, all
this information can become incredibly valuable to predict the near future and might
even attribute in learning how to solve certain conflicts in a more advanced way.
Especially in multiple user smart home environments, were situations can become
rather complex really fast, this approach might be really promising. Although the
use of AI seems interesting, users still want and need to feel in control. Therefore
a smart home system application to control the environment at any time is crucial
and the combination with AI should be balanced.

At last, informing the users well about their home is also important. Now that
conflicts get detected and solved, an effort has to be made so that users also are
able to understand how their solutions work in order for them to trust it. Not
only that, but by using feedforward techniques, user can be made aware of the
consequences of their solutions. At the moment, when a conflict occurs, users can
inform themselves about the conflict and can solve it. As mentioned multiple times
before by now, a solution consists out of actions that are active, snoozed or even
custom created and these actions can lead to rules being triggered and new states
being acquired. However, during the solving stage in the application, a user is not
aware of the rules that will be triggered when their solution would be applied. It is
therefore possible that a situation can be created that is not totally desired by the
user, because now states can be added to the future that were not present before
due the the applied solution. Using a feedforward technique, users get informed
about what their solution will cause in the future, before it even being applied. This
could improve a users understanding and help them make better decisions when
solving a conflict. Improving intelligibility is definitely work that still needs further
improving.

For users to be able to make exceptions for every device and every rule at any
time is very powerful and will definitely prove useful. Our work is the first step
towards this kind of control. Ideas of extending the application with also the tools

66 CHAPTER 5. CONCLUSION

for more advanced functions, such as rule editing, were out of the scope of this thesis,
but mentioned by participants in the study.

To conclude, our work contributes by doing conflict mediation at run time, by
actively snoozing or creating custom actions and giving users the control over all
of it. Our study showed that for one time specific conflicts our method would be
preferred over a rule editing method, and this opens up a lot of opportunities for
future research.

Appendices

67

Appendix A

Executing a User Study

A.1 Training document

Before starting the actual study, participants receive the following training document
and are instructed to read it carefully. The goal is to get participants familiar with
Trigger-Action Rules and the two methods they will use during the study.

69

Training
In this study you will use two different methods to solve conflicts in trigger action rules. Here

is a brief overview on trigger-action rules and the two methods.

Trigger-Action Rules
● Trigger-action ​rules ​can automate device behaviour

○ rules defined by inhabitants of the smart home

e.g. sun rises → turn off the living spots

○ rules built in to the device by the manufacturer

e.g. smoke detected → sound the alarm

● Rules are validated when devices that can trigger them change state, ​not
continuously!

● Triggers ​are events or conditions that can occur and cause a rule to be validated

e.g. a user action, sensor output, …

● Conditions ​are statements that need to be true in order to execute a rule

e.g. smoke has to be detected before validating the rule “smoke detected → sound

the alarm”

● Actions​ are executed once a rule has been validated

e.g. sound the alarm once smoke is detected

Conflicts
● A ​conflict ​occurs when rules execute two or more actions that alter the state of the

same device at the same time

e.g. sun rises → turn off lights; blinds lowered → turn on lights

● Inconsistency​: the executed actions result in states of the device that are different

from one another

e.g. turn on the lights vs turn off the lights

● Redundancy​: the executed actions result in states of the device that are the same

e.g. raise the blinds vs raise the blinds

70

● Loop​: the executed action of one rule triggers the next rule and so on, until it comes

back to the first rule, where it starts all over again.

e.g. turn off lights → raise blinds → turn off lights → raise blinds → ….

Editing Rules
○ new rules can be ​added

○ rules can be ​altered​:
■ add or remove more than one ​condition

e.g. sun rises and I am sleeping → sound alarm

■ add or remove more than one ​action

e.g. sun rises → raise the blinds and turn off lights

■ do a combination of ​both

e.g. TV is on and I am watching → lower the blinds and turn off the

lights

71

The Application

1 2 3

1. Every row depicts a ​predicted device state​ in the near future

e.g. the living spots, the sun

 A red cross shows that the state is in a ​conflict
e.g. conflict between two states that change the living spots

A green check shows that the state is the result of a ​solution

2. Inspecting a conflict

a. By clicking the ​arrow up​ () and ​arrow down () ​buttons​, more

information can be hidden or revealed

b. By clicking the​ Solve button​ () or ​Edit button​ () a new

screen will be displayed, giving the opportunity to solve or edit that specific

conflict

3. Solving a conflict

a. You can​ select a desired state​ using different visualisations

e.g. a card to select or a drop down menu

72

b. Clicking the ​Solve Conflict Button​ () resolves the conflict and

returns you back to the state change overview

73

74 APPENDIX A. EXECUTING A USER STUDY

A.2 Scenarios

The following scenarios were used during the study.

Scenario 1: This scenario contained an inconsistency conflict on the roomba.
Michaels wishes:

• When he is home, the roomba can not be claening.

• It is okay for the roomba to be claening the house during the day, when Michael
is not home.

• When he expects visitors, he wants to house to be cleaned.

The system’s rules:

• Away & Sun shining→Roomba on

• Home→Roomba off

• Home & Party (calendar)→Roomba on

Scenario 2: This scenario contained an inconsistency conflict on the door and the
lights.
Michaels wishes:

• When he comes home he want the door to be unlocked for him.

• The TV needs be on every time he comes home.

• The roomba needs to be docked when he is at home.

• Whenever someone comes home at dark, the lights should automatically turn
on.

• When watching TV, no lights should reflect in the screen. Therefore lights
should be turned off and the rolling shutters should be lowered.

• The door needs to be locked when it is dark.

The system’s rules:

• Routine comes home→ open Door, start TV, stop Roomba

• Sun set & Door open →Lights on

• TV on→Rolling shutters lowered, Light off

• Sun set→Door locked

A.2. SCENARIOS 75

Scenario 3: This scenario contained a redundancy conflict on the lights.
Michaels wishes:

• The lights should always be off when the sun rises.

• When he is home during the day he wants the rolling shutters raised.

• As background noise, Michael prefers the TV to be on when he is home.

• Whenever he is watching TV, he does not want any lights reflecting the screen.
Therefore the lights should be off.

The system’s rules:

• Sun rises→Light off

• Sun rises & home →Rolling shutters raised

• Home→TV on

• TV on→Light off

Scenario 4: This scenario contained a redundancy conflict on the rolling shutters.
Michaels wishes:

• Every evening, when the sun sets, the rolling shutters should be lowered as
well.

• As background noise, Michael prefers the TV to be on when he is home.

• When watching TV, no lights should reflect in the screen. Therefore lights
should be turned off and the rolling shutters should be lowered.

The system’s rules:

• Sun set →Rolling shutters lowered

• TV on→Rolling shutters lowered, Light off

• Home→TV on

Scenario 5: This scenario contained a loop conflict starting on the lights.
Michaels wishes:

• When he is home during the day he wants the rolling shutters raised.

• The lights should always be off when there is already enough light inside the
house.

The system’s rules:

• Sun rises→Light off

• Light off & home →Rolling shutters raised

• Rolling shutters raised →Light off

76 APPENDIX A. EXECUTING A USER STUDY

A.3 Questionnaires

A.3.1 Understanding the conflict questionnaire

In every scenario, participants first had to understand the conflict at hand by looking
at the rules. The following questionnaire was then used to inform ourselves if the
participant understood the conflict that was present and if they already would have
some ideas on how to tackle it.

8/11/2020 Survey What?

https://docs.google.com/forms/d/1q9xFrufr-ljorRJAOoY6iDbREXvY7cRQ8gbdKwLRTNc/edit 1/2

1.

2.

Understanding the conflict and Solution

3.

Markeer slechts één ovaal.

1 2 3 4 5

4.

Survey What?
*Vereist

Participant ID *

Use case *

Understanding of the conflict *

Why or why not?

77

8/11/2020 Survey What?

https://docs.google.com/forms/d/1q9xFrufr-ljorRJAOoY6iDbREXvY7cRQ8gbdKwLRTNc/edit 2/2

5.

Deze content is niet gemaakt of goedgekeurd door Google.

How would you tackle and/or solve it? *

 Formulieren

78

A.3. QUESTIONNAIRES 79

A.3.2 Observation questionnaire

Once a participant used a method (rule editing or the application) to solve a conflict,
the facilitator used following questionnaire to learn about the participants trust in
their own solution as well as to measure how easy it was for them to achieve a
solution.

8/11/2020 Observation

https://docs.google.com/forms/d/1I046TRmZxKQBLqofSR442Je2_vBKPRj0y7WbC5tbeGg/edit 1/3

1.

2.

3.

Questions

4.

Markeer slechts één ovaal.

Yes

No

5.

Observation
*Vereist

Participant ID *

Use case *

Method *

Solved conflict correctly *

Why or why not?

80

8/11/2020 Observation

https://docs.google.com/forms/d/1I046TRmZxKQBLqofSR442Je2_vBKPRj0y7WbC5tbeGg/edit 2/3

6.

Markeer slechts één ovaal.

1 2 3 4 5

7.

8.

Markeer slechts één ovaal.

1 2 3 4 5

9.

Trust in the solution (one time) *

Why?

Trust in the solution (always) *

Why?

81

8/11/2020 Observation

https://docs.google.com/forms/d/1I046TRmZxKQBLqofSR442Je2_vBKPRj0y7WbC5tbeGg/edit 3/3

10.

Markeer slechts één ovaal.

1 2 3 4 5

11.

12.

Markeer slechts één ovaal.

Yes

No

Maybe

I don't know

Deze content is niet gemaakt of goedgekeurd door Google.

Easy to solve *

Why?

Other solution possible? *

 Formulieren

82

A.3. QUESTIONNAIRES 83

A.3.3 SUS and preference questionnaire

At the end of the study, a closing questionnaire was given to the participants, where
we used the Subjective Usability Scale (SUS) to measure subjective satisfiability
and a preference matrix to better understand when the application would be most
desired or useful (preferred) for the participants.

8/11/2020 Study questionnaire

https://docs.google.com/forms/d/1BJ2z9wgUFmr1TMOOOr2L5B2oQeRm9q7T1aHybypWtH0/edit 1/9

1.

Conflict
solving: Rule
editing

In this section, you will be asked to answer a few questions about the rule editing
method for solving conflicts in a smart home environment.

Rule editing

How much do you agree or disagree with the following statements?

2.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

Study questionnaire
*Vereist

Participant ID *

I think I would like to use this method for conflict solving frequently *

84

8/11/2020 Study questionnaire

https://docs.google.com/forms/d/1BJ2z9wgUFmr1TMOOOr2L5B2oQeRm9q7T1aHybypWtH0/edit 2/9

3.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

4.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

5.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

6.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

I found this method for conflict solving unnecessarily complex *

I thought this method for conflict solving was easy to use *

I think that I would need the support of a technical person to be able to use this
method for conflict solving *

I found the various functions possible in this method for conflict solving were well
integrated *

85

8/11/2020 Study questionnaire

https://docs.google.com/forms/d/1BJ2z9wgUFmr1TMOOOr2L5B2oQeRm9q7T1aHybypWtH0/edit 3/9

7.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

8.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

9.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

10.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

I thought there was too much inconsistency in this method for conflict solving. *

I would imagine that most people would learn to use this method for conflict
solving very quickly *

I found this method for conflict solving very cumbersome to use *

I felt very confident using this method for conflict solving. *

86

8/11/2020 Study questionnaire

https://docs.google.com/forms/d/1BJ2z9wgUFmr1TMOOOr2L5B2oQeRm9q7T1aHybypWtH0/edit 4/9

11.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

Conflict
solving:
Application

In this section, you will be asked to answer a few questions about the
application for solving conflicts in a smart home environment.

I needed to learn a lot of things before I could get going with this method for
conflict solving. *

87

8/11/2020 Study questionnaire

https://docs.google.com/forms/d/1BJ2z9wgUFmr1TMOOOr2L5B2oQeRm9q7T1aHybypWtH0/edit 5/9

Application

How much do you agree or disagree with the following statements?

88

8/11/2020 Study questionnaire

https://docs.google.com/forms/d/1BJ2z9wgUFmr1TMOOOr2L5B2oQeRm9q7T1aHybypWtH0/edit 6/9

12.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

13.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

14.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

15.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

I think I would like to use this method for conflict solving frequently *

I found this method for conflict solving unnecessarily complex *

I thought this method for conflict solving was easy to use *

I think that I would need the support of a technical person to be able to use this
method for conflict solving *

89

8/11/2020 Study questionnaire

https://docs.google.com/forms/d/1BJ2z9wgUFmr1TMOOOr2L5B2oQeRm9q7T1aHybypWtH0/edit 7/9

16.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

17.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

18.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

19.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

I found the various functions possible in this method for conflict solving were
well integrated *

I thought there was too much inconsistency in this method for conflict solving. *

I would imagine that most people would learn to use this method for conflict
solving very quickly *

I found this method for conflict solving very cumbersome to use *

90

8/11/2020 Study questionnaire

https://docs.google.com/forms/d/1BJ2z9wgUFmr1TMOOOr2L5B2oQeRm9q7T1aHybypWtH0/edit 8/9

20.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

21.

Markeer slechts één ovaal.

Strongly disagree

1 2 3 4 5

Strongly agree

General
In this section we conclude with a few more general questions.

22.

Markeer slechts één ovaal per rij.

I felt very confident using this method for conflict solving. *

I needed to learn a lot of things before I could get going with this method for
conflict solving. *

Which do you prefer for... *

Rule
editor

Application Both None
No

preference

understanding created
solutions

solving a one time specific
conflict

solving a reoccurring conflict

making one time state
exceptions

reaching a desired state

gaining control over the
systems state

understanding created
solutions

solving a one time specific
conflict

solving a reoccurring conflict

making one time state
exceptions

reaching a desired state

gaining control over the
systems state

91

8/11/2020 Study questionnaire

https://docs.google.com/forms/d/1BJ2z9wgUFmr1TMOOOr2L5B2oQeRm9q7T1aHybypWtH0/edit 9/9

23.

24.

Deze content is niet gemaakt of goedgekeurd door Google.

Do you have any remarks on the previous question?

Do you have any feedback on the application?

 Formulieren

92

Bibliography

[1] Vol Nr, Rob Miller, and Murray Shanahan. “The Event Calculus in Classical
Logic - Alternative Axiomatisations”. In: Journal of Electronic Transactions
on Artificial Intelligence 3 (June 2000).

[2] Andrew J. Ko and Brad A. Myers. “Designing the Whyline: A Debugging
Interface for Asking Questions about Program Behavior”. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. CHI ’04.
Vienna, Austria: Association for Computing Machinery, 2004, pp. 151–158.
isbn: 1581137028. doi: 10.1145/985692.985712. url: https://doi.org/
10.1145/985692.985712.

[3] Anind K. Dey et al. “iCAP: Interactive Prototyping of Context-Aware Appli-
cations”. In: Pervasive Computing. Ed. by Kenneth P. Fishkin et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 254–271. isbn: 978-3-540-
33895-6.

[4] Henry Lieberman et al. “End-User Development: An Emerging Paradigm”. In:
End User Development. Ed. by Henry Lieberman, Fabio Paternò, and Volker
Wulf. Dordrecht: Springer Netherlands, 2006, pp. 1–8. isbn: 978-1-4020-5386-
3. doi: 10.1007/1-4020-5386-X_1. url: https://doi.org/10.1007/1-
4020-5386-X_1.

[5] Yvonne Rogers. “Moving on from Weiser’s Vision of Calm Computing: Engag-
ing UbiComp Experiences”. In: UbiComp 2006: Ubiquitous Computing. Ed. by
Paul Dourish and Adrian Friday. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2006, pp. 404–421. isbn: 978-3-540-39635-2.

[6] Nan Zang and Mary Beth Rosson. “What’s in a mashup? And why? Studying
the perceptions of web-active end users”. In: Oct. 2008, pp. 31–38. doi: 10.
1109/VLHCC.2008.4639055.

[7] Kevin Ashton. “That ’Internet of Things’ Thing”. In: RFiD Journal (2009).

[8] Mitchel Resnick et al. “Scratch: Programming for All”. In: Commun. ACM
52.11 (Nov. 2009), pp. 60–67. issn: 0001-0782. doi: 10 . 1145 / 1592761 .

1592779. url: https://doi.org/10.1145/1592761.1592779.

[9] Abdallah Namoun, Tobias Nestler, and Antonella De Angeli. “Conceptual and
Usability Issues in the Composable Web of Software Services”. In: vol. 6385.
July 2010, pp. 396–407. doi: 10.1007/978-3-642-16985-4_35.

93

94 BIBLIOGRAPHY

[10] Abdallah Namoun, Tobias Nestler, and Antonella De Angeli. “Service Com-
position for Non-programmers: Prospects, Problems, and Design Recommen-
dations”. In: Dec. 2010, pp. 123–130. doi: 10.1109/ECOWS.2010.17.

[11] A. Brush et al. “Home Automation in the Wild: Challenges and Opportuni-
ties”. In: May 2011, pp. 2115–2124. doi: 10.1145/1978942.1979249.

[12] Yngve Dahl and Reidar-Martin Svendsen. “End-User Composition Interfaces
for Smart Environments: A Preliminary Study of Usability Factors”. In: De-
sign, User Experience, and Usability. Theory, Methods, Tools and Practice.
Ed. by Aaron Marcus. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 118–127. isbn: 978-3-642-21708-1.

[13] Jussi Kiljander et al. “Enabling End-Users to Configure Smart Environments”.
In: July 2011, pp. 303–308. doi: 10.1109/SAINT.2011.58.

[14] Jayavardhana Gubbi et al. “Internet of Things (IoT): A Vision, Architectural
Elements, and Future Directions”. In: Future Generation Computer Systems
29 (July 2012). doi: 10.1016/j.future.2013.01.010.

[15] Sarah Mennicken and Elaine Huang. “Hacking the Natural Habitat: An In-
the-Wild Study of Smart Homes, Their Development, and the People Who
Live in Them”. In: vol. 7319. June 2012, pp. 143–160. doi: 10.1007/978-3-
642-31205-2_10.

[16] Valentin Heun, James Hobin, and Pattie Maes. “Reality Editor: Programming
Smarter Objects”. In: Proceedings of the 2013 ACM Conference on Perva-
sive and Ubiquitous Computing Adjunct Publication. UbiComp ’13 Adjunct.
Zurich, Switzerland: Association for Computing Machinery, 2013, pp. 307–
310. isbn: 9781450322157. doi: 10.1145/2494091.2494185. url: https:

//doi.org/10.1145/2494091.2494185.

[17] Śılvia Resendes, Andre Santos, and Paulo Carreira. “Conflict Detection and
Resolution in Home and Building Automation Systems”. In: Springer Journal
of Ambient Intelligence and Humanized Computing (Oct. 2013). doi: 10 .

1007/s12652-013-0184-9.

[18] Tom Rodden et al. “At Home with Agents: Exploring Attitudes Towards Fu-
ture Smart Energy Infrastructures”. In: Apr. 2013, [In Preparation/Press].
doi: 10.1145/2470654.2466152.

[19] Enrico Costanza et al. “Doing the laundry with agents: A field trial of a future
smart energy system in the home”. In: Apr. 2014. isbn: 978-1-4503-2473-1.
doi: 10.1145/2556288.2557167.

[20] Paolo Medagliani et al. “Internet of Things Applications - From Research and
Innovation to Market Deployment”. In: (Jan. 2014).

BIBLIOGRAPHY 95

[21] Sarah Mennicken, Jo Vermeulen, and Elaine M. Huang. “From Today’s Aug-
mented Houses to Tomorrow’s Smart Homes: New Directions for Home Au-
tomation Research”. In: Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. UbiComp ’14. Seattle,
Washington: Association for Computing Machinery, 2014, pp. 105–115. isbn:
9781450329682. doi: 10.1145/2632048.2636076. url: https://doi.org/
10.1145/2632048.2636076.

[22] S. Munir and J. A. Stankovic. “DepSys: Dependency aware integration of
cyber-physical systems for smart homes”. In: 2014 ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS). 2014, pp. 127–138.

[23] Blase Ur et al. “Practical trigger-action programming in the smart home”.
In: Conference on Human Factors in Computing Systems - Proceedings (Apr.
2014). doi: 10.1145/2556288.2557420.

[24] Evan Magill and Jesse Blum. “Exploring conflicts in rule-based sensor net-
works”. In: Pervasive and Mobile Computing 27 (Aug. 2015). doi: 10.1016/
j.pmcj.2015.08.005.

[25] Mateusz Mikusz et al. “Repurposing Web Analytics to Support the IoT”. In:
Computer 48 (Sept. 2015), pp. 42–49. doi: 10.1109/MC.2015.260.

[26] Federico Cabitza et al. “Rule-based tools for the configuration of ambient
intelligence systems: a comparative user study”. In: Multimedia Tools and
Applications 76 (Apr. 2016). doi: 10.1007/s11042-016-3511-2.

[27] Blase Ur et al. “Trigger-Action Programming in the Wild: An Analysis of
200,000 IFTTT Recipes”. In: May 2016, pp. 3227–3231. doi: 10.1145/2858036.
2858556.

[28] Julia Brich et al. “Exploring End User Programming Needs in Home Automa-
tion”. In: ACM Trans. Comput.-Hum. Interact. 24.2 (Apr. 2017). issn: 1073-
0516. doi: 10.1145/3057858. url: https://doi.org/10.1145/3057858.

[29] Nico Castelli et al. “What Happened in My Home? An End-User Development
Approach for Smart Home Data Visualization”. In: Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. CHI ’17. Denver,
Colorado, USA: Association for Computing Machinery, 2017, pp. 853–866.
isbn: 9781450346559. doi: 10.1145/3025453.3025485. url: https://doi.
org/10.1145/3025453.3025485.

[30] F. Corno, L. De Russis, and A. M. Roffarello. “A Semantic Web Approach
to Simplifying Trigger-Action Programming in the IoT”. In: Computer 50.11
(2017), pp. 18–24.

[31] Giuseppe Desolda, Carmelo Ardito, and Maristella Matera. “Empowering End
Users to Customize Their Smart Environments: Model, Composition Paradigms,
and Domain-Specific Tools”. In: ACM Trans. Comput.-Hum. Interact. 24.2
(Apr. 2017). issn: 1073-0516. doi: 10.1145/3057859. url: https://doi.
org/10.1145/3057859.

96 BIBLIOGRAPHY

[32] Giuseppe Desolda, Carmelo Ardito, and Maristella Matera. “End-User De-
velopment for the Internet of Things: EFESTO and the 5W Composition
Paradigm”. In: Rapid Mashup Development Tools. Ed. by Florian Daniel and
Martin Gaedke. Cham: Springer International Publishing, 2017, pp. 74–93.
isbn: 978-3-319-53174-8.

[33] Barrett Ens et al. “Ivy: Exploring Spatially Situated Visual Programming for
Authoring and Understanding Intelligent Environments”. In: Proceedings of
the 43rd Graphics Interface Conference. GI ’17. Edmonton, Alberta, Canada:
Canadian Human-Computer Communications Society, 2017, pp. 156–162. isbn:
9780994786821.

[34] Giuseppe Ghiani et al. “Personalization of Context-Dependent Applications
Through Trigger-Action Rules”. In: ACM Trans. Comput.-Hum. Interact. 24.2
(Apr. 2017). issn: 1073-0516. doi: 10.1145/3057861. url: https://doi.
org/10.1145/3057861.

[35] Meiyi Ma, Sarah Preum, and John Stankovic. “CityGuard: A Watchdog for
Safety-Aware Conflict Detection in Smart Cities”. In: Apr. 2017, pp. 259–270.
doi: 10.1145/3054977.3054989.

[36] M. R. Reisinger, J. Schrammel, and P. Fröhlich. “Visual languages for smart
spaces: End-user programming between data-flow and form-filling”. In: 2017
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
2017, pp. 165–169.

[37] Michaela Reisinger, Johann Schrammel, and Peter Fröhlich. “Visual end-user
programming in smart homes: Complexity and performance”. In: Oct. 2017,
pp. 331–332. doi: 10.1109/VLHCC.2017.8103495.

[38] Carmelo Ardito, Giuseppe Desolda, and Maristella Matera. “Engineering Task-
Automation Systems for Domain Specificity”. In: Feb. 2018, pp. 108–119. isbn:
978-3-319-74432-2. doi: 10.1007/978-3-319-74433-9_9.

[39] Danilo Caivano et al. “Supporting end users to control their smart home:
design implications from a literature review and an empirical investigation”.
In: Journal of Systems and Software 144 (June 2018). doi: 10.1016/j.jss.
2018.06.035.

[40] Luigi De Russis and Alberto Roffarello. “A Debugging Approach for Trigger-
Action Programming”. In: Apr. 2018, pp. 1–6. doi: 10 . 1145 / 3170427 .

3188641.

[41] Timo Jakobi et al. “Evolving Needs in IoT Control and Accountability: A
Longitudinal Study on Smart Home Intelligibility”. In: Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 2.4 (Dec. 2018). doi: 10.1145/3287049.
url: https://doi.org/10.1145/3287049.

[42] Jisun Jang and Tomasz Bednarz. “HoloSensor for Smart Home, Health, Enter-
tainment”. In: ACM SIGGRAPH 2018 Appy Hour. SIGGRAPH ’18. Vancou-
ver, British Columbia, Canada: Association for Computing Machinery, 2018.
isbn: 9781450358071. doi: 10.1145/3213779.3213786. url: https://doi.
org/10.1145/3213779.3213786.

BIBLIOGRAPHY 97

[43] Marco Manca et al. “Supporting End-User Debugging of Trigger-Action Rules
for IoT Applications”. In: International Journal of Human-Computer Studies
123 (Nov. 2018). doi: 10.1016/j.ijhcs.2018.11.005.

[44] Jannish Purmaissur et al. “Augmented-Reality Computer-Vision Assisted Dis-
aggregated Energy Monitoring and IoT Control Platform”. In: Dec. 2018,
pp. 1–6. doi: 10.1109/ICONIC.2018.8601199.

[45] Eugene Siow, Thanassis Tiropanis, and Wendy Hall. “Analytics for the Inter-
net of Things: A Survey”. In: ACM Computing Surveys 51 (Apr. 2018). doi:
10.1145/3204947.

[46] A. Al Farooq et al. “IoTC2: A Formal Method Approach for Detecting Con-
flicts in Large Scale IoT Systems”. In: 2019 IFIP/IEEE Symposium on Inte-
grated Network and Service Management (IM). 2019, pp. 442–447.

[47] Ahmed Alfakeeh et al. “Agent-based negotiation approach for feature inter-
actions in smart home systems using calculus of the context-aware ambient”.
In: Transactions on Emerging Telecommunications Technologies (Dec. 2019).
doi: 10.1002/ett.3808.

[48] Barbara Barricelli et al. “End-User Development, End-User Programming and
End-User Software Engineering: a Systematic Mapping Study”. In: Journal of
Systems and Software 149 (Mar. 2019), pp. 101–137. doi: 10.1016/j.jss.
2018.11.041.

[49] Will Brackenbury et al. “How Users Interpret Bugs in Trigger-Action Pro-
gramming”. In: Apr. 2019, pp. 1–12. isbn: 978-1-4503-5970-2. doi: 10.1145/
3290605.3300782.

[50] Luca Corcella et al. “A Visual Tool for Analysing IoT Trigger/Action Pro-
gramming: 7th IFIP WG 13.2 International Working Conference, HCSE 2018,
Sophia Antipolis, France, September 3–5, 2018, Revised Selected Papers”. In:
Jan. 2019, pp. 189–206. isbn: 978-3-030-05908-8. doi: 10.1007/978-3-030-
05909-5_11.

[51] Fulvio Corno, Luigi De Russis, and Alberto Monge Roffarello. “Empowering
End Users in Debugging Trigger-Action Rules”. In: Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. CHI ’19. Glasgow,
Scotland Uk: Association for Computing Machinery, 2019, pp. 1–13. isbn:
9781450359702. doi: 10.1145/3290605.3300618. url: https://doi.org/
10.1145/3290605.3300618.

[52] Fulvio Corno, Luigi De Russis, and Alberto Roffarello. “My IoT Puzzle: De-
bugging IF-THEN Rules Through the Jigsaw Metaphor”. In: July 2019, pp. 18–
33. isbn: 978-3-030-24780-5. doi: 10.1007/978-3-030-24781-2_2.

[53] Fulvio Corno, Luigi De Russis, and Alberto Roffarello. “RecRules: Recom-
mending IF-THEN Rules for End-User Development”. In: ACM Transactions
on Intelligent Systems and Technology 10 (Sept. 2019), pp. 1–27. doi: 10.
1145/3344211.

98 BIBLIOGRAPHY

[54] Ting-Hao K. Huang et al. ““InstructableCrowd: Creating IF-THEN Rules for
Smartphones via Conversations with the Crowd””. In: Human Computation
6.1 (Sept. 2019). issn: 2330-8001. doi: 10.15346/hc.v6i1.7. url: http:
//dx.doi.org/10.15346/hc.v6i1.7.

[55] Nicola Leonardi et al. “Trigger-Action Programming for Personalising Hu-
manoid Robot Behaviour”. In: Apr. 2019, pp. 1–13. isbn: 978-1-4503-5970-2.
doi: 10.1145/3290605.3300675.

[56] Fabio Paternò and Sadi Alawadi. “Towards Intelligent Personalization of IoT
Platforms End User Development; Internet of Things; Trigger-Action Pro-
gramming ACM Reference format”. In: Mar. 2019.

[57] T. Shah et al. “Conflict Detection in Rule Based IoT Systems”. In: 2019 IEEE
10th Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON). 2019, pp. 0276–0284.

[58] Lefan Zhang et al. “AutoTap: Synthesizing and Repairing Trigger-Action Pro-
grams Using LTL Properties”. In: May 2019, pp. 281–291. doi: 10.1109/ICSE.
2019.00043.

[59] Home Assistant 2020. Home Assistant - Awaken your home. url: https:

//www.home-assistant.io/. (Accessed: 2020-05-06).

[60] Usability.gov 2020. usability.gov - Improving the User Experience. url: https:
//www.usability.gov/how-to-and-tools/methods/system-usability-

scale.html.

[61] World Health Organization 2020. Coronavirus disease (COVID-19) pandemic.
url: https://www.who.int/emergencies/diseases/novel-coronavirus-
2019.

[62] James Chen. Smart Home. url: https://www.investopedia.com/terms/s/
smart-home.asp. (accessed: 01.03.2020).

[63] Sven Coppers, Davy Vanacken, and Kris Luyten. “FORTNIoT: Intelligible
Predictions to Improve User Understanding of Smart Home Behavior”. In:
Under review.

[64] Margaret Rouse et al. Internet of Things (IoT). url: https://interneto
fthingsagenda.techtarget.com/definition/Internet-of-Things-IoT.
(accessed: 01.03.2020).

