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Abstract

Introduction: The current study has the following aims: systematically investigating the extent to

which results of recently published meta-analyses of diagnostic test accuracy could be biased when the

authors have applied classical hierarchical models that implicitly assumed normality. Another aim is to

compare results with a ready to use Bayesian hierarchical model. Finally, the study aims to assess the

impact of its internal validity when classical hierarchical models are used for meta-analyses and results

are compared with an Bayesian hierarchical approach.

Methods: The risk for normality assumption was scored in each study trough a new proposed risk

score tool. Difference between methods was explored checking convergence status, profile likelihoods,

non-positive-definite random-effect covariance matrix and Bland-Altman analysis between estimations. A

visual inspection and classification of the profile-likelihoods models was done. The risk score of each study

is used for the prediction of the convergence status, profile likelihoods shape,and the non-positive-definite

random-effect covariance matrix. In addition, we performed an exploratory analysis of disagreement

between different models of meta-analysis. Results are presented using Bland-Altman and principal

component analysis.

Results: We found a relationship between the binary risk score of normality, the profile-likelihood

findings, and the disagreement between models’ estimates.

Conclusion: In classical hierarchical models, studies with a high risk for normality assumption may

have: non-convergence issues, profile likelihood irregularities, and non-positive-definite random-effect

covariance matrix. In Bayesian hierarchical models, the same studies don’t present any difficulties in the

fitting or estimation process.

Keywords: Meta-analyses methodology, mixed effect, hierarchical model, Bayes, normality assumptions.
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1 Chapter 1: Introduction on meta-analyses of diagnostic test
accuracy

A meta-analysis (MA) of diagnostic test accuracy (DTA) studies consists of a synthesis of the quantitative
evidence through pooled estimations of the primary studies. The primary studies compare an index
test with a standard gold test, resulting in 2×2 contingency tables. Such a diagnostic test produces
dichotomized results against true disease status, from which measures like sensitivity, specificity, positive
or negative likelihood ratio, receiving operating curve (ROC) can be calculated.

False diagnosis has a significant impact on the subject and in the health system. A false negative error
can be life-threatening, because the patients fail to obtain prompt treatment, but also a false positive
test may result in physical, emotional, and/or financial burdens (Christensen et al. 2010). In particular,
the “MA of DTA” is a critical study to help the decision-making process on whether to implement a test
or not.

We may expect that sensitivity and specificity of diagnostic tests based on binarizing a continuous scale
are inversely correlated. This correlation could be affected by the diagnostic test setup. Often sensitivity
and specificity are analyzed separately but, given their correlation, it is more efficient and insightful to
analyze these measures jointly.

Nowadays in MA of DTA studies it is prevalent/common to find features such as rare diseases in target
conditions, high accuracy tests, few studies, small studies, tests with different thresholds, or a combination
of all those elements. Such factors have been reported previously as factors that can compromise normality
assumptions in MA of DTA.

This master-thesis has the following aims: 1) to systematically investigate the extent to which results of
recently published meta-analyses could have been biased when the authors applied classical hierarchical
models that implicitly assumed normality; 2) to compare results with a ready to use Bayesian hierarchical
model; 3) to assess the impact of studies’ internal validity when classical hierarchical models are used
for meta-analyses and results are compared with an Bayesian hierarchical approach; 4) to propose a risk
score for the normality assumptions in meta-analyses of diagnostic test accuracies; 5) to evaluate the
predictive skills of the proposed risk score; 6) to assess the agreement between the average estimates in
random effect (RE) models under normal vs non-normal assumptions.

The chapters are organized as follows: Chapter 2 reviews the statistical methods used in a MA of DTA.
Chapter 3 provides a revision of the normality assumptions in a MA of DTA, and a new “risk tool” for
normality assumption in MA of DTA is presented. Chapter 4 is a review of the statistical software for
MA of DTA is given. Chapter 5 describes the meta-research experiment, and Chapter 6 shows the results.
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2 Chapter 2: Statistical methods of meta-analyses of diagnostic
test accuracy

2.1 Introduction

The most common outcomes in a MA of DTA are sensitivity and specificity, which are defined as true
positive rate (TPR) and true negative rate (TNR), respectively. The concept can be grasped easily
through a 2x2 contingency table (see Table 1), and the following definitions:

Sensitivy := T̂PRi = tpi
ni,1

= tpi
tpi + fni

, Specificity := T̂NRi = tni
ni,2

= tni
tni + fpi

Table 1: Contingency table of patient status (columns) vs test outcomes (rows)

Patient status
With disease Without disease

Test + tpi fpi

Test - fni tni

Sum: ni,1 ni,2

Besides, sensitivity and specificity, the accuracy of a test can also be measured with diagnostic odd-ratio
(DOR), positive or negative likelihood ratio, and the Youden index. The positive likelihood ratio is
defined as: LR+ = sensitivity

1−specificity , or also as: LR+ = P (T+|D+)
P (T+|D−) . Similarly negative likelihood ratio is

defined as:LR− = 1−sensitivity
specificity or also as:LR− = P (T−|D+)

P (T−|D−) . Finally, the most popular univariate index
are: Youden index as: J = sensitivity+specificity−1, and the DOR which is defined asDOR = TP/FP

FN/TN .
All these measures are transformation from sensitivity and specificity, because of that, we will focus only
on sensitivity and specificity as the main outcomes of our models.

Usually, the descriptive analysis in MA of DTA is done through a forest plot which presents the measure of
effect (e.g. sensitivity) for each DTA studies incorporating confidence intervals represented by horizontal
lines. In addition, a common practice is to present a receiver operating characteristic plot (ROC plot),
which shows a scatter-plot of the pairs of sensitivity and (1- specificity). Usually, the ROC plot is done
sub-grouping at various threshold settings or clinical subgroups categories.

Several models have been proposed to summarize the diagnostic measures (Harbord et al. 2007; Houwelin-
gen, Zwinderman, and Stijnen 1993; Littenberg and Moses, n.d.; Reitsma et al. 2005; Sheu and Suzuki
2001; Verde 2010). All of these models reflect two specific features of this kind of data(Harbord et al.
2007): a negative correlation between sensitivity and specificity and substantial heterogeneity between-
studies can be expected because DTA studies are differently designed. Despite the different inferential
methods in the classical or Bayesian approaches, both models need to reflect the same data features:
heterogeneity between and within studies but also a correlation between the outcomes.

In particular, meta-analyses on diagnosis studies bring specific challenges like high dependency between
diagnostic summaries (intrinsically related by the diagnostic threshold used), also the usual sources
of heterogeneity (study designs and population characteristics). This high dependency on diagnostic
measures theoretically forces us to use multivariate models and reject univariate models due to this
intrinsic correlation.

In general, meta-analyses can be conducted with either a fixed-effects model or a random-effect model.
A usual approach is to decide according to heterogeneity indexes. However, this decision can be utterly

2



misleading because it has been shown that the heterogeneity indexes are not adequate enough(Jackson
2006).

Since the beginning of the development of MA of DTA the dominant model was the Moses-Littenberg
model (Littenberg and Moses, n.d.). Nowadays it’s criticized because it assumes a simple linear regression
to model the DTA outcomes through a fixed-effect model. Hierarchical or RE models have been proposed
to overcome the limitations of the fixed-effects models. So even when it is the case that a fixed effect
phenomenon is present the hierarchical model can be easily simplified to a fixed-effect model when it
shows a between variability (τ2) equal to zero (Jackson 2006).

The convergence of the classic binomial-normal or normal-normal RE for a MA of DTA is not always
possible. Riley et al. (2007) recommends using a univariate model when convergence on the bivariate
model is not met. Of course, we can have better options: Bayesian models bring an excellent opportunity
to handle not only the issue of convergence but also to bring more flexibility into the modeling process
of the random-effects, with non-Gaussian distributions (Verde 2018, 2010).

Because the main objective of this study is to evaluate normality assumptions, the models considered are
only mixed-effects models (frequentist and also Bayesian) in the two general modalities: normal-normal,
and more “exact” models (binomial-normal, or binomial-Mixture of normal). Although summary ROC
is a recommended model when there is a threshold effect, this model is equivalent to fitting a bivariate
model with an exchangeable covariance structure (Takwoingi et al. 2017), so it will not be taken into
account in this thesis either.

2.2 Hierarchical random-effects model

In the case of general meta-analysis the mixed models have been proposed initially by Houwelingen,
Zwinderman, and Stijnen (1993) , and in the specific context of MA of DTA by Reitsma et al. (2005). In
the frequentist framework, the most popular options to model the accuracy proportions, sensitivity, and
specificity, are to use a normal-normal or a binomial-normal (exact distribution) distribution. The use
of normal approximation has been during decades the standard practices, and have been changed during
the last decade. When the normal distribution is used to model sensitivity and specificity, a continuity
correction needs to be made, which produces the first source of bias, because it forces a non-normal
phenomenon to behave like a Gaussian experiment. Also, it needs to be used in a proper transformation:
probit, logit, or arcsine; the standard practice is to use logit; in this work we used the logit link function.
Mainly because the observed data can behave more frequently like a log-normal, than normal in most of
the cases.

2.2.1 The bivariate normal-normal model

The bivariate normal-normal (Reitsma et al. 2005) model are defined as follows:(
logit(Ŝei)
logit(Ŝpi)

)
≡

(
logit(T̂PRi)
logit(T̂NRi)

)
∼ N

((
µAi

µBi

)
,Σi

)
i = 1, .., N studies,

with
(
µAi

µBi

)
∼ N

((
µA

µB

)
,Ψ
)
, and Ψ =

(
σ2
Ai

σABi

σABi σ2
Bi

)

Where µ = (µA, µB)T and the covariance matrix Ψ are both estimated from the data by maximum
likelihood estimation (MLE). The estimators µ and Ψ are the fixed effect outcomes, and the variance-
covariance matrix respectively, the principal estimators of this model.
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Also, in the Reitsma model the covariance matrix (Σi) is assumed known, calculated from the observed
data with the delta method:

Σi =
(
S2
i,1 0
0 S2

i,2

)
, where S2

i,1 = 1
ni,1T̂PRi(1− T̂PRi)

and S2
i,2 = 1

ni,2(T̂NRi(1− T̂NRi))

2.2.2 An univariate normal-normal model

A simplified version of the bivariate model will be considered only to produce a reduced version of the
MLE in such a case. We can express the logit(sensitivityi) as:

logit(seni) = Xiβ + ZiµAi + εi, i = 1, ...NµAi ∼ N(µA,Σ), εi ∼ N(0, σ2I)

β is the p-dimensional vector of fixed effects, µAi is the q-dimensional vector of random effects, Xi (of
size nip) and Zi (of size niq) are known fixed-effects and random-effects regression matrices,

To facilitate the expression for MLE, a more convenient form to express the variance-covariance matrix
as a relative precision factor of ∆, which is the matrix that satisfies:

Ψ−1

1/σ2 = ∆T∆

If Ψ is positive-definite, then the matrix ∆ exist, but not in a unique way. This is the main reason why
a non-positive definite random matrix can produce uncertainty about the uniqueness of the estimates
obtained. The Cholesky factor of σ2Ψ−1 can only have one ∆ related. A similar model can be used for
logit(specificityi)

2.2.3 The bivariate binomial-normal model

Since the bivariate linear mixed model for MA of DTA was proposed by Reitsma (Reitsma et al. 2005),
Chu and Cole (2006) suggest instead (as a letter to the editor) to use a bivariate binomial-normal (BN)
generalized mixed model avoiding the normal-normal approximation. The bivariate BN does not require
the implementation of continuity correction when the number of events1 is zero in a study (Chu and Cole
2006). The BN bivariate model (Chu and Cole 2006) can be expressed as:

TPi ∼ Bin(TPRi, ni,1) and TNi ∼ Bin(TNRi, ni,2)

µi ≡

(
logit(TPRi)
logit(TNRi)

)
≡

(
µAi

µBi

)
∼ N

((
µA

µB

)
,Ψ
)

with Ψ =
(
σ2
A σAB

σAB σ2
B

)

Both previous hierarchical models are random intercept models, where a bivariate normal distribution
models the heterogeneity between studies. Different “outcomes” are used in each model, in the BN
model a bivariate binomial distribution models the TP and TN of each study; in the NN model, the
logit(Sensitivity) and logit(specificity) are modeled by a bivariate normal distribution. As usual, a
fixed effects model can be seen as a specific case of the mixed models when the covariance matrix is
assumed to be equal to zero in the covariance elements.

1true positives, true negatives, false positives, or false negatives
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2.2.4 Estimation procedure for classical models

In the classical estimation of the parameters’ model, we will focus on the maximum likelihood estimates
(MLE) or the restricted maximum likelihood estimates (REML). MLE was used when REML is not
available (like in PROC NLMIXED). Both methods are the most used methods for estimation in RE models
through maximization mathematical methods. In the case of NN MLE, the marginalized distribution of
the data is calculated as follows::

(
logit(Ŝei)
logit(Ŝpi)

)
∼ N

((
µAi

µBi

)
,Σi + Ψ

)
i = 1, .., N studies, Ψ =

(
σ2
Ai

σABi

σABi
σ2
Bi

)

So the likelihood function (L) can be written as (Pinheiro, Bates, and Pinheiro 1995):

L(µA, β,Ψ | y) = p(y | µA, β,Ψ),

where p is the probability density, and y the complete n-dimensional outcome vector, where each element
is logit(seni); L can be maximized on µA, and Ψ.

L(β, θ, σ2 | y) =
N∏
i=1

p(y | β, θ, σ2) =
N∏
i=1

∫
p(yi | µAi, β, σ2)p(µAi | θ, σ2)dµAi

We use θ to represent an unconstrained set of parameters that determine ∆. It has been shown (Pinheiro,
Bates, and Pinheiro 1995) that with additional arithmetic simplification the likelihood can be expressed
as:

L(β, θ, σ2 | y) = 1
(2πσ2)N/2

exp
(
−

N∑
i=1
|| ỹi − X̃iβi − Z̃iµ̂Ai ||

) N∏
i=1

abs | ∆ |√
| Z̃Ti Z̃i |

(1)

The previous expression can be used in an optimization routine to calculate MLE for the parameters of
the model. Still, the optimization process can be simplified through profiling the likelihood. On the other
hand, for the BN model, this method combines numerical integration to calculate yi and optimization to
estimate µA, µB , and Ψ.

MLE yields to an estimation of both the fixed effects and the variance components by maximizing the
likelihood with respect to each element of µ and with respect to each of the variance component Ψ(Corbeil
and Searle 1976). The REML is a transformation of the MLE which partitions the likelihood under
normality into two terms, a likelihood that involves the mean parameter (µA, µB) and a residual likelihood
that includes only the variance parameter Ψ. So the first likelihood can be maximized to estimate the
mean parameter and the residual likelihood can be maximized to estimate the variance parameter. MLE
and REML “both have the same merits of being based on the likelihood principle, which leads to useful
properties such as consistency, asymptotic normality, and efficiency”(Verbeke and Molenberghs 2000).
The REML has the advantage to produce unbiased estimates of variance and covariance parameters.
The only disadvantage of the REML is that the solutions to variance components are not closed-form, so
numerical computations are more challenging than MLE.

2.2.5 The Bayesian hierarchical model

The Bayesian hierarchical model for MA of DTA was originally presented in Verde (2008) and generalized
to have non-normal random effects in Verde (2010). The Bayesian hierarchical model assume that the
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studies that we aim to combine are the results of N diagnostic studies shown in Table 1, similarly
to classics model tpi and fpi outcomes can be modelled with two independent binomial distributions:
tpi ∼ Bin(TPRi, ni,1) and fpi ∼ Bin(FPRi, ni,2), keeping the same previously defined notation

Sensitivy := T̂PRi, Specificity := T̂NRi, ni,1 = tpi + fni and ni,2 := tni + fpi.

Similarly to classical model, the Bayesian model can be expressed as follows:

µi ≡

(
logit(TPRi)
logit(TNRi)

)
≡

(
µAi

µBi

)
∼ N

((
µA

µB

)
,Ψ
)

with Ψ =
(
σ2
A σAB

σAB σ2
B

)

The formulation of the previous model is completed by specifying the priors for the hyperparameters
µA, µB , σA, σB , ρ. Assuming that parameters are independent and using the following set of priors:

µA ∼ Logistic(m1, v1), µB ∼ Logistic(m2, v2) σA ∼ U(0, u1), and σB ∼ U(0, u2)

The correlation parameter ρ is transformed by using the Fisher transformation as follows:

ρ = σAB√
σAσB

, z = logit(ρ+ 1
2 ) where the prior for z is: z ∼ N(mr, vr)

Modeling priors in this way guarantees that in each MCMC iteration the variance-covariance matrix of
the random effects θ1 and θ2 is positive definite (Verde 2018).

In the priors, the values of the constants m1, v1, m2, v2, u1, u2, mr, and vr have to be chosen, following
the recommendation made by Verde (2018):

m1 = m2 = mr = 0, v1 = v2 = 1 and vr =
√

1.7

taking vr =
√

1.7 gives an uniform distribution for ρ between -0.9 and 0.9 which is clinically logical.
Specifically this limitation for ρ avoid problems with estimation on the space frontier. The previous
scenarios is for a weakly informative prior setup, but other approaches can be implemented when more
information of previous studies (like previous MA of DTA are available).

Finally for bamdit (version 3.3.2) implementation (Verde 2018) we give the following prior to the degrees of
freedom ν parameter: U = 1/ν and a uniform distribution for U: U ∼ Uniform(a, b) with a = 1/df.upper
and b = 1/df.lower. The default values in bandit df.lower = 3 and df.upper = 30 was used for the
modelling process, which allowed us to explore random effect distributions that go from a t distribution
with 3 degrees of freedom to a normal distribution(Verde 2018).

The binomial-normal mixed Bayesian model provides a similar structure like the frequentist binomial-
normal (random intercept with two levels) but extends the model allowing us to incorporate the uncer-
tainty in estimates of the model through priors and hyper-priors.

We need to realize that no asymptotic assumptions were made in the previous Bayesian analysis, so the
results are valid and independent of the number of included studies. This is particularly useful in the
case of meta-analyses of a few studies

2.2.6 Profile likelihood

MLE and REML extension may be one of the most used methods in the health sciences(Cole, Chu, and
Greenland 2014). The profile likelihood (PL) function is a marginal probability, wherein the iterative
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optimization process uses the nuisance parameters as a fixed value, in order to be able to focus on the
parameter of interest through a grid exploration in an interval. The PL exploration in random-effect
models is an alternative method to analyze the evidence of heterogeneity in the studies included in the
reviews. The same PL exploration has been previously used by Abrams, Myles, and Spiegelhalter (2004)
and Curcio and Verde (2011). Each PL plot summarizes the support for each DTA from different values
of between-studies standard deviation.

In general the PL function is given by

L1(τ ;X) = sup
θ∈Θ:θ1=r

pθ(X)

(Bijma, Jonker, and Vaart 2017) For a fixed value of θ1 the PL L1(θ1;X) is equal to the maximum of
the “usual” likelihood pθ(X) over the remaining parameters θ2, θ3, . . . , θn. In particular we are interest
in the PL of the covariance matrix parameters, which can be expressed as:

PLσA
:= sup

σA∈Θ:σA,1=r
pσA

(X)

PLσB
:= sup

σB∈Θ:σB,1=r
pσB

(X)

PLσAB := sup
σAB∈Θ:σAB,1=r

pσAB
(X)

The parameters β(θ) and σ2(θ) can be determined from standard linear regression theory (Pinheiro,
Bates, and Pinheiro 1995) and substituted in the equation 1, given us the PL for θ as:

L(θ) = L(β̂, θ, σ̂2(θ)) = exp(−N/2)
[2πσ̂2(θ)]N/2

N∏
i=1

abs | ∆ |√
| Z̃Ti Z̃i |

Which shows how the likelihood function can be used to calculate the PL of the models, and it has
been applied in chapter 3 and 4 to evaluate the normality assumptions in the MA of DTA. The PL
can provide two valuable information, firstly how the model itself marginally explores the probability of
each parameter present in the model. This can give us an idea of how robust (or not) the process of
inference in observed data according to the presented model. Also, another useful point is that the PL
function provides a point of comparison between classical (PL function) and Bayesian models (posterior
probability). Both densities provide “comparable” information and explore the probability function of
each estimate marginally according to the model. So it will be interesting to see how these densities can
be similar in some studies, or contrarily how these probabilities can be different in location or shape.

2.2.7 Heterogeneity test

Generally, the between-study heterogeneity of MA of DTA studies is larger than the therapeu-
tic/interventional studies (Lee et al. 2015; Verde 2010). According to Zhou and Dendukuri (2014), the
source of heterogeneity in MA of DTA is due to 1) the non-randomized design of most diagnostic studies
and 2) the natural variation in sensitivity and specificity across positivity thresholds. The random effect
model tries to capture as best as possible this potential heterogeneity. However, a more meaningful way
to explain heterogeneity will be adding a meta-regression or subgroup analysis. A brief review of the
concept of heterogeneity indexes can help us to understand the connection with the estimation of the
covariance matrix.
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2.2.7.1 Q statistics Also denominated Cochran’s χ2 statistic assess the differences between the
observed effect sizes existing due to within-study error; which is equivalent to testing whether all studies
share a common effect size, i.e. the heterogeneity is 0 (Spineli and Pandis 2020). A p-value is frequently
quoted as an indication of the extent of between-study variability. Q is expressed as follows

Q =
k∑
i=1

wi(Yi −M)2 =
k∑
i=1

(
Yi −M
νi

)
=

k∑
i=1

wiY
2
i −

((
k∑
i=1

wiYi

)2/ k∑
i=1

wi

)

where Yi is the effect size in study i, wi, is the weight of the study defined as the inverse of its variance
(1/ν), and M is the summary effect size of the MA of DTA of k studies under the fixed-effect model. It
can be used for continuous and binary outcomes (in MA of DTA by logit(TPRi) or TPi).

Furthermore, the standard tests for the presence of heterogeneity have low power(Jackson 2006), such
affirmation comes not only from simulations studies but also from the direct closed-analytic calculation
of the power of such test. Choosing between fixed and random effects models is generally discouraged
with such heterogeneity tests (Jackson, White, and Riley 2012).

In MA, the between-study variance quantifies the differences in the studies’ results that cannot be ex-
plained by within-study variation alone(Jackson 2006). An alternative definition for heterogeneity can
be “the dispersion of the true effect sizes across the studies included in a meta-analyses” (Spineli and
Pandis 2020). Under the random-effect model, only two sources of variance exist: within-study and
between-study variability. Such between-study variability is the variation in the true effect sizes in the
included studies, also called heterogeneity (Spineli and Pandis 2020). When heterogeneity between-
studies is assumed to be zero, the random effect is transformed into a fixed effect, where there is only
within-variability’ study.

2.2.7.2 The between variability τ2 The between-study variability or τ2 parameter can be esti-
mated with different methods; one way can be using maximum likelihood or the method suggested by
DerSimonian and Laird. The method of DerSimonian and Laird for heterogeneity calculation is a non-
iterative method, done through the methods of moments. The DesSimonian and Laird method to estimate

τ2 is as follows: T 2 = Q−df
C , where C =

k∑
i=1

wi −

(
k∑
i=1

w2
i

/
k∑
i=1

wi

)
, where df is degree of freedom and

C is a factor that incorporates the metric of the effect. The τ2 index presents an absolute measure of the
heterogeneity.

2.2.7.3 The Higgins I2 index This index tries to tackle the heterogeneity issue, presenting a relative
index:

I2 =
(
Q− df
Q

)
= τ̂2

τ̂2 + σ̂2

Where τ̂2 are the between-variability estimation and σ̂2 is the within-variability estimation. A rule of
thumb for the cut-off point for I2 is the following when it can be classified as following: low (0-50%),
moderate (50-75%) or high (>75%). Some work to support of the impact of this measure has been done
in simulation studies (Diaz 2015; Kontopantelis and Reeves 2012), where changes in the I2 true values
produce different results in the coverage probability and/or bias on the estimation.

2.2.7.4 A bivariate index of heterogeneity Most of the literature about heterogeneity in MA
is related to univariate outcomes, but have been extended to the general context of multivariate MA
(Jackson, White, and Riley 2012), and also in the context of MA of DTA by Reitsma et al. (2005). The
previous index was presented because they are frequently used in the reviewed studies, and for historical
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reasons. However, in the context of MA of DTA, a more proper index can be a bivariate I2 index proposed
by Zhou and Dendukuri (2014):

I2
E(Biv) = | T̂ |1/2

| Ê(Σ) |1/2 + | T̂ |1/2
where Σ =

(
σ2
iA 0
0 σ2

iB

)
,

is the within-study variance matrix; | E(Σ) | is the determinant of the expected within-study variance
and | T | is the determinant of the between-study variance-covariance matrix(Zhou and Dendukuri 2014).
In the same study (Zhou and Dendukuri 2014), simulations were done comparing the coverage of the
univariate and bivariate indexes. The conclusion was that in most of the cases the univariate version
underestimated the heterogeneity (from the true values of the simulation).

All the presented measures are dependent on the estimates in the variance-covariance matrix. So, any
bias in the covariance matrix will affect directly the estimated I2 index and can affect the decision process
in MA of DTA authors between the selection of models. Using a univariate Higgins I2 alone to choose
between fixed and random model is never recommended. The use of bivariate I2 can be the starting
point of the explorations of the possible sources of such heterogeneity.

Notably, we will explore the heterogeneity of the studies in the context and impact for the risk of normality
assumptions in MA, using different tools like risk inference tools and PL or Posterior distributions
of the covariance matrix elements.
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3 Chapter 3: Evaluation of normality assumptions in meta-
analyses of diagnostic test accuracy

3.1 Introduction

Meta-analytic studies have mainly focused on examining when the fixed-effect assumption or random
effect can be implemented. However, they rarely check the normality assumption for the normal ap-
proximation of the likelihood of the parameter of interest and the normal distribution of the random
effects.

In this chapter, a revision on normality assumptions in MA will be conducted, but mostly in MA of DTA.
We are going to extend the risk tool proposed by Jackson and White (2018) for univariate MA, with
a new risk tool to been able to evaluate MA of DTA. Such a tool will help to predict if the statistical
inference in MA of DTA has been compromised by the normality assumptions.

A closer method to our actual work are studies based on an empirical assessment of previously published
MA of DTA, to posteriorly check the agreement or correlation between estimations. These kinds of
studies are more related, with more “real case” scenarios, and can be used as a source of information
for simulation studies. We found four studies that follow this methodology (Dahabreh, Trikalinos, and
Lau, n.d.; Harbord et al. 2008; Karahalios et al. 2017; Spineli 2019). The specific approach of compar-
isons of the methods estimations were made through scatter plots and histograms (Dahabreh, Trikalinos,
and Lau, n.d.) of 308 MA of DTA (coming from 157 systematic reviews studies); simple descriptive
comparison between estimations of 8 MA of DTA studies (Harbord et al. 2008); Bland-Altman com-
parisons(Karahalios et al. 2017) between the estimations related to network MA (cumulative ranking
curves) in 456 network MA methods; Bland-Altman method (Spineli 2019) on 31 network-MA. None of
this study uses an assessment of the risk for normality assumptions, only comparisons through scatter
plots or Bland-Altman analysis.

Another approach to compare models in MA of DTA is through simulation, which provides a larger sample
size, and the true value of the parameters that the study is trying to estimate. Simulations studies can
measure the bias between the true value and model estimates. We focus our attention on simulations
done in the MA of DTA context like Takwoingi et al. (2017), Riley et al. (2007), and Hamza, van
Houwelingen, and Stijnen (2008). The performance of the NN and BN (univariate or bivariate models)
was checked in a simulation (Takwoingi et al. 2017) observing that convergence is affected by a few
studies or sparse data. This study concludes that univariate methods were recommended for sensitivity
and specificity if the bivariate model failed to converge; they only used classical methods, not Bayesian.

Riley et al. (2007) in their simulation concludes that the normal-normal maximum likelihood estimator is
sensibly (non-convergence and unstable pooled estimates) when elements of the between-study covariance
matrix are truncated on the boundary of its parameter space, which is a common situation when few
studies or sparse data are present. The authors suggest that when non-convergence issues appear “then the
best option may be a generalized univariate meta-analysis for sensitivity and specificity separately” (Riley
et al. 2007). Also, they didn’t use Bayesian methods. Finally, the standard NN model was compared
to the BN model in a simulation study (Hamza, van Houwelingen, and Stijnen 2008), concluding that
the exact likelihood performs better (coverage probability and PL) than the approximate approach and
gives unbiased estimates. Also, the authors conclude that the standard NN method provides “huge
bias with very poor coverage probability in many cases” (like smaller within-study sample sizes, larger
between-studies variance) and larger values of the overall sensitivity.

A theoretical revision made by Jackson and White (2018) about the hidden normality assumptions in
meta-analyses is a clear invitation to think about the influence of the normality assumptions in MA of
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Table 2: Original risk of compromised statistical inference tool

Assumption Most serious implication for µ if false Especially dubious when
Yi unbiased for µi Biased pooled estimate Sparse non-continuous data
Variances s2

i known Inaccurate variance for µ̂ Small studies, sparse or skew data
Yi | µi normal Inaccurate likelihood-based inference Small studies, sparse or skew data
µi normal Inaccurate likelihood-based inference Outlying studies are present
µ̂ unbiased for µ Biased pooled estimate Yi biased for µi
Variance of µ̂ known Inaccurate confidence interval Few studies present; imprecise s2

i

µ̂ normal Inaccurate confidence interval Few studies present
µnew normal Inaccurate prediction interval Outlying studies are present

DTA. The Jackson and White (2018)’ article is a cornerstone in our study because also produced the
first “risk tool” (Table 2) to evaluate if the statistical inference is compromised by normality assumptions
in univariate interventional MA. The article has been quoted 31 times, where 13 of these articles are
responses to the article. However, as far as we know, the “risk of Inference tool” proposed by Jackson
and White (2018) has not been used to evaluate the risk of the normality assumptions in any previous
MA or MA of DTA study . Moreover, this risk of evaluation tool has not been extended previously to
MA of DTA.

3.2 A new “risk of compromised statistical inference tool” for meta-analyses
of diagnostic test accuracy

In this chapter, we present a tool to assess the risk of statistical inference in MA of DTA. Our tool can
be seen as an extension for bivariate models based on the univariate tool proposed by Jackson and White
(2018).

The proposed “risk tool” evaluates when the statistical inference for a specific MA of DTA has been
compromised. The risk tool is presented in Table 3 and it has 17 items. The first eight items corre-
spond mostly with features related to the statistical inference of logit(sensitivity). The items from 9-16
correspond symmetrically to the logit(specificity). The last item are related to the covariance between
both outcomes. Each item can have three levels of risk: low, moderate, and high; each level of risk can
be tabulated with the colours green, yellow, and red, respectively. Additional to the categorical score, a
numeric and binary version for the total score is proposed.

The MA of DTA risk tool shown in table 3 presents the assumptions usually made by conventional
methods for MA for sensitivity (TPR, items from 1 to 8), specificity (FPR, items from 9 to 16) and their
covariance (item 17). In Table 3, the items from 1-3 (9-10) are related to within-study assumptions, and
items from 4-8 (11-16) are associated with the between-study assumptions; also the item 17 (covariance)
is related with between-study assumptions.

The risk-tool will be explained and the assumptions evaluated by each item for the sensitivity part of the
risk tool: from 1 to 8, the items related to specificity will be in parenthesis. Items 1-3 (9-10) are related
when a model assumes that the variability of the within-study is normal. The widespread use of within-
study approximations is perhaps one of the biggest concerns of the current standard practice in MA
(Jackson and White 2018). The items 4 (11) are related to the between-study distributional assumption
or also called the random-effects distributions. The items from 5 to 8 (13 to 16) are associated with the
use of normal distribution when making inferences (Jackson and White 2018). Finally, item 17 is related
to the covariance (between logit(sen) and logit (spec)).

1. The items 1 (and 8) evaluates when the assumption that logit(T̂PRi) is an unbiased estimator
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for logit(TPRi) is risky. This situations occurs when “sparse non-continuous data” or presence of
zero in the sensitivity (/specificity) contingency table. The continuity correction that needs to be
implemented here is introducing a bias between logit(T̂PRi) and logit(TPRi).

2. The item 2 (and 9) evaluates if the assumption that the variances s2
logit(T̂PRi)

are known, is a
realistic assumption (the use of the s2

i as if they are the σ2
i ). This it is dubious when “small studies,

sparse or skew data”, which is associated with cells equal to zero in table 2x2 for the sub-population
of non-healthy (/healthy), but also when studies are small, and finally when the prevalence between
the highest prevalent and least prevalent ratio is large. Assuming the simplest possible situation
that the Yi are sample means of normally distributed observations then a t-distribution (instead
of a normal distribution) is required to make inferences for µi in situations where the population
variance is unknown (Jackson and White 2018). The items 1 and 2 are the assumptions for the first
two moments.

3. The item 3 (and 11) is dubious when “small studies, sparse or skew data” are present. Item 3
evaluated the assumption that logit(T̂PRi) | logit(TPRi) is normal; this is the assumption where
the shape of the normal distribution is assumed, not just the first two moments (Jackson and White
2018).

4. The item 4 (and 12) checks the assumption that logit(TPRi) is normal, it is dubious when outlying
studies are present under a model where the random-effects follow a normal distribution; it is
dubious when a high frequency of influential DTA in each MA is present.

5. The item 5 (and 13) evaluates the assumption that the pooled estimate is unbiased, where it’s a
potential cause for concern for fixed and mixed models (logit(T̂PR) is an unbiased estimator for
logit(TPR), in the sensitivity case); this assumption will raise concerns in the presence of small
studies and also when there exists a correlation between the outcome and their variance(Jackson
and White 2018).

6. The item 6 (and 14) checks that assumption that the variance of the pooled estimate is known
(logit(T̂PR) is known for the sensitivity case), it is especially dubious when few studies are present.
“In the second stage of analysis when pooling the Yi, we approximate σ2

i with s2
i and, in random-

effects meta-analyses, τ2 with τ̂2”(Jackson and White 2018), but these standard errors are not truly
known, and the accuracy of the statistical approximations will now “require reasonably large studies
so that the s2

i are precisely estimated in both common-effect and random-effects meta-analyses”
(Jackson and White 2018).

7. The item 7 (and 15) checks the assumption that logit(T̂PR) is normal, and it’s especially dubious
when few studies are present. This item checks when the shape of the normal distribution is assumed
for the pooled estimate, not only for the first two moments (previous two items).

8. The item 8 (and 16) checks the assumption that logit(TPRnew) is normal, also it’s especially dubious
when outlying studies are present. This item checks for a specific type of statistical inference: the
prediction interval for the true effect in a new study.

9. Item 17 checks the assumption that the covariance (sTPR−FPR) between the two outcomes
(logit(sen) and logit(spec)) is known. This is especially dubious when small studies, sparse data,
and different prevalence between the studies are observed.

An additional observation is that the presented tool measure risk of inference is very useful for statisticians
but not of much utility to a clinician, that are usually guided by threshold values (Mavridis 2018). This
was an additional reason to include a detailed descriptive step in the Methodology design, not only to
support the decision of risk score but also to provide intuitive threshold values to score each item.
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Table 3: Adapted ’risk of compromised statistical inference tool’ for MA of DTA. Where µ is logit(TPR) or logit(FPR)

Item Assumption if assumption is false > inference on µ is compromised Especially dubious when

1 logit(T̂PRi) unbiased for logit(TPRi) Biased pooled estimate Sparse non-continuous data,
2 Variances s2

logit(T̂PRi)
known Inaccurate variance for logit(T̂PR) Small studies, sparse or skew data

3 logit(T̂PRi) | logit(TPRi) normal Inaccurate likelihood-based inference Small studies, sparse or skew data
4 logit(TPRi) normal Inaccurate likelihood-based inference Outlying studies are present,
5 logit(T̂PR) unbiased for logit(TPR) Biased pooled estimate logit(T̂PRi) biased for logit(TPRi),

6 Variance of logit(T̂PR) known Inaccurate confidence interval Few studies present; imprecise s2
T̂PRi

,
7 logit(T̂PR) normal Inaccurate confidence interval Few studies present,
8 logit(TPRnew) normal Inaccurate confidence interval Outlying studies are present,
9 logit(F̂PRi) unbiased for logit(FPRi) Biased pooled estimate Sparse non-continuous data,
10 Variances s2

logit(F̂PRi)
known Inaccurate variance for logit(F̂PR) Small studies, sparse or skew data

11 logit(F̂PRi) | logit(FPRi) normal Inaccurate likelihood-based inference Small studies, sparse or skew data
12 logit(FPRi) normal Inaccurate likelihood-based inference Outlying studies are present,
13 logit(F̂PR) unbiased for logit(FPR) Biased pooled estimate logit(F̂PRi) biased for logit(FPRi),
14 Variance of logit(F̂PR) known Inaccurate confidence interval Few studies present; imprecise s2

F̂PRi

,
15 logit(F̂PR) normal Inaccurate confidence interval Few studies present,
16 logit(FPRnew) normal Inaccurate prediction interval Outlying studies are present,
17 Covariance sTPR−FPR known Inaccurate covariance for logit(T̂PR) and logit(F̂PR) Small studies, sparse data, different prevalence

13



4 Chapter 4: Statistical software for meta-analyses of diagnostic
test accuracy

4.1 Introduction

After reviewing the concepts behind the MA of DTA, we can think that the journey stops here but it is
not finished. The next important step is to find a software that can successfully estimate the parameters
of our models with the related assumptions. Most of the time, this selection is not freely done, because
it mainly depends on the skills of the operators and the budget. Usually, when an author has a deep
understanding of the models and assumptions, the budget is not a limitation, and the coding skills can
be achieved because the motivation is clear. If the researcher understands the possible models that can
be fitted, choosing software is not a challenging quest. As follows, we reflect on the usual software option
and potential implications in the model selection and assumptions.

For general users without a statistical background it can be confusing why some software is not useful
to provide estimation in MA of DTA, and even dangerous to do descriptive explorations. In general,
it is crucial to realize the model provided by each software/package in MA of DTA. A common feature
in the MA of DTA studies reports, observed in this thesis, it was a complete lack of description of the
statistical model. For example “bi-variate random effect” model is the most commonly used term in the
methodological chapter of the selected studies, but never goes deeper if the bivariate model is finally a
NN or BN model. In the explored studies, the original studies estimates don’t have a high agreement
(see Figure 29) with any of the proposed models and software (NN/BN or BBN).

4.2 Statistical software review

In general, all the usual software (Revman, Meta-Disc, or more complex software like R, Stata, and SAS)
can provide simple pooling (univariate) fixed. But if we want to produce a summary estimate with a
bivariate random effect model, only software like R, Stata or SAS can be used.

4.2.1 MetaDisc

Metadisc 1.4 is standalone and free software created in 2004 (Zamora et al. 2006), broadly used 2, but
noways their developers 3 discourage using it for inference purposes and only recommend using it as a
descriptive approach. MetaDisc can conduct non-iterative estimation methods (DerSimonian and Laird
method) and iterative methods (MLE and REML) but only in a univariate fashion. The use of Meta-Disc
is prevalent in MA of DTA, specifically for plotting forest plots for the sensitivity and specificity. The
plots and estimations provided by this software include univariate pooled estimates. Still, most of the
MA of DTA studies that we revised for the actual meta-research were not aware of the univariate nature
of the estimation (used in the article and not reported as such).

4.2.2 Revman

Revman is a standalone and free software provided by Cochrane, which cannot be used to perform hier-
archical random-effects models; only exploratory analyses can be undertaken. Revman only conducts no
iterative estimation methods, specifically only the DerSimonian and Laird method is available (Veroniki

2It can be challenging to quantify how many times this software has been used. Still, the article that explains the
methodology behind the software (Zamora et al., 2006), it has been cited in 1599 according to Google Scholar until the
current date, July 29, 2020

3ftp://ftp.hrc.es/pub/programas/metadisc/Metadisc_update.htm
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et al. 2016). Cochrane recommends “the definitive analyses need to be undertaken in commercial soft-
ware packages and sophisticated statistical programming environments such as SAS, Stata, S-Plus, R,
MLwiN or WinBUGS/OpenBUGS” (Leeflang et al. 2013). According to Hoaglin (2018), Revman, and
Meta-Disc are prevalent and problematic software, because both continue to offer to the clinician the
DerSimonian-Laird method as the default method for random-effects MA, “without warning users of its
shortcomings or of calls to abandon it”.

4.2.3 R packages

Rstudio as all the R’ packages are free and available to use, but require that the user know how to code
in R. The number of packages in R for MA and MA of DTA can be overwhelming. So we’ll do a brief
description of the packages for MA of DTA. A CRAN Task View has been made for meta-analyses (Dewey
2020) in general. Specifically, a subchapter for MA of DTA can be found which mentions the following
software: mada, Metatron, metamisc, bamdit, meta4diag, CopulaREMADA, diagmeta, CopulaDTA,
and NMADiagT. Particularly mada and Metatron allow to fit Reitsma models. bamdit, NMADiagT and
meta4diag aloud to do MA of DTA Baysian models. CopulaREMADA and CopulaDTA offer extensions
through copula based mixed model distribution in MA of DTA. metamisc offer to fit Riley MA of DTA
models; and diagmeta aloud to do MA of DTA with multiple cutoff points. Other packages can be used
to fit MA of DTA, like glmer, but require more knowledge of the fitted model by the user.

4.2.4 bamdit

bamdit (version 3.3.2) provides “functions for Bayesian meta-analyses of diagnostic test data which
are based on a scale mixtures bivariate random-effects model” (using JAGS to implement the MCMC
method)(Verde 2010). Also, graphical methods are provided. This package was developed to simplify
“the use of meta-analyses models that up to now have demanded great statistical expertise in Bayesian
meta-analyses”(Verde 2010). Specifically, in bamdit we use the metadiag function, which performs a
Bayesian meta-analysis of diagnostic test data by fitting a bivariate random-effects model (Verde 2010).
“The number of true positives and false positives is modeled with two conditional binomial distributions
and the random-effects are based on a bivariate scale mixture of normal”(Verde 2018). Computations
are done by calling JAGS to perform Markov Chain Monte Carlo sampling and returning an object of
the class mcmc.list.

4.3 SAS details for fitting a meta-analysis of diagnostic test accuracy model

SAS is one of the most flexible options to fit mixed models. As follow, we’ll describe the details to fit the
MA of DTA model that will use our meta-research experiment.

One of the most classical Reitsma model code was done with PROC MIXED included in the original Reitsma
et al. (2005) model article. The steps in the code consist of data set transformation to produce Continuity
correction in each cell. In this model, the degree of freedom is considered arbitrarily high (df=1000) to
be able to produce a normal distribution (SAS provide a t-distribution by default). To facilitate the
interpretation of the estimate no-intercept statement model is used (noint). The repeated statement
is used because each study have outcomes logit(sen) and logit(spe) (each outcome has been previously
duplicated in two different lines), this is the multivariate aspect of the model. A random statement is
being used to produce the modeling of the response variable logit (logit(sen) or logit (spe)) through a
random intercept model. A dummy (dis and non_dis) variable represents the modeling of the disease
(sensitivity) or non-disease (specificity).
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In all the three classic procedures: PROC MIXED, PROC GLIMMIX, and PROC NLMIXED, the selected type of
covariance structure is unstructured (no restrictions in shape). In PROC MIXED to guarantees a positive
definite covariance matrix an unstructured covariance structure is used, specifically, a Cholesky root
(Stroup et al. 2018)(a type of unstructured structure), that constrain all diagonal values to be positive
(Type=CHOL statement). If the model does not converge using CHOL, the option UN (Menke 2010) option
can be used; but both options are unstructured covariance.

To be able to make a fair comparison between procedures, it will be essential to select the most similar
method of optimization, whenever it is possible. For example, in PROC MIXED and PROC GLIMMIX we
can perform both MLE and REML estimation, but PROC NLMIXED only allows MLE. In PROC NLMIXED
there is no direct analogue to the REML method (Wolfinger, n.d.)4. For PROC NLMIXED, one of the most
recommended integration approximation methods is the adaptive Gaussian quadrature, which allows us
to control the number of quadratures. In PROC MIXED the selected method will be a Restricted Maximum
Likelihood or REML using a ridge-stabilized Newton Raphson algorithm, with the default number of iter-
ations (50). In PROC MIXED we included the residual variance as part of the Newton-Raphson iterations,
which occurs when the HOLD= or EQCONS option is used in the PARMS statement, to use the within-
variance calculated from data as known. In MA of DTA, the Gaussian modeling requires the assumption
that “the within variance is known” (which is done through HOLD or EQCONS statement); this assump-
tion is not required in the non-linear cases, because it is directly estimated. Also PROC GLIMMIX can be
used as an iterative method, maximum likelihood estimation by adaptive Gaussian quadrature using the
statement METHOD=QUAD, sharing the quadrature method with PROC NLMIXED.

We follow recommendations by Diaz (2015) simulation-study about using PROC NLMIXED with an opti-
mization algorithm that uses double derivatives like TRUREG, NEWRAP or NRRIDG. Because this
method provide a more accurate estimation than the default option (QUANEW which performs a quasi-
Newton optimization) in PROC NLMIXED . Additionally, we will set 20 points of quadrature, which can
provide a good value of precision in Random effects models (Lesaffre and Spiessens 2001).

The estimations of sensitivity, specificity, and uncertainty measures were done in each Bayesian model
(binomial-normal and binomial-mixture of normal) using the bivariate mixed-effects regression model,
fitted with bamdit::metadiag. The common model features will be done with 10.000 iterations, 1000
adaptions, 1000 Burn-in, no thin (1), (original default options of bamdit), but the priors for the variance
of the logit will be selected from 0 to 5 (sigma.D.upper = 5, sigma.S.upper = 5); The possible values
selected for the priors of the variance give equal probabilities within a range between 0 and 5, which
includes the case of “non-heterogeneity between studies’ results” to “impossible to combine results”
(Spiegelhalter, Abrams, and Myles, n.d.; Verde 2019). We used three chains to check for convergence.
Convergence will be reviewed by inspecting trace-plots for covariance matrix element and pooled estima-
tions. bamdit computations are done by calling JAGS (Just Another Gibbs Sampler) to perform MCMC
(Markov Chain Monte Carlo).

In both approaches, we will be performing a random-effects meta-analysis, even when the authors orig-
inally performed a fixed-effects analysis. The sub-grouping analysis will be done in the same way as
the original 21 MA of DTA studies. A subgroup-analysis will be avoided if there is a general estimate.
Subgroup estimations will be conducted if in the original MA of DTA a global estimation was avoided,
to be able to compare when it is possible but also to respect the decision of the authors. Some minor
exception was found when no estimation was provided, like in all subgroup in MA of DTA 1, and partially
in some subgroups of MA of DTA 12, where some estimations were not presented (only four out nine
subgroups was omitted). Still, we decided to include these subgroups just in case no original estimations
were provided to compare with our estimations, to fulfill the rest of the model comparisons.

4The reason for this is related with common sense, ‘PROC NLMIXED‘ is a procedure for non-linear models, and if a
REML method could hypothetically be used in ‘PROC NLMIXED‘ would involve a high dimensional integral over all of the
fixed-effects parameters, and this integral is typically not available in the closed-form [@wolfingerFittingNonlinearMixed]
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4.3.1 Profile likelihood

The profile-likelihood can be calculated in a close solution, without the need to obtain it from the
likelihood grid evaluation of the software, but we consider it as not the best option. To be able to
evaluate the model fitted in each software, it is necessary to assess the PL function in such a context.
Specifically, exploring the grid of probabilities of the specific PL function in each software, instead of the
theoretical close PL solution.

The approach to producing the PL in SAS was mainly made using code provided by Millar (2011) and
SAS manual procedures for MIXED, PROC NLMIXED and PROC GLIMMIX (SAS 2015).

So, it is important to stress that for MA of DTA the use of more robust software like SAS Stat, Stata,
WinBugs/Jags, or R, is mandatory clearly knowing the assumptions behind the model fitting. Meta-Disc
and Revman are the most used softwares, these only provide “descriptive analysis”, fixed effect estimation,
or univariate analysis, with no possibilities to run hierarchical models.

Also, SAS functions provide support to evaluate the likelihood function in the fitted models in PROC
MIXED, PROC GLIMMIX, and PROC NLMIXED, which allows us to produce a PL. The only limitation to
provide PL in PROC MIXED and PROC GLIMMIX is that it doesn’t allow the PL of the central outcomes as
logit(sen) or logit(spec) fixed effects, but can be done with PROC NLMIXED.
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5 Chapter 5: Design of the meta-research experiment

5.1 Introduction

In this chapter, we present the design and data collection of a meta-research experiment to evaluate the
risk of statistical inference in MA of DTA through RIT score.

5.2 Data selection

A meta-research of recent meta-analyses of medical diagnostic test accuracy was performed. For each
meta-analysis included in the review, the diagnostic data results, study population’s characteristics, study
quality evaluation, details on the statistical procedures, and statistical software that have been applied
were extracted and summarized.

A Medline search was done with the phrase: (“Sensitivity and Specificity”[Mesh]) AND “Diagnosis”[Mesh]
AND “accuracy”[Title/Abstract], to search the last 21 DTA MA, and to analyze if in each study the
sensitivity and specificity estimation can be compromised (or not) according to (Jackson and White
2018). Inclusion criteria on the MA: presents contingency tables for each study (Author, year, TP, FN,
TN, FP) which need to use the same reference standard test. The exclusion criteria are; multiple disease
categories as target conditions, systematic review without meta-analyses, articles that only describe the
protocol for a future MA of DTA, MA of DTA of individual patients, MA of DTA with language different
from English, Spanish or French. We manually extracted the data for this thesis from the MA of DTA
study that met the inclusion criteria for further analysis.

5.3 General analysis steps

The selected studies were evaluated according to qualitative criteria and quantitative exploration to see
how normality assumptions can compromise in general the statistical analysis. A qualitative appraise
was applied in 21 MA of DTA (and their 55 subgroups) according to the proposed RIT score (see Table
3). These qualitative explorations allowed us to present possible reasons or scenarios that explain why
the results of published meta-analyses may be compromised under normality assumptions. The selected
MA of DTA studies were fitted through different models, evaluating convergence and profile likelihood
characteristics. Concordance analysis of the estimate and uncertainty measure was done according to
Bland and Altman (1986). A final analysis was conducted for connections between the’ findings. The
methodological steps are summarized in Figure 1.

5.4 Detailed analysis plan

5.4.1 Qualitative analysis

The qualitative evaluation of the 55 studies has consisted of a descriptive exploration followed by the
application of our “risk of compromised statistical inference tool” (RIT) in each study. Each item was
scored as high (3 or red), medium (2 or yellow), or low (1 or green) risk, given a total risk of 17*3=51
maximum score. To recognize the supposed impact of normality assumptions from a qualitative perspec-
tive, the RIT score was applied based on descriptive measures’ studies, to guide the decision in each risk
for RIT (previous Table 3 and Figure 4); these rule of thumb decisions are presented as follows:

1. Item 1 and 9: The assumption of these items does not hold when we are dealing with “sparse
non-continuous data”. A MA of DTA was classified as “high risk” if more than 40% of the studies
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Selection 
 21 MA studies

Exclude:
 − No 2x2 table

 − MA of individual patients

Qualitative evaluation risk 

Table Risk Tool Descriptives

Fit models: 
 Frequentist and Bayesian

Profile Likelihood Convergence

Agreement analysis: B&A

Figure 1: Flow diagram of steps that were followed for the meta-research on statistical methods of the
selected MA of DTA studies

contained zeros in the 2x2 table. A MA of DTA was classified as “medium risk” if 20-40% of the
studies contained zeros. Otherwise, a MA of DTA was classified as “Low risk”. The name of the
variable is rare cases in Table 5.1.

2. Item 2, 3, 10, 11, and 17: The assumption of these items does not hold when we see “small studies,
sparse or skew data”. This item was assumed not only when studies provided cells (from a 2x2
table) equal to zero, but also when studies were small. A DTA study was considered small when
having less than 30 patients, a rate of small studies greater than 0.3 were considered as medium
risk and 0.6 and higher risk. Rate small st and rare cases are the variables of interest in Table
5.1.

3. Item 4, 8, 12, and 16. The assumption of these items does not hold when we are facing “outlying
studies”. A MA of DTA was scored as “high risk” if we had 0.60 or more of the studies classified
as influential. A MA of DTA was at “medium risk” if we had between 0.30-0.60 of the studies
classified as influential; or else, a MA of DTA was classified as “low risk”. The name of the variable
is Rate of influentials in Table 5.1 .

4. Item 5 and 13. The assumption that tpi (or tni) is unbiased for TPRi(or TPNi) did not hold
when small studies were present, and also when a correlation between Logit(sensitivity) and their
variance was present. A MA of DTA was at “High risk” when the correlation was greater +0.7
or lesser than -0.7, but also jointly has the presence of small studies (item 2 of this list). If only
one of the previous elements were present it was considered as “medium risk” and “Low risk” if
no elements were present. Finally to be scored as “high risk” both elements needed to be present.
Rate small, Corr Se, and Corr Sp are the variables of interest in Table 5.1.

5. Item 6 and 14. The assumption of these items does not hold when “few studies are present” or when
we have an imprecise σSE . An imprecise σSE doesn’t occur when there are reasonably extensive
studies (Jackson and White 203318); a cutpoint of at least 30 patients in each study were considered,
as previously stated with the same rate. The used variable is Rate small st: a rate of small studies
greater than 2/3 were regarded as “high risk” between 1/3 and 2/3 “medium risk”, a rate of small
studies below 1/3 were viewed as “low risk”. The name of the variable is N Dta in Table 5.1.
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6. Item 7 and 15. The assumption of these items is not safe when “few studies are present”. A MA of
DTA with less than 10 DTA studies was considered as “high risk”. A MA of DTA with less than
15 was regarded as a “medium risk”, and finally a MA of DTA with greater than 15 DTA studies
was considered as “low risk”. The name of the variable is N Dta in Table 5.1.

5.4.2 Quantitative analysis:

The quantitative modelling was conducted following the frequentist and Bayesian bivariate random effect
models previously described. The variations on the normality assumption were compared through a
normal-normal (all normality assumption are made) with a binomial-normal (frequentist and Bayesian,
only normality assumption are made in the higher level). Finally, the previous models were compared with
a Bayesian binomial-mixture of normal. Four random-effects models were fitted in each MA of DTA study:
frequentist normal-normal (NN), frequentist binomial_normal (BN), Bayesian binomial-normal (BBN),
and Bayesian binomial-Mixture of normal (BBM). Each model was checked for convergence and was
explored through the profile likelihood (frequentist) or Posterior density function (Bayesian) (See Figure
1). Also, each fitted model was compared through their estimations: logit(sensitivity), logit(specificity),
variance(logit(sensitivity)), variance(logit(specificity)), covariance, and correlation. The comparison was
made through the Bland & Altman method of agreement.

The estimations of sensitivity, specificity, and uncertainty measures was done in each frequentist model
(normal-normal and binomial-normal) using a bivariate mixed-effects regression model, fitted with PROC
MIXED, PROC NLMIXED and PROC GLIMMIX with SAS/STAT version 9.4. Such models were done follow-
ing the previously published codes by Reitsma et al. (2005), Riley et al. (2007) and Menke (2010),
respectively.
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6 Chapter 6: Results of the meta-research experiment

In this chapter, we present the results of our meta-research experiment, organizing the results as follows:

1. Summary of the MA of DTA (1.1 Data characteristics, 1.2 Methods, and software used)
2. Results of risk of statistical inference (2.1 Qualitative results: RIT, 2.2 Quantitative results)
3. Agreement analysis
4. Relationship between the presented findings

From the original 21 MA of DTA, we get 55 estimations due to the subgroup estimations. In Table
6 (appendix) we can see the subgroups nomenclature present in each MA. Each one of the subgroup-
estimations was considered as an independent study for the modelling estimations (Tables 8, 9, 10, 11,
and 12, from appendix), using the ID notation (Id sub studies column) presented in the Table 6.The
same ID number is used for the estimation Tables (Tables 8, 9, 10, 11, and 12, from appendix) and also
as identification in all the plots presented as results.

6.1 Data characteristics: descriptive features

With the purpose to provide support to the qualitative RIT scoring, we provide descriptive measures,
that can help to discriminate the statistical risk related to each study, based on the descriptive numerical
findings. Such descriptive measures are based on the cutpoint presented in the previous section.

The descriptive values are presented in Table 5.1, coloured with the potential risk of each measure. In
Table 5.1, the numbers printed in orange represent a medium risk, and the numbers written in red denote
high risk. An explanation of the used variables in Table 5.1 is described as follows. N DTA represents
the number of DTA studies in each subgroup selected (or all the studies in case no subgroups, see Table
6). The variable Ratio prev represents the ratio between the lower prevalent DTA study divided by the
prevalence of the highest, a small Ratio prev shows more risk for normality assumptions (RIT). The
columns rate.RC.Se and rate.RC.Sp are the number of “rare cases” or cells equal to zero for sensitivity
or specificity related cells (FN=0 or TP=0 for Sen, and TN=0 or FP= for Spec). The Rate Infl variable
represents the rate of studies where sensitivity/specificity outcomes show an influence trend in influential
plots (done with metafor:rma, plots are not presented for space reasons only summarized as Rate Infl).
The Rate small st variable represents DTA studies with less than 30 patients divided by all studies.
Finally, the Corr Se and Corr Sp variables are the Pearson correlation index between the logit of the
accuracy measure and its variance, an index higher than 0.7 (or lower than -0.7) is considered to provide
risk. In Table 5.1, the numbers printed in orange represent a medium risk, and the numbers written in
red denote high risk. A brief exploration of the descriptive measures are presented in the Figures 2 and
3, and will be explained as follows.

In the studies, we observed that a high correlation (an index greater than 0.7 or lesser than -0.7) (Figure
2a) between accuracy (logit) measure and the variability is a common situation, and only a few amounts
of studies present low correlation. In the correlation plot (Figure 2b), presents at the same time three
risk factors: number of studies, rate of influential and rate of rare cases. We can see that only taking
these three measures, a low amount of studies show a low trend risk. Low-risk MA of DTA studies is
recognized when present in more than 15 DTA studies. Also, we can see that when the number of studies
is lower than 10, the probabilities to have influential outliers increases.

An additional descriptive plot is the treemap plot (see Figure 3), which allowed us to visualize prevalence
and DTA studies size. The treemap is a hierarchically organized plot where each MA of DTA contains
their DTA studies coloured with the prevalence in each DTA. Three plots are presented to allow that
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Figure 2: Descriptives explorations about risk of compromised statistical inference tool

similar studies (in population size) are compared in the same treemap, to avoid scalability issues between
larger and shorter studies. These plots bring us a valuable insight into the collected sample of studies:
it’s more likely to have more heterogeneity in the prevalence and in the size rates when studies are
“larger” (like studies: 7, 15, 14, 11) which also doesn’t have any sub-grouping. Also, we can see a more
homogeneous pattern (prevalence and size) when the MA of DTA has less studies and patients. We think
that this trend is not casual, and reflect the true nature and purpose of sub-grouping in the original MA:
to bring a homogeneous comparison.
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Figure 3: Population proportion size in each MA, colored with the prevalence of each DTA, divided in
three group for scalability reasons

6.2 Risk score for the meta-analyses of diagnostic test accuracy studies

We have seen the amount of descriptive that each study can provide (Table 5.1). It can be a challenge to
summarize these indexes and conclude the potential impact on the inference process under the normality
assumption with the collected raw data. Now, a measure that collects and weighs these characteristics,
relative to inference risk assumptions, seems valuable. One benefit of the RIT is to allow us to summarize
the descriptive measures presented in the context of risk of normality assumptions.

In this subchapter, the RIT score previously defined was calculated for the MA of DTA studies, using
the previous descriptive measures. The already presented cutpoint for such descriptive measures is in
relationship to each item of the RIT for MA of DTA. The results of the RIT score in the selected studies
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are presented in Figure 4 using the red colour for high risk, yellow for medium risk, and green for low
risk. An alternative summary of the RIT Table was done transforming the three categories into numbers:
three (3) as red, two (2) as yellow and one (1) as green.

A connection between the binary score and the previous descriptive variables are presented in Figure 5,
which represent the “closeness” between different descriptive measures but coloured with a binary RIT
score of the MA of DTA studies. The principal component analysis (PCA) Figure suggests an interesting
connection between variables like rate of influential studies and rate prevalence 5, rate of small studies
and rate of “rare cases” or cells equal to zero for sensitivity or specificity 6, and finally the number of
studies and the total population in a MA of DTA study. Furthermore, the “cloud” of low-risk studies
(blue triangles) has a higher eigenvalue for the population and number of DTA studies, and the “cloud”
of high-risk studies (red circles) has more rate of influential studies, rate of prevalence and rate of small
studies. This highlights that these variables produce a more significant impact in the scoring process than
correlation, which somehow is more prevalent in “low-risk studies” according to the binary RIT score.
Finally, the MA of DTA studies that have a higher population/number of DTA are the ones that have a
lower amount of rate of influentials and low rate between studies prevalence.

Different PCA with a different cutpoint was done to decide the optimal measure in our 55 subgroup
samples. In Figure 5 the PCA is coloured with the chosen cutpoints: a RIT score 33 or bigger is
considered as high, and 32 or lesser as low. The cutpoint of 33 for RIT produces a binary risk index. The
binary RIT was used in the following analysis to predict how the models would perform in each MA of
DTA. The model performance in each MA of DTA consists of convergence of each model in the observed
data, presence of non-positive definite (G or H matrix) and PL irregularities.

A triplot or ternary diagram (Figure 7) is presented which shows the percentage of high/medium/low
score items in each MA of DTA subgroup. This plot can provide us with a simple fact that a high score
can be achieved not only by a high percentage of red scored items (like studies 29, 43, 40, 50 and 28),
but also by studies with a high percentage of yellow scored items (like 27, 37, 49, 23), and finally, a low
score is possible only with a high percentage of green score item.

5which make sense because if the prevalence between studies is quite different, it can potentially convert into influential
in the MA of DTA analysis

6which also make sense because this small studies can have more chance to present zero cells
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Table 5.1: Descriptives measures summary of the 55 studies (21 MA)
Study MA N Dta Pop Pop prom Rate preval rate.RC.Se rate.RC.Sp Rate Infl Rate small st Corr Se Corr Sp

1 1 3 62 21 0.48 0.33 0.33 0.33 0.67 0.95 0.14
2 2 5 245 49 0.44 0.20 0.20 0.20 0.20 0.80 0.48
3 3 12 1432 119 0.24 0.17 0.00 0.00 0.00 0.90 0.05
4 4 4 598 150 0.59 0.00 0.00 0.25 0.00 0.81 0.83
5 5 3 113 38 0.55 0.33 0.33 0.33 0.67 0.49 0.83
6 6 13 553 43 0.50 0.08 0.92 0.00 0.62 0.31 -0.75
7 7 73 27091 371 0.10 0.03 0.79 0.04 0.00 0.67 0.42
8 8 4 2892 723 0.81 0.00 0.25 0.50 0.00 0.71 0.99
9 9 21 3579 170 0.28 0.00 0.05 0.00 0.00 0.71 0.76

10 10 15 1181 79 0.31 0.07 0.27 0.00 0.13 0.59 0.60
11 11 17 2982 175 0.08 0.18 0.35 0.00 0.06 0.63 0.70
12 12 7 658 94 0.11 0.00 0.14 0.29 0.00 0.63 0.48
13 13 21 1034 49 0.28 0.19 0.38 0.05 0.38 0.72 -0.36
14 14 19 3173 167 0.03 0.05 0.58 0.00 0.00 0.32 0.58
15 15 30 5250 175 0.05 0.50 0.37 0.03 0.20 0.43 0.06
16 16 5 1054 211 0.17 0.00 0.00 0.20 0.00 -0.67 -0.74
17 17 15 820 55 0.32 0.20 0.00 0.00 0.07 0.85 0.76
18 18 22 2411 110 0.22 0.14 0.23 0.00 0.05 0.80 0.11
19 19 3 198 66 0.62 0.00 0.00 0.67 0.00 0.97 0.99
20 20 11 2844 259 0.30 0.27 0.00 0.09 0.00 0.76 0.76
21 21 7 522 75 0.40 0.00 0.14 0.14 0.14 -0.24 0.73
22 8 5 1662 332 0.51 0.00 0.20 0.20 0.00 0.90 0.82
23 1 5 147 29 0.48 0.20 0.40 0.40 0.60 0.85 -0.22
24 8 17 1988 117 0.26 0.00 0.82 0.12 0.06 0.16 0.22
25 10 10 670 67 0.36 0.10 0.20 0.10 0.00 0.78 0.90
26 12 7 625 89 0.40 0.00 0.14 0.14 0.00 0.49 0.56
27 12 3 196 65 0.62 0.00 0.33 0.67 0.33 -0.54 -0.27
28 12 4 320 80 0.60 0.00 0.25 0.50 0.25 0.32 -0.06
29 12 3 61 20 0.62 0.33 1.00 0.67 0.67 -0.98 0.82
30 21 7 507 72 0.40 0.00 0.14 0.00 0.14 0.88 0.42
31 16 7 1488 213 0.34 0.00 0.00 0.29 0.00 0.86 0.40
32 8 40 13561 339 0.05 0.07 0.17 0.00 0.00 -0.19 0.60
33 10 11 742 67 0.18 0.00 0.18 0.00 0.09 0.36 0.78
34 21 6 726 121 0.24 0.33 0.50 0.67 0.00 0.89 0.80
35 18 18 2326 129 0.13 0.11 0.44 0.06 0.06 0.70 0.42
36 18 11 1329 121 0.17 0.18 0.18 0.09 0.00 0.73 0.81
37 5 3 153 51 0.46 0.00 0.33 0.67 0.33 -0.67 -1.00
38 5 3 153 51 0.46 0.00 0.33 0.67 0.33 -0.86 0.82
39 8 9 4172 464 0.24 0.11 0.11 0.11 0.00 0.82 0.60
40 8 4 1476 369 0.39 0.00 0.25 0.50 0.00 0.83 0.90
41 6 12 398 33 0.00 0.25 0.33 0.08 0.67 0.07 -0.20
42 10 17 1159 68 0.17 0.06 0.29 0.00 0.12 0.65 0.84
43 12 4 321 80 0.39 0.00 0.25 0.50 0.25 0.41 0.81
44 12 3 736 245 0.44 0.33 1.00 0.33 0.67 -0.76 -1.00
45 12 3 197 66 0.44 0.00 0.33 0.67 0.33 -1.00 0.89
46 17 13 1507 116 0.19 0.08 0.00 0.08 0.08 0.68 0.22
47 12 8 756 94 0.20 0.00 0.12 0.12 0.00 0.50 0.58
48 19 3 190 63 0.39 0.33 0.00 0.67 0.00 0.97 0.87
49 19 4 308 77 0.31 0.50 0.00 0.75 0.00 0.95 0.88
50 8 5 505 101 0.26 0.00 0.60 0.40 0.00 0.79 0.77
51 1 5 196 39 0.26 0.00 0.00 0.40 0.40 -0.71 0.73
52 1 3 105 35 0.39 0.33 0.00 0.33 0.33 0.60 0.78
53 8 4 1282 320 0.31 0.25 0.25 0.50 0.00 0.94 -0.81
54 10 10 1005 100 0.22 0.10 0.40 0.10 0.00 0.89 0.65
55 4 7 2256 322 0.36 0.29 0.00 0.14 0.00 0.91 0.86
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Figure 4: Risk of compromised statistical inference tool applied into 55 MA studies: colored and trans-
posed version. Risks items from 1 to 17 are kept in the same order as the original table

According to Figure 4 24 studies have a RIT score higher than 33 (43% can be considered as risky to make
normality assumption); and the rest 31 studies that can be considered as a low risk to make normality
assumption, according to such cutpoint.

6.3 Methods and software used in the original published meta-analyses of
diagnostic test accuracy

In this chapter, a description of the methods and software used for the original MA of DTA was done.
In general, we can say that only seven (7) studies provide general pooled estimates: (Bellini et al. 2019;
Bin et al. 2019; Farahani and Baloch 2019; He et al. 2019; Lee et al. 2019; Li et al., n.d.; Tsou et al.
2019).The rest of the studies (15) made subgroup analyses or ROC curve analysis. All the studies provide
only frequentist analysis.

A brief review of the statistical decisions of each study can provide us with key information to understand
the potential associated risk of bias. From the 21 MA of DTA selected studies, general features of each
study were collected (see Table 7 in the appendix). From the selected studies 11/21 (52,38%) used Revman
and/or Meta-Disc. The only study that uses exclusively descriptive analysis is Barnsley and Barnsley
(2019), which doesn’t produce any pool or line estimation. All the rest, blend “descriptive/exploration”
software like Revman or Meta-Disc with software that could potentially perform a hierarchical analysis
like Stata or R. That several MA of DTA studies base their decision on a univariate heterogeneity index
is the most obvious red flag in this Table. These studies are: Bellini et al. (2019), Faias, Pereira, Luís,
Chaves, et al. (2019), Faias, Pereira, Luís, Cravo, et al. (2019), He et al. (2019), Li et al. (n.d.), Li et al.
(2019), Wei, Zhao, and Wang (n.d.), Yoon et al. (2019), and Zheng et al. (2019). Model selection based
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on a univariate heterogeneity index is a potential source of bias. This flaw can explain the difference
between the original estimated values of each study, and the random effect model estimation provided in
the following sections.

Another methodological flaw observed in the reviewed MA of DTA comes from the use of Meta-Disc
software forest-plots. Such forest plots produce univariate analysis pooled estimates. However, authors
of the reviewed MA of DTA didn’t explicitly report it, which we assume is a common practice. The studies
reported (Bellini et al. 2019, @binValueThreeDimensionalUltrasound2019a, @faiasGeneticTestingVs2019,
@faiasKRASCystFluid2019, @zhuDiagnosticValueVarious2020) a “bivariate” model, but a forest-plot was
presented with a univariate estimation.

6.4 Quantitative analysis: model performance

We consider for the model performance in each MA of DTA, three features: convergence of each model
in the observed data, presence of non-positive definitive (G or H matrix) and PL irregularities.

6.4.1 Convergence of the models

In general, all the main convergence characteristics of each model can be seen in Figure 8B: convergence,
and positive-definite of the G (random effect variance-covariance matrix) and H (Hessian) matrix . In
SAS, a positive H matrix confirms that the estimate is a maximum. In SAS, G matrix is designated
for the variance-covariance matrix for subject-specific effects. When G matrix is non-positive-definite, it
means that one or more variance component in the random statement is estimated to be zero
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7, due to that in a hierarchical model PROC MIXED or PROC GLIMMIX apply a logical lower boundary
to all variance components making them greater than 0.

The convergence status and the positive-definite of the G/H matrix are information provided auto-
matically by SAS procedure and collected for all the fitted models. In Figure 8B, the significance
of the acronyms are NN.Status/GBN.Status= convergence status in NN model/GLIMMIX BN model,
NN.pdG/GBN.pdG= Positive-definite in the G diagonal matrix for the NN model/GLIMMIX BN model,
NN.pdH = Positive-definite in H matrix for the NN model. The interpretation for the colour in the
Figure 8B and C are grey in the case to have a positive-definite matrix results and red for non-positive
definite status.

The ideal convergence model scenario is not only to have an “ok” general status converge but also to
present a positive-definite G and H matrix. This feature confirms not only convergence of the model, but
the stability of the covariance estimates (G matrix), also that the estimates are a maximum (H matrix).
The failure in convergence in the NN model, could not be improved using manual starting values. In
particular, BN classic model in GLIMMIX procedure, the SAS default starting values were enough to
achieve convergence but not positive-definite for all the cases (see Table 8). With the NLMIXED pro-
cedure, the fitting process requires more work because with the default starting values, several models
didn’t converge. So, the estimates from GLIMMIX were used in NLMIXED as starting values in 53 stud-
ies, except the study 29 and 44. Such studies required modification of the starting values which allowed
us to achieve convergence. The reason for the failure of the GLIMMIX starting values in NLMIXED with
the model 29 and 44, was that the central estimation in GLIMMIX presented overestimation, despite to
have a “convergence” status. Once again, here we would like to stress that a convergence status does not
mean that we are in a safe zone, it is required to check that G/H matrices are positive-definite. When a
message of a non-positive-definite matrix is received, it means that the quality of the model convergence
is questionable. Possible reasons behind this can be: 1) the estimate is not a maximum (H matrix) 2)
the specified model cannot be adequately estimated with your data (G matrix). Convergence’ Bayesian
models were achieved without the need to work on the default starting values in bandit in all the cases.

For the process of exploring the PL functions in the BN classical models, three scenarios were chosen: a
GLIMMIX BN model with default starting values, a BN NLMIXED model with default starting values,
a BN NLMIXED model with the GLIMMIX starting values or manual when needed.The most surprising
fact was the repercussion of the starting values on the PL in NLMIXED, which in general improves the
observed discontinuities in PL when better starting values are provided.

In Figure 8B we can see that despite that all BN models converge in all the cases (GLIMMIX and
NLMIXED) not all of them present a positive-definite G matrix. For NN model several studies did not
converge (1, 5, 8, 15, 16, 27, 28, 29, 34, 37, 38, 44, 45, 48, and 52), we even had convergence in NN model
without having positive-definite (like studies: 2,3, 6, 12, 19, 20, 21, 23, 30, 41, 49). We can realize that
convergence and positive-definite are not common in our selected sample under the proposed models: in
the NN model 58% (30/51) are convergent and positive-definite, and in the GBN model 58% (30/51)
are convergent and positive-definite; and positive-definite convergent models in both models only a 49%
(25/51) of the studies.

6.4.2 Profile likelihood and posterior density functions of the models

In the Figure 8C a summary of all PL functions irregularities can be seen for the 55 models: nu-
merical discontinuities, and non-informative patterns. The PL irregularities were visually evaluated

7Probably because not enough variation in the response to attribute any variation to the random effect, producing an
estimation equal to zero. It’s a kind of mismatch between the model and the observed data that impact the variance
estimation producing in most of the cases an underestimation of the true value.
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by the author (in the appendix chapter from Figure 37 to 91). In Figure 8C, the significance of the
acronyms are NN.disnum/GBN.disnum= Numerical discontinuities for NN model/GLIMMIX BN model,
NN.NI/GBN.NI= PL NN model/PL GLIMMIX BN model is not informative.

A key aspect in the current analysis is the recognition of PL functions that may compromise the estimation
of each study. In general, a PL that does not show a clear maximum upon simple inspection, such as
flat curves, multiple peaks, or maximums on the parameter boundary present this type of problem.
Such non-informative probabilities do not allow the finding of a reliable estimate and generally coincide
with non-convergence issues or large heterogeneity in the studies. These situations have previously been
described as a risky scenario for estimation by Gelman et al. (2013), Curcio and Verde (2011) and Riley
et al. (2007).
A PL is assessed as non-informative when the peak’ PL-function is observed on the frontier of the space
parameter (close to 0 in the case of variance, or correlation close to +1/-1). When the PL function is
non-informative in most of the cases it produces an estimation for the parameter equal to zero (Curcio
and Verde 2011) when other values also can be possible, producing an underestimation of the variance
in most of the cases; this situation usually produces a positive-definite G matrix. Furthermore, the PL
function is also considered non-informative when the PL function is completely flat. A PL with numerical
discontinuities is observed in the iterations process through a grid when the PL in some points produces
a non- convergence , that can be seen as a discontinuity in the PL function plotting like Figure 37, 48,
57, 59, 65.

The PL function plot can be used to check how plausible and reliable can be the provided estimation
by the software, under the normality assumptions in NN and BN models, and contrasting with the
Bayesian posterior distribution of the same parameter, which relaxes these assumptions in the whole
hierarchical structure. The PL function needs to provide enough and non-conflicting information to
support a numerical estimation by the software procedure. The ideal scenario for a PL function is the
one that presents a unique peak in the space parameter. Another non-ideal scenario occurs when the
function maximum is observed in the space frontier’ parameter 8. If the normality assumptions are
not risky in the observed data of each study, we expect to see similar distribution between the four
models. Specifically, a normal assumption can be safely made when the variance of the logit(sensitivity)
or logit(specificity) follows a normal shape or at least a gamma distribution shape. The same occurs
for the PL in the covariance between logit(sensitivity)-logit(specificity), where we expected to see a beta
shape distribution. In general, we can see (in the appendix chapter from Figure 37 to 91) that these
optimistic scenarios rarely occur in our selected sample studies.

A PL and posterior function exploration of the different fitted models are presented case by case in the 55
studies (in the appendix chapter from Figure 37 to 91). In each PL panel study, additional information
is summarized like descriptive measures and RIT scores; the blue vertical lines represent the estimation
points for each model. In PL NN Mixed when the model is not convergent no line is printed , because
PROC MIXED do not provide an estimation. However, when a BN NLMIXED does not converge,
PROC NLMIXED still can give an estimation in this case lines estimation are red. We have blank areas
in the panels because in PROC MIXED and PROC GLIMMIX there’s no standard procedure to find
a PL for the central estimations. Also, the PL NLMIXED with manual starting values was limited to
a random selection between all the MA, labeled studies 1-21. Because it’s a “time-demanding task”, it
was avoided from study 22 to 55, which are additional subgroups of the same original 21 MA. Although
we only did two versions of NLMIXED from study 1 to 21 (not for 22 until 55), it is possible to have a
clear understanding of the potential impact of better starting values to improve the PL function in BN
NLMIXED models. This is one of the significant insights in this exploration: the starting values usually

8The frontier’ paramater is the value that such parameters can not assume; for example for variances zero is the frontier,
and for correlation such values are -1 or 1.
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Table 4: RIT prediction for model performance features in classical models, with different optimal cutoff
points , and their sensitivity and specificity

Features Optimal.cut.off Sensitivity Specificity
NN.Status 39 0.73 0.90
NN.pdG 36 0.65 0.86
NN.pdH 25 1.00 0.20
NN.disnum NA NA NA
NN.NI 28 0.70 0.56
GBN.Status NA NA NA
GBN.pdG 38 0.56 0.93
GBN.disnum 39 0.53 0.86
GBN.NI 24 0.85 0.67

change the PL function, which also leads to better chances to have more reliable estimation. 9.

6.4.3 Prediction skills of the binary risk score

This subchapter presents an exploration of the predictive abilities of the binary RIT (with a cutoff point
of 33) for non-convergence, non-positive definite matrix, and PL irregularities in the classical models.
One additional goal of this chapter is to explore other possibilities for a cutoff point, according to the
previous model’s outcomes.

One of the possible benefits of the proposed RIT score in MA of DTA is to predict situations in which
normality assumptions in a classical bivariate model can produce non-convergence or non-positive-definite
in the G or H matrix or PL irregularities. Outcomes with a constant result (see Figure 8) will not be
possible to predict; like GBN.Status (convergence of Glimmix BN model) and NN.Disnum (numerical
discontinuities for the NN model). An increment of the sample size may produce more variability in such
measures, but according to this reduced sample size of studies such variables doesn’t provide any change.

In Figure 9 the optimal cutpoints were determined for different model performance features. An “optimal”
cutpoint for the risk score is the one that maximizes both accuracy measures. Using the cutpoints of
Table 9, an average of the most frequents optimal cutpoint (36, 38, 39, and 39) was done to propose
an alternative cutpoint of 38. Table 4, and 5 presents the accuracy measures for both cutpoints. The
cutpoints RIT=33 and RIT=38 present a similar Youden index (sensitivity +specificity-1) (see Table 5)
for each predicted feature, which means that they have similar general accuracy. The fact that both
cutpoints share similar precision measures ensures that the prediction skills for the most conservative
cutpoint (33) share some close similarities with one of the “best” cutpoint (38).

Similar reasoning can be done with the cutpoint equal to 24 for the model performance features: GBN.NI
and NN.pdH, which noticeably increases the accuracy skills (for GBN.NI). Such cutpoint findings are only
post-hoc explorations that can not be validated in our study, because the explorations are done after
looking at the data. Future studies with bigger sample sizes could explore these additional cutpoints.

Additionally, we can stress that the plots for optimal cutoff point for RIT score (see Figure 9) show more
a plateau curve shape, rather than a precise peak shape. The only exception could be GBN.NI which
clearly present a peak when the score is equal to 24. The previous reasons can be used to reassure the
original cutpoint of 33 (which is more conservative than 38), and only suggest additional cutpoint that
could be explored by future research (like cutpoint of 24 or cutpoint of 38).

9If the use of starting values is limited only when convergence issues arise, neglecting important messages of non-
positive-definite G or H matrix, potentially can jeopardize the trust in the variance-covariance estimations when G matrix
is non-positive-definite, and the certainty of having a maximum when H matrix is non-positive-definite.

30



A) Items' risk statistical inference 

1 3 5 7 9 11 13 15 17

Study 55

Study 54

Study 53

Study 52

Study 51

Study 50

Study 49

Study 48

Study 47

Study 46

Study 45

Study 44

Study 43

Study 42

Study 41

Study 40

Study 39

Study 38

Study 37

Study 36

Study 35

Study 34

Study 33

Study 32

Study 31

Study 30

Study 29

Study 28

Study 27

Study 26

Study 25

Study 24

Study 23

Study 22

Study 21

Study 20

Study 19

Study 18

Study 17

Study 16

Study 15

Study 14

Study 13

Study 12

Study 11

Study 10

Study 9

Study 8

Study 7

Study 6

Study 5

Study 4

Study 3

Study 2

Study 1

33

31

39

39

40

37

40

39

25

23

48

46

34

22

36

37

27

48

46

26

22

44

24

17

27

27

50

33

45

25

28

22

43

28

26

27

36

23

26

26

25

22

31

25

23

27

20

36

22

38

44

31

25

28

44

B) Non−convergence and non−positive definite
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Figure 8: Summarize of the A) RIT-risk inference tool, B ) non-convergence and non-positive definite
matrix C) profile likelihood visual irregularities under visual inspection. Colour legend: in A) red is high
risk, yellow is medium risk and green is low risk; in B) red means non-convergence or non-positive definite
matrix, in C) red means numerical discontinuities, or PL non-informative
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Figure 9: Optimal cutoff point for risk score to predict convergence features in classical models

Table 5: Prediction sensitivity and specificity for convergence features with risk score in classical models
with a cutt-off=33 and cut-foo=38,

Cutoff=33 Cutoff=38
Features Sensitivity1 Specificity1 Youden1 Sensitivity2 Specificity2 Youden2
NN.Status 0.72 0.87 0.59 0.88 0.73 0.61
NN.pdG 0.79 0.69 0.48 0.93 0.54 0.47
NN.pdH 0.56 0.00 -0.44 0.70 0.00 -0.30
NN.NI 0.62 0.52 0.14 0.75 0.35 0.10
GBN.pdG 0.77 0.68 0.45 0.93 0.56 0.49
GBN.disnum 0.64 0.58 0.22 0.83 0.53 0.36
GBN.NI 0.67 0.44 0.11 1.00 0.31 0.31

32



It’s important to remind that the cutoff point equal to 33 provided a better separation in the PCA
exploration of the RIT score (no information was used about the convergence or the PL irregularities at
that analysis stage), and could be considered as a validated cutoff point for medium risk. The actual
exploration for a new cutoff point can be considered for a high-risk level. Introducing a new cut off point
post-adhoc changes the validity of the last cutoff point, and only can be considered as an exploratory
approach. An additional study can bring validation of the sensitivity and specificity values for the second
cutoff point, and confirm the value for the first one proposed already.

6.4.4 Agreement between measures

The evaluation in the proposed MA of DTA methods was done through Bland-Altman analysis(B&A
plot) (Bland and Altman 1986), which is a graphical method to quantify the agreement between two
quantitative measurements by constructing an interval of agreement. B&A plots help to evaluate a po-
tential bias between the mean differences between two methods and to estimate an agreement interval
through a confidence interval (Bland and Altman 1986). The use of the correlation coefficient (Pearson)
can be misleading because such an index measures the relationship between two variables, not the agree-
ment between the measures. Correlation studies the relationship between one variable and another, not
the differences, and it is not recommended as a method for assessing the comparability between methods
(Giavarina 2015).For example, a change in the scale provides the same correlation but not the same
agreement; also, a perfect agreement only is shown in the case of a correlation coefficient equal to one.
The Bland-Altman method only defines the intervals of agreements but does not conclude if the limits
are acceptable or not. Such a decision needs to be done according to a clinical necessity (Giavarina 2015).

The B&A plot is a scatter plot between the difference between the two paired measurements (y-axis)
and the average of these measures (X-axis). The original authors recommended that 95 of the data
points should lie within ±2SD of the mean difference (Bland and Altman 1986). In the case of a good
agreement, all the dots are around the zero line with a dispersion degree not greater than intervals of
agreements proposed; also it is essential to check that the degree of dispersion is uniform.

The differences between the estimation of equivalent models theoretically should be equal to zero. But
this is almost, because each estimation method could implicitly have some degree of error. “However, if
the variability of the differences were only linked to analytically imprecision of each of the two methods,
the average of these differences should be zero” (Giavarina 2015).

6.4.4.1 Global agreement In the Figures 16, 17, 18, 19, 20, and 21 several global B&A agreement
analysis between all the model estimates in each MA of DTA are considered jointly (risky and non-
risky MA of DTA for normal assumptions), to evaluate the effect as whole of the model assumption,
independent of RIT score in each study.

When all the estimation comparisons are considered together, according to the B&A statistics it is
difficult to find a statistical significance with 95% normal confidence interval (CI). In the agreement
between Freq BN and the Bayes BN estimation of the variance of logit(sensibility), can be shown a slight
underestimation pattern, where the CI does not include zero. This can be interpreted as the frequentist
BN model can produce an underestimation of the variance, compared with the same Bayesian model
(using non-informative priors).

A more clear trend is achieved when each MA of DTA is evaluated case by case in a detailed B&A analysis
(next section). Also, the estimation of the CI using a normal interval assumption can be a bold statement,
so we decide to consider a non-parametric bootstrap CI with a significance level of 90%. A 90% CI allows
us a more sensitive agreement analysis, producing a larger amount of dis-agreement between studies than
a 95% CI.
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Models comparrisons in each study
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Figure 10: Disagreement according to Bland-Altman analysis between models in each study, RIT score
with a cutoff point=33
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6.4.4.2 Case by case agreement The agreement between two methods, according to the B&A
method, occurs when the confidence interval contains the differences between each pair of measures.
When two methods provide a complete agreement we can see a homogeneous cloud of dots inside the CI
of the B&A plot. Special cases of agreement can be seen when the pattern is not homogeneous, when
the trend is linear it can be interpreted as two methods that present “a proportional constant error,
overlapped with the same proportional variability” (Giavarina 2015). In both cases, if the CI contains
the dots, we can sustain that an agreement is accomplished between methods.

The confidence interval was one with a non-parametric bootstrap, to increase the accuracy in the con-
fidence interval without the risk to assume normality in the difference between the estimation between
models. The confidence level for the interval was done with a 90%; all the plots are provided coloured by
the binary RIT risk (cutoff point=33) as usual.

The reasons for excluding a study in this analysis were: non-convergence in the Reistma model, no
reported estimations on the original studies, and extreme outliers estimations. In the NN model fitted
through PROC MIXED, studies without convergence (1, 5, 8, 15, 16, 27, 28, 29, 34, 37, 38, 44, 45, 48
and 52) were naturally excluded, because the software does not provide an estimation. GLIMMIX always
provides convergence (FCONG or GCONV) and NLMIXED also converges in all the cases (studies 29 and
44 require manual starting values). As we previously stated studies without original estimates: 1, 23, 27,
29, 44, 45, 51, and 52 were excluded from original estimates comparisons. The excluded studies common
in“non-convergence models NN” and “no original estimates” are: 1, 5, 8, 15, 16, 23, 27, 28, 29, 34, 37,
38, 44, 45, 48, 51 and 52. Specifically, between the fitted models in GLIMMIX, we found two studies
estimations that require an exclusion “by hand” in the plotting process, not for convergence issues. Still,
because of their extreme numeric estimation, that does not allow us to understand the pattern of the rest
of the studies. Still, these estimations were considered as a disagreement in the following analysis (Table
10). Comparisons are made only in one specific direction; for example, the comparison BN (as reference)
vs NN was not done because it was previously done with NN (as reference) vs BN.

A fair comparison between correlations estimations always presents an additional challenge. If the correla-
tion estimation is calculated indirectly with the covariance and variance estimations, (or if the estimation
is provided directly by the software), some estimates were equal to infinite when the variance is zero; so,
these are not-defined correlations values, which are excluded from agreement analysis between correla-
tions estimation. A Fisher transformation was applied to the correlations estimations, which allowed us
to convert a skewed distribution of the sample correlation into a more normal shape distribution.

All the disagreements are summarized in the Table 10, where a grey celli,j that a disagreement outside
the non-parametric bootstrap CI of 90% was noticed in studyi (rowi of the Table) under the model
comparison of the Table columnj . In Figure 10, the right axis presents again the binary risk score. The
original B&A plots can be seen (Figure 18 to 30) in the appendix.

No RIT score prediction for the disagreements is shown, despite it being done, because it was not
significant in all the cases. We argue that a possible reason for a failure to achieve prediction skills in
the RIT score for the disagreement, could be related to a lower sample size of the studies. It can also be
because it cannot be predicted with the RIT score. Only a bigger study with a bigger sample size can
answer this.

As follows, we explore possible relations between the number of disagreements (between all the models)
in each study and: a) the RIT risk binary score b) the number of PL irregularities in model NN and c)
the number of PL irregularities in model BN. These explorations can be seen in Figures 11, 12, and 13.
In the Figure 11, the studies with higher disagreement: 53, 49, 55, 51, 43, 6, 5, 50, 29, 44, 48, 45 all have
a RIT risk score higher than 33; but studies 33, 16, 46, and 47 are an exception which provides a low-risk
score can also have a high number of disagreements.
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A shallow trend also is observed that studies with PL irregularities could have more dis-agreement
according to the PCA 11,but no formal conclusions can be extracted from this exploration of the data.
But also “outliers” MA of DTA studies can be observed with a low RIT score, but also with a high
amount of disagreements like 16, 33, 46, and 47. A similar trend can be observed when we consider the
same PCA coloured by the number of PL irregularities, where studies with more disagreement present
also more PL irregularities. The Figure 11 shows an asymmetrical distribution of the studies, observing
a low amount of studies with higher amount of disagreement, which can reflect the disagreement rarely
occurs in all the estimates, where a partial disagreement is the most common scenario. As an exploratory
analysis, it is evident that we cannot appreciate a strong trend between agreement estimation between
models, and RIT scores or PL irregularities of the observed studies. An improvement of this approach can
be made through a simulation study that can achieve “certainty” in this type of exploration increasing
the sample size of considered studies.
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7 Discussion

In this work, we have introduced a new method to evaluate the risk of the normality assumption in MA
of DTA studies. We also explored the potential risk for compromising the statistical inference when such
assumptions are made. We have performed a meta-research experiment to investigate the characteristics
of recently published MA of DTA.

These MA of DTA and their subgroup estimates have been used to test our risk score. We have found that
43% of the recently published MA have a higher risk (RIT score greater than 33) of delivering potentially
misleading results. We validate these findings checking the predictive skills for the RIT binary score for
the model performance features (the non-convergence status, non-positive definite and PL irregularities).
The model performance features in the observed studies show evidence of substantial instability in the
proposed classical model results. These findings are in agreement with studies that had demonstrated
that convergence could be an issue under non-favorable circumstances (a small number of observations,
small number of studies, small studies, heterogeneity) (Riley et al. 2007; Takwoingi et al. 2017; Hamza,
van Houwelingen, and Stijnen 2008 ; Röver and Friede 2018).

The 42% of the MA of DTA presented non-convergence and non-positive-definite G matrix. Only 49%
of the studies had convergence and not-positive-definite G matrix in both models (NN Mixed and BN
Glimmix).

A cutpoint of 33 in the RIT risk score in MA of DTA can predict the appearance of a non-positive
definite in the NN model having a sensitivity=0.75, and specificity=0.742. Finally, the prediction for the
non-positive-definite for the GLIMMIX BN model presented a sensitivity=0.708, and specificity=0.742.
PL irregularities produce a very low accuracies measures (for NN sen=0.62 and spe=0.52, and for BN
sen=0.67, spe=0.44 ).This feature seems to be the most difficult features to predict in both models.
The PL in a model is not a “fixed reality”, depends not only on the observed data and the proposed
model which it’s obvious, but also depend on the starting values in the fitted models. Therefore, the
starting values in the proposed classical models in MA of DTA are essential to improve the trust in the
estimates when the normality assumption is at risky. In a post-hoc exploration, two additional cutpoint
was presented 24 and 38, but no validated accuracies measures can be presented.

No clear trends were found in relation to the dis-agreement between statistical methods when a high RIT
score or when PL irregularities were presented. Previous simulations studies have shown that in the case
of high heterogeneity; few or small studies, the BN model showed better coverage probability, and/or
less bias than a NN model (Riley et al. 2007; Takwoingi et al. 2017; Hamza, van Houwelingen, and
Stijnen 2008) . These are not necessarily conflicting evidence with our findings, because our study is not
a simulation, so we don’t have true values for the estimations to be compared to the models estimation.
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8 Conclusions

According to the proposed RIT risk score with a cutoff point of 33, 43% (24/55) of the studies can be
considered with a high risk to make a normality assumption, that can compromise the statistical inference
under such assumptions.

In the NN and BN models, only 58% (30/51) of the studies had convergence and not-positive-definite G
matrix. But only 49% (25/51) of the studies had convergence and not-positive-definite G matrix in both
models (NN Mixed and BN Glimmix).

In MA of DTA a cutpoint of 33 in the RIT risk score can have moderate accuracy to predict non-
positive-definite in the NN and BN model. RIT score predict the presence of non-positive definite in the
NN model with a sensitivity=0.79 and specificity= 0.69. Also the RIT score predicts the non-convergence
in the NN model have a sensitivity=0.72, and specificity=0.87. Moreover, it was possible to predict a
non-positive-definite for the GLIMMIX BN model with a sensitivity=0.77, and specificity=0.68.

Lower accuracy measures are present when the risk is used to predict numerical discontinuities in BN
Glmmix model (sen=0.64, and spec= 0.58), and the rest of the convergence features. We also explore
additional cutpoint of 24 and 38, post-hoc, so no validation can be proven in such cutpoint additional
studies could explore such cutpoints.

It’s important to highlight that in all the cases where the convergence was not achieved, or non-positive
definite was present in the observed studies under classical models, these studies were possible to fit
under Bayesian methods, without any difficulties. We don’t recommend the use of univariate models
when convergence is not achieved in bivariate classical models; it’s evident that the Bayesian methods
are a more robust solution in this case.

The value of the RIT predictive ability is related to the potential use of the RIT score for researchers
planning to conduct a MA of DTA. A researcher without the knowledge to run a full diagnosis to choose
the most appropriate model can be benefited with the application of the RIT score before selecting the
model. The researcher can know in advance the risk in the normality assumptions even before fitting the
model when the RIT score is used accordingly.
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9 Recommendations

The essential advantage of our scoring is that we can assess the risk of statistical inference being compro-
mised in a single MA of DTA. This advantage is precious to researchers who usually don’t know which
statistical method is the most appropriate. In the event that a model needs to be chosen prior to the
model fitting, conducting a risk assessment with RIT score can help to choose the proper model. If the
RIT score greater than 33 we recommend to use the hierarchical Bayesian models.

In MA of DTA applying the hierarchical Bayesian models is the wisest choice, because they are robust
against data sparsity, outliers, and in general studies features that produce a risk to compromise the
statistical inference when normality assumptions are made.

It is possible in MA of DTA to conduct a “sensitivity analysis” between classical and Bayesian estimates,
to check the agreement of the estimates under the observed data. Historically in MA, it’s a common
practice to compare between fixed and random models estimates, so we encourage this comparison with
more relevant models, like the Bayesian methods.

For future research, it’s important to replicate this study with greater sample size, with simulations
or empirical studies or both, to reassure the validity of the cutpoint proposed. Also, it’s essential to
continue to explore the evidence behind the proposed “rule of thumb” (based on previous simulation
studies) because it will facilitate the connection between the descriptive measures and the RIT score
punctuation. A reliability study (intra or extra-rater reliability) in the use of the RIT score can also help
to support the implementation of the RIT score in MA of DTA.
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10 Appendix

10.1 General tables about the studies

10.2 General tables and estimations tables

As follow are presented general tables about the studies (subgroup in table 6, statistical features of the
studies in table 7), estimation tables (Frequentist in table 8, 9, and 10; and Bayesian table 11 and 12).

Table 6: Descriptions of presence or absense of subgroups in each MA, an the sub-groups for each study

n Study PMID Groups MA Id sub studies
1 Barnsley & Barnsley,

2019
30976835 18F-FDG-PET,Bone

Scintigraphy,Radionucleide
artrogram,SPEC/CT artrogram

1 1, 23, 51, 52

2 Bellini et al., 2019 31496631 No subgoup 2 2
3 Bin et al., 2019 30807546 No subgoup 3 3
4 Chen et al., 2020 31654803 less 12 h after,24 h after 4 4, 55
5 Faias, Pereira, Luis,

Chaves, et al., 2019b
31341368 Low risk + High risk,High risk + low

risk vs benign,High risk + Non High
risk

5 5, 37, 38

6 Faias, Pereira, Luis,
Cravo, et al., 2019

31206466 Malignant +Mucinous,Malignant 6 6, 41

7 Farahani and Baloch,
2019

31301215 No subgoup 7 7

8 Gurung et al., 2019 31158516 FLA-ABS,Agglutinattion,Conventional
PCR,ELISA,Lateral Flow,Lepromin
Skin Reaction,qPCR,T Cell
inmunological response assays

8 8, 22, 24, 32, 39,
40, 50, 53

9 He et al., 2019 31574828 No subgoup 9 9
10 Issa et al., 2017 28130609 EUS,CT,ERCP,MRCP,US 10 10, 25, 33, 42, 54
11 Lee et al., 2019 31714947 No subgoup 11 11
12 J. Li et al., 2019 31250172 MRI1,CT 1,CT

4,CT2,CT3,MRI2,MRI3,MRI4,Overall
CT

12 12, 26, 27, 28, 29,
43, 44, 45, 47

13 Li et al., 2020 31939891 No subgoup 13 13
14 Shen et al., 2019 31437232 No subgoup 14 14
15 Tsou et al., 2019 31182360 No subgoup 15 15
16 Wang et al., 2019 31335700 Cervical Length,Elastography 16 16, 31
17 Wei et al., 2020 31939890 Tumor Staging,Node Staging 17 17, 46
18 Xu et al., 2019 31702649 FNA-Tg,FNAC,FNAC+FNA-Tg 18 18, 35, 36
19 Yoon et al., 2019 31470804 CRP,PCT,Presepsin 19 19, 48, 49
20 Zheng et al., 2019 31441886 No subgoup 20 20
21 Zhu et al., 2020 32011436 Overall CTCs,ctDNA,overall exosomes 21 21, 30, 34
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Table 7: General analysis features of the 55 MA DTA sub-groups studies

MA Study PMID Software Model Pooled
stimated

ROC Heterogeneity Threshold effect Extra analysis

1 Barnsley &
Barnsley, 2019

30976835 Probvably Revman, no
available aditional
software

SROC No, only SROC.
Pick visually
the higher curve

SROC Not mention Subgroup

2 Bellini et al., 2019 31496631 Comprehensive MA
2.2.064, Excel 365, and
MetaDiSc 1.4

Bivariate RE/FE, heterogeneity
based decission

Yes SROC χ2, I2 Not mention No

3 Bin et al., 2019 30807546 Metadisc, Stata 14.0 Bivariate MA: FE (MantelHaenszel
method) & RE (DerSimionan and
Laird method) and SHROC

Yes sHROC χ2, I2 Spearman correlation Sen-Spec Metaregression,
Sub-group analysis

4 Chen et al., 2020 31654803 Stata mendi Bivariate RE, Hierarchichal RE. Yes HSROC I2 Subgroup
5 Faias, Pereira,

Luis, Chaves, et
al., 2019

31341368 Comprehensive MA 2.0
and MetaDiSc 1.4

RE (DerSimonian-Laird)/FE
(Mantel-Haenszel method),
heterogeneity based decission

Yes SROC Explored in ROC,
χ2, Cochran-Q, I2

Not mention Subgroup

6 Faias, Pereira,
Luis, Cravo, et al.,
2019

31206466 Meta-Disc 1.4, SPSS
Statistics 23 (Deeks’ test)

RE (DerSimonian-Laird),
heterogeneity based decission

Yes SROC Explored in ROC,
χ2, I2

Subgroup

7 Farahani & Baloch,
2019

31301215 Not mention Univariate and bivariate
random-effect model

SROC, HSROC Forest plot,
Cochran-Q, I2

Spearman correlation Sen-Spec Metaregression

8 Gurung et al., 2019 31158516 R 3.4.2 mada, Revman
5.3

Bivariate RE SROC ROC plots,
metaregression

Different threshold was present,
summary estimates of
sensitivity and specificity are
summary estimates belonging to
the ’average’ threshold used

Metaregression

9 He et al., 201 31574828 Stata 12.0, Revman 5.3 Bivariate RE/FE, heterogeneity
based decission

Yes SROC I2, χ2 and a
bivariate box-plot

Spearman rank correlation
analysis

Metaregression,
Sub-group analysis

10 Issa et al., 2017 28130609 Revman 5.3, SAS 9.3 RE/FE, compared with a paired
z-test

Yes SROC I2 Subgroup

11 Lee et al., 2019 31714947 R 3.4.2 meta mada RE SROC I2 Spearman correlation Sen-Spec Metaregression,
Sub-group analysis

12 J. Li et al., 2019 31250172 Revman 5.3, Stata 15.1 RE/FE, heterogeneity based
decission

SROC χ2, I2 Subgroup

13 Li et al., 2020 31939891 Stata 10.0 RE/FE, heterogeneity based
decission

Yes, in case of
no threshold
effect

SROC (when
threshold effect
observed)

χ2, I2. High
heterogeneity
p− value < .05,
I2 > .5

Correlation (Spearman’s)
between the logit (Sn) & logit(1
- Sp). When observed plot
SROC

Subgroup

14 Shen et al., 2019 31437232 Stata 14.0 midas bivariate random-effects models SROC I2 Metaregression,
Sub-group analysis

15 Tsou et al., 2019 31182360 Stata 12.0, R bivariate random-effects models Yes HSROC I2 Metaregression,
Sub-group analysis

16 Wang2019 31335700 Stata 14 SROC SROC I2 If heterogeneity then Spearman
correlation coefficient

No metaregression
(limited number studies)

17 Wei et al., 2020 31939890 Stata 10.0 RE/FE, heterogeneity based
decission

SROC (when
threshold effect
observed)

χ2, I2 If heterogeneity then Spearman
correlation coefficient >
threslhold effect observed

No

18 Xu et al., 2019 31702649 Stata 14.0 bivariate mixed-effects model.
Mosesâ€“Littenberg SROC

Yes SROC Cochran-Q, I2 Subgroup, Metaregression

19 Yoon et al., 2019 31470804 R 3.5.2 Bivariate RE/FE and HSROC
model, heterogeneity and spearmen
based decission (respectvely)

HSROC χ2 Different cut off. Spearman
correlation coefficient then
threslhold effect observed

Subgroup

20 Zheng et al., 2019 31441886 Stata 12, SPSSS 17.0,
Metadisc 1.4

RE/FE, heterogeneity based
decission

Yes SROC Cochran-Q, I2 Spearman correlation Sen-Spec Metaregression,
Sub-group analysis

21 Zhu et al., 2020 32011436 Stata 14.2, Meta-Disc 1.4 RE Yes SROC I2 Spearman correlation Sen-Spec.
If I2 > .5 a non-threshold effect
would exist.

Subgroup
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Table 8: Frequentist normal-normal (mixed) model

Study ID Meta analysis logit(Sens) logit(Spec) Var(logit(Sens)) Var(logit(Spec)) SD(logit(Sens)) SD(logit(Spec)) Covariance Correlation
Study 1 1 NA NA NA NA NA NA NA NA
Study 2 2 -0.09895 1.87637 0.9827127 0.35487 0.99132 0.5957 -0.74968 -1.00000
Study 3 3 2.30120 1.88536 0.0000000 0.19351 0.00000 0.4399 0.03043 0.00000
Study 4 4 1.37119 0.57389 1.3038799 0.34959 1.14188 0.5913 0.64111 0.94959
Study 5 5 NA NA NA NA NA NA NA NA
Study 6 6 -0.30479 2.01946 0.2210948 0.25062 0.47021 0.5006 0.39423 1.00000
Study 7 7 0.88383 4.43853 1.0352880 1.11609 1.01749 1.0565 -0.04722 -0.04393
Study 8 8 NA NA NA NA NA NA NA NA
Study 9 9 0.99040 1.67943 0.3089410 0.56115 0.55582 0.7491 -0.29551 -0.70973
Study 10 10 1.43189 1.94892 1.1718241 0.90357 1.08251 0.9506 -0.83057 -0.80717
Study 11 11 2.21648 2.91461 0.1239627 1.71024 0.35208 1.3078 0.18175 0.39472
Study 12 12 1.82151 2.51444 0.0049754 0.38425 0.07054 0.6199 -0.17909 -1.00000
Study 13 13 2.10887 1.23615 0.4445871 0.97343 0.66677 0.9866 -0.25269 -0.38411
Study 14 14 1.38135 3.47554 0.1309960 0.26085 0.36193 0.5107 0.03019 0.16334
Study 15 15 NA NA NA NA NA NA NA NA
Study 16 16 NA NA NA NA NA NA NA NA
Study 17 17 1.09813 0.60801 0.7586781 1.13607 0.87102 1.0659 -0.28996 -0.31233
Study 18 18 2.45420 1.78126 0.7859012 1.15382 0.88651 1.0742 -0.28700 -0.30139
Study 19 19 0.05111 1.43843 0.8852712 1.20179 0.94089 1.0963 -1.04924 -1.00000
Study 20 20 2.58451 2.53921 0.0000000 1.13922 0.00000 1.0673 0.33773 0.00000
Study 21 21 0.98592 1.63929 0.0000000 0.34010 0.00000 0.5832 -0.09161 0.00000
Study 22 8 0.94752 2.25541 0.6093005 3.80142 0.78058 1.9497 -1.01678 -0.66809
Study 23 1 1.47625 1.34679 0.0006538 0.00000 0.02557 0.0000 -0.22854 0.00000
Study 24 8 1.11989 2.89332 0.4939542 0.10382 0.70282 0.3222 0.04860 0.21460
Study 25 10 1.01685 1.93373 0.2648039 1.16930 0.51459 1.0813 -0.21016 -0.37768
Study 26 12 1.05104 2.02824 0.4061422 0.30500 0.63729 0.5523 -0.16743 -0.47572
Study 27 12 NA NA NA NA NA NA NA NA
Study 28 12 NA NA NA NA NA NA NA NA
Study 29 12 NA NA NA NA NA NA NA NA
Study 30 21 0.89027 2.22913 1.7144725 0.00000 1.30938 0.0000 0.03549 0.00000
Study 31 16 1.55337 1.49220 1.1649911 1.79939 1.07935 1.3414 -0.12540 -0.08661
Study 32 8 0.57793 2.36351 1.3120555 1.66494 1.14545 1.2903 -0.35631 -0.24108
Study 33 10 1.46985 2.44476 0.1710566 0.87787 0.41359 0.9369 -0.27970 -0.72177
Study 34 21 NA NA NA NA NA NA NA NA
Study 35 18 1.36696 2.42438 0.5028210 3.00472 0.70910 1.7334 -0.59248 -0.48202
Study 36 18 3.15736 2.21774 0.4027007 0.78745 0.63459 0.8874 0.09491 0.16855
Study 37 5 NA NA NA NA NA NA NA NA
Study 38 5 NA NA NA NA NA NA NA NA
Study 39 8 0.75352 1.89659 0.3009241 2.93219 0.54857 1.7124 -0.76688 -0.81640
Study 40 8 -0.75688 -0.05688 1.0626781 3.01298 1.03086 1.7358 -0.32420 -0.18118
Study 41 6 -0.17942 0.47230 0.3659786 0.00000 0.60496 0.0000 0.07374 0.00000
Study 42 10 1.08157 2.58063 0.4222193 1.37586 0.64978 1.1730 0.45730 0.59999
Study 43 12 1.25108 2.48155 0.2958170 2.42673 0.54389 1.5578 -0.18083 -0.21343
Study 44 12 NA NA NA NA NA NA NA NA
Study 45 12 NA NA NA NA NA NA NA NA
Study 46 17 1.08053 1.19142 0.5455933 1.52848 0.73864 1.2363 -0.42573 -0.46620
Study 47 12 0.78280 2.23527 1.0082616 0.54872 1.00412 0.7408 -0.59237 -0.79640
Study 48 19 NA NA NA NA NA NA NA NA
Study 49 19 2.65236 0.91756 0.9844540 2.34992 0.99220 1.5329 1.79922 1.00000
Study 50 8 1.31495 2.20825 0.7720253 2.62943 0.87865 1.6216 0.34924 0.24512
Study 51 1 -0.36252 1.52221 2.4528422 0.04612 1.56616 0.2147 0.09466 0.28146
Study 52 1 NA NA NA NA NA NA NA NA
Study 53 8 1.11368 -1.94983 2.6367844 7.40359 1.62382 2.7210 -4.20439 -0.95158
Study 54 10 0.45976 2.88906 0.1847429 2.69304 0.42982 1.6410 0.39013 0.55311
Study 55 4 1.50231 1.99276 1.4949757 0.45421 1.22269 0.6740 -0.23032 -0.27950
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Table 9: Frequentist binomial-normal (Glimmix) model

Study ID Meta analysis logit(Sens) logit(Spec) Var(logit(Sens)) Var(logit(Spec)) SD(logit(Sens)) SD(logit(Spec)) Covariance Correlation
study 1 1 1.15569 1.0311 0.81616 2.635e-01 0.9034 0.5133 -2.012e-01 -4.339e-01
study 2 2 0.14993 2.0631 0.38760 1.571e-01 0.6226 0.3964 -9.866e-02 -3.998e-01
study 3 3 2.50140 1.9394 0.03107 2.642e-02 0.1763 0.1625 -3.565e-03 -1.244e-01
study 4 4 1.50438 0.5568 0.50474 8.367e-02 0.7105 0.2893 1.544e-01 7.515e-01
study 5 5 2.39342 2.4243 0.33887 4.822e+00 0.5821 2.1958 -4.585e-01 -3.587e-01
study 6 6 -0.27185 5.3885 0.04889 5.645e+00 0.2211 2.3759 1.555e-01 2.961e-01
study 7 7 0.99763 7.6505 0.02102 6.614e-01 0.1450 0.8133 -1.208e-02 -1.025e-01
study 8 8 -0.67565 1.8273 0.02415 1.012e+00 0.1554 1.0059 8.334e-02 5.332e-01
study 9 9 1.01505 1.8435 0.01888 4.466e-02 0.1374 0.2113 -1.244e-02 -4.285e-01
study 10 10 1.54338 2.2828 0.10482 1.325e-01 0.3238 0.3640 -5.829e-02 -4.946e-01
study 11 11 2.52672 3.6035 0.04977 3.018e-01 0.2231 0.5494 2.021e-03 1.649e-02
study 12 12 1.87102 2.6214 0.02454 1.258e-01 0.1567 0.3546 -1.114e-02 -2.005e-01
study 13 13 2.52524 1.7878 0.07136 2.011e-01 0.2671 0.4484 -1.370e-02 -1.144e-01
study 14 14 1.44820 4.8758 0.01399 4.048e-01 0.1183 0.6362 -1.184e-02 -1.574e-01
study 15 15 3.67146 3.7944 0.04529 2.171e-01 0.2128 0.4659 5.151e-02 5.195e-01
study 16 16 -0.57366 1.7743 0.16302 3.412e-01 0.4038 0.5841 -1.937e-01 -8.215e-01
study 17 17 1.45283 0.7200 0.14226 1.202e-01 0.3772 0.3467 -1.904e-02 -1.456e-01
study 18 18 2.76027 2.0427 0.08498 1.877e-01 0.2915 0.4333 -4.684e-02 -3.708e-01
study 19 19 0.07713 1.4798 0.30279 3.560e-01 0.5503 0.5967 -2.516e-01 -7.663e-01
study 20 20 2.77341 2.8011 0.03388 1.591e-01 0.1841 0.3989 2.769e-02 3.771e-01
study 21 21 1.01794 1.8682 0.01762 1.375e-01 0.1327 0.3709 -4.733e-03 -9.615e-02
study 22 8 0.95562 2.6155 0.10864 1.069e+00 0.3296 1.0338 -1.825e-01 -5.356e-01
study 23 1 1.62526 1.2117 0.09984 7.646e-02 0.3160 0.2765 -1.040e-05 -1.190e-04
study 24 8 1.17171 4.9533 0.03634 1.438e+00 0.1906 1.1991 -2.555e-02 -1.118e-01
study 25 10 1.13102 2.3286 0.06077 2.665e-01 0.2465 0.5162 -2.841e-02 -2.232e-01
study 26 12 1.07551 2.1762 0.06621 1.003e-01 0.2573 0.3167 -2.281e-02 -2.799e-01
study 27 12 0.22693 2.2287 0.03268 1.583e-01 0.1808 0.3978 -2.050e-08 -2.851e-07
study 28 12 -0.15678 2.6217 0.10103 2.762e-01 0.3179 0.5256 -9.650e-02 -5.777e-01
study 29 12 -0.05548 102.4907 1.69682 7.220e+06 1.3026 2687.0223 -1.515e+03 -4.329e-01
study 30 21 0.97974 2.3762 0.28405 5.358e-02 0.5330 0.2315 -1.256e-02 -1.018e-01
study 31 16 1.68940 1.5314 0.23096 2.518e-01 0.4806 0.5018 -1.831e-02 -7.593e-02
study 32 8 0.56703 2.6225 0.05150 6.913e-02 0.2269 0.2629 -1.500e-02 -2.513e-01
study 33 10 1.53815 2.7859 0.03745 1.936e-01 0.1935 0.4400 -1.971e-02 -2.315e-01
study 34 21 3.20320 3.9254 1.02353 2.329e+00 1.0117 1.5262 1.101e+00 7.129e-01
study 35 18 1.47016 3.3028 0.04446 6.336e-01 0.2109 0.7960 -6.532e-02 -3.891e-01
study 36 18 3.42395 2.6125 0.10702 1.804e-01 0.3271 0.4248 2.686e-02 1.933e-01
study 37 5 1.11044 0.9694 0.04748 1.254e-01 0.2179 0.3541 0.000e+00 0.000e+00
study 38 5 0.28769 1.9459 0.08333 8.791e-02 0.2887 0.2965 0.000e+00 0.000e+00
study 39 8 0.96062 2.0489 0.08374 3.687e-01 0.2894 0.6072 -5.262e-02 -2.994e-01
study 40 8 -0.76353 0.3334 0.20947 1.298e+00 0.4577 1.1394 -9.196e-04 -1.764e-03
study 41 6 -0.20779 0.5269 0.09238 1.987e-02 0.3039 0.1410 1.201e-02 2.802e-01
study 42 10 1.25869 3.1376 0.06068 2.300e-01 0.2463 0.4796 4.649e-02 3.935e-01
study 43 12 1.27205 2.9978 0.09645 1.118e+00 0.3106 1.0571 -4.652e-03 -1.417e-02
study 44 12 -0.12757 26.0039 8.78963 0.000e+00 2.9647 0.0000 0.000e+00 0.000e+00
study 45 12 1.62076 2.6962 0.07188 1.806e+00 0.2681 1.3440 1.258e-01 3.492e-01
study 46 17 1.21209 1.2288 0.09336 1.280e-01 0.3055 0.3578 -4.923e-02 -4.503e-01
study 47 12 0.80290 2.3865 0.12847 1.253e-01 0.3584 0.3539 -6.799e-02 -5.360e-01
study 48 19 1.89656 1.1848 0.70558 4.373e-02 0.8400 0.2091 3.207e-02 1.826e-01
study 49 19 3.50721 0.9560 1.51310 5.460e-01 1.2301 0.7389 6.428e-01 7.072e-01
study 50 8 1.35677 3.9068 0.15587 3.416e+00 0.3948 1.8483 4.190e-02 5.742e-02
study 51 1 -0.42375 1.7683 0.57271 1.132e-01 0.7568 0.3364 -3.616e-02 -1.420e-01
study 52 1 1.70799 1.4832 0.50752 2.942e-01 0.7124 0.5424 1.366e-01 3.536e-01
study 53 8 1.59568 -3.0788 1.45715 5.405e+00 1.2071 2.3248 -2.695e+00 -9.603e-01
study 54 10 0.70015 3.7538 0.09120 7.212e-01 0.3020 0.8492 4.023e-02 1.568e-01
study 55 4 1.96724 2.0204 0.54270 6.701e-02 0.7367 0.2589 -5.587e-02 -2.930e-01
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Table 10: Frequentist binomial-normal (Nlmixed) model

Study ID Meta analysis logit(Sens) logit(Spec) Var(logit(Sens)) Var(logit(Spec)) SD(logit(Sens)) SD(logit(Spec)) Covariance Correlation
Study 1 1 0.94118 0.79995 0.743609 1.753e-01 0.86233 0.4186601 -3.610e-01 1.0000
Study 2 2 -0.15023 1.94595 0.513053 7.177e-02 0.71628 0.2678982 -9.950e-02 -1.0000
Study 3 3 2.48018 1.91781 0.061213 6.090e-02 0.24741 0.2467806 6.106e-02 NA
Study 4 4 1.48854 0.08029 0.231002 1.864e-01 0.48063 0.4316940 2.437e-02 NA
Study 5 5 2.75414 2.13302 0.143077 4.836e+00 0.37826 2.1990216 -5.077e-01 NA
Study 6 6 -0.66383 5.31776 0.143441 5.653e+00 0.37874 2.3776133 3.375e-01 NA
Study 7 7 0.77542 7.67959 0.571069 3.917e-01 0.75569 0.6258620 5.528e-04 NA
Study 8 8 -0.75135 1.76218 0.001999 9.948e-01 0.04471 0.9973742 4.460e-02 -1.0000
Study 9 9 0.95985 1.79076 0.071063 8.096e-02 0.26658 0.2845294 7.585e-02 NA
Study 10 10 1.19902 2.15254 0.431272 4.469e-02 0.65671 0.2113958 8.376e-02 -1.0000
Study 11 11 2.29137 3.58096 0.760432 4.162e-02 0.87203 0.2040167 -1.339e-01 NA
Study 12 12 1.67943 2.50491 0.100116 2.110e-02 0.31641 0.1452432 -4.596e-02 1.0000
Study 13 13 2.40544 1.57846 0.025081 3.914e-01 0.15837 0.6256110 9.908e-02 -1.0000
Study 14 14 1.35273 4.96727 0.469887 9.282e-02 0.68548 0.3046653 -7.430e-02 -1.0000
Study 15 15 3.63741 3.75986 0.102516 2.768e-01 0.32018 0.5261087 1.684e-01 NA
Study 16 16 -0.57223 1.77475 0.240090 4.112e-01 0.48999 0.6412405 -4.508e-02 0.6995
Study 17 17 1.27819 0.28552 0.021412 3.504e-01 0.14633 0.5919744 2.133e-02 1.0000
Study 18 18 2.64104 1.78164 0.015429 5.288e-01 0.12422 0.7272097 8.257e-02 0.6443
Study 19 19 -0.05998 1.36323 0.279094 3.284e-01 0.52829 0.5730250 -3.027e-01 1.0000
Study 20 20 2.63819 2.71833 0.223723 8.726e-02 0.47299 0.2954006 1.397e-01 -1.0000
Study 21 21 0.72720 1.70583 0.101838 1.155e-02 0.31912 0.1074511 -3.429e-02 1.0000
Study 22 8 0.56525 2.57397 0.174820 8.292e-01 0.41812 0.9106058 -2.376e-02 -1.0000
Study 23 1 1.44410 0.98663 0.044342 7.382e-02 0.21058 0.2717060 -5.721e-02 -1.0000
Study 24 8 0.86741 5.04937 0.362552 1.266e+00 0.60212 1.1250179 1.534e-01 -1.0000
Study 25 10 0.86751 2.27443 0.294077 1.240e-02 0.54229 0.1113520 -6.038e-02 NA
Study 26 12 0.77945 2.01507 0.168804 6.407e-02 0.41086 0.2531258 2.909e-02 -1.0000
Study 27 12 -0.04895 2.08373 0.075622 5.776e-02 0.27499 0.2403277 -6.609e-02 1.0000
Study 28 12 -0.34326 2.55925 0.281515 8.542e-02 0.53058 0.2922695 -1.551e-01 NA
Study 29 12 -0.05548 1.00000 1.696820 1.511e-08 1.30262 0.0001229 -4.128e-06 NA
Study 30 21 0.68079 2.23388 0.514944 1.377e-02 0.71760 0.1173312 7.314e-02 -1.0000
Study 31 16 1.45278 0.88174 0.136182 7.459e-01 0.36903 0.8636314 1.638e-01 NA
Study 32 8 0.44462 2.53903 0.196347 6.238e-02 0.44311 0.2497612 1.107e-01 NA
Study 33 10 1.29621 2.70700 0.313446 7.179e-04 0.55986 0.0267935 -8.941e-03 0.6879
Study 34 21 3.04135 3.44825 0.817178 2.969e+00 0.90398 1.7231618 9.672e-01 NA
Study 35 18 1.20286 3.31858 0.253660 2.145e-01 0.50365 0.4631090 1.321e-01 NA
Study 36 18 3.35675 2.49347 0.032197 3.379e-01 0.17943 0.5813301 1.043e-01 -0.9998
Study 37 5 0.88934 0.73916 0.021915 1.034e-01 0.14804 0.3215469 -4.760e-02 1.0000
Study 38 5 0.12316 1.82283 0.067686 4.713e-02 0.26017 0.2170974 -5.648e-02 NA
Study 39 8 0.48077 2.02855 0.753024 1.134e-01 0.86777 0.3366787 1.504e-03 NA
Study 40 8 -0.80137 0.30287 0.054166 1.195e+00 0.23274 1.0931403 -2.544e-01 NA
Study 41 6 -0.21260 0.51368 0.054400 4.201e-02 0.23324 0.2049721 -4.906e-03 NA
Study 42 10 0.95835 3.08935 0.619010 7.969e-02 0.78677 0.2823025 4.247e-02 NA
Study 43 12 0.73909 3.19180 0.122591 9.937e-01 0.35013 0.9968634 2.459e-01 -1.0000
Study 44 12 -0.21453 1.08573 10.015898 1.534e-01 3.16479 0.3916131 -5.002e-06 0.8371
Study 45 12 1.50688 2.64582 0.049641 1.740e+00 0.22280 1.3191130 6.664e-02 NA
Study 46 17 0.66169 0.83685 0.319584 1.365e-01 0.56532 0.3694577 1.699e-01 1.0000
Study 47 12 0.50383 2.27859 0.347509 5.171e-03 0.58950 0.0719127 -4.031e-02 NA
Study 48 19 1.79719 0.95291 0.539566 2.867e-02 0.73455 0.1693169 -1.063e-01 1.0000
Study 49 19 3.49779 0.97924 1.384970 9.690e-01 1.17685 0.9843703 5.263e-01 NA
Study 50 8 0.66227 3.68759 0.553592 3.451e+00 0.74404 1.8578079 4.737e-01 -1.0000
Study 51 1 -0.63389 1.63368 0.522579 9.059e-02 0.72290 0.3009851 -9.873e-02 -1.0000
Study 52 1 1.85917 1.12753 0.628872 1.641e-01 0.79301 0.4050879 2.855e-01 NA
Study 53 8 1.67635 -3.02828 1.454199 5.369e+00 1.20590 2.3170308 -2.755e+00 NA
Study 54 10 0.19143 3.83817 0.511833 4.791e-01 0.71542 0.6921930 4.297e-01 NA
Study 55 4 1.75885 1.88087 0.621256 1.537e-02 0.78820 0.1239705 -4.321e-02 NA
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Table 11: Bayesian binomial-normal model (bamdit)

Study ID Meta analysis logit(Sens) logit(Spec) SD(logit(Sens)) SD(logit(Spec)) Covariance Correlation
study 1 1 0.81194 0.8962 2.0649 1.5807 -0.5739291 -0.175835
study 2 2 0.28406 1.9054 2.4220 1.3505 -0.6056690 -0.185176
study 3 3 2.55662 1.9173 0.3969 0.5278 -0.0326169 -0.155712
study 4 4 0.96000 0.4735 1.7548 1.0881 0.8568490 0.448724
study 5 5 1.92709 0.9984 1.4335 3.5064 -0.4167665 -0.082913
study 6 6 -0.26744 4.1732 0.7592 2.3108 0.3557108 0.202756
study 7 7 1.00235 7.4184 1.2097 2.8665 -0.8007165 -0.230907
study 8 8 -0.68910 1.1459 0.6554 2.9720 0.5821037 0.298838
study 9 9 1.01650 1.8325 0.6372 0.9868 -0.2837360 -0.451235
study 10 10 1.54137 2.2637 1.3172 1.4265 -1.0009027 -0.532665
study 11 11 2.49135 3.3708 0.6052 2.2896 0.0601805 0.043428
study 12 12 1.84124 2.4977 0.3593 0.8757 -0.0431892 -0.137255
study 13 13 2.49720 1.6598 1.0546 1.7141 -0.2633660 -0.145691
study 14 14 1.45881 4.6781 0.4844 1.7465 -0.2289519 -0.270652
study 15 15 3.66515 3.5571 0.9524 2.3558 1.6750311 0.746538
study 16 16 -0.39078 1.3226 1.3658 1.9780 -1.6489123 -0.610357
study 17 17 1.39218 0.6872 1.6154 1.4971 -0.3436867 -0.142105
study 18 18 2.74711 1.9475 1.3229 2.1427 -1.2425276 -0.438343
study 19 19 0.15588 1.0375 1.7962 2.0932 -1.4228860 -0.378444
study 20 20 2.79013 2.5966 0.6716 1.5332 0.4050590 0.393385
study 21 21 1.00855 1.7758 0.1992 1.2261 -0.0197238 -0.080761
study 22 8 0.96538 1.7203 1.1841 3.1879 -1.2553125 -0.332551
study 23 1 1.68961 1.0664 0.9303 1.5568 -0.1608150 -0.111036
study 24 8 1.16831 4.6311 0.8278 1.8832 -0.3497655 -0.224357
study 25 10 1.15232 2.1142 0.8029 1.9534 -0.3816942 -0.243369
study 26 12 1.03605 2.0897 0.8980 0.8720 -0.1880809 -0.240201
study 27 12 0.21157 1.7432 0.6997 1.5929 -0.0485653 -0.043576
study 28 12 -0.04236 2.2201 1.1396 1.4779 -0.5805206 -0.344678
study 29 12 -0.03051 0.5504 2.7106 3.1900 -3.0209002 -0.349360
study 30 21 0.82676 2.3273 1.9399 0.4654 -0.0636494 -0.070504
study 31 16 1.46716 1.2631 1.7375 1.9305 -0.1202720 -0.035855
study 32 8 0.56179 2.5895 1.4943 1.6310 -0.6611249 -0.271269
study 33 10 1.51713 2.6221 0.4698 1.5326 -0.1484258 -0.206156
study 34 21 1.69899 2.1290 2.8948 3.0612 6.7659788 0.763514
study 35 18 1.51841 2.8354 0.9323 3.3249 -1.3412839 -0.432713
study 36 18 3.33076 2.3967 1.0027 1.5816 0.4165958 0.262692
study 37 5 0.81313 0.6828 1.2232 1.4071 0.1046300 0.060793
study 38 5 0.09635 1.7379 1.7537 1.4317 -0.2448683 -0.097528
study 39 8 0.97146 1.6885 1.2477 2.5439 -0.3860083 -0.121621
study 40 8 -0.57966 0.2609 1.7917 3.1201 0.0295033 0.005278
study 41 6 -0.22602 0.6035 0.8922 0.7270 -0.0008218 -0.001267
study 42 10 1.18135 2.9346 0.9064 2.0287 0.9166214 0.498507
study 43 12 1.07921 1.7707 1.1629 2.9812 0.2321075 0.066949
study 44 12 0.05409 2.3203 3.8632 2.0854 0.3038309 0.037713
study 45 12 1.41011 1.3013 0.7886 3.1343 0.4696374 0.190001
study 46 17 1.17103 1.1742 1.1467 1.4591 -0.7757035 -0.463618
study 47 12 0.78748 2.3060 1.2889 1.0027 -0.6749339 -0.522249
study 48 19 1.19756 1.0257 2.5506 0.8651 0.2310496 0.104715
study 49 19 2.22470 0.2908 2.9022 2.1689 3.6874582 0.585811
study 50 8 1.10040 2.1103 1.4902 3.3360 0.5390948 0.108441
study 51 1 -0.28123 1.5987 2.3958 1.0303 -0.2071755 -0.083932
study 52 1 1.21808 1.0584 1.6545 1.8891 0.6350852 0.203189
study 53 8 0.66906 -0.9873 2.8895 3.4130 -6.7886917 -0.688375
study 54 10 0.63986 3.0542 1.1304 2.9242 0.5225060 0.158068
study 55 4 1.56250 1.9551 2.6362 1.0267 -0.5840479 -0.215796
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Table 12: Bayesian binomial-mixture of normal model (bamdit)

Study ID Meta analysis logit(Sens) logit(Spec) SD(logit(Sens)) SD(logit(Spec)) Covariance Correlation
study 1 1 0.79115 0.91150 2.0399 1.5661 -0.513473 -0.160720
study 2 2 0.16814 1.89651 2.2925 1.1881 -0.483763 -0.177609
study 3 3 2.53218 1.91884 0.3499 0.4521 -0.017541 -0.110888
study 4 4 1.00040 0.47399 1.6450 1.0373 0.747354 0.437989
study 5 5 1.97045 0.96414 1.3039 3.3703 -0.395703 -0.090042
study 6 6 -0.25597 4.18676 0.6460 2.2805 0.294051 0.199586
study 7 7 0.84818 7.02959 0.9790 2.0787 -0.418540 -0.205665
study 8 8 -0.72332 0.94597 0.5906 2.6545 0.359641 0.229394
study 9 9 1.03814 1.74063 0.5185 0.8855 -0.224699 -0.489442
study 10 10 1.55315 2.21220 1.0865 1.2565 -0.658539 -0.482378
study 11 11 2.50630 3.27885 0.5518 2.0905 0.065522 0.056799
study 12 12 1.83941 2.51988 0.2808 0.7776 -0.024679 -0.113040
study 13 13 2.46834 1.56594 0.9346 1.4636 -0.169261 -0.123735
study 14 14 1.43444 4.61588 0.4136 1.5361 -0.161920 -0.254875
study 15 15 3.67564 3.52979 0.6888 1.6325 0.773067 0.687507
study 16 16 -0.41817 1.35486 1.3069 1.9234 -1.516513 -0.603301
study 17 17 1.37335 0.55700 1.4335 1.2972 -0.207844 -0.111778
study 18 18 2.58822 2.16025 0.9886 1.2520 -0.305860 -0.247123
study 19 19 0.19108 0.99326 1.6910 1.9423 -1.152186 -0.350815
study 20 20 2.75247 2.44133 0.5665 1.2019 0.244425 0.359003
study 21 21 1.01849 1.73616 0.1769 1.1255 -0.018323 -0.092048
study 22 8 0.89430 1.76730 1.1292 2.9555 -0.948777 -0.284294
study 23 1 1.68131 1.02517 0.7653 1.5859 -0.128953 -0.106245
study 24 8 1.17359 4.47454 0.7158 1.6066 -0.258506 -0.224796
study 25 10 1.10803 2.13075 0.7199 1.7916 -0.266391 -0.206553
study 26 12 1.02245 2.05702 0.8167 0.8842 -0.191262 -0.264858
study 27 12 0.20975 1.78812 0.6019 1.5067 -0.045605 -0.050290
study 28 12 -0.01106 2.18751 1.0646 1.3964 -0.481262 -0.323734
study 29 12 0.06816 0.50136 2.5299 3.1996 -2.812396 -0.347441
study 30 21 0.78468 2.31222 1.7750 0.4557 -0.075328 -0.093124
study 31 16 1.38895 1.34764 1.6230 1.6659 0.010321 0.003817
study 32 8 0.53370 2.65652 1.1298 1.2754 -0.233023 -0.161723
study 33 10 1.51797 2.57428 0.3950 1.3506 -0.089138 -0.167071
study 34 21 1.44607 1.84468 2.5895 2.9287 5.676953 0.748555
study 35 18 1.41554 2.89693 0.7283 2.8751 -0.629202 -0.300470
study 36 18 3.31893 2.35372 0.8610 1.4037 0.282721 0.233935
study 37 5 0.84718 0.72267 1.1838 1.3723 0.070130 0.043172
study 38 5 0.12607 1.70524 1.6570 1.3746 -0.236400 -0.103795
study 39 8 0.73834 1.93707 0.9038 1.9503 -0.181753 -0.103106
study 40 8 -0.58233 0.03352 1.6470 2.9812 -0.187097 -0.038105
study 41 6 -0.24180 0.61210 0.7894 0.7184 -0.005377 -0.009483
study 42 10 1.14916 2.86319 0.8105 1.8332 0.772801 0.520114
study 43 12 1.11358 1.64582 1.0500 2.9034 0.193529 0.063485
study 44 12 -0.07096 2.29114 3.6033 2.2214 0.110114 0.013757
study 45 12 1.39442 1.21540 0.7668 3.0119 0.436512 0.189001
study 46 17 1.17714 1.13045 0.9184 1.2152 -0.462351 -0.414260
study 47 12 0.84902 2.24150 1.1170 0.9544 -0.530283 -0.497434
study 48 19 1.14240 1.04401 2.5016 0.8188 0.216418 0.105652
study 49 19 2.07290 0.23586 2.8209 2.0138 3.145515 0.553715
study 50 8 1.17486 2.06348 1.3427 3.2213 0.474767 0.109768
study 51 1 -0.30143 1.58263 2.2674 0.9086 -0.195747 -0.095017
study 52 1 1.22220 1.05398 1.5739 1.8412 0.587937 0.202894
study 53 8 0.45134 -0.74970 2.4489 3.1459 -4.890807 -0.634830
study 54 10 0.62101 3.10022 0.9630 2.6657 0.365017 0.142186
study 55 4 1.40046 1.90537 2.5451 0.8288 -0.482344 -0.228674
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10.3 Agreement estimation analysis

As follow general agreement (figure 18, 19, 20 and 21) and detailed agreement analysis (figure 22, 23,
24, 25, 26, 27, 28, 29, and 30) according to Bland-Altman analysis; additionally correlation matrix plots
(figure 31, 32, 33, 34, 35, and 36) and general histograms are presented.
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Figure 14: Histograms of correlation values in the three frequentist models

NN Classic

Correlation with Fisher transformation

F
re

qu
en

cy

−2 −1 0 1 2

0
5

10
15

BN Classic Glimmix

Correlation with Fisher transformation

F
re

qu
en

cy

−2.0 −1.0 0.0 1.0

0
5

10
20

30

BN Classic NLMIXED

Correlation with Fisher transformation

F
re

qu
en

cy

−6 −2 0 2 4 6 8

0
1

2
3

4

BBN Bayes

Correlation with Fisher transformation

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0
0

5
10

15

BBM Bayes

Correlation with Fisher transformation

F
re

qu
en

cy

−0.5 0.0 0.5 1.0

0
5

10
15

F
re

qu
en

cy

Correlation with transformation

Figure 15: Histograms of correlation values in the three frequentist models
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Figure 16: B-A global agreement of frequentist normal-normal model as a reference: logit(sen) and logit
(spe)
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Figure 17: B-A global agreement of frequentist normal-normal model as a reference: covariance parame-
ters
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Figure 18: B-A global agreement of frequentist binomial-normal model as a reference: logit(sen) and logit
(spe)

BN vs NN

BN vs BBM bamdit

BN−BBN bamdit

M
od

el
 c

om
pa

ris
so

n

−1.0 −0.5 0.0 0.5
under−estim<−−0−−> over−estim

−3 −2 −1 0 1 2 3
under−estim<−−0−−> over−estim

−1.0 −0.5 0.0 0.5 1.0
under−estim<−−0−−> over−estim

−0.8 −0.4 0.0 0.4
under−estim<−−0−−> over−estim

 Var(logit(Sen)) Var(logit(Spe)) Covariance Correlation

Figure 19: B-A global agreement of frequentist binomial-normal model as a reference: covariance param-
eters

BBN bamdit vs BB MixN bamdit

M
od

el
 c

om
pa

ris
so

n

−0.1 0.0 0.1
Bayes B−N under−estim<−−0−−> Bayes B−N over−estim

−0.1 0.0 0.1 0.2
Bayes B−N under−estim<−−0−−> Bayes B−N over−estim

logit(Sen) logit(Spe)

Figure 20: B-A global agreement of Bayesian binomial-normal model as a reference: covariance parame-
ters
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Figure 21: B-A global agreement of Bayesian binomial-normal model as a reference: logit(sen) and logit
(spe)
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Figure 22: Detailed Bland-Altman agreement between NN (reference model) vs BN: six parameters
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Figure 23: Detailed Bland-Altman agreement between NN (reference model) vs BBN bamdit: six param-
eters
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Figure 24: Detailed Bland-Altman agreement between NN (reference model) vs BBN bamdit: six param-
eters
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Figure 25: Detailed Bland-Altman agreement between BN Glimmix (reference model) vs BBN bamdit:
six parameters. Studies 29 and 44 (extreme numeric outliers) was exclude from the plot, but not from
the analysis
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Figure 26: Detailed Bland-Altman agreement between BN Nlmixed (reference model) vs BBN bamdit:
six parameters
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Figure 27: Detailed Bland-Altman agreement between BN Glimmix (reference model) vs BBM bamdit:
six parameters. Studies 29 and 44 (extreme numeric outliers) was exclude from the plot, but not from
the analysis
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Figure 28: Detailed Bland-Altman agreement between BN Glimmix (reference model) vs BN NLMIXED:
six parameters. Studies 29 and 44 (extreme numeric outliers) was exclude from the plot, but not from
the analysis
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Figure 29: Detailed Bland-Altman agreement between Original estimates vs NN Mixed, BN Glimmix
or Nlmixed (reference model) vs: central parameters. Studies 29 and 44 (extreme numeric outliers) was
exclude from the plot, but not from the analysis
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Figure 30: Detailed Bland-Altman agreement between BBN Bandit (reference model) vs BBM: six pa-
rameters
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Figure 31: Correlation between models estimates: logit(sens)
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Figure 32: Correlation between models estimates: logit(spec). Studies 29 and 44 (extreme numeric
outliers) was exclude from the plot
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Figure 33: Correlation between models estimates: SD of logit(sens). Studies 29 and 44 (extreme numeric
outliers) was exclude from the plot

55



x

D
en

si
ty

NN SD.sp

0.
5

1.
5

0.
5

2.
0

3.
5

0.0 0.5 1.0 1.5 2.0 2.5

0.5 1.0 1.5 2.0

0.51***

x

D
en

si
ty

BN Glim SD.sp

0.47**
0.95***

x

D
en

si
ty

BN Nl SD.sp

0.0 0.5 1.0 1.5 2.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.82***
0.77***
0.72***

x

D
en

si
ty

Bayes BN SD.sp

0.
0

1.
0

2.
0

0.78***
0.81***

0.
0

1.
0

2.
0

0.76***
0.97***

0.5 1.0 1.5 2.0 2.5 3.0

0.
5

1.
5

2.
5

x

D
en

si
ty

Bayes BM SD.sp

Figure 34: Correlation between models estimates: SD of logit(spec). Studies 29 and 44 (extreme numeric
outliers) was exclude from the plot
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Figure 35: Correlation between models estimates: Covariance. Studies 29 and 44 (extreme numeric
outliers) was exclude from the plot
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Figure 36: Correlation between models estimates: Rho (fisher transformation)
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10.4 Codes

As following the core essential codes are provided.

10.4.1 Classical models

10.4.1.1 Reitsma model

data meta ;
set LAG_data;
if tp eq 0 or fp eq 0 or fn eq 0 or tn eq 0 then do;
tp=tp+0.5; fp=fp+0.5; fn=fn+0.5; tn=tn+ 0.5; end;
sens=tp/(tp + fn); spec=tn /(tn + fp);
log_sens=log(sens/(1-sens)); var_log_sens=1/(sens*(1-sens)*(tp + fn));
log_spec=log(spec/(1-spec)); var_log_spec=1/(spec*(1-spec)*(tn+ fp));

run;

data meta; rename group=modality studies=study_id;set meta; run;

data bi_meta;
set meta;
dis = 1; non_dis= 0;
logit = log_sens;
var_logit = var_log_sens;
rec + 1;output;
dis = 0; non_dis= 1;
logit = log_spec;
var_logit = var_log_spec;
rec + 1;
output;

run;

data c.cov;
if _n_ eq 1 then do; est = 0; output; est =0; output; est = 0; output; end;
set bi_meta;
est = var_logit; output;
keep est;

run;

data _null_;SET c.cov; call symput(’nCov_par’, _n_);run;

10.4.1.1.1 Continuity correction
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proc mixed data=bi_meta method=REML cl ;
class study_id ;
model logit = dis non_dis / noint cl df=1000, 1000, 1000, 1000, 1000, 1000;
random dis non_dis / subject=study_id type=un V VCorr G GCORR;
repeated / group=rec;
parms / parmsdata=c.cov hold=4 to &nCov_par;
ods output

V=one_reitsma_covmat
SolutionF=one_reitsma_estimates
CovParms=one_reitsma_CovParms
G=one_NN_GMixed
GCorr=one_NN_GCorr;

run;

10.4.1.1.2 Reitsma model

10.4.1.1.3 Profile likelihood Reitsma model The -2log(likelihood) values are extracted separated
for each covariance matrix element, making fix the rest of the elements, and then aloud to increase the
element under consideration. A grid is provided to PROC MIXED for the variance of Logit(sens) (0.01 to
25.00 by 0.01) equally for specificity, but for covariance the evaluated interval was (-2.00 to 2.00 by 0.01).
The parameters are manipulated in R, 1) To backtransform output=-2log(likelihood), to likelihood: as
follow exp−output/2 2) After the backtransformation this vector is normalized diving by the maximimun
element of all the elements in the vector, allowing to plot side by sile all the PL in the same frame.
The parms used in the model correspond to the hugher and lower levels of the Hierarchical model, the
first three are Var (logit(sen))), Covariance and Var (logit(spec))), and the rest correspond to the within
variance of each study, calculated with a previous data procedure (Continuity correction section, provide
the matrix dataframe: c.cov) from the observed data (DTA studies of the MA).

proc mixed data = bi_meta NOPROFILE;
class study_id;
model logit = dis non_dis / noint cl df = 1000, 1000, 1000, 1000, 1000, 1000;
random dis non_dis / subject = study_id type = un V VCorr;
repeated / group = rec;
# first cov parameter
parms (0.01 to 25.00 by 0.01)(-0.2203)(0.1021)
(1.06666666666667) (2.66666666666667) (0.253968253968254)
(0.243478260869565) (2.18181818181818) (0.404040404040404)
/ eqcons = 2 to & nCov_par;
ods output
V = one_reitsma_covmat
SolutionF = one_reitsma_estimates
CovParms = one_reitsma_CovParms
ParmSearch = pl_nopro.one_parmsearch1;

run;

proc mixed data = bi_meta NOPROFILE;
class study_id;
model logit = dis non_dis / noint cl df = 1000, 1000, 1000, 1000, 1000, 1000;
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random dis non_dis / subject = study_id type = un V VCorr;
repeated / group = rec;
# second cov parameter
parms (1.3103)(-2.00 to 2.00 by 0.01)(0.1021)
(1.06666666666667) (2.66666666666667) (0.253968253968254)
(0.243478260869565) (2.18181818181818) (0.404040404040404)
/ eqcons = 1, 3 to & nCov_par;
ods output
V = one_reitsma_covmat
SolutionF = one_reitsma_estimates
CovParms = one_reitsma_CovParms
ParmSearch = pl_nopro.one_parmsearch2;

run;

proc mixed data = bi_meta NOPROFILE;
class study_id;
model logit = dis non_dis / noint cl df = 1000, 1000, 1000, 1000, 1000, 1000;
random dis non_dis / subject = study_id type = un V VCorr;
repeated / group = rec;
# third cov parameter
parms (1.3103)(-0.2203) (0.01 to 25.00 by 0.01)
(1.06666666666667) (2.66666666666667) (0.253968253968254)
(0.243478260869565) (2.18181818181818) (0.404040404040404)
/ eqcons = 1, 2, 4 to & nCov_par;
ods output
V = one_reitsma_covmat
SolutionF = one_reitsma_estimates
CovParms = one_reitsma_CovParms
ParmSearch = pl_nopro.one_parmsearch3;

run;

10.4.1.2 Binomial-Normal model

PROC GLIMMIX data=LAG_bidata method=quad;
title ’Bivariate generalized linear random-effects model’;
class study status;
model true/total = status / noint s cl corrb covb ddfm=bw;
random status / subject=study S type=chol G;
/* if the model does not converge then replace ’chol’ by ’un’ */

estimate ’logit_sens’ status 1 0 / cl ilink;
estimate ’logit_spec’ status 0 1 / cl ilink; estimate ’LOR’ status 1 1 / cl exp;

ods output
parameterestimates = one_BN_p1
estimates=one_BN_p2
CovB=one_BN_GMixed
CorrB=one_BN_GCorr
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CovParms=one_BN_CovaParms
FitStatistics=c;
covtest / parms;

run;

10.4.1.2.1 Frequentist binomial-normal model

10.4.1.2.2 Profile likelihood frequentist binomial-normal model This code was construct by
the author of this project based on the code done by Millar (2011) (page 213)10

data tdata;do i = 1 to 1001;output;end;run;
data tdata;set tdata; if i=1 then do; covp1=0; end;
else covp1 + 0.025; drop i;run;
data tdata2;do i = 1 to 1001;output;end;run;
data tdata2;set tdata2; if i=1 then do; covp2=-2; end;
else covp2 + 0.004; drop i;run;
data tdata3;do i = 1 to 1001;output;end;run;
data tdata3;set tdata3; if i=1 then do; covp3=0; end;
else covp3 + 0.025; drop i;run;

PROC GLIMMIX data=LAG_bidata method=quad;
title ’Bivariate generalized linear random-effects model’;
class study status;
model true/total = status / noint s cl corrb covb DDFM=bw;
random status / subject=study S type=chol G;
covtest tdata=tdata / parms;
ods output covtests=ct;

run;
PROC GLIMMIX data=LAG_bidata method=quad;

title ’Bivariate generalized linear random-effects model’;
class study status;
model true/total = status / noint s cl corrb covb DDFM=bw;
random status / subject=study S type=chol G;
covtest tdata=tdata2 / parms;
ods output covtests=ct2; *cambiar aqui;

run;
PROC GLIMMIX data=LAG_bidata method=quad;

title ’Bivariate generalized linear random-effects model’;
class study status;
model true/total = status / noint s cl corrb covb DDFM=bw;
random status / subject=study S type=chol G;
covtest tdata=tdata3 / parms;
ods output covtests=ct3;

run;
data ct; set ct;drop CovP2 CovP3;run;
data ct2; set ct2;drop CovP1 CovP3;run;
data ct3; set ct3;drop CovP1 CovP2;run;

10PROC MIXED DATA=estrone NOPROFILE; MODEL y= / SOLUTION; RANDOM INT / SUBJECT=person;
PARMS (0.0 TO 0.2 BY 0.0001) (0.0015 TO 0.0060 BY 0.00005); RUN;
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library(metafor)
plot(influence(rma(measure="PLO",data=DataMA,xi=DataMA$TP,ni=DataMA$FN+DataMA$TP)))

10.4.1.2.3 For influential plots

10.4.2 Bayesian code

library(bamdit)
## Normal random effect
data <- Barnsley
set.seed(2020)
metadiag(data,

re = "normal",
re.model = "SeSp",
two.by.two = TRUE,
link = "logit",
sd.Fisher.rho = 1.7,
nr.burnin = 1000,
nr.thin = 1,
nr.iterations = 10000,
nr.chains = 3,
sigma.D.upper = 5,
sigma.S.upper = 5,
r2jags = TRUE)

## Mixture Normal random effect
metadiag(data,

re = "sm",
re.model = "SeSp",
two.by.two = TRUE,
link = "logit",
sd.Fisher.rho = 1.7,
nr.burnin = 1000,
nr.thin = 1,
nr.iterations = 10000,
nr.chains = 3,
sigma.D.upper = 5,
sigma.S.upper = 5,
r2jags = TRUE)

10.5 Sug-groups from triplot graph
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10.6 Profile-likelihoods plots

Study  1
Barnsley & Barnsley, (MA=1)

 SubG:18F−FDG−PET,
 #DTA:3, Pats:62R.Prev:0.48

 R rare case:0.33/0.33
 R Infl:0.33, R small stud:0.67

 Corr SE:0.95 CorrSP:0.14
 Score:44, Risk:High

S
D

 s
e

PL NN Mixed PL BN Glimmix PL BN NLMIX w/o st PL BN NLMIX w st Posterior BBN Bamdit Posterior BBM Bamdit

0 1 2 3 4 5
S

D
 s

p
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

−4 0 4

C
ov

−4 0 4 −4 0 4 −4 0 4 −4 0 4 −4 0 4

lo
gi

t S
E

−4 −2 0 2 4

lo
gi

t S
P

−4 −2 0 2 4 −4 −2 0 2 4

Figure 37: Study 1 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  2
Bellini et al., 2019(MA=2)
 SubG:Bone Scintigraphy,

 #DTA:5, Pats:245R.Prev:0.44
 R rare case:0.2/0.2

 R Infl:0.2, R small stud:0.2
 Corr SE:0.8 CorrSP:0.48

 Score:28, Risk:Low
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Figure 38: Study 2 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  3
Bin et al., 2019(MA=3)

 SubG:Radionucleide artrogr,
 #DTA:12, Pats:1432R.Prev:0.24

 R rare case:0.17/0
 R Infl:0, R small stud:0

 Corr SE:0.9 CorrSP:0.05
 Score:25, Risk:Low
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Figure 39: Study 3 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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Study  4
Chen et al., 2020(MA=4)

 SubG:SPEC/CT artrogram,
 #DTA:4, Pats:598R.Prev:0.59

 R rare case:0/0
 R Infl:0.25, R small stud:0
 Corr SE:0.81 CorrSP:0.83

 Score:31, Risk:Low
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Figure 40: Study 4 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  5
Faias, Pereira, Luis,(MA=5)

 SubG:no subgroup,
 #DTA:3, Pats:113R.Prev:0.55

 R rare case:0.33/0.33
 R Infl:0.33, R small stud:0.67

 Corr SE:0.49 CorrSP:0.83
 Score:44, Risk:High
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Figure 41: Study 5 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  6
Faias, Pereira, Luis,(MA=6)

 SubG:no subgroup,
 #DTA:13, Pats:553R.Prev:0.5

 R rare case:0.08/0.92
 R Infl:0, R small stud:0.62

 Corr SE:0.31 CorrSP:−0.75
 Score:38, Risk:High
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Figure 42: Study 6 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  7
Farahani and Baloch, (MA=7)

 SubG:less 12 h after,
 #DTA:73, Pats:27091R.Prev:0.1

 R rare case:0.03/0.79
 R Infl:0.04, R small stud:0
 Corr SE:0.67 CorrSP:0.42

 Score:22, Risk:Low
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Figure 43: Study 7 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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Study  8
Gurung et al., 2019(MA=8)

 SubG:24 h after,
 #DTA:4, Pats:2892R.Prev:0.81

 R rare case:0/0.25
 R Infl:0.5, R small stud:0

 Corr SE:0.71 CorrSP:0.99
 Score:36, Risk:High

S
D

 s
e

PL NN Mixed PL BN Glimmix PL BN NLMIX w/o st PL BN NLMIX w st Posterior BBN Bamdit Posterior BBM Bamdit

0 1 2 3 4 5

S
D

 s
p

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

−4 0 4
C

ov

−4 0 4 −4 0 4 −4 0 4 −4 0 4 −4 0 4

lo
gi

t S
E

−4 −2 0 2 4

lo
gi

t S
P

−4 −2 0 2 4 −4 −2 0 2 4

Figure 44: Study 8 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  9
He et al., 2019(MA=9)

 SubG:Low risk + High risk,
 #DTA:21, Pats:3579R.Prev:0.28

 R rare case:0/0.05
 R Infl:0, R small stud:0

 Corr SE:0.71 CorrSP:0.76
 Score:20, Risk:Low
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Figure 45: Study 9 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  10
Issa et al., 2017(MA=10)

 SubG:High risk + low risk ,
 #DTA:15, Pats:1181R.Prev:0.31

 R rare case:0.07/0.27
 R Infl:0, R small stud:0.13
 Corr SE:0.59 CorrSP:0.6

 Score:27, Risk:Low
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Figure 46: Study 10 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)) and Covariance

Study  11
Lee et al., 2019(MA=11)

 SubG:High risk + Non High ,
 #DTA:17, Pats:2982R.Prev:0.08

 R rare case:0.18/0.35
 R Infl:0, R small stud:0.06
 Corr SE:0.63 CorrSP:0.7

 Score:23, Risk:Low
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Figure 47: Study 11 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)) and Covariance
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Study  12
J. Li et al., 2019(MA=12)

 SubG:Malignant +Mucinous,
 #DTA:7, Pats:658R.Prev:0.11

 R rare case:0/0.14
 R Infl:0.29, R small stud:0
 Corr SE:0.63 CorrSP:0.48

 Score:25, Risk:Low
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Figure 48: Study 12 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  13
Li et al., 2020(MA=13)

 SubG:Malignant,
 #DTA:21, Pats:1034R.Prev:0.28

 R rare case:0.19/0.38
 R Infl:0.05, R small stud:0.38
 Corr SE:0.72 CorrSP:−0.36

 Score:31, Risk:Low
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Figure 49: Study 13 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  14
Shen et al., 2019(MA=14)

 SubG:no subgroup,
 #DTA:19, Pats:3173R.Prev:0.03

 R rare case:0.05/0.58
 R Infl:0, R small stud:0

 Corr SE:0.32 CorrSP:0.58
 Score:22, Risk:Low
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Figure 50: Study 14 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  15
Tsou et al., 2019(MA=15)

 SubG:FLA−ABS,
 #DTA:30, Pats:5250R.Prev:0.05

 R rare case:0.5/0.37
 R Infl:0.03, R small stud:0.2
 Corr SE:0.43 CorrSP:0.06

 Score:25, Risk:Low
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Figure 51: Study 15 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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Study  16
Wang et al., 2019(MA=16)

 SubG:Agglutinattion,
 #DTA:5, Pats:1054R.Prev:0.17

 R rare case:0/0
 R Infl:0.2, R small stud:0

 Corr SE:−0.67 CorrSP:−0.74
 Score:26, Risk:Low
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Figure 52: Study 16 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  17
Wei et al., 2020(MA=17)

 SubG:Conventional PCR,
 #DTA:15, Pats:820R.Prev:0.32

 R rare case:0.2/0
 R Infl:0, R small stud:0.07
 Corr SE:0.85 CorrSP:0.76

 Score:26, Risk:Low
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Figure 53: Study 17 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  18
Xu et al., 2019(MA=18)

 SubG:ELISA,
 #DTA:22, Pats:2411R.Prev:0.22

 R rare case:0.14/0.23
 R Infl:0, R small stud:0.05
 Corr SE:0.8 CorrSP:0.11

 Score:23, Risk:Low
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Figure 54: Study 18 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  19
Yoon et al., 2019(MA=19)

 SubG:Lateral Flow,
 #DTA:3, Pats:198R.Prev:0.62

 R rare case:0/0
 R Infl:0.67, R small stud:0
 Corr SE:0.97 CorrSP:0.99

 Score:36, Risk:High
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Figure 55: Study 19 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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Study  20
Zheng et al., 2019(MA=20)

 SubG:Lepromin Skin Reactio,
 #DTA:11, Pats:2844R.Prev:0.3

 R rare case:0.27/0
 R Infl:0.09, R small stud:0
 Corr SE:0.76 CorrSP:0.76

 Score:27, Risk:Low
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Figure 56: Study 20 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  21
Zhu et al., 2020(MA=21)

 SubG:qPCR,
 #DTA:7, Pats:522R.Prev:0.4

 R rare case:0/0.14
 R Infl:0.14, R small stud:0.14
 Corr SE:−0.24 CorrSP:0.73

 Score:26, Risk:Low
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Figure 57: Study 21 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  22
Gurung et al., 2019(MA=8)

 SubG:T Cell inmunological ,
 #DTA:5, Pats:1662R.Prev:0.51

 R rare case:0/0.2
 R Infl:0.2, R small stud:0
 Corr SE:0.9 CorrSP:0.82

 Score:28, Risk:Low
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Figure 58: Study 22 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  23
Barnsley & Barnsley, (MA=1)

 SubG:no subgroup,
 #DTA:5, Pats:147R.Prev:0.48

 R rare case:0.2/0.4
 R Infl:0.4, R small stud:0.6
 Corr SE:0.85 CorrSP:−0.22

 Score:43, Risk:High
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Figure 59: Study 23 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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Study  24
Gurung et al., 2019(MA=8)

 SubG:EUS,
 #DTA:17, Pats:1988R.Prev:0.26

 R rare case:0/0.82
 R Infl:0.12, R small stud:0.06

 Corr SE:0.16 CorrSP:0.22
 Score:22, Risk:Low
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Figure 60: Study 24 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  25
Issa et al., 2017(MA=10)

 SubG:CT,
 #DTA:10, Pats:670R.Prev:0.36

 R rare case:0.1/0.2
 R Infl:0.1, R small stud:0
 Corr SE:0.78 CorrSP:0.9

 Score:28, Risk:Low
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Figure 61: Study 25 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  26
J. Li et al., 2019(MA=12)

 SubG:ERCP,
 #DTA:7, Pats:625R.Prev:0.4

 R rare case:0/0.14
 R Infl:0.14, R small stud:0
 Corr SE:0.49 CorrSP:0.56

 Score:25, Risk:Low
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Figure 62: Study 26 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  27
J. Li et al., 2019(MA=12)

 SubG:MRCP,
 #DTA:3, Pats:196R.Prev:0.62

 R rare case:0/0.33
 R Infl:0.67, R small stud:0.33
 Corr SE:−0.54 CorrSP:−0.27

 Score:45, Risk:High
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Figure 63: Study 27 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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Study  28
J. Li et al., 2019(MA=12)

 SubG:US,
 #DTA:4, Pats:320R.Prev:0.6

 R rare case:0/0.25
 R Infl:0.5, R small stud:0.25
 Corr SE:0.32 CorrSP:−0.06

 Score:33, Risk:High
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Figure 64: Study 28 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  29
J. Li et al., 2019(MA=12)

 SubG:no subgroup,
 #DTA:3, Pats:61R.Prev:0.62

 R rare case:0.33/1
 R Infl:0.67, R small stud:0.67
 Corr SE:−0.98 CorrSP:0.82

 Score:50, Risk:High
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Figure 65: Study 29 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  30
Zhu et al., 2020(MA=21)

 SubG:MRI1,
 #DTA:7, Pats:507R.Prev:0.4

 R rare case:0/0.14
 R Infl:0, R small stud:0.14
 Corr SE:0.88 CorrSP:0.42

 Score:27, Risk:Low
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Figure 66: Study 30 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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Study  31
Wang et al., 2019(MA=16)

 SubG:CT 1,
 #DTA:7, Pats:1488R.Prev:0.34

 R rare case:0/0
 R Infl:0.29, R small stud:0
 Corr SE:0.86 CorrSP:0.4

 Score:27, Risk:Low
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Figure 67: Study 31 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  32
Gurung et al., 2019(MA=8)

 SubG:CT 4,
 #DTA:40, Pats:13561R.Prev:0.05

 R rare case:0.07/0.17
 R Infl:0, R small stud:0

 Corr SE:−0.19 CorrSP:0.6
 Score:17, Risk:Low
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Figure 68: Study 32 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  33
Issa et al., 2017(MA=10)

 SubG:CT2,
 #DTA:11, Pats:742R.Prev:0.18

 R rare case:0/0.18
 R Infl:0, R small stud:0.09
 Corr SE:0.36 CorrSP:0.78

 Score:24, Risk:Low
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Figure 69: Study 33 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  34
Zhu et al., 2020(MA=21)

 SubG:CT3,
 #DTA:6, Pats:726R.Prev:0.24

 R rare case:0.33/0.5
 R Infl:0.67, R small stud:0
 Corr SE:0.89 CorrSP:0.8

 Score:44, Risk:High
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Figure 70: Study 34 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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Study  35
Xu et al., 2019(MA=18)

 SubG:MRI2,
 #DTA:18, Pats:2326R.Prev:0.13

 R rare case:0.11/0.44
 R Infl:0.06, R small stud:0.06

 Corr SE:0.7 CorrSP:0.42
 Score:22, Risk:Low
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Figure 71: Study 35 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  36
Xu et al., 2019(MA=18)

 SubG:MRI3,
 #DTA:11, Pats:1329R.Prev:0.17

 R rare case:0.18/0.18
 R Infl:0.09, R small stud:0
 Corr SE:0.73 CorrSP:0.81

 Score:26, Risk:Low
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Figure 72: Study 36 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  37
Faias, Pereira, Luis,(MA=5)

 SubG:MRI4,
 #DTA:3, Pats:153R.Prev:0.46

 R rare case:0/0.33
 R Infl:0.67, R small stud:0.33

 Corr SE:−0.67 CorrSP:−1
 Score:46, Risk:High
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Figure 73: Study 37 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  38
Faias, Pereira, Luis,(MA=5)

 SubG:Overall CT,
 #DTA:3, Pats:153R.Prev:0.46

 R rare case:0/0.33
 R Infl:0.67, R small stud:0.33
 Corr SE:−0.86 CorrSP:0.82

 Score:48, Risk:High
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Figure 74: Study 38 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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Study  39
Gurung et al., 2019(MA=8)

 SubG:no subgroup,
 #DTA:9, Pats:4172R.Prev:0.24

 R rare case:0.11/0.11
 R Infl:0.11, R small stud:0
 Corr SE:0.82 CorrSP:0.6
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Figure 75: Study 39 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  40
Gurung et al., 2019(MA=8)

 SubG:no subgroup,
 #DTA:4, Pats:1476R.Prev:0.39

 R rare case:0/0.25
 R Infl:0.5, R small stud:0
 Corr SE:0.83 CorrSP:0.9

 Score:37, Risk:High
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Figure 76: Study 40 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  41
Faias, Pereira, Luis,(MA=6)

 SubG:no subgroup,
 #DTA:12, Pats:398R.Prev:0

 R rare case:0.25/0.33
 R Infl:0.08, R small stud:0.67

 Corr SE:0.07 CorrSP:−0.2
 Score:36, Risk:High
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Figure 77: Study 41 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  42
Issa et al., 2017(MA=10)
 SubG:Cervical Length,

 #DTA:17, Pats:1159R.Prev:0.17
 R rare case:0.06/0.29

 R Infl:0, R small stud:0.12
 Corr SE:0.65 CorrSP:0.84

 Score:22, Risk:Low
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Figure 78: Study 42 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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Study  43
J. Li et al., 2019(MA=12)

 SubG:Elastography,
 #DTA:4, Pats:321R.Prev:0.39

 R rare case:0/0.25
 R Infl:0.5, R small stud:0.25
 Corr SE:0.41 CorrSP:0.81

 Score:34, Risk:High
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Figure 79: Study 43 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  44
J. Li et al., 2019(MA=12)
 SubG:Tumor Staging,

 #DTA:3, Pats:736R.Prev:0.44
 R rare case:0.33/1

 R Infl:0.33, R small stud:0.67
 Corr SE:−0.76 CorrSP:−1

 Score:46, Risk:High
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Figure 80: Study 44 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  45
J. Li et al., 2019(MA=12)

 SubG:Node Staging,
 #DTA:3, Pats:197R.Prev:0.44

 R rare case:0/0.33
 R Infl:0.67, R small stud:0.33

 Corr SE:−1 CorrSP:0.89
 Score:48, Risk:High
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Figure 81: Study 45 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  46
Wei et al., 2020(MA=17)

 SubG:FNA−Tg,
 #DTA:13, Pats:1507R.Prev:0.19

 R rare case:0.08/0
 R Infl:0.08, R small stud:0.08

 Corr SE:0.68 CorrSP:0.22
 Score:23, Risk:Low
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Figure 82: Study 46 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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Study  47
J. Li et al., 2019(MA=12)

 SubG:FNAC,
 #DTA:8, Pats:756R.Prev:0.2

 R rare case:0/0.12
 R Infl:0.12, R small stud:0
 Corr SE:0.5 CorrSP:0.58

 Score:25, Risk:Low
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Figure 83: Study 47 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  48
Yoon et al., 2019(MA=19)
 SubG:FNAC+FNA−Tg,

 #DTA:3, Pats:190R.Prev:0.39
 R rare case:0.33/0

 R Infl:0.67, R small stud:0
 Corr SE:0.97 CorrSP:0.87

 Score:39, Risk:High
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Figure 84: Study 48 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  49
Yoon et al., 2019(MA=19)

 SubG:CRP,
 #DTA:4, Pats:308R.Prev:0.31

 R rare case:0.5/0
 R Infl:0.75, R small stud:0
 Corr SE:0.95 CorrSP:0.88

 Score:40, Risk:High
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Figure 85: Study 49 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  50
Gurung et al., 2019(MA=8)

 SubG:PCT,
 #DTA:5, Pats:505R.Prev:0.26

 R rare case:0/0.6
 R Infl:0.4, R small stud:0

 Corr SE:0.79 CorrSP:0.77
 Score:37, Risk:High
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Figure 86: Study 50 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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Study  51
Barnsley & Barnsley, (MA=1)

 SubG:Presepsin,
 #DTA:5, Pats:196R.Prev:0.26

 R rare case:0/0
 R Infl:0.4, R small stud:0.4
 Corr SE:−0.71 CorrSP:0.73

 Score:40, Risk:High
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Figure 87: Study 51 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  52
Barnsley & Barnsley, (MA=1)

 SubG:no subgroup,
 #DTA:3, Pats:105R.Prev:0.39

 R rare case:0.33/0
 R Infl:0.33, R small stud:0.33

 Corr SE:0.6 CorrSP:0.78
 Score:39, Risk:High
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Figure 88: Study 52 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  53
Gurung et al., 2019(MA=8)

 SubG:Overall CTCs,
 #DTA:4, Pats:1282R.Prev:0.31

 R rare case:0.25/0.25
 R Infl:0.5, R small stud:0

 Corr SE:0.94 CorrSP:−0.81
 Score:39, Risk:High
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Figure 89: Study 53 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)

Study  54
Issa et al., 2017(MA=10)

 SubG:ctDNA,
 #DTA:10, Pats:1005R.Prev:0.22

 R rare case:0.1/0.4
 R Infl:0.1, R small stud:0

 Corr SE:0.89 CorrSP:0.65
 Score:31, Risk:Low
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Figure 90: Study 54 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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Study  55
Chen et al., 2020(MA=4)
 SubG:overall exosomes,

 #DTA:7, Pats:2256R.Prev:0.36
 R rare case:0.29/0

 R Infl:0.14, R small stud:0
 Corr SE:0.91 CorrSP:0.86

 Score:33, Risk:High
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Figure 91: Study 55 Frequentist PL and Bayesian Posterior comparisson between SD(logit(se)),
SD(logit(sp)), Covariance, logit(se) and logit(sp)
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