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1 Abstract

Background: Multiple sclerosis (MS) is an incurable chronic disease of the central
nervous system (CNS) that is affecting millions of people world wide. Even though
magnetic resonance imaging (MRI) and Expanded disability status scale (EDSS) are
widely used in assessing MS disability progression, evoked potentials (EPs) are used
too. Predicting MS disability progression two years earlier could trigger treatment
change in MS patients leading to better treatment outcomes. Until now, predicting
MS disability progression has been a challenge. Previous works have used logistic
regression (LR), a linear classifier. In this research we have applied several machine
learning approaches to motor evoked potential (MEP), and for the first time to vi-
sual evoked potential (VEP) and somatosensory evoked potential (SSEP). We have
further used a longitudinal approach (regression trees with random effects model
(REEMtree)) for the first time to the three EPs using data for patients under treat-
ment from Rehabilitation & MS center in Overpelt, Belgium.
Methods: We use the lasso approach to all EP latencies and EDSS to select vari-
ables that minimise cross validation error. We apply the LR, random forest (RF),
neural network (NN), boosting and REEMtree models to predict MS disability pro-
gression after two years. Each of these models predicted disability progression 10000
times, and each time we studied the receiver operating character (ROC) area under
the curve (AUC). We applied Statistical significance tests to establish the best ways
to predict MS disability progression.
Results: Using REEMtree, a longitudinal model that exploits the clustered nature
of the data, yields incredibly good results (AUC 0.967 ± 0.013 for MEP, 0.963 ±
0.013 for VEP and 0.967 ± 0.012 for SSEP) outperforming the second best model
(RF) and the baseline model (LR) ((0.732 ± 0.05, 0.687± 0.06 ), (0.72 ± 0.06, 0.661
± 0.07) and (0.702 ± 0.06, 0.623 ± 0.08) for MEP, VEP and SSEP respectively).
This is a very good classifier, given the fact that we only had EDSS and EPs as
biomarkers. The MEP and SSEP have similar MS prediction performance (p value
0.07) which is superior to VEP (p value < 0.000). Finally ensembling limb or eye
specific analysis with the longitudinal model does not improve MS disability pro-
gression prediction for all EPs (p values ≥ 0.92 for all EPs).
Conclusions: There is hope for MS patients that machine learning approaches
can be used to predict MS disability progression with high accuracy. The non linear
classifiers out perform the linear classifiers, and the longitudinal model out performs
all the other models. This model can inform clinicians about the future treatment
choices for better MS treatment outcomes.
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4 Introduction

Multiple sclerosis (MS) is an inflammatory disease that affects the CNS, i.e. the
brain and spinal cord, and usually starts between 20 and 40 years of age [37] af-
fecting more women by at least twice the men. It is the commonest demyelinating
disease of the CNS in northern Europe and America and even though its etiology is
still unknown, a T cell-mediated autoimmune pathogenesis is likely to be responsible
for the demyelination [26]. This demyelination causes patients to acquire symptoms
which include sensation deficits and motor, autonomic and neurocoginitive dysfunc-
tion which depend on the site of the lesions [44]. It is estimated that in Europe
alone, there are over 700,000 patients living with the disease with over 2.5 million
people world wide [7]. Like any other disease, its impact on the social status and
the well being on both the individuals and the economy at large can not be ignored
[22, 38]. Currently there is no cure for the disease, but only therapeutic strategy is
offered to patients to reduce the risk of relapses and disability progression [28]. With
this disease, if no treatment is offered, at least 50% of MS patients will progress into
another worse state after two decades, independent of acute attacks [10, 42].

Predicting disability progression, accurately, in MS is still a major challenge [39].
If the non-response to the current treatment is detected early, a treatment switch
would help inform treatment choices to improve the outcome of the treatment [44].
There are so many biomarkers available for MS, and even though the magnetic
resonance imaging (MRI), which visualizes lesions in CNS, is used, there are other
clinical parameters which include expanded disability status scale (EDSS) [23] which
can also be used to assess disability progression [13, 40, 27, 32, 24].
In the figure 1, the higher the EDSS score, the worse the disease stage and it would
help patients if progression to another stage does not occur.

In addition to the EDSS and MRI, evoked potentials (EP) can be used to mon-
itor MS disability, but also used in assessing MS progression [29, 25, 21, 16, 33].
According to [44], EP provide a quantitative information on the functional integrity
of well-defined pathways of the CNS, and reveal early infra-clinical lesions. These
are able to detect the reduction in electrical conduction caused by damage along
these pathways even when the change is too subtle to be noticed by a person or to
translate into clinical symptoms. There are many EPs that can be extracted from
MS patients [41], but for this particular study, we have three EPs which include the
Visual evoked potental (VEP), motor evoked potential (MEP) and somatosensory
evoked potential (SSEP).
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Figure 1: The EDSS score at each MS disability stage.

The time taken for the signal to arrive (latency) has always been used to study
MS disability progression in literature, using linear correlation with EDSS and also
using logistic regression [44]. This study is perhaps the second of its kind to use
machine learning technology to predict MS disability progression from EPs. Most
of the studies have used cross sectional analysis techniques. The only work that
has been done using machine learning is by [44] which focused on MEP but did not
explore other EPs. In addition, the analysis was done by analysing the arms and legs
separately, and then aggregating the results from both limbs. While our research
does not use time series data, it has used different EPs and also used, in addition to
the methods regularly used, a model that takes into account the longitudinal nature
of the data set (REEMtree). Even though [44] analysed both limbs separately,
this study will test if this approach yields significantly better results than simply
studying all the latencies at once.

4.1 Research questions

We have four hypotheses for this study outlined below

• Not all EP latencies are required when used with baseline EDSS to predict
MS disability progression.

• Machine learning approaches perform differently when predicting MS disability
progression.

• Some EPs give superior results compared to others when used to predict MS
disability progression after two years.

• Predicting MS disability progression by using latencies from each limb (MEP
and SSEP) or eye (VEP) separately has superior predictive power as compared
to studying all latencies at once for all EPs.
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We have hence developed four research questions that have helped us come up with
relevant conclusions, and these are outlined below.

• Which latencies are important when used with baseline EDSS for predicting
MS disability progression with MEP, VEP and SSEP?

• Which machine learning model best predicts MS disability progression after 2
year?

• Which EP provides best predictions for MS disability progression after two
years?

• Is it true that predicting MS disability progression using the left and right
latencies separately gives superior results compared to when all latencies are
combined at once for all EPs?

3



5 Description of the data set

5.1 Provided data

To explore the subject matter, we use data from Pelt Rehabilitation & MS center,
a specialized center for people with MS and other disorders of the nervous system
which is located in Pelt, Belgium. The provided data on evoked potentials included
the MEP (both upper and lower with 1971 visits), VEP (2146), SSEP (upper (1984)
and lower (331)) and EDSS (8396) visits. All the data sets, except the EDSS data
set had information about the patient id, visit dates and latencies. The EDSS data
set had information about the patient id, patient visit dates and the EDSS score
during the visit.

These are longitudinal data collected between 2006 and 2017. The EDSS visits
are not necessarily the visits for all the other EP visits, which implies for example
that not every MEP visit will have an EDSS measurement, and so forth. Like any
other longitudinal data set, the data at hand had missing values, which are consid-
ered the first obstacle in predictive modelling. The proportion of missing data was
more with the SSEP lower and SSEP upper data sets with 29% and 17% records
with missing data respectively. The EDSS data set did not have any missing data
as seen in table 1. In machine learning the idea is to maximally utilize the available
data. We have used the Hmisc package in R [17] to impute the missing values in the
simplest manner possible. With this package, we have an option to impute using
a user defined statistic for example the median, mean, random value etc. We have
imputed with random value, which is simply any observation within the variable
picked at random. We have opted out of the other choices for reason of not having
one value dominate the missing latency values.

Because not every EP visit had EDSS measurement, the baseline EDSS is the one
for the individual’s visit closest to the EP visit with in one year. EP visits with-
out EDSS measurements that fall within one year have been discarded from further
analyses.

We finally find the EDSS measurement after 2 years from the baseline EDSS. Again
here, we have given an allowance of measurements taken between 1.5 and 3 years,
whichever is close to 2 years as the final EDSS measurement taken after two years.
Records that did not have a followup visit after two years have been omitted from
further analyses. After this step, we had the following visits ready for analysis, 1724
(MEP), 1364 (VEP), 1286 (SSEP Upper) and 80 (SSEP lower).

We use the standard definition of disability progression [20], where the patient
has progressed if EDSST1 − EDSSTo ≥ 1.0 for EDSSTo ≤ 5.5, or if EDSST1 −
EDSSTo ≥ 0.5 for EDSSTo > 5.5. The summary of this step is shown in table 1
The SSEP lower final data set is too small to train machine learning models. We
have hence forth eliminated it from further study and used the MEP, VEP and
SSEP upper data sets to answer our research questions.
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EDSS MEP VEP SSEP upper SSEP lower

Number Visits 8396 1971 2146 1984 331

Variables 3 6 14 10 18

Unique Patients 585 405 558 551 257

% rows with missing data 0(0%) 138(7%) 69(3.2%) 339(17.1%) 96(29%)

% With baseline EDSS - 1889(95.8%) 2031(94.6%) 1878(94.7%) 323(97.6%)

% With follow up after 2 years - 1724(87%) 1364(63.6%) 1286(64.8%) 80(24.2%)

% progression after 2 years - 172(9.97%) 146(10.7%) 127(9.88%) 3(3.75%)

Table 1: Summary of the data provided at different stages for all the EPs

5.2 EP experiments

The data provided resulted from experiments explained below. For VEP, three elec-
trodes were placed on the head, a checkerboard pattern was flashed at a distance of
1m20. Left and right eye were each measured twice (the other eye covered). The
final measurement was averaged over 200 individual measurements, latencies were
annotated automatically and around 10% needed to be adjusted manually. For the
SSEP upper, three electrodes were placed on the head, a muscle in the thumb was
stimulated, Left and right hand were each measured twice, the final measurement
was averaged over 150 individual measurements, latencies were annotated automat-
ically and around 10% needed to be adjusted manually. Regarding MEP, three
electrodes were placed on the hands or feet, a magnetic coil stimulated the motor
cortex, started at excitation strength 45% (hands) or 50% (feet) and increased by
5% until amplitude stopped increasing or reached 1, each time-series was an individ-
ual measurement, latencies were annotated automatically and around 90% needed
to be adjusted manually. The figures 2 3 and 4 depict the three different EPs used
for modeling in this work with annotated latencies.

0 10 20 30 40 50 60 70 80 90 100
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Figure 2: MEP with annotated latencies. Image source: [44]
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Figure 3: VEP with annotated latencies. Image source: [30]

In our data set, we used latency N145 instead of N135 shown in figure 3. We have
two measurements for each latency (N145, P100 and N75) on both the left and right
eyes.

Figure 4: SSEP Upper with annotated latencies. Image source: [18]

In this work, we used latencies N20 and P25. we have not used latencies N13 and
P14 shown in figure 4. Like with the VEP, we have two measurements for N20
latency on both the left and right limbs. We have three measurements for latency
P25 on the right limb and one measurement on the left limb.
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5.3 MEP Exploration

We have used the box plots to explore all the latencies in the MEP data set between
patients that progressed and those that did not progress in the figures 5 and 6.
we notice many latency values out of range in both groups, but we have opted to
use all the data for all EPs since there are no better methods that could be used
to identify the latency measurement error except the one by one manual checking
method which is very time consuming. The general conclusion drawn from the MEP
plots is that the average latencies for patients that progressed are always higher than
that of patients that did not progress.

Figure 5: The relationship between the AH L, APB L latencies and MS disability
progression
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Figure 6: The relationship between the AH R, APB R latencies and MS disability
progression

From the box plots, both the left and the right limb’s latencies seem to have an
effect on MS progression.

Figure 7: The relationship between the EDSS and MS disability progression for
MEP data set

In the figure 7 above, we have plotted the EDSS for the two categories in different
colours. Its clear that the baseline EDSS for the two categories is different from each
other. The average EDSS for patients that progressed was 3.96 which is higher than
that in patients that did not progress of 2.92. This suggests that baseline EDSS
could be vital in predicting disability progression.
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5.4 VEP Exploration

The VEP data set graphs presented in figures 8, 9, 10, 11, 12 and 13 also present
the same trend that the average latencies in people that progressed are quit higher
than that for patients that never progressed after two years. All the latencies here
for both eyes show the same trend suggesting that both the left and the right eye
may have a part to play in predicting MS disability progression.

Figure 8: The relationship between the VEP latencies N75 L 1, P100 L 1 and MS
disability progression

Figure 9: The relationship between the VEP latencies N145 L 1, N75 L 2 and MS
disability progression
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Figure 10: The relationship between the VEP latencies P100 L 2, N145 L 2 and MS
disability progression

Figure 11: The relationship between the VEP latencies N75 R 1, P100 R 1 and MS
disability progression
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Figure 12: The relationship between the VEP latencies N145 R 1, N75 R 2 and MS
disability progression

Figure 13: The relationship between the VEP latencies P100 R 2, N145 R 2 and
MS disability progression
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Figure 14: The relationship between the EDSS and MS disability progression for
VEP data set

Like in the MEP data set, a plot shown in figure 14 shows a distinction in EDSS
between the two group. The average EDSS among the patients that progressed is
4.12 and that among the patients that never progressed is 2.95 suggesting again that
the EDSS could play a prediction role.

5.5 SSEP Exploration

The SSEP latencies are not any different from those of other EPs. The figures 15, 16,
17, 18 presented below show that the average latencies for patients that progressed
is a bit higher than that of patients that never progressed with latency P25 L 1 and
P25 R 2.1 seemingly outstanding among all the other latencies seen to influence
disability progression.

Figure 15: The relationship between the SSEP latencies N20 L 1, P25 L 1 and MS
disability progression
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Figure 16: The relationship between the SSEP latencies N20 L 2, P25 R 2 and MS
disability progression

Figure 17: The relationship between the SSEP latencies N20 R 1, P25 R 1 and MS
disability progression
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Figure 18: The relationship between the SSEP latencies N20 R 2, P25 R 2.1 and
MS disability progression

Figure 19: The relationship between the SSEP EDSS and MS disability progression

The plot 19 shows a clear distinction between the baseline EDSS among the two
groups of patients. The average EDSS for the patients that progressed is 3.93 and
that among patients that did not progress is 2.93, again, like other EPs suggesting
how important the baseline EDSS might be in the MS disease prediction role.
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6 Description of the methods

In this section, we describe five machine learning methods that have been used in
studying and answering the research questions. As put by [9], a machine learning
system is trained rather than explicitly programmed. If we present many examples
relating to the task at hand, the machine learning system learns statistical structures
in the examples, or the train data set and these allow the system to develop rules
that automate the task. First off, we have started with exploring the latencies for
the different EPs, using two unsupervised methods. We then embark on variable
selection, or Latency selection procedure that enables us to model with only the
latencies that are key to the MS disability progression.

6.1 Unsupervised learning

The task at hand is surely of supervised learning, it is however important to under-
stand the nature of the independent variables we are dealing with before bringing in
the response variable. The goal of unsupervised learning is to discover patterns that
might exist with in the covariates [3, 8], or the observations, so that we can then
discover subgroups, if they exist and also visualize the data in a meaningful sense.

Unsupervised PCA

PCA allows us to summarize the data with a smaller number of variables that rep-
resent many variables if they are correlated. These smaller number of variables can
collectively explain the variability in the original data set. Reducing the number of
features can help to visualize the data at once, PCA hence finds a low-dimensional
representation of the data set which contain as much information as possible. As-
suming that all the individuals live in m(number of features)-dimensional space and
assuming that the data is correlated, not all these dimensions will be useful. The first
principal component of features X1, X2, ...Xp is the linear combination of features

PC1 = a11X1 + a21X2 + ...+ ap1Xp

with
p∑
j=1

a2j1 = 1

that has the largest variance. The loadings on the first principle component (a11, a21...ap1)
define the direction in the feature space along which the data vary the most. When
we have the first principal component, we then get the second principle component
as a linear combination of X1, X2, ...Xp with the greatest variance among all liner
combinations of X1, X2, ...Xp that are uncorrelated with PC1, and so forth.

Clustering

Clustering is a tool for unsupervised learning used to partition observations into
distinct subgroups so that the observations within the same cluster are similar to
each other and different from those of other clusters [43, 2]. While the PCA seen
in the previous section seeks to find a low dimensional representation of the data
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that best explains a large percentage of the variations in the data set, clustering
seeks to find subgroups that exist in the data set. There are two widely used
methods of clustering: the k-means method and the hierarchical clustering. The
k-means method is used when we need to specify the number of clusters in advance
from the data set and the task is to separate the observations within these clusters.
Hierarchical clustering on the other hand subsets the data with as many subgroups as
the observations and usually it’s up to the analyst to define the reasonable number
of subgroups in the data set. In this study we shall hence focus on hierarchical
clustering.
In this type of clustering, we choose a dissimilarity measure between the pairs of
observations, and by starting with each observation as its own cluster, two clusters
that are similar to each other, using a dissimilarity measure are fused together so
that there are n-1 clusters. The next two clusters that are similar to each other are
then fused so that there are n-2 cluster. This trend continues until all observations
belong to a cluster. For this study, we have used the Euclidean distance, which often
works well with continuous data as a dissimilarity measure.
While conducting hierarchical clustering, we mainly have four types of linkages.
These include; the complete linkage which computes all dissimilarities between all
pairs of two clusters and takes the largest of the dissimilarity, the single linkage which
after computing all pairwise dissimilarities picks the smallest, the average linkage
which picks the average of the dissimilarity and the centroid linkage which picks the
dissimilarity between the centroids of the two subgroups. We have used complete
linkage mainly because the dendrograms by this type of linkage are balanced.

6.2 Latency selection

As seen in the data description section, the data provided was symmetrical in nature
with the latencies for left and right limbs (MEP and SSEP) and left or right eye
(VEP) for each of the EPs.

There are many methods that can be used for variable selection. These include
subset selection methods, shrinkage methods and dimension reduction methods. For
this particular task, we prefer the shrinkage methods and in particular the LASSO.
This is so because the LASSO is the only shrinkage methods that reduces coeffi-
cients to zero and selects latencies that only minimize the variance of the estimated
coefficients, hence avoiding over fitting, and which in turn leads to better accuracy,
but also keep the model as simple as possible for easy interpretation.

The LASSO selection method

Generally, assuming we have a continuous response variable, the approach of vari-
able selection used in lasso is to minimize the quantity

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj|

where λ is the penalty parameter, or the tuning parameter.
The lasso uses l1 penalty which has an effect on forcing some of the coefficient
estimates to zero. From the equation above, when the value of λ is zero, the lasso
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procedure will select all the variables in the data set and when λ is extremely large,
none of the variables will be selected. The value of λ, the tuning parameter is
therefore selected wisely, using cross validation. A grid of λ values are taken and
at each of these values, across validation error is calculated. The value of λ that
provides the least value of cross validation error is then chosen with its selected
variables. The same approach is used even when we have a dichotomous variable,
like for our problem where the response is disability progression after 2 years.

6.3 The logistic regression model

Predicting categories from the available data reduces to a classification problem and
in this section we tackle the basic logistic classifier as our baseline model. We shall
apply this model to predict the Pr(progression = yes|latencies)
The logit function [19, 11] is given by the expression

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + ...+ βpXp

where X=(X1, ..., Xp) are p predictors. Our problem is to predict the probability
of disability progression. Re arranging the above equation gives us the following
prediction function

p(X) =
eβ0+β1X1+...+βpXp

1 + eβ0+β1X1+...+βpXp

We can then use the maximum likelihood method, the more general approach used
in estimating coefficient to estimate non linear coefficients β0, β1, ..., βp. With max-
imum likelihood [6, 19], we seek to estimate β0, β1, ..., βp such that the predicted
probability of disability progression for every individual in the train set is close
to the individual’s actual progression status. It does this by finding the values of
β0, β1, ..., βp that give a probability that is close to 1 if the individual’s disease pro-
gressed after two years, or a probability close to 0 if the individual’s disease did not
progress after two years. This is done by choosing the values that maximize the
likelihood function:

l(β0, β1, ..., βp) =
∏
i:yi=1

p(xi)
∏

i′:y′i=0

(1− p(xi))

6.4 Tree based methods

Tree based methods have been widely studied and applied in statistics literature,
like in [15, 4, 1] and many other references as good predictive methods. Tree based
classification methods involve stratification of the predictor space into a number of
regions [19]. Classification trees are built by first dividing the predictor space into R
distinct and non-overlapping regions and then assigning the same prediction to every
observation belonging to each of the regions. If we have a continuous response, the
regions are build by dividing the predictor space into high dimensional rectangles
and the aim is to find regions that minimise RSS. Due to computational difficulties,
we instead use a top down approach called the recursive binary splitting. This
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approach begins at the top of the tree and then successively splits the predictor
space downwards.
While performing this approach, we select the predictors Xj and the cut-point l such
that splitting the predictor space into the regions X|Xj < l and X|Xj ≥ l leads to
the greatest possible reduction in RSS.
While classification trees have very high interpretability property, they have a very
poor prediction accuracy because they are not robust i.e. a small change in the data
can lead to a huge change in the predicted tree.
Because of this short fall, we have used advanced tree methods here, which instead
of using a single tree, they use multiple trees and then the final outcome is an
aggregate of the outcome of all the multiple trees.

The Random forest model

To overcome the challenge of high variance resulting from fitting a single tree, the
random forest model uses bootstrap algorithm to create different train sets from a
single train set. This is achieved by sampling from the train set multiple times, and
each time a tree is grown. The final outcome is the average of all the outcomes
from each grown tree. This is particularly true, from the statistical point of view,
we know that if we have independent observations J1, ..., Jn, each with variance σ2,
then the variance of the mean is given by σ2/n, in short, the variance will reduce if
we have different samples, each with its own variance.

The problem at hand is however a classification problem, and we don’t have the
mean, or the variance. The same idea also applies even with classification problems,
except that now, for every test observation we can record the predicted class for all
the trees grown and take the majority class selected by all the samples. It turns out
that we can even check for model performance with random forest models even with-
out having to use validation approaches. With random forest, each of the bagged
trees makes use of only approximately two-thirds of the data and the remaining
one-third, also referred to as out-of-bag (OOB) is used as test data. At the end
of the day, each observation shall have B/3 predictions, where B is the number of
bootstrap samples used. We can hence tell the model performance by aggregating
these predictions, if the response variable is continuous, or by taking the majority
class if the problem at hand is classification, like in our case which is a valid estimate
of the classification error.

Random forest is specifically different from the bagged models in the way it decorre-
lates the trees. Generally with bagged model, at each split in the tree, the algorithm
will use all the available predictors. Unfortunately in case there are few strong pre-
dictors, with the bagged model, all the trees will have the same prediction dominated
by the strong predictors and aggregating such similar trees does not have an impact
on the already high variance. To overcome this challenge, Random forest model
takes a sample of m predictors as candidates to consider at each split in the tree. In
so doing, we don’t always have the same dominating predictors at each split for all
the bootstrapped samples and eventually this will have a greater impact on lowering
the variance of the estimates. For the sake of the data set at hand, since we have
already chosen the latencies that are key to the response and also the fact that we
have few predictors for each of the models selected by the lasso model, we have used
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all the predictors at each split of tree growing.

The boosting model

The one other method that is worthy looking at is the boosting which also makes
use of several trees, like the random forest. Specifically the boosted models do not
use the bootstrap algorithm, instead trees are grown sequentially i.e. the next tree
uses information given by the previous tree. The boosting approach is said to learn
slowly, that is, given the current model, a decision tree is fit on the residuals and then
add the new decision tree into the already fitted function to update the residuals.
This approach will continuously improve the prediction slowly, since the construc-
tion of a tree is based on the previous tree as opposed to random forest models.
This aspect is the key difference between random forest and boosted models and in
general, slow learning statistical models tend to perform better than other models
[19].
The hyperparameters for the boosted model include the B, which is estimated from
cross validation to avoid overfitting, the shrinkage parameter λ which controls the
learning rate and the number of splits in each tree which controls the model com-
plexity.

6.5 The longitudinal model

The tree based methods discussed above have good performance power, however
the data at hand can be seen to be of clustered nature since we have several mea-
surements for one individual or longitudinal since one individual can have several
measurements over time. We have plotted spaghetti graphs for some patients up to
eight visits in figure 20 and 21 for two latencies (APB L and the AH R). The trend
shown in these two plots is also exhibited by all the other latencies for VEP and
SSEP.

Figure 20: AH R latency for at most eight visits for a few patients
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Figure 21: APB L latency for at most eight visits for a few patients

The two spaghetti graphs display a lot of variability between the patients, we also
notice variability within the patients for both latencies. This data is unique as
different measurements have been taken for each patient at different time points,
and each patient has their own number of measurements e.g. some patients have
measurements for only two visit, while others have 8 measurements etc. Analysing
this data set without factoring in it’s longitudinal and clustered nature will give us
poor predictions.

It is believed that [34, 12] were the first to develop methods that apply regres-
sion trees to longitudinal data, however current methods have proved better.
To get best predictions from such data, [36] suggests regression trees that take into
account random effects. While its true that our data set has a categorical response
and our major aim is to predict MS disability progression after two years, which is a
dichotomous outcome, the model works just as well if we have numerical values of 0
and 1 representing the two categories. If we simply apply the classification trees to
the data set, we simply ignore the correlation structure that exists in the data and
this weakens both the modelling and the predictive ability of the classification trees
seen above. Usually, mixed models [35, 14] can be used to overcome this challenge,
but we have already discussed that trees can perform better than single models and
[36] has generalized the mixed model to trees based methods (REEMtree), providing
even better output.

6.6 The neural network model

The central task with neural networks is to successfully transform the data from
it’s input format to a desired output. With neural networks, the layers are the
core building blocks, and the emphasis is put on learning with successive layers of
continuous improvement in the data representation. These layers, stack on top of
each other are the so called neural networks. All that is required for these networks
are the data inputs, examples of the expected outputs, the loss function and way to
measure the performance of the algorithm. The task at hand is to classify observa-
tions to either progressed or non progressed in MS disability. To achieve this, the
final layer of the network is set to classify the observation to the different groups.
We have provided these networks with train data sets, with the expected response
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values with the hope that the network will use these to find the structures that exist
in the data, the so-called black box, before allowing it to predict on the test data
set. For this task, we have used only three layers as model depth.

6.7 The data analysis pipeline

For all of the EPs, we have used all the above five mentioned models, but also used
two approaches for each model: The first approach was to model each limb or eye
and then ensemble the output from each model and EP (aggregate model). The
second approach was to develop a model that consists of all the limbs, or eyes (full
model). As a first step, we have scaled all latencies and baseline EDSS to have
mean 0 and standard deviation (SD) 1 and applied the lasso procedure to covariates
for each of the EPs and each of the approaches to select the covariates that are
believed to be influential to disability progression. These are the covariates used
for modelling and prediction of the disability progression by each of the models and
approach.

The MEP data set for example has five variables (EDSS, AH L, AH R, APB L,
APB R). For the aggregate model, we trained two models with model 1 having the
variable inputs EDSS, AH L, APB L and model 2 having variable inputs EDSS,
AH R, APB R. Note that these variable inputs had already been subjected to the
lasso selection criteria (see table 2) which received as an input EDSS, AH L, APB L
for the left latencies and EDSS, AH R, APB R for the right side latencies. The
output from these two models were probabilities p1 and p2 which were averaged
((p1+p2)/2) to get one single probability for each of the test observations whose
ROC AUC was studied. With the all limbs or eyes model, we subjected all the
variables (EDSS, AH L, AH R, APB L, APB R) to a lasso procedure at once and
trained one model on the selected variables (EDSS, AH R, APB R) (see table 2).
The output from this model was one probability for each test set observations whose
ROC AUC was studied.

For all the models and approach, we have trained 100 models by taking a sam-
ple of 70% of the data as train set and the remaining 30% as a test set. There is
always a trade off between what percentage of the data to be used by the test and
the train set, our percentage has been drawn from a similar study that has worked
on the same data set [44] that showed that train set consisting between 70% and
80% of observations yielded the best result. For every trained model, we again use
bootstrap algorithm to sample from the test data 100 times so that we have 100
predictions, and every time we study the Receiver Operating Characteristic area
under the curve [31, 5]. For the longitudinal model particularly, we sampled distinct
individuals to belong to either the train, or the test set with all their visits. We did
not conducted parameter tuning while training the models, except with the lasso
procedure. The end result from this whole step is 10000 predictions with 10000
ROC AUC, which have been used to study model performance. This pipeline has
been implemented in R version 3.6.0.
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7 Results

In this section, we present and interpret the results from our analysis. The section
is divided into sections of different analysis steps starting with the unsupervised
methods.

7.1 Unsupervised learning

We have used PCA and clustering for unsupervised analysis step, and below we
present findings from the two methods for all EPs.

PCA, MEP data set

The four latencies and the EDSS score variable have been studied and the first two
PCs explain 79% of the total variations in the original data set. The first principal
component places most of its weights on latencies AH L (0.469), APB L (0.458),
AH R (0.472) and APB R (0.456) and less weight on the baseline EDSS (0.374).
The second principal component however places its weight on the EDSS feature (-
0.927). in a nutshell, we can say that the first PC basically represents the latencies
within the data set. From the biplot in figure 22, it is clear that all these latencies
are correlated to each other.

Figure 22: The association of all the MEP covariates

Important to note, from figure 22, on the biplot, the fact that baseline EDSS is very
key in this data set and is significantly uncorrelated with the latencies. The biplot
also gives us some information about the two categories we are dealing with. While
several patients are at the centroid of the biplot, there are a few that are a bit far
from the centroid. This implies that we could have groups in our data sets that
are defined by the covariates hence concluding that the latencies and the baseline
EDSS indeed can be used to predict disability progression. Once we reduce the data
(figure 22, right panel), we notice a relationship between the two PCs implying that
these two PCs can work together during supervised analysis.
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Clustering, MEP data set

We have already said that clustering is particularly necessary when we want to
discover subgroups in the data sets. we have in this case studied the covariates,
instead of the observations. Figure 23 shows the resulting dendrogram for the MEP
latencies. The baseline EDSS is in its own cluster, as expected and the latencies
have been clustered together and further, the top and bottom Limbs have also been
clustered separately.

Figure 23: Dendrogram for the MEP data set covariates

In the figure 23, one can easily say that it is reasonable to study the upper and lower
limbs separately and then aggregate the results for the MEP data set as these limbs
are clustered together. This is as opposed to studying the left and the right limbs
which we considered.

The VEP data set

The VEP dataset had 12 latencies and the baseline EDSS. After applying the PCA,
the first two principal components explained 81% of the total variation in the original
data set. Like in the MEP data set, the first PC has been dominated by latencies
and their loadings are about the same implying possible correlation among the
latencies. The second PC is also dominated by the same latencies and the EDSS
only dominates the fourth principal component.
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Figure 24: The association of all the VEP covariates

In figure 24 above on the left panel we continue to confirm that the two PCs are
dominated by the latencies. Unlike in the MEP data set, there seems to be correla-
tion among latencies regardless of the eye. The biplot in the left panel shows that
there could be groups in the data. Individuals far from the center could belong to a
certain group different from that of individuals at the center of the biplot. The idea
of using these latencies and baseline EDSS to predict disability progression could
therefore be valid.

Clustering, VEP data set

In the figure 25, its interesting to see that the latencies under the categories N145
P100 and N75 can be grouped together regardless of the eye.

Figure 25: Vep data set Dendrogram
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In predicting MS disability progression therefore, it is not reasonable to study laten-
cies from the two eyes separately since for example we note that latencies N145 L 1
and N145 R 1 can belong to one cluster even though they belong to different eyes,
as evident in figure 25. Instead, it will be reasonable to look at the N145, P100
and N75 group of latencies separately regardless of the eye, and then ensemble the
results.

The SSEP data set

As in the VEP data set, the SSEP also tends to have the same characteristics that are
similar. For example both the first and the second PCs are dominated by latencies
and the baseline EDSS dominates the fourth PC. Unlike the other data sets, the
first two PCs only explain 70% of the total variations in the data.

Figure 26: The association of all the SSEP covariates

The data presented in figure 26 is very unique. Some latencies on the left limb are
correlated with some latencies on the right limb and vise versa, studying separate
limbs may not bring the best result in such a case. In the same figure, like the other
EPs, a conclusion can be reached that there appears to be groups defined by the
latencies and the baseline EDSS. Individuals that are a bit far from the center might
belong to a certain group while others that are at the center of the biplot, belong
to another group, hence the idea of using these covariates in predicting disability
progression is valid.

Clustering, SSEP data set

Like the other EPs, we have two main clusters, the baseline EDSS and the latencies.
This is also evident in figure 27. If we’re to have three clusters in this data set,
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we would have to cluster the N20, P25 group of latencies together regardless of the
limb.

Figure 27: SSEP data set Dendrogram

Figure 27 shows that to predict disability progression, it may be necessary to study
the N20 and P25 group of latencies separately regardless of the limb, since these
cluster together.

7.2 Latency selection

When we apply the Lasso procedure, we have the latencies selected as shown in
table 2. We have already explored the data sets using the unsupervised methods,
indeed for the MEP data set, all the latencies face in the same direction, and that
EDSS was a key feature. When we feed all the latencies for all limbs to the lasso
procedure at once, only variables from the right limb and the baseline EDSS are
selected.

EP Left side Latencies Right side Latencies All Latencies

MEP AH L, APB L, EDSS AH R, APB R, EDSS AH R, APB R, EDSS

VEP N75 L 1, P100 L 1, EDSS N75 R 1, P100 R 2, EDSS N75 L 1, N75 R 1, P100 R 2, EDSS

SSEP EDSS P25 R 2.1, EDSS P25 R 2.1, EDSS

Table 2: The selected variables from the lasso step

With the VEP data set, the variables selected are also shown in the table 2. Sub-
jecting all latencies to the lasso procedure for the VEP data set gave us variables
from both eyes, and EDSS.

During the SSEP data set exploratory analysis, the EDSS feature dominated the
4th component, which contributed very less to the total variation in the data, yet
it’s key for disability progression prediction. The results here show that only one
latency from the right limb is necessary for prediction together with baseline EDSS.
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Our results suggest that both the AH and APB latencies are important while used
with baseline EDSS to predict disability progression with MEP. Among all the three
latencies for the VEP, neurologists expect the P100 latency to be more important.
Indeed as shown in table 2, the P100 latency has not only been very important for
both the left and the right eyes, but also important when all variables are consid-
ered. Our results suggest that in addition to the P100 latency, the N75 latency is
equally very important in MS disability progression prediction. Between the two
SSEP latencies (N20 and P25), the N20 is expected to be more important. Our
results however have shown that this latency is not very useful in MS disability
progression prediction. In the presence of baseline EDSS, the other latency that can
be used for prediction is P25.

Important to note is the fact that the lasso was applied to the entire data set,
forcing it to choose features that are important to both the train and the test set.
This could lead to overfitting, and its possible that other features could have been
selected if we had used a separate train set.

7.3 Which machine learning model best predicts MS dis-
ability progression after 2 year?

For every EP, we have ten models and the task at hand is to identify the best model
among all the ten. Even though we can already tell, without statistically testing,
from table 3 that the longitudinal models have the highest average ROC area under
the curve and hence out performs all the others (effects size with the baseline logistic
and the second best RF models of (0.29, 0.235), (0.302, 0.243) and (0.342, 0.265) for
MEP, VEP and SSEP respectively), we go ahead to test statistically if these models
are statistically different from all the others.

Model MEP VEP SSEP
Logistic, aggregate 0.679(0.06) 0.661(0.07) 0.623(0.08)
Logistic, all limbs or eyes 0.687(0.06) 0.665(0.07) 0.625(0.07)
RF, aggregate 0.732(0.05) 0.720(0.06) 0.702(0.06)
RF, all limbs or eyes 0.703(0.05) 0.705(0.06) 0.694(0.06)
Boosting, aggregate 0.721(0.05) 0.708(0.06) 0.693(0.06)
Boosting, all limbs or eyes 0.717(0.05) 0.702(0.06) 0.685(0.06)
Neural network, aggregate 0.693(0.06) 0.682(0.07) 0.679(0.06)
Neural network, all limbs or eyes 0.693(0.06) 0.682(0.07) 0.679(0.06)
Longitudinal model, aggregate 0.967(0.013) 0.963(0.013) 0.967(0.012)
Longitudinal model, all limbs or eyes 0.967(0.013) 0.963(0.013) 0.967(0.012)

Table 3: Summary results (mean (SD), ROC AUC) for all models and EPs studied.

We have hence made the longitudinal model that uses all the latencies (longitudinal
model, all limbs or eyes) as the baseline model and compared it with all the others.
However, because there are 9 tests performed, we need to take into consideration
the multiplicity correction by applying both the family wise error rates (bonferroni
and holm) procedures and the false discovery rate (FDR).
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For all the applied models, only one model can be equalled to the baseline model,
and this is the longitudinal model, aggregate which averages predictions from lon-
gitudinal model built with the left latencies and that built with the right latencies.
Results suggest that the null hypothesis that the baseline model is the same as the
other models has been rejected 8 times and accepted once for the longitudinal model,
aggregate.
With the bonferroni procedure, the α level of 0.05 was divided with 9 and individ-
ual p values were compared with α

9
. Models with p values less than α

9
were then

considered statistically significant. The holm procedure is conducted in such a way
that the 9 p values are arranged in ascending order, the very first p value is then
compared with α

9
. If the p value is less than α

9
, reject the null hypothesis there is no

difference between the two models, else stop and conclude that none of the models
are different. This is done for every p value, every time the denominator (number
of p values) reduces by one. This approach is considered more powerful than the
bonferroni procedure. However with the data at hand, the two methods identified
that all the 8 models were different from the baseline model.

The two approached looked at are considered very conservative. The third method
that is better than the two as far as power is concerned is the false discovery rate
(FDR) method. Assuming we have m p values, the FDR procedure is that arrange
all the m p values in ascending order, and, starting with the largest p value, com-
pare the ith p value with the item (i*α)/m. if the ith p value is greater than the
calculated item, stop and make conclusions.

All the approaches in this analysis, including the test where we do not use the
multiplicity test (Raw p-value) fortunately agreed that the 8 p values were statisti-
cally different from the baseline model out of the 9 models. We therefore rejected
the 8 hypotheses that the baseline model is equal to all models except the longitu-
dinal model, aggregate. The biobase and multitest R packages have been used for
the multiplicity analysis. We have done this for all the EPs and the baseline model
out performs all the others in all EPs and in all cases its only equal to the aggregate
model of the longitudinal type.
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7.4 Comparison of aggregate and full models

In the figures 28 29 and 30, we have plotted the ROC AUC for the aggregate and
full models, we also show the means of the two models respectively on top of each
graph for all the models and EPs. The figures suggest that the means of both the
aggregate and full model for the logistic, random forest and boosting models are not
the same while those of the neural and longitudinal models seem to be the same for
all the EPs.

Figure 28: A graphical presentation of the aggregate model verses the full model,
MEP
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Figure 29: A graphical presentation of the aggregate model verses the full model,
VEP

Figure 30: A graphical presentation of the aggregate model verses the full model,
SSEP

The effects size between the aggregate and full models for all models and EPs is
very small. The largest effects size among these is 0.03 belonging to the random
forest model with MEP, implying that generally the aggregate and full models for
all models and EPs are quite similar. We have however tested the null hypothesis
that the aggregate and full models are the same, using the t test and the p values
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are presented in the table 4. With the logistic model for MEP, the model that uses
all latencies during analysis gives better results than when the left and the right side
latencies are analysed separately.

When the VEP and SSEP data sets are used for the LR model, there is no evi-
dence to reject the null that both models are similar and so any of the models could
be used in these two data sets. With random forest, there was evidence that the
aggregate model is better than the random forest full model at 0.05 level of signifi-
cance for all the EPs. With boosting model, while using the MEP data set, it does
not matter which model to use, but it matters with the VEP and the SSEP models
where the aggregate model would yield better results compared to the full model at
0.05 level of significance.

For the neural and longitudinal models, there was no evidence against the null
hypothesis that the aggregate and the full model are the same. It therefore does not
matter whether we analyse any data set for any EP using the aggregate, or the full
models of the neural (p values ≥ 0.97) or the longitudinal model (p values ≥ 0.92).

Model MEP VEP SSEP
Logistic 0.000 0.150 0.630
Random Forest 0.000 0.000 0.000
Boosting 0.060 0.020 0.000
Neural 0.990 0.970 0.970
Longitudinal 0.990 0.920 1.000

Table 4: The p values resulting from testing the equality of aggregate and full models
with all EPs.

Since the longitudinal model is our best model, and we have shown that it does
not matter the limbs or eyes analysis, we conclude that analysing the limbs or eyes
separately will not improve the MS disability predictive performance of the model
for all EPs.
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7.5 Which EP provides best predictions for MS disability
progression after two years?

From the earlier section we have shown that the longitudinal model outperforms all
the others for all EPs. From the results of table 3, the average AUC defined by this
model is very good and almost similar across all EPs (maximum effect size of 0.004).
We have however gone ahead to test the null hypothesis that MEP is similar to VEP
and SSEP and the p values after multiplicity correction are presented in table 5.

Model MEP VEP SSEP
Logistic, Aggregate 1 0.000 0.000
Logistic, all limbs or eyes 1 0.000 0.000
RF, Aggregate 1 0.000 0.000
RF, all limbs or eyes 1 0.760 0.000
Boosting, Aggregate 1 0.000 0.000
Boosting, all limbs or eyes 1 0.000 0.000
Neural network, Aggregate 1 0.000 0.000
Neural network, all limbs or eyes 1 0.000 0.000
Longitudinal model, Aggregate 1 0.000 0.073
Longitudinal model, all limbs or eyes 1 0.000 0.071

Table 5: Bonferroni adjusted p values from t test done to test the equality of models
across EPs with the MEP as baseline EP

The results presented in the above table, and in conjunction with the results of table
3 show that for most of the models, the different EPs have varying performance while
predicting MS disease after two years. With the logistic model, both the aggregate
and full models will best predict MS disease in the order of the MEP, VEP and
SSEP. The same trend is followed with the RF, aggregate model. However With
the RF, full model, there was no evidence against the null hypothesis that the MEP
and the VEP data sets produce the same results. But the evidence was found with
the SSEP. While using the RF, full model, one gets similar results when they use
the VEP and the MEP, but gets worse results with the SSEP. Both the boosting
and the neural network models produce different results with the different EPs in
the performance descending order of MEP, VEP and SSEP. With the longitudinal
model however, there was no evidence against the null hypothesis that the MEP
and SSEP are similar for both the aggregate and full models. However there was
evidence that MEP and SSEP are both superior to the VEP.
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8 Discussion

We had four research questions for this work. We set out to find which latencies are
key in conjunction with the baseline EDSS in predicting MS disability progression,
which machine learning technique best predicts MS disability progression after two
years, we also wanted to find which EP produces best predictions when used by a
machine learning technique to predict disability progression, and the last quest was
to find out if its really necessary to take into account the symmetrical property in the
data and analyse specifically the left and the right sides latencies separately. This
study is unique in its own style, majority studies have studied one EP, but we have
had a chance to study three EPs in predicting the MS disability progression after
two years. The cut off of two years is common in literature, but the idea is to predict
the unresponsiveness in the treatment as early as possible so we can alter the treat-
ment and hence we can always alter the duration (not always 2 years) depending
on how early we want to detect treatment failure. While we have used several EPs,
the patients in one EP are not necessarily the same patients studied in the other EP.

There have been debates as to whether EP has the necessary information that can be
used in predicting MS, with some studies for and some studies against. While some
studies have basically used the features extracted from the EPs, latencies, EDSS at
baseline, gender and age, this study only used the latencies and the baseline EDSS
to predict disability progression. [44] were the first to study MS with all the above
literature variable, and also putting into consideration the time series data to im-
prove the prediction, but only for the motor evoked potential.
Even though these studies have had all the data available, non of them consid-
ered the clustered longitudinal nature in the data during analysis. We have studied
these data using most of the routine machine learning techniques, but also consid-
ered the clustered nature in the data and applied the longitudinal REEMtree model.

Our results show that all the latencies for MEP are important in MS disease predic-
tion. In addition to the P100 latency which is expected by neurologists to be very
important for the VEP, our results show that latency N75 is equally important in
MS disability progression prediction. While neurologists expect N20 to be the most
important latency for SSEP, there was no evidence to support this argument. In-
stead the P25 latency measured on the right side was selected to be very important
as opposed to N20. Our results further show that the model that considers the clus-
tered nature in the data, REEMtree emerges the best machine learning model for
predicting disability progression. This best model had an roc AUC of 0.967 with the
MEP and SSEP dataset and 0.963 with the VEP dataset. These results outperform
the basic logistic classifier significantly by AUC of 0.29, 0.34 and 0.30 with the MEP,
SSEP and VEP data sets respectively. This is one of the best and promising results
realised ever. Even though [44] used time series data in addition to the literature
variables, the best model achieved had an average AUC performance of 0.75 for
the MEP data set. It may not be necessary to include all of the variables there is
about MS, in fact our performance was reached after reducing the data by applying
the lasso and the predictions were made using not more that three covariates for
all the EPs with the baseline EDSS covariate in every model. The results without
longitudinal modeling with the MEP data set also agreed with [44] that the random
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forest classifier (AUC 0.732) outperforms the baseline logistic classifier (AUC 0.679)
significantly.

While the boosting model is theoretically superior to random forest, the RF model
outperformed it for all the EPs. This could be a result of overfitting, the boosted
model suffers overfitting if the parameter tuning is not done to select the appropri-
ate number of trees to get the best performance. During analysis of this work, we
have only performed hyper parameter tuning with the lasso model to select the best
that gives us the least cross validation error. We performed feature selection on the
entire data set, resulting into features that are important to both the train and the
test set to be selected. This is a form of data leakage that can cause overfitting.
Hyper parameter tuning was however not done for the other models discussed in
this work and we used the train-test approach which does not support data leakage.
Our data was enough to train models with this approach, evidenced by the small
standard deviations resulting from 10000 ROC AUC as shown in table 3.
In machine learning, and specifically deep learning methods, the idea is for the ma-
chine to learn the rules that best represent the response variable in the data and its
always advantageous to have as much data as possible. Much as we have tried to
keep as much data as possible, by imputing the missing data with a random latency
value, it did not make the neural net work model train well on the data. For all
the EPs, the results from the neural network model are only second to the baseline
logistic classifier.

On the question of which EP is best among the three, in theory, the neurologists
often prefer the order of MEP, SSEP and VEP. According to our results, we have
shown that the longitudinal model yields almost the same AUC for all EPs as rep-
resented in table 3. Our results further show that with majority of the models,
the MEP is superior to all EPs, followed by VEP and lastly the SSEP. With our
best model however, it is reasonable to put it that we always get similar conclusions
regarding MS prediction after two years when we use both the MEP and the SSEP.
This result, obtained with the longitudinal model concurs with the neurologists ar-
gument.

In literature, some studies have written about the need to take advantage of the
symmetrical nature of the EP data set by looking at the left and the right limbs
separately for the MEP and SSEP data sets and the left and the right eye for the
VEP data set to finally ensemble the two models to better predict MS disability
progression. Our results suggest that with our best model (longitudinal model),
one does not have to go an extra mile of looking at the latencies for the two sides
separately during analysis regardless of the EP being used. This result has also been
tested to be true with the neural network models as shown in table 4. In future,
when we have a lot of data on MS and we want to use neural network model, we
shouldn’t have to do separate analysis for the limbs or eyes before reaching a con-
clusion. This conclusion is however not correct when non longitudinal models are
used. Using the random forest classifier demands that the limbs, or eyes are studied
separately to get better final outcomes.
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9 Conclusion

Multiple sclerosis is still a chronic disease with no cure affecting so many people
especially in Europe and north America. Being able to know in advance the pro-
gression of the disease two years earlier will have a greater impact on patients health
in managing the disease. Unfortunately, up to now, predicting MS disability progres-
sion has been a challenge. This research has explored a number of machine learning
techniques that could support better prediction. We have used three EPs, namely
motor evoked potential, the visual evoked potential and somatosensory evoked po-
tential from a large data set for patient already undergoing treatment gathered by
Rehabilitation & MS center in Overpelt, Belgium. We have maintained patient’s
visits with two years followups. Unlike other studies that have used all features
extracted from the EPs, including latencies, peak-to-peak amplitude and dispersion
pattern, we have only focused on latencies, in conjunction with the EDSS for this
task.

First off, our results show that non linear classifiers out perform the linear logis-
tic classifiers which have mostly been used in many recent papers. Among the non
linear classifiers, the random forest classifier (AUC 0.732) out performed the linear
classifier (AUC 0.679) significantly.
Our results further show that it is not enough to use non linear classifiers, models
that take advantage of the clustered nature in the data yield better results by far
when used with non linear classifiers. We have particularly used regression trees
with random effects model to effectively predict disability progression with all EPs.
This model has out performed all the other models significantly with all the EPs.
Specifically, with the MEP data set, it has achieved the AUC of 0.967± 0.013 out-
performing the second best RF model (0.732 ± 0.05) and the baseline logistic model
(AUC 0.687± 0.06). With the VEP data set, it has achieved the AUC of 0.963
± 0.013 outperforming the second best RF model (0.72 ± 0.06) and the baseline
logistic model (AUC 0.661 ± 0.07). Finally it has achieved the AUC of 0.967 ±
0.012 with the SSEP data set outperforming the second best RF model (0.702 ±
0.06) and the baseline logistic model (AUC 0.623 ± 0.08).

Neurologists prefer the MEP to SSEP and VEP. With our best model, the results
show that the MEP is only superior to VEP (p value 0.000), it’s predictive perfor-
mance is similar to that of the SSEP (p value 0.07) at 0.05 level of significance. The
MEP data set however seems to be superior to VEP and the VEP is also superior
to SSEP when using the RF and LR models. While this is true, it’s important to
note that the MEP had more final observations compared to either VEP or SSEP.
This definitely made it easier to train a machine learning model with it than the
other EPs and this could have contributed to it’s good performance as compared to
other EPs.
Finally, previous studies have preferred to study limbs (MEP) separately for better
predictions. Even though our results agree that this is true for the RF classifier for
all EPs (p value 0.000), logistic classifier for the MEP data set (P value 0.000) and
boosting for the VEP and SSEP (P values 0.02 and 0.000 respectively) data sets, it
is not necessary while using the longitudinal, or the neural network models (P value
≥ 0.92).
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10 Ideas for future research

From the clustering section of this work, it was interesting to see that the latencies
from the upper limb and the latencies from the lower limb for the MEP data set
cluster separately. A certain trend is also seen from the other two EPs that latencies
always cluster together regardless of the side. For non longitudinal models, it would
be interesting to also think about analysing the data with each cluster separately
and ensemble the results for better prediction.

The missing data in this research was handled in the simplest way possible. This
could have been done better with multiple imputation methods which could further
improve performance of MS predictive models. Future research can focus on using
better imputation methods.

It would be enriching to have all the other literature variables in the data set. This
was a predictive problem, but it would be interesting to see how other variables like
age gender etc. relate with MS disability progression.

Finally, the longitudinal model out performed all the other models, may be because
no hyper parameter tuning was done for the other models and its not required for
the longitudinal model. Future research should study if tuning the hyper parameters
improves the MS disability prediction.
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11 Appendix

## importing the required R libraries

library (reshape)

library (ISLR)

library(Hmisc)

library (glmnet)

library (boot)

library (gbm)

library (randomForest)

library(AUC)

library(neuralnet)

library(REEMtree)

library(Biobase)

library(multtest, verbose = FALSE)

require(ggplot2)

## importing the data

edss <- read.csv(file= "G:/My Drive/Noah/data/edss.csv", header=TRUE

, sep="," )

mep <- read.csv(file= "G:/My Drive/Noah/data/mep.csv", header=TRUE,

sep="," )

ssep_lower <- read.csv(file= "G:/My Drive/Noah/data/ssep_lower.csv",

header=TRUE, sep="," )

ssep_upper <- read.csv(file= "G:/My Drive/Noah/data/ssep_upper.csv",

header=TRUE, sep="," )

vep <- read.csv(file= "G:/My Drive/Noah/data/vep.csv", header=TRUE,

sep="," )

## function to output missing data percentage

project_missing <- function(p_data){

all.mis = matrix(0,nrow=dim(p_data)[2], ncol = 3)

names.project = colnames(p_data)

for(colmns in 1:dim(p_data)[2]){

coluum <- p_data[,colmns]

if(class(coluum) != "factor"){

col.miss <- coluum[coluum < 0]

}

else

col.miss <- coluum[coluum == ""]

all.mis[colmns, 1] <- names.project[colmns]

all.mis[colmns, 2] <- length(col.miss)

all.mis[colmns, 3] <- round((length(col.miss)/(dim(p_data)[1]))

*100, digit = 2)

}

all.mis.names = c("Variable", "Missing", "Percentage")

colnames(all.mis) <- all.mis.names

all.mis

}
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# dealing with missing data

tomiss = function(data.miss){

for(row in 1:dim(data.miss)[1]){

for(column in 1:(dim(data.miss)[2]-2)){

if(data.miss[row, column] < 0){

data.miss[row, column] = NA

}

}

}

return(data.miss)

}

mep.miss <- tomiss(mep)

vep.miss <- tomiss(vep)

ssep_lower.miss <- tomiss(ssep_lower)

ssep_upper.miss <- tomiss(ssep_upper)

# Let us solve the missing data

# for mep

set.seed(671290)

mep.miss$imputed_ahl <- with(mep.miss, impute(AH_L, ’random’))

set.seed(671290)

mep.miss$imputed_apbl <- with(mep.miss, impute(APB_L, ’random’))

set.seed(671290)

mep.miss$imputed_ahr <- with(mep.miss, impute(AH_R, ’random’))

set.seed(671290)

mep.miss$imputed_apbr <- with(mep.miss, impute(APB_R, ’random’))

mep.imputed <- subset(mep.miss, select = -c(AH_L,APB_L,AH_R,APB_R))

mep.imputed <- rename(mep.imputed, c(imputed_ahl="AH_L",

imputed_apbl="APB_L", imputed_ahr="AH_R",

imputed_apbr="APB_R" ))

mep.imputed = mep.imputed[, c(3,4,5,6,1,2)]

# for other EPs, similar approach is used

## data management

# Reshaping the edss data

edss_1 <- edss

edss_1$date = as.Date(edss_1$date, "%d/%m/%Y")

edss_1 <- edss_1[order(edss_1$patient_id, edss_1$date), ]

edss_1$v1 = 1

edss_1$times <- ave(edss_1$v1, edss_1$patient_id, FUN = seq_along)

edss_1 <- edss_1[-4]

edss.reshape <- reshape(edss_1,

timevar = "times",

idvar = c("patient_id"),

direction = "wide")

# counting unique individuals in all datasets

data.unique = function(given){

given_unique = given
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given_unique$v1 = 1

given_unique$times <- ave(given_unique$v1, given_unique$patient_id,

FUN = seq_along)

given_unique = given_unique[given_unique$times ==1,]

dim(given_unique)

}

data.unique(mep)

data.unique(vep)

data.unique(ssep_upper)

data.unique(ssep_lower)

data.unique(edss)

## getting baseline EDSS

mydata_all = function(mep){

mep$date = as.Date(mep$date, "%d/%m/%Y")

meedss <- merge(mep,edss.reshape, by= "patient_id")

mepdim = dim(mep)[2]

mep_base = meedss[, c(1:mepdim)]

moreclms <-seq(from=(mepdim+2),to=dim(meedss)[2],by =2)

for(rows in 1:dim(meedss)[1]){

kcol = c()

for (columns in moreclms){

kcol[columns] <- abs(meedss[rows,dim(mep)[2]]- meedss[rows,

columns])

}

kcol_col = order(kcol)

kcol_col.1 = kcol_col[1]

if(kcol[kcol_col.1] <= 365){

mep_base[rows, mepdim] <- meedss[rows, kcol_col.1]

mep_base[rows, mepdim+1] <- meedss[rows, (kcol_col.1-1)]

}

}

mep_base = mep_base[order(mep_base$patient_id, mep_base$date),]

mep_base.names <- colnames(mep_base)

mep_base.names[dim(mep_base)[2]] <- "edss"

colnames(mep_base) <- mep_base.names

mep_full <- na.omit(mep_base)

mep_part <- mep_base[!complete.cases(mep_base),]

out = list(mep_part, mep_full)

return(out)

}

mep_incomplete = mydata_all(mep.imputed)[[1]]

mep_complete = mydata_all(mep.imputed)[[2]]

vep_incomplete = mydata_all(vep.miss)[[1]]

vep_complete = mydata_all(vep.miss)[[2]]

ssep_upper_incomplete = mydata_all(ssep_upper.miss)[[1]]

ssep_upper_complete = mydata_all(ssep_upper.miss)[[2]]

ssep_lower_incomplete = mydata_all(ssep_lower.miss)[[1]]
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ssep_lower_complete = mydata_all(ssep_lower.miss)[[2]]

# percentage without baseline edss

dim(mydata_all(mep.imputed)[[1]])[1]/dim(mep)[1]

dim(mydata_all(vep.miss)[[1]])[1]/dim(vep)[1]

dim(mydata_all(ssep_upper.miss)[[1]])[1]/dim(ssep_upper)[1]

dim(mydata_all(ssep_lower.miss)[[1]])[1]/dim(ssep_lower)[1]

## putting the x and y variables together

final.clean = function(mep_complete){

mep_1 <- merge(mep_complete,edss.reshape, by="patient_id")

mep_2 = mep_1

all.dim = (dim(mep_complete)[2])+1

all.dim_date = (dim(mep_complete)[2])-1

for(rows in 1:dim(mep_1)[1]){

for (columns in all.dim:dim(mep_1)[2]){

if (!is.na(mep_1[rows,columns])){

if (mep_1[rows,columns] == mep_1[rows, all.dim_date]){

moreclms <-seq(from=columns,to=dim(mep_1)[2],by =2)

kcol = c()

if(length(moreclms) > 1){

for(nu in 2:length(moreclms)){

if(!is.na(mep_1[rows, moreclms[nu]])){

kcol[nu] <- abs(abs(mep_1[rows, moreclms[nu]] -

mep_1[rows,columns])-730)

}

}

}

}

}

}

if(length(kcol) >1){

kcol_col = order(kcol)

kcol_col.1 = kcol_col[1]

close_column = (moreclms[kcol_col.1])-1

if(kcol[kcol_col.1] <= 183){

mep_2[rows, dim(mep_1)[2]+1] <- mep_1[rows, close_column]

}

}

}

all.names = colnames(mep_2)

all.names[dim(mep_2)[2]] <- "edssT"

colnames(mep_2) <- all.names

mep_3 = mep_2[,c(1:dim(mep_complete)[2], dim(mep_1)[2] +1)]

mep_3 = na.omit(mep_3)

mep_3$edss.diff <- mep_3$edssT-mep_3$edss

mep_3$progress[mep_3$edss.diff >=1 & mep_3$edss <= 5.5] <- 1

mep_3$progress[mep_3$edss.diff >=0.5 & mep_3$edss > 5.5] <- 1

mep_3$progress[is.na(mep_3$progress)] <- 0
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mep_3$progress <- factor(mep_3$progress,

levels = c(0,1),

labels = c("No", "Yes"))

return(mep_3)}

mep.final <- final.clean(mep_complete)

vep.final <- final.clean(vep_complete)

ssep_upper.final <- final.clean(ssep_upper_complete)

ssep_lower.final <- final.clean(ssep_lower_complete)

table1 <- table(mep.final$progress)

table2 <- table(vep.final$progress)

table3 <- table(ssep_upper.final$progress)

table4 <- table(ssep_lower.final$progress)

# final with x and y

dim(mep.final)

dim(vep.final)

dim(ssep_upper.final)

dim(ssep_lower.final)

# proportion given with follow up after 2 year

dim(mep.final)[1]/dim(mep)[1]

dim(vep.final)[1]/dim(vep)[1]

dim(ssep_upper.final)[1]/dim(ssep_upper)[1]

dim(ssep_lower.final)[1]/dim(ssep_lower)[1]

## unsupervised PCA

par(mfrow = c(1,1))

mep.final_pca <- mep.final[, c(2:5,7)]

vep.final_pca <- vep.final[, c(2:13,15)]

SSEP_Upper.final_pca <- ssep_upper.final[, c(2:9,11)]

unsupervised = function(clean_data){

pc.cr <- princomp(clean_data,scores=TRUE,cor = TRUE, scale=T)

loadings(pc.cr)

summary(pc.cr)

pc_summary = list(loadings(pc.cr),summary(pc.cr))

biplot(pc.cr)

Ux1<-as.vector(pc.cr$scores[,1])

Ux2<-as.vector(pc.cr$scores[,2])

plot(Ux1,Ux2, col =4, ylab = "Comp2", xlab = "Comp1")

return(pc_summary)

}

meppca = unsupervised(mep.final_pca)

veppca = unsupervised(vep.final_pca)

sseppca = unsupervised(SSEP_Upper.final_pca)

## unsupervised clustering

mep.final_clus <- mep.final[, c(2:5,7,10)]

vep.final_clus <- vep.final[, c(2:13,15,18)]

SSEP_Upper.final_clus <- ssep_upper.final[, c(2:9,11,14)]

unsupervised_clus = function(clean_data){
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prog = dim(clean_data)[2]

sd.data = clean_data[, -c(prog)]

ms.labs = clean_data[, prog]

sd.data=scale(sd.data)

sd.data.t = scale(t(sd.data))

sd.data.obs = scale(sd.data)

par(mfrow =c(1,2))

data.dist=dist(sd.data)

data.dist.t=dist(sd.data.t)

data.dist.obs=dist(sd.data.obs)

plot(hclust(data.dist.t), xlab ="", sub ="",

ylab ="")

plot(hclust(data.dist.obs), xlab ="", sub ="",

ylab ="")

}

unsupervised_clus(mep.final_clus)

unsupervised_clus(vep.final_clus)

unsupervised_clus(SSEP_Upper.final_clus)

## model selection

model.select = function(project.data){

mod.unwant <- dim(project.data)[2]

mep.final.sel <- project.data[,-c(1,mod.unwant-4,mod.unwant-2,

mod.unwant-1, mod.unwant )]

mod.want <- dim(mep.final.sel)[2]-1

classlabel = as.numeric(project.data[, mod.unwant]) -1

mep.final.sel = scale(mep.final.sel)

set.seed(123456)

lasso1.bin <- glmnet(mep.final.sel,classlabel,alpha=1, family

="binomial")

set.seed(1234346)

CVlasso1.bin <-cv.glmnet(mep.final.sel,classlabel,alpha=1,

family ="binomial",nfolds =10)

### all coefficients for optimal lambda

tmp_coeffs.bin <- coef(CVlasso1.bin, s = "lambda.min")

coeff.bin <- as.data.frame(as.matrix(tmp_coeffs.bin))

coeff.bin1<-coeff.bin[,1][-c(1)]

### only non-zero coefficients for optimal lambda

n_coeff.bin <- data.frame(name = tmp_coeffs.bin@Dimnames[[1]]

[tmp_coeffs.bin@i + 1], coefficient =

tmp_coeffs.bin@x)

# The lasso model prediction

## predicting the class labels, but with the same data used

#to build the model

## need to separate train and test data

class.predict <- predict(CVlasso1.bin, mep.final.sel,

s="lambda.min",type = "class")

## confusion matrix
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conf.mat <- table(classlabel,class.predict)

mis.error <- mean(class.predict!=classlabel)

model.select.out = list(conf.mat, mis.error, n_coeff.bin)

return(model.select.out)

}

mep.select.model.l <- model.select(mep.final.l)

mep.select.model.r <- model.select(mep.final.r)

mep.select.model.all <- model.select(mep.final)

vep.select.model.l <- model.select(vep.final.l)

vep.select.model.r <- model.select(vep.final.r)

vep.select.model.all <- model.select(vep.final)

ssep_upper.select.model.l <- model.select(ssep_upper.final.l)

ssep_upper.select.model.r <- model.select(ssep_upper.final.r)

ssep_upper.select.model.all <- model.select(ssep_upper.final)

## MEP models

all.row <- dim(mep.final)[1]

mod.unwant <- dim(mep.final)[2]

# lets scale numerical variables

mod.dim <- ((dim(mep.final)[2])-3)

for(scale.variable in 2:mod.dim){

if(scale.variable!=(mod.dim-1)){

mep.final[, scale.variable] <- scale(as.numeric(mep.final

[, scale.variable]))

}

}

max.len = round(.70*all.row)

predict.sets = 100

mep.final.sel <- mep.final[,-c(mod.unwant-4,mod.unwant-2,

mod.unwant-1, mod.unwant )]

mep.final.sel$v1 = 1

mep.final.sel$times <- ave(mep.final.sel$v1, mep.final.sel

$patient_id, FUN = seq_along)

mep.final.sel = mep.final.sel[, -c(7)]

progress = mep.final[, mod.unwant]

mep.final.use = data.frame(cbind(progress,mep.final.sel))

final.score = matrix(0,100,10)

final.score.all = matrix(0,100,10)

final.score.rf = matrix(0,100,10)

final.score.rf.all = matrix(0,100,10)

final.score.bos = matrix(0,100,10)

final.score.bos.all = matrix(0,100,10)

final.score.neural = matrix(0,100,10)

final.score.neural.all = matrix(0,100,10)

for(preds in 1:predict.sets){

train_obs = sample(all.row, max.len)

train = mep.final.use[train_obs, ]

test = mep.final.use[-train_obs, ]
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# logistic regression

glm.fit.l=glm(progress~AH_L+APB_L+edss, data=train ,

family =binomial)

glm.fit.r=glm(progress~AH_R+APB_R+edss, data=train ,

family =binomial)

glm.fit.all=glm(progress~AH_R+APB_R+edss, data=train ,

family =binomial)

# Random forest

rf.mep.l =randomForest(progress~.-AH_R -APB_R -patient_id

-times, data=train,importance =TRUE)

rf.mep.r =randomForest(progress~.-AH_L -APB_L -patient_id

-times, data=train,importance =TRUE)

rf.mep.all =randomForest(progress~ AH_R+APB_R+edss,

data=train,importance =TRUE)

# boosting

progress.train = ifelse(train$progress == "No", 0, 1)

boost.boston.l =gbm(progress.train~.-progress -AH_R -APB_R

-patient_id -times,data=train, distribution=

"bernoulli",n.trees =5000,

interaction.depth =4, shrinkage =0.001,

verbose =F)

boost.boston.r =gbm(progress.train~.-progress -AH_L

-APB_L -patient_id -times, data=train, distribution=

"bernoulli",n.trees =5000 ,

interaction.depth =4, shrinkage =0.001,

verbose =F)

boost.boston.all =gbm(progress.train~.-progress -AH_L

-APB_L -patient_id -times, data=train, distribution=

"bernoulli",n.trees =5000 ,

interaction.depth =4, shrinkage =0.001,

verbose =F)

# neural network model

train2 = cbind(progress.train, train)

train2 = train2[, -c(2,3,9)]

test2 = test

test2$progress.train = ifelse(test$progress == "No", 0, 1)

test2 = test2[, -c(1,2,8)]

neural.l=neuralnet(progress.train~AH_L+APB_L+edss, data=train2,

hidden=3, act.fct = "logistic",

linear.output = FALSE)

neural.r=neuralnet(progress.train~AH_R+APB_R+edss, data=train2 ,

hidden=3,act.fct = "logistic",

linear.output = FALSE)

neural.all=neuralnet(progress.train~AH_R+APB_R+edss, data=train2

,hidden=3, act.fct = "logistic",

linear.output = FALSE)

test.len = dim(test)[1]
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for(tests.pred in 1:10){

# logistic

test_set = sample(test.len, test.len, replace = T)

glm.probs.l = predict(glm.fit.l,test[test_set,],type = "response")

glm.probs.r = predict(glm.fit.r,test[test_set,],type = "response")

glm.probs.lr <- (as.numeric(glm.probs.r)+as.numeric(glm.probs.l))/2

glm.probs.all = predict(glm.fit.all,test[test_set,],

type = "response")

roc_obj<- auc(roc(glm.probs.lr, test[test_set,]$progress))

roc_obj.all<- auc(roc(glm.probs.all, test[test_set,]$progress))

final.score[preds,tests.pred] = roc_obj

final.score.all[preds,tests.pred] = roc_obj.all

# random forest

yhat.rf.l = predict (rf.mep.l ,newdata =test[test_set,],

type = "prob")[,2]

yhat.rf.r = predict (rf.mep.r ,newdata =test[test_set,],

type = "prob")[,2]

yhat.rf.all = predict (rf.mep.all ,newdata =test[test_set,],

type = "prob")[,2]

yhat.rf.lr <- (yhat.rf.l+yhat.rf.r)/2

roc_obj.rf<- auc(roc(yhat.rf.lr,test[test_set,]$progress))

roc_obj.rf.all<- auc(roc(yhat.rf.all,test[test_set,]$progress))

final.score.rf[preds,tests.pred] = roc_obj.rf

final.score.rf.all[preds,tests.pred] = roc_obj.rf.all

# boosting

yhat.boost.l=predict(boost.boston.l ,newdata = test[test_set,],

n.trees =5000, type = "response")

yhat.boost.r=predict(boost.boston.r ,newdata = test[test_set,],

n.trees =5000, type = "response")

yhat.boost.r.all=predict(boost.boston.all ,newdata = test[test_set,],

n.trees =5000, type = "response")

yhat.bos.lr <- (as.numeric(yhat.boost.l)+as.numeric(yhat.boost.r))/2

roc_obj.bos<- auc(roc(yhat.bos.lr,test[test_set,]$progress))

roc_obj.bos.all<- auc(roc(yhat.boost.r.all,test[test_set,]$progress))

final.score.bos[preds,tests.pred] = roc_obj.bos

final.score.bos.all[preds,tests.pred] = roc_obj.bos.all

# neural

yhat.neural.l = compute(neural.l,test[test_set,])

yhat.neural.r = compute(neural.r,test[test_set,])

yhat.neural.all = compute(neural.all,test[test_set,])

yhat.neural.lr <- (as.numeric(yhat.neural.l$net.result)+

as.numeric(yhat.neural.r$net.result))/2

roc_obj.neural<- auc(roc(yhat.neural.lr,test[test_set,]$progress))

roc_obj.neural.all<- auc(roc(yhat.neural.all$net.result,

test[test_set,]$progress))

final.score.neural[preds,tests.pred] = roc_obj.neural

final.score.neural.all[preds,tests.pred] = roc_obj.neural.all

}
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}

all.score.mp <- c()

all.score.rf.mp <- c()

all.score.bos.mp <- c()

all.score.all.mp <- c()

all.score.rf.all.mp <- c()

all.score.bos.all.mp <- c()

all.score.neural.mp <- c()

all.score.neural.all.mp <-c()

for(nfrows in 1:dim(final.score)[1]){

for(ncrows in 1:dim(final.score)[2]){

all.score.mp <- append(all.score.mp, final.score

[nfrows,ncrows])

all.score.rf.mp <- append(all.score.rf.mp,

final.score.rf[nfrows,ncrows])

all.score.bos.mp <- append(all.score.bos.mp,

final.score.bos[nfrows,ncrows])

all.score.neural.mp <- append(all.score.neural.mp,

final.score.neural[nfrows,ncrows])

all.score.all.mp <- append(all.score.all.mp,

final.score.all[nfrows,ncrows])

all.score.rf.all.mp <- append(all.score.rf.all.mp,

final.score.rf.all[nfrows,ncrows])

all.score.bos.all.mp <- append(all.score.bos.all.mp,

final.score.bos.all[nfrows,ncrows])

all.score.neural.all.mp <- append(all.score.neural.mp,

final.score.neural.all[nfrows,ncrows])

}

}

final.perfomance.lr<- c(mean(all.score.mp), sd(all.score.mp))

final.perfomance.lr.all<- c(mean(all.score.all.mp), sd(all.score.all.mp))

final.perfomance.rf<- c(mean(all.score.rf.mp), sd(all.score.rf.mp))

final.perfomance.rf.all<- c(mean(all.score.rf.all.mp),

sd(all.score.rf.all.mp))

final.perfomance.bos<- c(mean(all.score.bos.mp), sd(all.score.bos.mp))

final.perfomance.bos.all<- c(mean(all.score.bos.all.mp),

sd(all.score.bos.all.mp))

final.perfomance.neural<- c(mean(all.score.neural.mp),

sd(all.score.neural.mp))

final.perfomance.neural.all<- c(mean(all.score.neural.all.mp),

sd(all.score.neural.all.mp))

## MEP longitudinal model

mod.unwant <- dim(mep.final)[2]

# lets scale numerical variables

mod.dim <- ((dim(mep.final)[2])-3)

for(scale.variable in 2:mod.dim){

if(scale.variable!=(mod.dim-1)){
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mep.final[, scale.variable] <- scale(as.numeric(mep.final

[, scale.variable]))

}

}

mep.final.sel <- mep.final[,-c(mod.unwant-4,mod.unwant-2,

mod.unwant-1, mod.unwant )]

mep.final.sel$v1 = 1

mep.final.sel$times <- ave(mep.final.sel$v1, mep.final.sel$

patient_id, FUN = seq_along)

# for distinct to sample from

mep.final.distinct <- mep.final.sel[mep.final.sel$times == 1,]

mep.final.sel = mep.final.sel[, -c(7)]

mep.final.distinct = mep.final.distinct[, c(1,7)]

all.row <- dim(mep.final.distinct)[1]

# we now sample from the distinct set

max.len = round(.80*all.row)

predict.sets = 100

progress = mep.final[, mod.unwant]

mep.final.use = data.frame(cbind(progress,mep.final.sel))

final.score.long = matrix(0,100,10)

final.score.long.all = matrix(0,100,10)

for(preds in 1:predict.sets){

train_obs = sample(all.row, max.len)

train_distinct = mep.final.distinct[train_obs,]

test_distinct = mep.final.distinct[-train_obs,]

train = merge(mep.final.use, train_distinct, by.x= "patient_id",

by.y = "patient_id")

test = merge(mep.final.use,test_distinct, by.x= "patient_id",

by.y = "patient_id")

progress.train = ifelse(train$progress == "No", 0, 1)

train2 = cbind(progress.train, train)

# longitudinal model

reem.l=REEMtree(progress.train~AH_L+APB_L+edss+times,

data=train2, random=~1|patient_id)

reem.r=REEMtree(progress.train~AH_R+APB_R+edss+times,

data=train2 ,random=~1|patient_id)

reem.all=REEMtree(progress.train~AH_R+APB_R+edss+times,

data=train2, random=~1|patient_id)

test.len = dim(test_distinct)[1]

test.max = round(.80*test.len)

for(tests.pred in 1:10){

test_set = sample(test.len, test.max)

test2_obs = test_distinct[test_set,]

test2_obs$new = 1

test2_obs = subset(test2_obs, select=c("patient_id", "new"))

test2 = merge(test,test2_obs, by.x = "patient_id",

by.y = "patient_id")

test2$progress.train = ifelse(test2$progress == "No", 0, 1)
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# longitudinal model

yhat.long.l = predict(reem.l, test2, id=test2$patient_id,

EstimateRandomEffects=TRUE)

yhat.long.r = predict(reem.r, test2, id=test2$patient_id,

EstimateRandomEffects=TRUE)

yhat.long.all = predict(reem.all, test2, id=test2$patient_id,

EstimateRandomEffects=TRUE)

yhat.long.lr <- (yhat.long.l+yhat.long.r)/2

roc_obj.long<- auc(roc(yhat.long.lr, test2$progress))

roc_obj.long.all<- auc(roc(yhat.long.all,test2$progress))

final.score.long[preds,tests.pred] = roc_obj.long

final.score.long.all[preds,tests.pred] = roc_obj.long.all

}

}

all.score.long.mp <- c()

all.score.long.all.mp <-c()

for(nfrows in 1:dim(final.score.long)[1]){

for(ncrows in 1:dim(final.score.long)[2]){

all.score.long.mp <- append(all.score.long.mp,

final.score.long[nfrows,ncrows])

all.score.long.all.mp <- append(all.score.long.all.mp,

final.score.long.all[nfrows,ncrows])

}

}

final.perfomance.long<- c(mean(all.score.long.mp),

sd(all.score.long.mp))

final.perfomance.long.all<- c(mean(all.score.long.all.mp),

sd(all.score.long.all.mp))

final.perfomance.long

final.perfomance.long.all

### The VEP and SSEP models have been left out,

### but they follow the same procedure

## Model tests

# test for the difference between patial and full models for MP

t.test(all.score.mp,all.score.all.mp)

t.test(all.score.rf.mp,all.score.rf.all.mp)

t.test(all.score.bos.mp,all.score.bos.all.mp)

t.test(all.score.neural.mp,all.score.neural.all.mp)

t.test(all.score.long.mp,all.score.long.all.mp)

# tests across best models

t.test(all.score.long.mp,all.score.rf.mp)

# test for the difference between patial and full models for VP

t.test(all.score.vp,all.score.all.vp)

t.test(all.score.rf.vp,all.score.rf.all.vp)

t.test(all.score.bos.vp,all.score.bos.all.vp)
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t.test(all.score.neural.vp,all.score.neural.all.vp)

t.test(all.score.long.vp,all.score.long.all.vp)

# tests across best models

t.test(all.score.long.vp,all.score.rf.vp)

# test for the difference between patial and full models for sP

t.test(all.score.sp,all.score.all.sp)

t.test(all.score.rf.sp,all.score.rf.all.sp)

t.test(all.score.bos.sp,all.score.bos.all.sp)

t.test(all.score.neural.sp,all.score.neural.all.sp)

t.test(all.score.long.sp,all.score.long.all.sp)

# tests across best models

t.test(all.score.long.sp,all.score.rf.sp)

## Tests across EPs

# test for the EPs separately

mep_models = cbind(all.score.long.all.mp, all.score.long.mp,

all.score.neural.mp, all.score.neural.all.mp[1:1000],

all.score.bos.mp, all.score.bos.all.mp, all.score.rf.mp,

all.score.rf.all.mp, all.score.mp, all.score.all.mp)

vep_models = cbind(all.score.long.all.vp, all.score.long.vp,

all.score.neural.vp, all.score.neural.all.vp[1:1000],

all.score.bos.vp, all.score.bos.all.vp, all.score.rf.vp,

all.score.rf.all.vp, all.score.vp, all.score.all.vp)

ssep_models = cbind(all.score.long.all.sp, all.score.long.sp,

all.score.neural.sp, all.score.neural.all.sp[1:1000],

all.score.bos.sp, all.score.bos.all.sp, all.score.rf.sp,

all.score.rf.all.sp, all.score.sp, all.score.all.sp)

multipletest = function(fmodels){

obsr = fmodels[,1]

model_pvalues = c(1:9)

for(models in 2:10){

model_ttest = t.test(obsr,fmodels[,models])

model_pvalues[(models-1)] <- model_ttest$p.value

}

rawp <- model_pvalues

bonf = mt.rawp2adjp(rawp, proc = c("Bonferroni"))

holm = mt.rawp2adjp(rawp, proc = c(’Holm’))

bh = mt.rawp2adjp(rawp,proc=c(’BH’))

by = mt.rawp2adjp(rawp, proc=c(’BY’))

allp =cbind(rawp, bonf$adjp[order(bonf$index),2], holm$adjp

[order(holm$index),2], bh$adjp[order(bh$index),2],

by$adjp[order(by$index),2])

mt.plot(allp,plottype="pvsr", proc=c("rawp","Bonferroni","Holm",
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"BH","BY"),leg=c(2,0.95),lty=1,

col=1:5,lwd=2)

moout = mt.reject(cbind(rawp,bonf$adjp[order(bonf$index),2],

holm$adjp[order(holm$index),2],bh$adjp

[order(bh$index),2],by$adjp[order(by$index),2]),

seq(0,1,0.05))$r

return(moout)

}

par(mfrow = c(1,3))

#multipletest(mep_models)

#multipletest(vep_models)

#multipletest(ssep_models)

## tests across EPs

LRaggmodel = cbind(all.score.mp, all.score.vp, all.score.sp)

LRfullmodel = cbind(all.score.all.mp, all.score.all.vp, all.score.all.sp)

RFaggmodel = cbind(all.score.rf.mp, all.score.rf.vp, all.score.rf.sp)

RFfullmodel = cbind(all.score.rf.all.mp, all.score.rf.all.vp,

all.score.rf.all.sp)

Boostaggmodel = cbind(all.score.bos.mp, all.score.bos.vp, all.score.bos.sp)

Boostfullmodel = cbind(all.score.bos.all.mp, all.score.bos.all.vp,

all.score.bos.all.sp)

NNaggmodel = cbind(all.score.neural.mp, all.score.neural.vp,

all.score.neural.sp)

NNfullmodel = cbind(all.score.neural.all.mp,

all.score.neural.all.vp, all.score.neural.all.sp)

lgaggmodel = cbind(all.score.long.mp, all.score.long.vp, all.score.long.sp)

lgfullmodel = cbind(all.score.long.all.mp,

all.score.long.all.vp, all.score.long.all.sp)

multipletestaccross = function(fmodels){

obsr = fmodels[,1]

model_pvalues = c(1:2)

for(models in 2:3){

model_ttest = t.test(obsr,fmodels[,models])

model_pvalues[(models-1)] <- model_ttest$p.value

}

rawp <- model_pvalues

bonf = mt.rawp2adjp(rawp, proc = c("Bonferroni"))

holm = mt.rawp2adjp(rawp, proc = c(’Holm’))

bh = mt.rawp2adjp(rawp,proc=c(’BH’))

allp =cbind(rawp, bonf$adjp[order(bonf$index),2],

holm$adjp[order(holm$index),2],

bh$adjp[order(bh$index),2])

mt.plot(allp,plottype="pvsr", proc=c("rawp","Bonferroni",

"Holm","BH"),leg=c(2,0.95),

lty=1,col=1:5,lwd=2)
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moout = mt.reject(cbind(rawp,bonf$adjp[order(bonf$index),2],

holm$adjp[order(holm$index),2],bh$adjp

[order(bh$index),2]),seq(0,1,0.05))$r

print(allp)

return(moout)

}

par(mfrow = c(1,3))

multipletestaccross(LRaggmodel)

multipletestaccross(LRfullmodel)

multipletestaccross(RFaggmodel)

multipletestaccross(RFfullmodel)

multipletestaccross(Boostaggmodel)

multipletestaccross(Boostfullmodel)

multipletestaccross(NNaggmodel)

multipletestaccross(NNfullmodel)

multipletestaccross(lgaggmodel)

multipletestaccross(lgfullmodel)
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