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Abstract

Background: Diarrhea is the second most killer of children under five years old in

the world. One of the top 15 countries with the highest contribution to the world’s

children death due to diarrhea is Indonesia. In Indonesia, the West Java province is

the province with the greatest number of diarrhea cases, with Bandung (the capital of

the province) is one of the top 5 cities with the most diarrhea cases in this province.

To reduce the diarrhea occurrences in Bandung, information on diarrhea risk and its

associated covariates is needed. There are several factors that cause high diarrhea inci-

dences. Some of them are lack of access to drinking-safe water sources, poor sanitation,

and low practice of hygienic habit. Diarrhea infection is contagious and if not controlled

properly it can spread to the other geographical areas. In practice, the heterogeneity

of demography in study areas leads to a non-stationary diarrhea risk across locations.

Thus modeling using a global spatial model might not fully explain the real variation

and a spatial model that varies across locations should be considered. Also, to direct

the diarrhea control action to be right on target, we are interested in exploring the full

distribution of toddlers’ diarrhea and spotting the high-risk and low-risk districts in

Bandung using quantile regression.

Objective: To explore the effects of three predictors (the percentage of clean wa-

ter usage, hand washing habit, and healthy toilet ownership) on the toddlers’ diarrhea

risk at different districts of Bandung and at several quantiles of the diarrhea risk.

Methodology: The so-called Geographically Weighted Quantile Regression (GWQR)

is used to explore the relationship between the diarrhea risk and the covariates both

at five quantiles of the response distribution and at every district. Adaptive bisquare

kernel is used to determine the spatial weight.

Results: The results show that covariates importance differs between districts and

between quantiles of the diarrhea risk distribution. At the 0.25th, 0.50th, 0.75th quan-

tiles, all covariates significantly affect the diarrhea risk, but none of the covariates is

found to have an effect on the diarrhea risk at the tails of the response distribution

(0.05th and 0.95th quantiles). Although all covariates are significant at three quantiles

but their importance differs between districts, some covariates are important at some

districts but not important at the other districts.

Keywords: Quantile regression, geographically weighted regression, diarrhea, spa-

tial analysis.
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1 Introduction

Diarrhea is a condition when the faeces is frequently excreted from bowel and not in a solid

form. Diarrhea remains a leading cause of mortality for children under age 5 years old (U5)

in the world (UNICEF, 2019). It highly affects children living in low- and middle-income

countries including Indonesia. Although diarrhea is a treatable and preventable medical

problem, diarrhea often leads to death for children under five due to dehydration and late

first aid from parents. According to IVAC (2018), Indonesia is one of the top 15 countries

with the highest contribution to the world’s children death due to pneumonia and diar-

rhea. The severity of the diarrhea threat on children encouraged UNICEF and WHO to

launch Global Action Plan for the Prevention of Pneumonia and Diarrhea (GAPPD) in

2009 (IVAC, 2018). With this action plan, WHO and UNICEF aim to reduce and prevent

childhood death from diarrhea and pneumonia effectively, especially in those identified 15

high burden countries.

According to WHO (2011), some of the risk factors that cause the high prevalence of di-

arrhea are the unhygienic environment and unhealthy living behavior, such as the lack of

access to drinking-safe water sources, poor sanitation, the low practice of hand washing

habit, and open defecation. Open defecation refers to defecation in the open place or the

existence of toilets without septic tank. It makes people vulnerable to worms and bacteria

that are transmitted through the soil and causes the underground-water to be contami-

nated by the feces bacteria. Around 8 million out of 250 million Indonesian practice open

defecation hence Indonesia suffers from high diarrhea cases (Indonesia Ministry of Health,

2019). Among the cities with high percentage of open defecation practice, Bandung is one of

them. Bandung is the capital of West Java province in Indonesia, in which this province has

the highest diarrhea infection in Indonesia (Indonesia Ministry of Health, 2017). Out of all

cities in West Java province, Bandung is one of the top 5 cities with the highest diarrhea in-

cidence (West Java Department of Health, 2017). Therefore Bandung needs serious control

and treatment to reduce diarrhea occurrence. Besides the mentioned risk factors, there are

additional risk factors for diarrhea in children under 5, such as insufficient nutrition due to

not optimal breastfeeding process, low economic prosperity, and allergy (Black et al., 2019).

Diarrhea occurrence is infectious. It can spread to other houses and neighbouring districts

especially where there are many people in small regions and many shared public facilities

with low hygiene (CDC, 2019). This implies that when diarrhea infection happens in one
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area, the other close areas will be at higher risk to be infected too, meaning that spatial

effect needs to be taken into account. If the spatial effect is not taken into account, it will

lead to bias and inefficiency in the estimates (Stakhovych et al., 2012). A commonly used

spatial approach is to assume that the effect of predictors on the response is the same ev-

erywhere within the study region, which is called spatial stationarity (Fotheringham et al.,

2003). This standard spatial approach will produce a single regression model with one

global coefficient across geographical study areas after accounting for spatial dependency.

However, this standard spatial approach is not always sufficient to describe the real vari-

ation in reality. The effect of some predictors on the response might be different between

geographical locations. It might be happen that one predictor is essential at one location

but not at the other location. When the configuration within the data cannot be explained

using a single “global” spatial model, a varying coefficient spatial model called Geographi-

cally Weighted Regression (GWR) model can be used (Brunsdon et al., 1996). GWR allows

the relationship of a set of variables to be different at different areas by producing a re-

gression model with varying coefficients over space. This assumption is termed as spatial

nonstationarity. Using GWR enables one to investigate deeper in which location certain

predictors have a bigger/smaller effect on the response.

Applying GWR in the diarrhea data implies that we will obtain the estimates of predictors’

effects on the mean function of the diarrhea risk. However, it is also of interest to see the

predictors’ effects on the high-risk (upper tail) and low-risk (lower tail) areas of diarrhea

risk distribution and not only on the mean area of the risk distribution. For this aim,

quantile regression which was introduced by Koenker and Bassett Jr (1978) is used in the

analysis.

Quantile regression is an extension of classical regression technique in which it estimates

the conditional quantile of the response modelled as a function of covariates. Thus in quan-

tile regression, an increase/decrease in the predictors will increase/decrease the conditional

quantile of the response (Hao and Naiman, 2007). Median regression is another name of the

quantile regression when the quantile is 0.5 (Koenker, 2005). The use of quantile regression

is powerful especially when there is heterogeneity in the response distribution since we can

obtain an overall idea on how predictors affect the response at many parts of the response

distribution by assuming a regression model on various quantiles. Moreover, quantile regres-

sion is appropriate to be used when the response distribution is skewed. When the response

distribution is skewed, the regression based on mean will likely under/overestimate the ef-

2
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fect of predictors on the tail probability of the response, but not with the quantile regression

since it is less sensitive to the tail behavior of the response distribution. This characteristic

of quantile regression makes quantile regression also robust to outliers (Alsayed et al., 2020).

Combining GWR and quantile regression results in the so-called Geographically Weighted

Quantile Regression (GWQR) method (Chen et al., 2012). This method accounts for spatial

nonstationarity as well as heterogeneity of the response distribution at the same time.

1.1 Objective

In this project, we illustrate GWQR on diarrhea risk data specifically toddlers’ diarrhea

risk in Bandung city, Indonesia. It is of interest to investigate the effects of three predictors

(the percentage of clean water usage, hand washing habit, and healthy toilet ownership) on

the toddlers’ diarrhea risk at different districts of Bandung and at several quantiles of the

diarrhea risk.

3
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2 Data Description

The analysed dataset was obtained from the public health department in Bandung. The

response (Y ) is the diarrhea risk of children under five years old of 30 districts in Bandung

in 2015. Diarrhea risk is the percentage of children under five years old who experienced

diarrhea during 2015. It is calculated by dividing the number of toddlers diarrhea incidents

at each district over the total toddlers in the district then multiplied by 100. In this

thesis we use three predictors. These predictors are believed to be associated with diarrhea

infection based on the diarrhea bulletin from Indonesia Ministry of Health (2011) and based

on Millennium Development Goals (MDGs) from the United Nations which promote the

so-called WASH (water, sanitation, and hygiene) campaign. Those three predictors are:

1. X1 is the percentage of households that use clean water in each district. It is obtained

by counting the households that have clean water access divided by the number of

houses in a specified district then multiplied by 100.

2. X2 is the percentage of households with hand washing habit using soap and clean

water. To obtain this, houses that practice hand washing habit are recorded and

divided by the number of houses in the district then multiplied by 100.

3. X3 is the percentage of households with healthy toilet. The healthy toilet is described

as toilet that satisfy the following criteria: odorless and feces cannot be touched by

insects or rats, water and cleaning tools are available, equipped with protective walls

and roof, easy to clean and safe to use (Indonesia Ministry of Health, 2014). For

obtaining this predictor, the number of houses with healthy toilet is divided by the

total houses in the district then multiplied by 100.

5





Master’s Thesis

3 Methodology

3.1 Quantile Regression

Let Y be the response variable and X1, ..., Xp be a set of predictor variables. The response

is associated to predictors through parameters β1, ..., βp. In the classical linear mean re-

gression, we consider the following model

Y = Xᵀβ + ε, (1)

with X = (1, X1, ..., Xp)
ᵀ, β = (β0, β1, ..., βp)

ᵀ, and ε is the error term which is assumed

E(ε) = 0. Suppose we have n independent observations (X11, ..., Xp1, Y1), ..., (X1n, ..., Xpn, Yn)

from (X1, ..., Xp, Y ). The parameter estimation in the linear mean regression is obtained

by minimizing the residuals sum of square
∑n

i=1(Yi −X
ᵀ
i β)2 with Xᵀ

i = (1, X1i, ..., Xpi)

and i = 1, ..., n.

In the quantile regression one can model the association of predictors not only with the

conditional central tendency (median) of the response but also with the other conditional

quantiles of the response. This makes quantile regression more beneficial than classical mean

regression since it can provide full visualization on how predictors related to the response at

all parts of the response distribution. When one wants to explore the response-predictors

association only at the upper or lower percentile of the response, quantile regression is suit-

able to be used. In addition, quantile regression is more robust to outlying observations

(Andriyana et al., 2014).

Quantile function is the inverse of cumulative distribution function (CDF). The CDF of Y

given X can be expressed as FY (y|X) = P (Y ≤ y|X) with the inverse function F−1
Y (τ) =

inf{y : F (y|X) ≥ τ} = QY (τ |X) (for τ ∈ [0, 1]) called the τth conditional quantile of the

response Y given covariate X (Koenker, 2005). The linear model for quantile regression

can be written as:

Y = Xᵀβτ + ε, (2)

where the vector βτ = (βτ0 , ..., β
τ
p )ᵀ is the regression coefficient vector at the τth quantile.

ε is the error term in which we assume that the τth quantile of ε given X is equal to

zero (Qε(τ |X) = 0) hence QY (τ |X) = Xᵀβτ (Koenker, 2005). The quantile regression

parameters are estimated by minimizing the following quantile loss function with respect

7
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to β
n∑
i=1

ρτ (Yi −Xᵀ
i β), (3)

where ρτ (.) is a check-function which defined as

ρτ (e) =

e(τ) if e > 0,

e(τ − 1) otherwise.
(4)

The check function is a V-shaped piecewise linear function which can be illustrated as

Figure 1.

Figure 1: The illustration of check function for quantile regression τ = 0.05, 0.25.

Figure 1 illustrates that the quantile objective function (3) is not differentiable. Thus, as

proposed by Koenker (2005), quantile objective function could be translated into a linear

programming optimization problem to find the optimal solution.

3.2 Geographically Weighted Regression (GWR)

Geographically Weighted Regression (GWR) is basically a regression model with weighted

least squares estimation. GWR is an extension of global mean regression in which a spatial

component is added and producing locally mean regression such that it takes into account

spatial nonstationarity in the data. The underlying model for GWR is

Y = β0(u, v) +

p∑
k=1

Xkβk(u, v) + ε = Xᵀβ(u, v) + ε, (5)

8
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where β(u, v) = (β0(u, v), ..., βp(u, v))ᵀ represent the regression coefficients that are esti-

mated for location with geographical coordinate (u, v), u stand for latitude and v stand

for longitude. ε is a random error term that is normally distributed with mean zero and

common variance σ2. Fotheringham et al. (2003) explained that GWR works by adapt-

ing the moving window regression principle and enclosing geographical weight component.

Suppose that we have a circular window with regression point (u0, v0) as the midpoint and

there are several observations inside the circle around the midpoint (u0, v0). These obser-

vations inside the circle are considered near to the regression point and will get a nonzero

spatial weight, while the observations outside the circle will have zero weight since they

are considered distant from the midpoint (u0, v0). Among those observations with nonzero

weight, a smaller distance from the regression point (u0, v0) will results in a higher weight

than those with greater distance. When an observation located at the same location as the

regression point, the weight will be unity. A linear mean regression model is then fitted

for regression point (u0, v0) using all observations within the circle and the parameters are

estimated with geographically weighted least squares method. This procedure is then re-

peated for all regression points.

The spatial weight assigned to each observation i is determined based on a kernel method.

In this study, the spatial weight is expressed by wi0 = K(di0h ) with K(.) is a kernel function.

A kernel function involves distance (di0) and bandwidth parameter (h). The distance is

measured using the Euclidean distance i.e. between the ith observation with coordinate

(ui, vi) and the regression point (u0, v0) then di0 = ||(ui, vi) − (u0, v0)||. The bandwidth

parameter (h ≥ 0) is a measure of distance-decay in the weighting process as well as a

controller of the smoothness of the resultant coefficients. The commonly used kernel func-

tions in GWR are Gaussian kernel and Bi-square kernel. Details about these kernels are

described in the Section 3.3.2.

3.3 Geographically Weighted Quantile Regression (GWQR)

As described in the previous section, Geographically Weighted Regression (GWR) is a

locally mean regression model that can accomodate spatial non-stationarity. Since this

study interest is to see how covariates affect the response at the high risk and low risk

of diarrhea, quantile regression is incorporated and results in a Geographically Weighted

9
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Quantile Regression (GWQR) model which is formulated as follows:

Y = βτ0 (u, v) +

p∑
k=1

Xkβ
τ
k (u, v) + ε = Xᵀβτ (u, v) + ε, (6)

where βτk (u, v) is the regression coefficient at τth quantile at the location with geographical

coordinate (u, v). Following the quantile regression scheme, the τth conditional quantile

function of the observed response Y can be expressed as QY (τ |X, u, v) = Xᵀβτ (u, v) +

Qε(τ |X, u, v). Since it is assumed thatQε(τ |X, u, v) = 0 henceQY (τ |X, u, v) = Xᵀβτ (u, v)

(Koenker, 2005).

3.3.1 Estimation in GWQR

Suppose that the GWQR coefficient vector βτ (u, v) = [βτ0 (u, v), ..., βτp (u, v)]ᵀ has second

continuous partial derivative with respect to location latitude u and longitude v. Then at a

regression point (u0, v0), the vector βτ (u, v) can be approximated using Taylor’s expansion

by

βτ (u, v) ≈ βτ (u0, v0) + βτ (u)(u0, v0)(u− u0) + βτ (v)(u0, v0)(v − v0), (7)

for (u, v) in the neighborhood of (u0, v0), with βτ (u)(u0, v0) is the vector of partial deriva-

tive vector of βτ (u, v) at (u0, v0) with respect to u and βτ (v)(u0, v0) is the vector of partial

derivative with respect to v. Based on linear approximation (7) and local modelling princi-

ples, the GWQR estimates can be obtained through minimization of the following weighted

loss function

n∑
i=1

ρτ

(
Yi −Xᵀ

i

[
βτ (u0, v0) + βτ (u)(u0, v0)(ui − u0) + βτ (v)(u0, v0)(vi − v0)

])
wi0, (8)

or it can also be expressed as

n∑
i=1

ρτ

(
Yi − X̃ᵀ

i θ
τ (u0, v0)

)
wi0, (9)

where X̃i = [1, X1i, ..., Xpi, (ui−u0), X1i(ui−u0), ..., Xpi(ui−u0), (vi− v0), X1i(vi− v0), ...,
Xpi(vi − v0)]ᵀ and θτ (u0, v0) = [βτ0 (u0, v0), ..., β

τ
p (u0, v0), β

τ
0
(u)(u0, v0), ..., β

τ
p
(u)(u0, v0),

βτ0
(v)(u0, v0), ..., β

τ
p
(v)(u0, v0)]

ᵀ. Using linear programming optimization, the parameter vec-

tor θτ (u0, v0) has estimate θ̂τ (u0, v0) = [β̂τ0 (u0, v0), ..., β̂
τ
p (u0, v0), β̂

τ
0
(u)(u0, v0), ..., β̂

τ
p
(u)(u0, v0),

β̂τ0
(v)(u0, v0), ..., β̂

τ
p
(v)(u0, v0)]

ᵀ.

10
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Instead of using the local linear approximation (7), one can use the local constant approx-

imation:

βτ (u, v) ≈ βτ (u0, v0). (10)

Using the local constant approximation (10), the GWQR parameters can be estimated by

minimizing the following weighted quantile loss function :

n∑
i=1

ρτ [Yi −Xᵀ
i β

τ (u0, v0)]wi0, (11)

where wi0 = K(di0h ) is the spatial weight. The vector of parameter βτ (u0, v0) is the re-

gression coefficients at quantile τ and location coordinate (u0, v0) with the local constant

estimator is notated by β̂τ (u0, v0). The spatial weight wi0 does not depend on τ indicating

that the bandwidth is identical at every quantile.

3.3.2 Kernel in GWQR

A Kernel function is used to determine the weight in GWQR to obtain smooth local pa-

rameter estimates. Two commonly used kernel function are Gaussian kernel and Bi-square

kernel.

• Gaussian Kernel

wi0 = exp

(
−1

2

(
di0
h

)2
)
,

• Bi-square Kernel

wi0 =


(

1−
(
di0
h

)2)2

if di0 ≤ h,

0 if di0 > h.

The above two kernels have fixed bandwidth in which the kernel size remains the same across

geographical regions. However, some regions might be surrounded by many observations

while others are sparse. When there are only very few observations at a region and regression

is fitted at this region using only these few observations, then the parameter estimates will

likely have large standard error (Fotheringham et al., 2003). Thus it would be sensible to

assign kernel with adaptive bandwidth in which it will adjust the kernel size according to

the density of observations at a region. This study uses the adaptive bi-square kernel

11
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wi0 =


(

1−
(
di0
hi

)2)2

if di0 ≤ hi,

0 if di0 > hi.

(12)

According to Fotheringham et al. (2003), any choice of kernel gives relatively the same

results, but different bandwidth will rise different results. Thus selecting optimal bandwidth

is necessary. Several criteria can be used in selecting the optimal bandwidth: (1) Cross

Validation, (2) Generalized Cross Validation, (3) Akaike Information Criterion, (4) Bayesian

Information Criterion. In this paper, Leave One Out Cross Validation (CV) approach will

be used with formula:

CV (h) =
1

n

n∑
i=1

ρτ

[
Yi − Q̂(−i)

Y (τ |Xi, ui, vi)
]
, (13)

where Q̂−i
Y (τ |Xi, ui, vi) is the estimate of QY (τ |Xi, ui, vi) at location i obtained from

estimation process that uses all observations except the observation at location i itself

(Yi,Xi, ui, vi). The bandwidth with the smallest CV score will be chosen.

3.3.3 Significance Test for GWQR parameter

To construct a hypothesis testing procedure, we need to estimate the standard error of the

parameters. Recall the equation (11) can be expressed in other form

n∑
i=1

ρτ [Yiwi0 −Xᵀ
i β

τ (u0, v0)wi0] . (14)

According to Chen et al. (2012), having equation (11) and (14), and based on the asymptotic

theorems described in Koenker (2005), the estimate θ̂τ (u0, v0) is asymptotically normal

distributed with the mean is the true regression coefficients θτ (u0, v0) and the covariance

matrix

cov
(
θ̂τ (u0, v0)

)
=
τ(1− τ)

n
D−1

1 D0D
−1
1 , (15)

where

D0 = E[X̃i
∗
X̃i

∗ᵀ
],

D1 = E[X̃i
∗
X̃i

∗ᵀ
f(QY (τ |X̃i

∗
, ui, vi))],

X̃i
∗

= X̃iwi0, and

f(QY (τ |X̃i
∗
, ui, vi))] is the conditional density of Yi for X̃i

∗
at the geographical coordinate

12
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(ui, vi) estimated at the τ -th conditional quantile.

To estimate the covariance for θ̂τ (u0, v0), we use ˆcov
(
θ̂τ (u0, v0)

)
= τ(1−τ)

n D̂−1
1 D̂0D̂

−1
1

and we can use it for constructing the test statistic for hypothesis testing. The estimation

involves

D̂0 = 1
n

∑n
i=1 X̃

∗
i X̃

∗ᵀ
i ,

D̂1 = 1
n

∑n
i=1 f̂(Q̂Y (τ |X̃∗

i , ui, vi))X̃
∗
i X̃

∗ᵀ
i ,

f̂(Q̂Y (τ |X̃∗
i , ui, vi)) = 2hn

X̃∗ᵀ
i θ̂

τ+hn (u0,v0)−X̃∗ᵀ
i θ̂

τ−hn (u0,v0)
,

with hn is a bandwidth parameter in which for a large sample size (n→∞) the bandwidth

parameter will be close to zero. The determination of the bandwidth hn is via the Hall-

Sheather bandwidth rule suggested by Koenker (1994)

hn = n−1/3z2/3α

[
1.5φ2

(
Φ−1(τ)

)
(2Φ−1(τ))2 + 1

]1/5
, (16)

with Φ be a standard normal distribution function, with density function denoted by φ and

zα satisfying Φ(zα) = 1 − α
2 . α is the significance level for hypothesis testing. It is worth

to note that f̂(Q̂Y (τ |X̃∗
i , ui, vi)) is not necessarily always positive and may cause problem,

hence it is replaced by the quantity advised by Koenker and Machado (1999)

f̂(Q̂Y (τ |X̃∗
i , ui, vi)) = max

[
0,

2hn

X̃∗ᵀ
i θ̂

τ+hn(u0, v0)− X̃∗
i θ̂

τ−hn(u0, v0)− η

]
, (17)

where η is a small positive number to avoid division by zero, in this thesis η = 0.01.

The significance of GWQR parameter estimates can be tested using partial t-test with

hypothesis:

H0 : βτk (u0, v0) = 0, k = 1, ..., p

H1: β
τ
k (u0, v0) 6= 0, k = 1, ..., p

and the test statistic:

tk(u0, v0) =
β̂τk (u0, v0)

σ̂
(
β̂τk (u0, v0)

) ,
where standard error of the k-th coefficient σ̂

(
β̂τk (u0, v0)

)
is obtained from the (k + 1)th

diagonal element of the estimated covariance matrix ˆcov
(
θ̂τ (u0, v0)

)
. H0 is rejected when

tk(u0, v0) > zα/2 with α = 0.05.
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3.3.4 Assessment of Spatial Nonstationarity

In this thesis, we follow the approach in Chen et al. (2012) to assess the spatial nonsta-

tionarity in GWQR coefficients. At a specified quantile, we compare the Inter Quartile

Range (IQR) of the GWQR coefficients with the standard error of the traditional quantile

regression. When the IQR is twice larger than the standard error of the traditional quantile

regression then it is said that spatial non-stationarity is present in the relationship between

predictors and response.

3.4 Software

The data analysis was executed using R version 4.0.0. There is no R package available for

GWQR yet. The GWQR analysis in this thesis utilized a modified version of GWmodel.
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4 Results

In this section we presents the results and interpretation of the results from the application

of Geographically Weighted Quantile Regression on toddlers’ diarrhea data. We start with

exploratory data analysis, then present the diarrhea mapping based on GWQR modeling

results.

4.1 Exploratory Data Analysis

To get some illustration about the data, this subsection presents an overview of the spread of

the diarrhea risk (the response), a check on spatial heterogeneity in the data using Breusch

Pagan test, and plots of predictors against the response.

Figure 2 illustrate the spread of the response (diarrhea risk) over 30 districts in Bandung

city in 2015. The diarrhea risk ranges from 5 to 32 percent with average 13.69 which

means that on average 14 out of 100 of children under 5 years old in Bandung experienced

diarrhea. According to this picture, the level of diarrhea risk varies across districts. 12 out

of 30 districts have small diarrhea risk (risk less than 10) in which most of them located

side by side in the middle part of Bandung city while some others spread at the western

part. The eastern part of the map seems to have darker color, indicating that diarrhea

risk is high at districts in this area. The highest diarrhea risk happens in the Panyileukan

district, expressed with the darkest color at the east side of the map, amounted to 31.80.

Not only at the eastern part, but at the center of the map there is also a district with dark

color around 6.9◦S latitude and 107.61◦E longitude. This district is called Bandung Wetan

and is the location of the central government building of the West Java province.

Figure 2: The map of the observed diarrhea risk
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In Figure 3, a boxmap is presented to mimic a boxplot in term of geographical map vi-

sualization hence the boxmap will help to indicate if outliers are present in the response.

In case outliers exist in the response, caution is needed if someone is going to perform

modelling based on conditional mean. The use of quantile regression is one option to have

a more robust modeling technique than mean-based model. Based on the boxmap there is

no outlier in the response.

Figure 3: Boxmap of the observed diarrhea risk

The histogram of the response in Figure 4 shows that the diarrhea risk variable is asymmet-

rically distributed and no outlier is observed. In quantile regression there is no assumption

for the distribution of the response hence quantile regression can handle this skewed data.

Figure 4: Histogram of the observed diarrhea risk
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A test for spatial heterogeneity was performed using Breusch-Pagan test after taking spatial

effect into account. The Breusch Pagan p-value is equal to 0.043 (significant at α = 0.05)

which means that spatial heterogeneity is present in the data. This is an indication that

the relationship between covariates and the response seems to vary over space and the use

of locally varying spatial model such as Geographically Weighted model would be logical

to be used.

Figure 5 shows that there are more points at the higher values of predictors compared

to the smaller values of predictors, thus the variability seems increasing as the predictors

values increase. For X1 (the percentage of houses with clean water access), there seems

small variability for this predictor because almost all of the points located at the percentage

99-100% although the diarrhea risk varies from 5 to 32 percent. A similar case happens

with the predictor X2 (percentage of hand washing habit) in which the majority of the

districts have hand washing habit percentage above 90% even though the diarrhea risk is

spread widely from low to high. The third predictor seems to have a larger variability than

the previous 2 predictors since the points spread from low to high values of the percentage

of healthy toilet. Majority of the points located at the bottom right indicating that many

districts have high percentage of healthy toilet and low percentage of diarrhea. Further, it

is observed that there is one point which has low values for percentage of clean water, hand

washing habit, and healthy toilet, but has low diarrhea risk.

Figure 5: Scatter plot of predictors (left to the right: X1-X3) against the response

4.2 Geographically Weighted Quantile Regression

GWQR with bisquare kernel is used in the analysis and using adaptive bandwidth approach

the optimal bandwidth obtained from cross validation is h = 28 for all the five quantiles.
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Table 1 shows the summary of the parameter estimates of GWQR for the five chosen quan-

tiles τ = 0.05, 0.25, 0.50, 0.75, 0.95 with an additional column for the standard error of the

global quantile regression coefficients. There is no theoretical cut off for diarrhea risk which

classify the risk of diarrhea into high, low, or other categories. Hence in this thesis we use

conventional classification for the response i.e. very low risk of diarrhea is 5th percentile,

low risk of diarrhea is 25th percentile, median risk of diarrhea is 50th percentile, high risk

of diarrhea is 75th percentile, and very high risk of diarrhea is 95th percentile.

For initial identification of whether spatial non-stationarity is exist in the GWQR esti-

mates, we follow the approach from Chen et al. (2012). A predictor is said to have a

non-stationary relationship with the response across space if the IQR of the GWQR pa-

rameter estimates is twice larger than the standard error of the global quantile regression

coefficients. Based on Table 1, all predictors have a spatial non stationary relationship

with the response, at least in one quantile. This suggests that the relationships between

the toddlers’ diarrhea risk and the clean and healthy living behaviors indeed vary over the

districts of Bandung. The predictor X1 is detected to have IQR of the GWQR coefficients

twice larger than the standard error of the global quantile regression coefficient at 4 out of

5 quantiles (τ = 0.05, 0.25, 0.50, 0.95). This indicates that the relationship between X1 and

Y is not the same across different districts and at different sections of the risk distribution.

The other two predictors (X2 and X3) are detected to have non-stationary process across

districts at the lower tail of the diarrhea risk (5th percentile).

Figure 6 shows the predictions from GWQR model based on five chosen quantiles. Starting

from the medium percentile i.e. 50th percentile, the map of predictions from the GWQR

τ = 0.50 model shows there is one district at the eastern part of the map with the darkest

color. This indicates that, at the median, this district predicts to have the highest diarrhea

risk of all districts, amounted to 31.8 and identified as Panyileukan district. At this district,

50 out of 100 toddlers have a risk of diarrhea of 31.8 percent or less. Panyileukan district

again predicts to have the highest diarrhea risk of all districts at the lower percentile i.e. 5th

percentile. At this very low percentile where all districts predicts small values of diarrhea

risk, the map from GWQR τ = 0.05 model predictions shows there are noticeably 3 districts

with huge values of diarrhea risk predictions, indicated by their obvious dark color. At these

3 districts, 95 out of 100 toddlers have a diarrhea risk of 16 or higher. These 3 districts,

identified as Panyileukan and the other two districts, may be considered as regions with

high risk of toddlers diarrhea and could be recommended to the government for a control
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Table 1: Summary of GWQR estimates

GWQR Traditional QR Nonstationarity
Parameter

Min Median Max IQR SE SE Status

τ = 0.05
Intercept 2.252 12.568 13.013 7.762 10.775 2.877 non stationary
β1 -0.168 -0.051 0.490 0.551 0.210 0.050 non stationary
β2 -0.242 0.416 0.437 0.503 0.291 0.058 non stationary
β3 -0.699 -0.375 -0.153 0.226 0.283 0.049 non stationary
τ = 0.25
Intercept 2.050 9.983 21.992 3.256 8.299 8.603 stationary
β1 -0.207 -0.094 0.810 0.590 0.162 0.148 non stationary
β2 -0.223 0.279 0.354 0.181 0.224 0.173 stationary
β3 -0.925 -0.163 -0.120 0.125 0.218 0.148 stationary
τ = 0.50
Intercept -6.900 8.624 9.059 6.635 6.907 9.084 stationary
β1 -0.233 -0.126 0.754 0.437 0.135 0.157 non stationary
β2 -0.595 0.267 0.283 0.304 0.186 0.182 stationary
β3 -0.516 -0.123 0.297 0.112 0.181 0.156 stationary
τ = 0.75
Intercept -7.910 1.457 4.067 7.326 12.945 25.148 stationary
β1 -0.251 0.191 0.632 0.579 0.253 0.434 stationary
β2 -0.538 -0.038 0.096 0.327 0.349 0.505 stationary
β3 0.003 0.203 0.367 0.307 0.340 0.432 stationary
τ = 0.95
Intercept -5.126 -2.594 -2.594 2.532 16.376 11.674 stationary
β1 0.104 0.104 0.556 0.452 0.320 0.201 non stationary
β2 -0.322 -0.190 -0.190 0.132 0.442 0.234 stationary
β3 0.073 0.372 0.372 0.299 0.430 0.200 stationary

and treatment regarding healthy environment and living habit.
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Figure 6: GWQR predictions

Looking at the very high percentile i.e. 95th percentile at Figure 6, the predictions from

the GWQR τ = 0.95 model shows remarkably one district with very light color. At this

very high percentile where all districts predict big diarrhea risk, this district predicts low

diarrhea risk. That is 95 out of 100 toddlers in this district are predicted to have 10 or

less diarrhea risk. This district, called Antapani district, might be believed as the region

with low risk of toddlers diarrhea and government could refer to Antapani as a role model

district for improving the health quality of the other districts especially in diarrhea issue.

Furthermore, Panyileukan district is consistently found as the district with the highest pre-

diction of diarrhea risk at all quantiles hence this district might require serious attention

from the health institute regarding the diarrhea issue.

The maps of the GWQR parameter estimates evaluated at different quantiles is presented

at Figure 7, 8, and 9. The darker the color indicates the higher positive effect of a covariate

on the response and the lighter the color indicates the smaller positive effect or the covariate

effect is more negative. Locations with white color are the areas in which the effect of the

predictor is not significant at 5% significance level.

Figure 7 illustrates how the percentage of houses that use clean water (X1) is associated

to the diarrhea risk. Starting from the median, we can see that based on GWQR τ = 0.50
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model there seems 3 groupings in the effect of the percentage of clean water towards the

response, and the effect is bigger on the eastern regions rather than on the western regions.

It is also noticed that moving from central/median percentile to both left and right, the

coefficients are smaller especially at the tails 5th and 95th percentiles. Moreover, the effect

of percentage of clean water at these tails are not significant at all districts. At the 75th

percentile, there is negative effect of the percentage of clean water towards the diarrhea risk

at the western part of the map. Furthermore, there is one location in which the percentage

of clean water is not statistically significant affecting the diarrhea risk. This predictions

show that the association of covariate and response varies across districts, that is a covariate

can be important in some districts but not important at the other districts.

Figure 7: Maps of GWQR Estimates for X1 (Percentage of Houses with Clean Water)
significant at α = 5%

Figure 8 illustrates the geographical map of significant parameter estimates for the per-

centage of hand washing habit (X2) evaluated at five chosen quantiles. At all quantiles,

the percentage of hand washing habit is predicted to have negative relationship with the

diarrhea risk at the eastern part of Bandung, and its effect is gradually increasing (more

positive) as the geographical districts located at the western part. However, these positive

coefficients are not statistically significant at the 75th percentile. Moving from median

quantile (50th percentile) to the left (lower percentiles), the coefficients tend to be more

positive, but when moving to the right the coefficients are more negative. Similar to the

case in the first predictor, the percentage of hand washing habit is not proven to have an im-
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portant effect on the diarrhea risk at the very low and very high percentiles (τ = 0.05, 0.95).

Figure 8: Maps of GWQR Estimates for X2 (Percentage of houses hand washing habit)
significant at α = 5%

Figure 9 shows the geographical map of GWQR coefficients for the percentage of houses

with healthy toilet (X3) that are significant at 5% significance level. At the 50th percentile,

the effect of the percentage of healthy toilet is not statistically significant at one district, but

significant at the other districts. This covariate has negative effects on the response at the

middle part and western part of Bandung. Moving from median to the left, there is stronger

negative effects of this covariate at all areas of Bandung. Based on GWQR τ = 0.25 model,

increasing healthy toilet percentage would decrease the diarrhea risk at all districts with

the strongest effect is on the district with very light color at the southern-middle part of

the map, 6.96◦S latitude and 107.65◦E longitude. Conversely, moving from median to the

upper percentiles, the effect of this predictor is more positive. For the 75th percentile, the

percentage of healthy toilet is proven to be an important predictor on the diarrhea risk at

both western and eastern part of Bandung city, but not important at the middle part of

Bandung. There is no effect of the percentage of healthy toilet on the response at the tails

of the response distribution i.e. 5th and 95th percentiles.
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Figure 9: Maps of GWQR Estimates for X3 (Percentage of Houses with Healthy Toilet)
significant at α = 5%
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5 Discussion

The Geographically Weighted Quantile Regression (GWQR) model is employed to answer

the research questions in the study: how is the relationship between the predictors and the

diarrhea risk for children under 5 years old at various spatial location, evaluated at the

lower, middle, and upper quantiles of the diarrhea risk distribution.

The presented case study is about diarrhea risk for children under five in Bandung city,

Indonesia. As earlier mentioned, some of the factors that causing diarrhea are unhygienic

sanitation, bacteria in the water access system, bacteria in soil, unhygienic lifestyle, and lack

of some nutrition. In Bandung, not all houses subscribe to water service from the Municipal

Water Corporation. Some of them rely on water from the well. For houses that subscribed

to water service from the Municipal Water Corporation, the water distribution service is

grouped into three sub-regions, so does the water pipeline systems. The variation in water

access over districts in Bandung leads to a non-stationary risk of diarrhea. Furthermore,

many districts in Bandung have not reach ODF (Open Defecation Free) status yet because

some houses do not have septic tank for their toilets and the feces disposal of these houses

are flowed to the river. This fact suggests that those areas with the geographical location

near the river seem at higher risk of soil and underground-water contamination, and it

leads to non-stationary diarrhea risk across districts. To better identify the non-stationary

process in the association of the covariates and the response, as well as better recognize the

locations with high and low-risk of diarrhea, the GWQR is used for the analysis.

In the context of modeling the locally varying relationship, geographically weighted re-

gression (GWR) model is commonly used, but this model regresses the predictors to the

conditional mean of the response. However, using the average measure cannot characterize

the full distribution of toddlers’ diarrhea risk. In this study we are interested in the tails

of the response distribution, not just the central tendency. The government mission for

solving toddlers’ diarrhea issue is targeting more on the toddlers with high risk of diar-

rhea, hence modeling that focus on upper quantile of the diarrhea risk distribution seems

more relevant rather than modeling on the average of the diarrhea risk. This aim can be

addressed by extending GWR to enable for the computation of conditional quantiles hence

allows the researcher to obtain a wider picture on predictor-response relationship at various

geographical areas and at various percentiles of the response. Furthermore, GWQR has an

advantage that it has no distribution assumption on the error term. Hence the results in
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this thesis have no issue regarding that assumption although the response variable used

in this thesis seems skewed which tends to violate the assumption if someone uses GWR

model based on the mean.

Our results show that the importance of predictors differ between locations. The predictor

of clean water percentage is considered as important explanatory variable at the eastern

areas while the percentage of hand washing habit has more influence at the western side.

Moreover, not only the location of important predictors is disparate, but also the magni-

tude and sign of the coefficients differ between quantiles. This implies that the influence of

hygienic lifestyle is spatially varying at different diarrhea risk distribution.

The results of this thesis has shortcomings. Some coefficients at some quantiles show

negative relationship between predictors and the response while some others show positive

relationship. The positive coefficients seem contradictory to the intuition since an increase

in the percentage of houses with clean water access, healthy toilet, and hand washing habit,

we expect the diarrhea risk would decrease. Reason of this might be because there is an

issue with data measurement especially with the predictor variables. As stated in the

exploratory part (Figure 5), the diarrhea risk varies between districts from small to high

values but the predictors have high percentage of clean water, hand washing habit, and

healthy toilet at the majority of the districts regardless the level of diarrhea risk. The

percentage reaches above 98% for X1 and X2 at almost all districts including districts with

very high diarrhea risk. In addition, there seems a trend between X3 and Y where the

response increasing as X3 increases. Furthermore, there is one district with low percentage

in all predictors but has low diarrhea risk. These situations cause the model to tend to

predict a positive association between covariates and the response. Moreover, according to

Black et al. (2019), a nutrition deficiency due to non-optimal breastfeeding or due to low

economic prosperity is also another risk factor of diarrhea in toddlers. However, the data

concerning this information is not available. These rationales might be the contributing

reasons of why some coefficients have inappropriate sign. A future study that investigate

diarrhea for toddlers is recommended to include another risk factors of toddlers’ diarrhea

such as breastfeeding information and mothers’ educational status (Yilgwan et al., 2012).

Also, it is advised for the institution that provide the data to evaluate the measurement

process when collecting the data of clean water, healthy toilet, and hand washing habit.
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6 Conclusion

The application of GWQR on diarrhea risk dataset allows us to identify the geographical

location of high and low risk of diarrhea, and at the same time explore the effect of pre-

dictors on the full distribution of toddlers diarrhea risk while allowing its effect to vary

spatially across different districts. The results show that the effect of predictors are differ-

ent at different districts. This information is valuable and would allow the government to

solve the diarrhea problem right on target based on which predictor that has substantial

effect at a specific district of interest. Based on the estimation of GWQR, the district that

is at high risk for toddlers’ diarrhea is the district located at the eastern side of Bandung

called Panyileukan district, while the district that is at low risk for diarrhea is the district

at the middle part of Bandung called Antapani district. This knowledge can be used by

the government to put more attention on Panyileukan district regarding treatments to fix

diarrhea issue, and refer to Antapani district as a good example for diarrhea issue man-

agement. Furthermore, the predictors have relatively different effect for different quantiles.

For example, all predictor variables are found to be important at three quantiles (0.25, 0.50,

0.75 quantiles) but none of the predictors are statistically significant affecting the response

at the tails of the response distribution, 0.05th and 0.95th quantiles. At three percentiles

where the predictors are significant, the location of its importance is differ between per-

centiles. For example, at the 75th percentile, X3 is important at the eastern and western

part of Bandung but not important at the middle part of Bandung.
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Appendix - R Codes (Selected Exploratory and Results)

library(lmtest,car,quantreg,rgdal,spdep,spatialreg,np,raster,tidyr)

library(ape,rdist,spgwr,ggplot2,GWmodel,mvoutlier,moments,dplyr)

#Exploratory Data Analysis

#Plot X vs Y,histogram of Y

plot(x=data$X1m,y=data$risk,xlab="Percentage of household using clean water",

ylab="Diarrhea risk ")

hist(data$risk,xlab="diarrhea risk")

#Longitude latitude

BANDUNG <-readShapePoly("Bdg.shp")

coords<-coordinates(BANDUNG)

#map of y_observed

shp.risk15=st_read("risk15.shp")

gabung.risk2015=left_join(shp.risk15,data,by="POLY_ID")

plot.yobs = ggplot(data=gabung.risk2015) +

geom_sf(aes(fill = risk)) +

scale_fill_gradient("Observed Diarrhea Risk",low = "#c2fc77", high = "#267822")

plot.yobs

#check spatial heterogeneity Breusch Pagan

W = as.matrix(1/dist(coords))

Listw= spdep::mat2listw(W)

error.risk<-spatialreg::errorsarlm(risk~X1m+X2m+X3m,data=shp.risk15,listw = Listw)

summary(error.risk)

spatialreg::bptest.sarlm(error.risk)

#prepare GWQR

attach(data)

dspat = data.frame(risk,X1m,X2m,X3m)

x = cbind(X1m,X2m,X3m)

y = cbind(risk)
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z = coords

z = as.matrix(z)

m1 = matrix(1,nrow(data),1)

datanew = SpatialPointsDataFrame(z,dspat)

dist.mat<-gw.dist(dp.locat=z, focus=0, p=2, theta=0, longlat=F)

#GWQR ANALYSIS

#Compute Bandwidth Simultant

inputtau = c(0.05,0.25,0.50,0.75,0.95)

bandwidth = c()

for(i in 1:length(inputtau)){

bandwidth[i] = bwrq.gwr(y~x,data=datanew,approach="CV",kernel="bisquare"

,adaptive=T,p=2,longlat=FALSE,ntau=inputtau[i],method="fnb")

$Bandwidth

if(i==length(inputtau)) {

bandwidth=data.frame(t(bandwidth))

colnames(bandwidth)=inputtau

}

}

bandwidth #Check bandwidth for each Tau/quantile

#Compute RQGWR

inputtau = c(0.05,0.25,0.50,0.75,0.95)

rqgwrresult = list()

for(i in 1:length(inputtau)){

rqgwrresult[[i]] =

rqgwr.basic(y~x,data=datanew,bw=bandwidth[,i],kernel="bisquare",adaptive=T,p=2,

theta=0, longlat=F,dMat=dist.mat,F123.test=T,cv=T, W.vect=NULL

,ntau=inputtau[i],method="fnb")

}

AddSignificance = function(fit,alpha=0.05){

fitsdf1 = data.frame(fit$SDF)

fitsdf = fitsdf1[,-((ncol(fitsdf1)-3):(ncol(fitsdf1)))]

fitlm = fit$lm

numvariable = NROW(fitlm$coefficients)

numdata = nrow(fitlm$x)

sig = c()

32



Master’s Thesis

sigsdf = list()

for(i in 1:numvariable){

for(j in 1:numdata){

sig[j] = ifelse(abs(fitsdf[j,(ncol(fitsdf)-numvariable+i)])<=qnorm(1-(alpha/2)),

"Not Significant","Significant")

if(j==numdata){

move = data.frame(sig)

colnames(move) = gettextf("X%d_Sig",i,domain=NA)

sigsdf[[i]] = move

}

}}

fitlast = cbind(fitsdf1,data.frame(sigsdf))

return(fitlast)

}

#RESULTS

#Tau = 0.05

result1.bisq = AddSignificance(rqgwrresult[[1]],alpha=0.05)

qr0.05=rq(risk~X1m+X2m+X3m,data=data,tau=0.05)

summary.rq(qr0.05,se="iid")$coef

#Tau = 0.25

result2.bisq = AddSignificance(rqgwrresult[[2]],alpha=0.05)

qr0.25=rq(risk~X1m+X2m+X3m,data=data,tau=0.25)

summary.rq(qr0.25,se="iid")$coef

#Tau = 0.50

result3.bisq = AddSignificance(rqgwrresult[[3]],alpha=0.05)

qr0.50=rq(risk~X1m+X2m+X3m,data=data,tau=0.50)

summary.rq(qr0.50,se="iid")$coef
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