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Abstract 
 

Background. Knowing the frequency of infectious diseases in human populations is essential for 
disease surveillance and for monitoring the impact of disease control interventions. The ongoing 
outbreak of coronavirus disease 2019 (COVID-19) illustrates that estimating disease frequency is not 
a simple task. Statistical and mathematical models play an important role in public health decision 
making. Challenges in the formulation of such models often relate to questions on how to deal with 
uncertainty and with heterogeneity (sometimes referred to as diversity or variability) in human 
populations.  

Research questions. The core theme of this thesis project is the estimation of disease frequency in 
heterogeneous populations. This is explored from three angles: (i) How is heterogeneity addressed in 
recent literature about frequency of infectious diseases? (ii) How can statistical models describing 
the early growth of an outbreak take up heterogeneity? (iii) How can considerations about 
heterogeneity be taken up in growth models for the COVID-19 outbreak in Belgium?  

Methods. This project contains a literature review and a data analysis. Two frameworks are used to 
clarify concepts throughout the entire project: one about variability and uncertainty and the other 
about mechanistic and phenomenological modelling approaches. The review starts with a broad 
overview of 15 papers published since August 2019 about infectious diseases in heterogeneous 
populations. The second part of the review is more technical and describes how one 
phenomenological approach, the generalised growth model for the early phase of an outbreak, can 
capture heterogeneity. This approach is then applied in a data analysis concerning the COVID-19 
outbreak in Belgium in 2020.  

Findings. Tropical infectious diseases are prominent in the literature about heterogeneity. 
Heterogeneity is addressed using diverse, often mechanistic, methods. Approaches to define 
relevant subpopulations can be classified as pragmatic, deductive, or inductive. Insight in what makes 
populations heterogeneous for specific infections helps to design interventions, to reach key 
individuals or subgroups, and to estimate the impact of interventions. A generalised growth model 
can accommodate heterogeneity by allowing overdispersion, sub-exponential growth, and different 
growth patterns across population subgroups. In the case of COVID-19 in Belgium, models allowing 
for overdispersion and sub-exponential growth fit the incidence data better than simpler models. 
Growth patterns are similar across subgroups based on age, sex, and province.  

Discussion. Equidispersion and exponential growth are common assumptions for incidence data 

during outbreaks. In the case of COVID-19 in Belgium, these assumptions are not met. Assuming 

exponential growth when, in fact, growth is slower than exponential typically leads to an 

overestimation of epidemic size and an overestimation of the impact of control interventions. 

Models that account for heterogeneity typically contain more parameters than their simpler 

counterparts. However, taking up a few extra parameters can still be relatively straightforward, as 

illustrated in this work. Approaches incorporating heterogeneity also produce results surrounded by 

more uncertainty than simpler methods. This may look unattractive at first sight, but information will 

only be useful for public health if it reflects the true uncertainty and variability that is associated with 

the presence of infectious diseases in a population.  
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1 Introduction 
 

1.1 Estimating the frequency of infectious diseases 
 

“Infectious disease is one of the few genuine adventures left in the world.  

The dragons are all dead and the lance grows rusty in the chimney corner.”  

Hans Zinsser, in Rats, Lice and History (1935) (1). 

Disease frequency is essential information in the field of public health; it is the first pillar of 
epidemiology (2). Especially in vertical health programmes, which focus on one or a few conditions, it 
is important to know how many people have that condition. To be able to properly organise health 
care services, policy makers need to have a good idea of which infrastructure, how many human 
resources, and what amount of diagnostic and treatment materials are required (3). Information 
about disease frequency also plays a role in the development of disease control interventions and in 
the evaluation of their impact. Indeed, disease frequency turns up in diverse public health scenarios 
such as detecting outbreaks, organising patient care, identifying determinants of disease, developing 
interventions, and eliminating diseases in entire populations. 

Measuring disease frequency, even though this is expressed as a simple count, proportion 
(prevalence), or rate (incidence), is not a simple task. To directly measure disease frequency requires 
a representative study population,  clear disease definitions, and accurate diagnostic procedures (2). 
In the field of infectious diseases, it is often so that only some of the people who are exposed to a 
microorganism get infected, and that only some of the infected get ill -after variable periods of time. 
In addition, diagnostic tests are never 100% accurate in real-life practice, and some assays only work 
in people who are already ill. Furthermore, for infectious diseases that are transmitted easily or are 
of short duration, prevalence and incidence figures can change rapidly. Finally, observations in health 
care establishments are often poor indicators of what happens in the larger community, because the 
way people seek care correlates with socioeconomic, cultural, and health system factors.  

Statistical and mathematical modelling is commonly used to estimate disease frequency in a way that 
addresses both uncertainty and variability. The purpose of such models is usually (i) to predict the 
number of people who get infected or ill across populations and over time and (ii) to understand the 
factors that drive the dynamics of an epidemic or endemic disease, i.e. the determinants of disease 
frequency (4). Famous examples of mathematical models that underpinned disease control measures 
are, among many others, those for smallpox in Europe (18th century), plague in India (20th century), 
and measles, influenza, human papillomavirus, and coronavirus (nowadays) (4).  

Modelling involves the translation of information into mathematical equations (4). An essential part 
of this modelling process is to make assumptions about microorganisms, vectors, hosts, and their 
interactions. Examples of things to consider are how and at what speed microorganisms reproduce, 
survive, and cause illness. From the human perspective, there are assumptions about the natural 
evolution of infection and disease, mechanisms of infection transmission, health seeking behaviour 
and access to health care, accuracy of diagnostic procedures, and effectiveness of and adherence to 
interventions. For many infectious diseases, environmental factors also play a role, such as 
temperature, humidity, vegetation, and abundance of mosquitos and other vectors. From an 
epidemiological point of view, the concept of heterogeneity can capture some of these assumptions 
about environment, biology, medicine, and human behaviour. 
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1.2 Heterogeneity 
 

“There is no consensus, there is no homogeneity, there is no truth.”  

Ward Churchill, in Glad Tidings, by Tade Reen (2011) (5) 

The Cambridge online dictionary defines heterogeneity as “the fact of consisting of parts or things 
that are very different from each other” (6). In Wikipedia, this is extended as follows: “A material or 
image that is homogeneous is uniform in composition or character (i.e. color, shape, size, weight, 
height, distribution, texture, language, income, disease, temperature, radioactivity, architectural 
design, etc.); one that is heterogeneous is distinctly nonuniform in one of these qualities.” (7) In some 
scientific domains, other terms that are related to heterogeneity are more commonly used and 
better known. Examples of such related terms are: diversity, variability, variance, interaction, 
modification, inconsistency, transferability, and generalisability. Applied to the context of the present 
thesis, a population of people is heterogeneous if it consists of subgroups that distinctly differ from 
each other in one or more variables that are relevant for the estimation of disease frequency.  

Although it may seem obvious that models to estimate disease frequency should account for 

heterogeneity, this immediately raises a series of questions: which variables are relevant for the 

infectious disease at hand; how are subgroups in a population defined and what is their size; and 

how are the assumptions about heterogeneity translated in mathematical equations and statistical 

models? These questions are the topic of this thesis. 

 

1.3 Perspective 
 

I was trained as a medical doctor at KULeuven University in Belgium (1990-1997) and started clinical 

and epidemiological research while working at the Instituto de Medicina Tropical Alexander von 

Humboldt at the Universidad Peruana Cayetano Heredia in Lima, Peru (2000-2011) in the framework 

of a collaboration programme with the Institute of Tropical Medicine of Antwerp, Belgium. Since 

2012, I have worked for the Department of Public Health at the Institute of Tropical Medicine in 

Antwerp. In 2016, I enrolled in the Master of Statistics programme at UHasselt as a distance learning 

student (specialisation Epidemiology and Public Health Methodology).  

In my professional experience in the domain of infectious disease control, heterogeneity is a 
contested concept. On the one hand, there is a quest for straightforward explanations, universal 
solutions, and standardised interventions. With the first quote about the lance and the dragons, I 
intended to evoke the massive, global, and -according to many- heroic efforts that are ongoing to 
control and eliminate many infectious diseases. Where clear guidelines are needed, significant P-
values, narrow confidence intervals, and reproducible results are pursued. For example, the GRADE 
framework for the formulation of evidence-based guidelines downgrades the quality of evidence if 
inconsistency (unexplained heterogeneity) is present (8). In such an environment, heterogeneity is 
nuisance, an unwelcome guest.  

On the other hand, understanding the reasons behind heterogeneity can lead to breakthroughs  and 
better tailored disease control interventions. But public health is about populations rather than 
individuals; how much diversity and disaggregation is manageable? This question is what I intended 
to evoke with the second (“there is no truth”) quote. Studying heterogeneity opens the doors to 
complexity. How much heterogeneity can we rationally handle without opening a Pandora's box? 
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The original intention of this thesis project was to explore the issue of heterogeneity from a statistics 

perspective, based on a literature review and a concrete application. The pandemic due to severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2, further referred to as coronavirus) reached 

Belgium just when I started to write this thesis. Unprecedented measures were put in place to 

control the spread of the virus. Questions about the number of coronavirus disease 2019 (COVID-19) 

cases and deaths continue to be all over the news. How many people are infected and how many 

become ill? What are the effects of different disease control interventions on the incidence of 

infection and disease? Because these basic epidemiological figures cannot be measured directly, 

public health decisions heavily rely on model-based estimates. Varying assumptions about the 

heterogeneity of the populations in which coronavirus spreads may lead to different estimates of 

infection frequency and hence, different public health recommendations. It seemed logical to take 

the coronavirus outbreak as the application for the thesis project. As a result, this thesis document 

consists of three distinct parts: a brief exploration of the heterogeneity-in-infectious-diseases 

literature, a more technical discussion on the accommodation of heterogeneity in phenomenological 

growth models, and a study of the growth pattern of the coronavirus outbreak in Belgium.  
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2 Research questions  
 

The nature of this thesis project is observational and reflexive. The core theme of heterogeneity in 

the estimation of the frequency of infectious diseases is explored from three different angles. The 

research questions are:  

1. How is heterogeneity addressed in recent literature about frequency of infectious diseases? 

2. How can statistical models describing the early growth of an outbreak take up 

heterogeneity? 

3. How can considerations about heterogeneity be taken up in growth models for the COVID-19 

outbreak in Belgium and what are the implications?  
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3 Methods 

 

3.1 Conceptual frameworks 

 

3.1.1 Variability and uncertainty 
Because heterogeneity is central to this work, I looked for a framework in which heterogeneity is 

defined and distinguished from related concepts. Among several alternatives (9–12), I chose the 

approach by Krupnick et al., which was developed for the US Environmental Protection Agency by 

“Resources for the Future”, a non-profit research institute in Washington (13). Their report is not 

peer-reviewed and it was written in a context of regulatory choices, far away from infectious 

diseases epidemiology. Yes I still chose this framework because it is based on an extensive literature 

review; it addresses both variability and uncertainty; and it contains a public health perspective.  

The structure of the framework by Krupnick et al. is summarised in Figure 3.1. It starts with a 

distinction between variability and uncertainty. Variability is an inherent characteristic of the world; 

it is about how nature is. Variability is an ontological concept. It can be described using frequency 

distributions and is not reducible with additional research. As an example, if the weight of individuals 

in a complete, well-defined population is precisely measured, the variability of the weight (or 

variance of the weight distribution) will not decrease if further research is done. This variability is 

truly present in the population (13). 

Uncertainty is different: it is about our limited understanding of the world around us. It is a 

characteristic of our knowledge, not of the world itself. Uncertainty is an epistemological concept. It 

can be modelled using probability distributions and is reducible with additional research. For 

example, if the weight of a population is estimated through a study in which the weight of a 

subpopulation is measured using an imperfectly calibrated scale, there is uncertainty about the 

weight of the overall population. Further research with better scales and more study participants can 

reduce that uncertainty. It is worth noting that this framework classifies “sampling variability” -as it is 

commonly used in statistics-, under uncertainty and not under variability (13). 

Uncertainty is further subdivided into parameter, model, and decision uncertainty. Parameter 

uncertainty comes from the practical limitations of data. It is about the value of an empirical quantity 

such as the weight of individuals. Continuing with the example described above, the incomplete 

study population corresponds to extrapolation error on Figure 3.1 and the imperfect weighing scale 

corresponds to measurement error. Model uncertainty is not about an empirical quantity anymore, it 

is situated at a higher level. Model uncertainty results from limitations in our ability to make a model 

of a real-world system on the basis of data. It is related to our ignorance about the world, lack of 

imagination, or deliberate choice to understand real-world systems based on simple models. Finally, 

decision uncertainty plays at yet another level, where information (e.g. risk estimates) is translated 

into policy in an environment where societal values and political elements also interfere (13).   

In real life, for example when looking at a given dataset, it is usually not possible to distinguish 

between variability and uncertainty. Nevertheless, Krupnick et al. suggest that keeping these 

different concepts in mind enriches the process of research and evidence-informed decision making 

(13). The way in which I have understood the term heterogeneity throughout this thesis comes close 

to the term variability in the framework. However, other authors and readers may have different 

understandings. For clarity, I will refer back to Figure 3.1 in different sections of this document. 
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Figure 3.1 Conceptual framework about variability and uncertainty 

Figure legend. Figure based on the text by Krupnick et al. 2006 (13) 

3.1.2 Classification of models of transmission dynamics during outbreaks 
Several statistical and mathematical approaches have been proposed to characterise the growth of 

infectious disease outbreaks. In this thesis project, I focus on one approach, i.e. a phenomenological 

generalised growth model. To position this method between alternatives, I refer to the classification 

used in a review paper by Chowell et al., which is summarised in Figure 3.2 (14). The main distinction 

is between phenomenological and mechanistic models.  

Phenomenological models describe the empirical relationship between phenomena without 

immediately trying to explain why certain variables interact the way they do. The assumption is that 

relationships may be more complex than what is captured in an available dataset (15). 

Phenomenological models have an inductive flavour. Although they usually are in line with 

fundamental theory, they are not derived from detailed theory (15). In other words, we do not need 
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a detailed understanding (theory) of how exactly transmission takes place to be able to construct a 

phenomenological model to characterise an outbreak. In the domain of outbreak research, 

phenomenological models are sometimes called “statistical models”.  

Mechanistic models, by contrast, have a deductive flavour. They are derived from an explicit theory 

about underlying causal mechanisms, for example theory about how infectious diseases spread 

through human populations. The assumed causal mechanisms are then translated into mathematical 

formulations (14). In the domain of outbreak research, mechanistic models are sometimes called 

“mathematical models”. The purpose of mechanistic models is to mimic real-life events and to assess 

whether the range of possible input and output behaviours predicted by the model is consistent with 

empirical observations (16). If they fit the empirical data well, mechanistic models are powerful tools, 

because they can immediately show the expected impact of interventions and they can be 

extrapolated to other settings, just by changing the input conditions (16). Mechanistic models are 

further classified into population-based and individual-based models (14). 

 

 

Figure 3.2 Overview of statistical and mathematical models used to capture the transmission 
dynamics of infectious diseases during outbreaks 

Figure legend. Figure based on the review by Chowell et al. (14) and the opinion piece by Baker et al. (16). SIR model: 

susceptible, infectious, recovered model.   

Population-based models start from the assumption that populations are homogeneous, which is 

useful in theory but unrealistic in practice. In metapopulation models, the overall population is 

divided into subgroups based on for example age, place of residence, sociocultural background, or 

behaviour. By disaggregating the population, predefined sources of heterogeneity become part of 
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the model structure. In a metapopulation model, it is the subgroups -and not the overall population- 

that are assumed to be homogeneous. In the structure of a metapopulation model, the subgroups 

are linked to one another with some sort of coupling mechanism, for example a matrix (“who 

acquires infection from whom” or WAIFW matrix) representing the interaction and transmission 

across subgroups. The dimensions of the population structure, i.e. the variables used to disaggregate 

the population, can be viewed as some kind of space in a broad sense, for example demographic, 

social, or behavioural space. In metapopulation models, the subgroups are discrete and identifiable. 

In spatially continuous models, the population is continuously distributed across space (14).  

Whereas population-based models look at a population as one group or a set of linked subgroups, 

individual-based models explicitly consider each individual that is part of a population. Individual-

level models are often analysed as contact network models, where the nodes are the individuals and 

the edges between the nodes are interactions that may lead to disease transmission. Individual-

based models can capture heterogeneity at a very fine scale but require detailed information about 

for example the structure of people’s contact networks, the types of contact that are relevant for 

disease transmission, and the individual-level variation in susceptibility and infectiousness (14).  

 

3.2 Specific methods for research question 1: scoping review 
 

To get a broad overview of which approaches are currently used to address heterogeneity in the 
infectious diseases literature, I did a rapid scoping review. The review methods are described below 
and are in line with the PRISMA guidelines for scoping reviews, although I did not formally register a 
protocol (17).  

Records were eligible if they described studies about the frequency of infectious diseases in human 
populations and explicitly mentioned heterogeneity. The source of references was the MEDLINE 
database of citations for the biomedical literature. Because there were many eligible records and the 
timeframe of this thesis project was limited, I selected the 15 most recently published records. The 
search and selection of records took place in March 2020. 

The search strategy combined four concepts: disease frequency, infectious diseases, statistical 
modelling, and heterogeneity. The exact search syntax for the PubMed interface is given in Annex 
7.1. I ordered the retrieved records from the most recent to the oldest and included the first 15 
eligible records in the present review.  

During the process of data extraction (charting), I copied and pasted text extracts from the included 
papers to a Microsoft Excel datasheet. The data items of interest were: information about the record 
(type and year of publication, journal, authors), setting (infectious disease, country, public health 
perspective), heterogeneity (how introduced/justified, which sources of heterogeneity 
mentioned/evaluated), and statistical methods (which methods, advantages and disadvantages, data 
availability). Where possible, I classified the statistical methods as in Figure 3.2. 

The review results are presented in a narrative synthesis accompanied by tables, organised along the 

following themes: (i) public health perspective (why do the authors of the selected papers consider 

that addressing heterogeneity is important?), (ii) sources of heterogeneity (which variables capture 

relevant heterogeneity?), and (iii) methodological approaches (how is heterogeneity accounted for, 

and what are assumptions and challenges?). Because the objective was to get a broad overview of 

methodological approaches, I did not conduct a formal critical appraisal of the individual records.  
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3.3 Specific methods for research question 2: narrative review 
 

The focus now shifts to one setting, i.e. the early growth of outbreaks and one statistical approach, 

i.e. phenomenological growth models. To get a better understanding of how heterogeneity in human 

populations can be translated into statistical models, I reviewed a small set of purposefully selected 

publications. I started with a few key papers in the field and retrieved additional papers from the 

reference lists. In addition to the set of included papers, I also cited original seminal publications 

where needed. In the process of reading and synthesising the information, I focused on how 

heterogeneity can be ignored or addressed and on what the implications can be.  

 

3.4 Specific methods for research question 3: data analysis 
 

3.4.1 Study design 
This is an observational study concerning the COVID-19 outbreak in Belgium in 2020. The epidemic 

trajectory is characterised using phenomenological growth models. For comparison, some of the 

analyses are also applied to COVID-19 outbreak data from other settings, i.e. the Princess Diamond 

Cruise ship and country-level data from Sweden, Spain, Peru, and Chile.  

3.4.2 Setting  
COVID-19 is an infectious disease caused by SARS-CoV-2, a betacoronavirus. Common symptoms of 

COVID-19 are fever, disorders of smell and taste, cough, and shortness of breath. (18). The virus is 

transmitted from human to human via close contact, infectious droplets, surfaces, and possibly also 

via the faecal-oral route (18).  

In Belgium, local transmission of SARS-CoV-2 was first recognised in the beginning of March (19,20). 

Public health officials linked the start of the outbreak to Belgian travellers returning home from 

southern Europe after the spring holidays and to participants in carnival festivities in the bordering 

regions of Belgium, Germany, and the Netherlands (19–22). The outbreak rapidly spread over the 

national territory (23). Containment measures were gradually introduced. On 10 March, the 

government advised to cancel indoor events for more than 1000 people and recommended all 

companies to allow their personnel to work from home if possible. A few days later, Belgium moved 

towards a lockdown: on 13 March, bars and restaurants had to close and public gatherings for 

sporting, cultural or festive purposes were cancelled. On Monday 16 March, the schools closed. On 

17 March, non-essential shops had to close as well, and non-essential travel was prohibited. On 20 

March, Belgium closed its borders (20,24). The population density in Belgium is 378 people/km² (25). 

While I am writing this document, the pandemic is still ongoing, but it seems that Belgium will be 

among the world’s most affected countries in terms of number of deaths per population (26). For 

this study, I focused on the early growth phase of the outbreak. I used secondary data which I 

obtained on 16 May 2020. Unless explained otherwise, I used the data from 10 March to 29 March 

for model fitting and up to 30 April for graphical display.  

The settings outside Belgium were chosen purposefully as examples of very different settings in 

terms of virus spread, population vulnerability, testing conditions, control measures, and reporting. 

The Diamond Princess is a cruise ship where a large COVID-19 outbreak took place in February: the 

ship was put in quarantine off a port in Japan; and 19% of 3711 people on board got infected (27,28). 

Spain is one of the early and severely hit countries in Europe, where many people may have been 
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infected before formal control measures were put in place (29,30). The Spanish health system got 

overwhelmed and this may have interfered with testing and reporting. Spain has a moderate 

population density (94 people/km²) (25,30). The situation in Sweden is very different: the outbreak 

took off a few days later; there was extensive testing, control measures were less stringent (no 

formal lockdown); and there were less cases and deaths than in Spain (29,30). Sweden has a low 

population density (23 people/km²) (25).  

In Peru and in Chile, the outbreak started about one week later than in Sweden. There are important 

differences between Peru and Chile in terms of cultural and ethnic background, climate conditions, 

socio-economic situation, and health system capacity. The outbreak response was also different: in 

Peru, there is a country-wide lockdown while in Chile, control measures are more localised (29). Both 

countries have a low population density overall (25 people/km² in Peru and 23/km² in Chile), but a 

very high density in the capitals (11000/km² in Lima and 9800/km² in Santiago) (25). Where countries 

are compared, the start of the time window for model fitting was defined in the same way for all 

countries and measures, i.e. the first day of the first three days of monotonic growth. 

3.4.3 Variables 
The variable to be modelled is disease frequency as a function of time. For Belgium, I used three 

measures of disease frequency: the incidence of confirmed COVID-19 cases, hospital admissions for 

COVID-19, and deaths due to COVID-19. Sciensano is the Belgian institute for health responsible for 

the epidemiological follow-up of outbreaks (31). The definitions used by Sciensano are available 

online (32). Of note, in Belgium, admissions and deaths due to COVID-19 combine probable and 

confirmed diagnoses. Confirmed diagnoses are mainly based on molecular testing. Incidence (counts) 

and time (in days) are treated as discrete variables. Three other variables are used to define 

subpopulations within Belgium: province of residence, sex, and age group (as defined by Sciensano). 

For the settings outside Belgium, I only used the incidence of cases and deaths over time. 

3.4.4 Data sources 
The data are publicly available. Data for the main analyses about Belgium were obtained via the 

Sciensano website (33). Data for the Diamond Princess come from the World Health Organization 

situation reports (34). When countries are directly compared, all data (including those for Belgium) 

were taken from the same source (European Centre for Disease Prevention and Control) (35).   

3.4.5 Statistical methods  
A generalised growth model (phenomenological approach) is used to model the incidence of COVID-

19 cases, admissions, and deaths (36). This method is explained and discussed in detail in section 4.2. 

The analysis first focuses on ways to relax the assumptions of equidispersion and exponential 

growth. Second, there is an evaluation of the influence of specific modelling choices (time window 

for model fitting; incidence versus cumulative incidence; and incidence of cases, admissions, or 

deaths) on the characterisation of the growth pattern. Third, I explore whether there are differences 

in the growth pattern of the COVID-19 outbreak between (i) the Belgian population as a whole, (ii) 

different subpopulations within Belgium (defined based on age group, sex, and province of 

residence), and (iii) settings outside Belgium.  

The analyses were done with R software (gamlss, stats4, bbmle, and msm packages); the core code is 

available in annex 7.2. Parameters are estimated in a maximum likelihood framework; and 95% 

confidence intervals are based on standard errors obtained during parameter estimation. Akaike’s 

information criterion (AIC) is used for model comparison. 
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4 Results 
 

4.1 How is heterogeneity addressed in recent literature about infectious diseases?  
 

4.1.1 Overview of included records 
The 15 records retrieved via the PubMed search were original research studies published between 

August 2019 and February 2020. Nine records were published in specific journals about infectious or 

tropical diseases: PLoS Neglected Tropical Diseases (n=3) (37–39), Malaria Journal (n=2) (40,41), 

Parasites and vectors (n=2) (42,43), BMC Infectious Diseases (n=1) (44) and the Journal of the 

Brazilian Society of Tropical Medicine (n=1)  (45). The remaining six records appeared in more general 

medical or science journals: BMC Medicine (46), BMC Public Health (47),  Medicine (Baltimore) (48), 

PLoS ONE (49,50), and Nature Communications (51). The studies were based on information from 

Africa (n=7) (37,38,41,43,44,49,51), South America (n=4) (39,40,45,50), and Asia (n=2) (47,48). The 

two remaining studies either used data from more than one continent (Africa and Asia) or were 

theoretical without localised information (42,46).  

The infectious diseases studied in these records were malaria (n=5) (40,41,49–51), helminth 

infections (n=4) (37,38,42,43), HIV/AIDS (n=3) (44,45,48), leishmaniasis (n=1) (39), and hand foot and 

mouth disease (n=1) (47). One study presented several diseases: severe acute respiratory stress 

syndrome (SARS), plague, and Ebola virus disease (46). Seven of the 15 studies were about infectious 

diseases that are transmitted via insects (mosquitos, sand flies, and black flies) (37,39–41,49–51). 

More than half of the studies (9 out of 15) were set up in an environment in which there is an 

ambition to eliminate the infectious disease, e.g. via vector control or mass preventive 

chemotherapy (37,38,40–43,49–51).  

Taken together, the field of tropical diseases is remarkably present in the recent literature about 

infectious diseases that explicitly mentions heterogeneity. This may be related to the complex 

transmission cycles that are common in this field as well as the enormous disease control and 

elimination efforts that are ongoing. This is illustrated in the following quote by Truscott et al.: 

“As many countries with endemic soil-transmitted helminth (STH) burdens achieve high coverage 

levels of mass drug administration (MDA) to treat school-aged and pre-school-aged children, 

understanding the detailed effects of MDA on the epidemiology of STH infections is desirable in 

formulating future policies for morbidity and/or transmission control. (...) For a given value of 

infection prevalence in a population, parasite transmission intensity could vary considerably 

depending on the level of parasite aggregation within the human host population. Hence, prevalence 

alone may not be a reliable indicator of transmission intensity. (…) The high degree of parasite 

aggregation associated with low prevalence values after multiple rounds of MDA suggest that in the 

‘end game’ of STH control once prevalence is low, different approaches to MDA distribution may be 

desirable. High levels of aggregation suggest that infection may be localized in small hotspots, 

possibly at the household level, or in groups who are consistently non compliant to control. As such, 

novel approaches to identifying, monitoring and treating such hotspots and or non-compliers in order 

to maintain low prevalence or achieve a break in transmission, are required to avoid unnecessary 

treatment of a largely uninfected population.” (43) 
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4.1.2 Public health perspective: why is addressing heterogeneity considered important? 
The study justification was similar in most of the records and had the following structure: “Disease 

distribution (or exposure, transmission, susceptibility, intervention impact) is heterogeneous. 

Capturing this heterogeneity leads to better public health actions”. What these actions are, is 

summarised in Table 4.1. This comes down to choosing the right interventions, reaching the right 

individuals or subgroups, and appropriately estimating the impact of different interventions. 

The concept of heterogeneity is quite prominent in most of the studies: the term “heterogeneity” 

appears in four of the 15 titles (37,42,43,47); the term “spatiotemporal” appears in five titles 

(40,44,45,47,49). The following quote from Cooper et al. is one illustration of how heterogeneity is 

introduced:  

“Heterogeneity shapes infectious disease epidemiology and transmission. Understanding the causes 

and consequences of heterogeneity is important for analysis of infectious disease data and for 

determining target intervention coverage levels for control. A “Pareto rule” has been proposed for 

many infectious disease systems: 80% of infectious disease transmission is concentrated on 20% of 

hosts. Such heterogeneity, often called “super-spreading”, has drawn interest because the efficiency 

of disease control could be dramatically improved if it were possible to identify and target individuals 

who account for most of transmission, who are sometimes called “super-spreaders”, a topic on which 

mathematics and mechanistic models have provided some of the most important insights.” (51) 

Table 4.1 Overview of the type of public health actions that can be informed by studies accounting 
for heterogeneity 

Target subpopulations / Prioritise activities  

Allocate resources / Rationally deploy / Improve programme performance and efficiency 

Improve surveillance / Establish risk maps / Monitor, explore, plan 

Serve (sub) population / Avoid unnecessary treatment of a largely uninfected population 

Make decision-making more relevant / Formulate future policies / Revise control guidelines 

Better understand role of drivers or determinants / Identify hotspots 

Better understand why interventions do not work as predicted 

Design or add more effective interventions  / Predict the impact of control measures 

 

4.1.3 Sources of heterogeneity: which variables capture relevant heterogeneity?  
The variables that were meant to capture heterogeneity in the included studies are listed in Table 

4.2. Some authors worked with relatively general variables that were routinely available, probably 

because that information was collected for other purposes, such as district of residence; population 

density; age, sex, and marital status; and meteorological data. Other authors collected information 

with specific hypotheses about (heterogeneous) disease transmission in mind such as data about 

mobility patterns, shoe wearing, mosquito biting frequency, immunity, and compliance with specific 

disease control interventions.  

Classifying these variables in meaningful categories is not easy because they are often correlated 

among each other, and they correlate with unobserved information as well. Indeed, a general 

variable such as location probably correlates with wealth, natural environment, and disease control 

interventions, among many other known and unknown factors. Also more specific variables such as, 

for example, occupation, can be a proxy for other information, such as social class, ethnic 

background, proximity to forest areas, mobility, immunity, etcetera. Furthermore, simple variables 

such as age and sex can play a role in different aspects of the disease dynamic, such as exposure, 

transmission, and natural evolution of a disease.  
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Table 4.2 Overview of possible sources of heterogeneity mentioned in the included studies 

Category Examples of variables 

Time Year, season, day 

Place of residence Geocoordinates, township – municipality, distance to lake – river – 
forest edge  

Weather, climate Temperature, rainfall, humidity – drought, air pressure, wind speed, 
hours of sunshine – cloud cover, El Niño-related events 

Natural and built 
environment 

Elevation, water bodies (dams, irrigation canals, wetlands, ponds, 
puddles), land cover (cropland, tree cover, shrub land, grass land, urban 
area), biomass above ground, forest canopy height, species richness in 
mammals, soil sand content, human footprint, deforestation, level of 
urbanisation, sanitation conditions at school and in the community, 
infrastructure index, density of tracks and road network 

Household 
environment 

Household floor – wall – roof materials, sanitation conditions, shoe 
wearing, family size, screens in doors and windows 

Demography Sex, age, population density, population movement, mobility patterns 

Socioeconomic and 
cultural factors 

Human development index, ethnic background, education, marital 
status, occupation, human activity patterns, mining, income, poverty 
index, income equality, ownership of household assets, access to 
electricity, access to sanitation 

Human behaviour Shoe wearing, sleeping and wakeup time, compliance with 
interventions, sexual behaviour 

Interventions Mass drug administration, insecticide-treated bed net available in 
household, reported bed net use, indoor residual spraying   

Microorganism and 
vector 

Parasite species, parasite density – aggregation – sexual reproduction, 
vector species, mosquito distribution, mosquito biting rates   

Human biology and 
immunology 

Susceptibility, health index, infectiousness – gametocyte density – 
super-spreaders, duration of infectiousness, immunity – 
immunologically naïve immigrants, asymptomatic human reservoirs 

Other Accuracy of diagnostic procedures and reporting 

 

To deal with complex sets of correlated variables, some authors emphasised that it is important to 

study several factors simultaneously, such as space & time (44,45,47), land use & time (40), 

population density & natural environment (39,40,43), disease control interventions & population 

movement & age (42), and sanitation conditions at home & elsewhere (38). Other research groups 

organised possible sources of heterogeneity in a comprehensive way: they combined variables in 

patterns or scenarios (40), or followed the biotic-abiotic-mobility (BAM) framework to choose 

variables (39). Such strategies imply reflection about how to approximate real-world systems with 

models and data. In the framework by Krupnick et al. (Figure 3.1), these issues (e.g. structural 

choices, simplification, correlation, and incompleteness) fall under model uncertainty (13).    

The spatial scale or temporal resolution at which information was collected, varied from exact 

geocoordinates to large spatial areas, and from daily data to yearly averages. Few records included a 

reflection on what would be an appropriate scale for the purpose of the study (39,46). In the 

framework of Figure 3.1, considerations about system resolution are classified under model 

uncertainty (13).  

Data was usually available at different levels: individual, household, and larger population subgroups. 

These population subgroups were defined in various ways, which I classified as pragmatic (subgroups 
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are municipalities or units of randomisation in cluster-randomised trials, deductive (subgroups are 

ecological units based on theory about disease transmission), or inductive (subgroups are 

transmission hotspots, based on the observation of heterogeneous disease frequency). 

4.1.4 Methodological approaches: how is heterogeneity accommodated?  
Statistical and mathematical models were formulated to explain or predict different types of 

outcome variables, the most frequent of which were count data (in 10 out of 15 included papers). 

The counted phenomena were disease episodes, cases, or mosquitos (39,40,43–47,49–51). The 

remaining outcome variables were disease prevalence (37,38,41–43), infection intensity (43), 

belonging to a hotspot (49), or proportion of transmission via a specific mode (48).  

The models often had a hierarchical (multilevel) structure (n=10) (38,40,41,44,45,47–51). Levels of 

aggregation were households, schools, villages, and municipalities or other administrative levels. 

These levels were usually but not always nested. A Bayesian inference framework was used to 

develop the models in four of the 15 included studies (44,45,47,48). One approach, i.e. ecological 

niche modelling using maximum entropy was described as a type of machine learning (39).  

Spatial heterogeneity was explicitly studied in nine papers, with findings shown on maps (39,40,43–

45,47–50). Most models (n=13) contained sociodemographic, environmental, or intervention-related 

explanatory variables (37–45,47–50). In six studies, time and space were modelled together 

(40,44,45,47,49,51). In two of these studies, time was included as a random effect in a hierarchical 

model (45,51). One study used time series analysis (autoregressive integrated moving average) (40).  

Transmission dynamics and epidemic trajectories were studied in four papers (37,42,43,46). 

Following the classification of Figure 3.2, one study was phenomenological (46) and three were 

mechanistic (37,42,43). The three mechanistic studies were about helminth infections; two were 

stochastic and one deterministic. Two mechanistic models were used to assess the effect of specific 

conditions (mobility, exposure heterogeneity) on the outcome of mass drug administration for 

helminth control; one was individual-based (37) and the other used both individual-based and 

population-based (metapopulation) elements (42). The third study with a mechanistic approach 

focused on the estimation of model parameters at endemic equilibrium (43). 

The issue of overdispersion was raised in five papers (37,42,43,50,51). In three studies, a negative 

binomial distribution (with an aggregation parameter) was used to model worm burden among 

human hosts (37,42,43). In two studies, a zero-inflated negative binomial distribution was used to 

represent malaria episodes  or mosquito bites (50,51). In the study about mosquito biting, the term 

super-spreading was used in relation with overdispersion, and this was explained by means of the 

Pareto fraction (51). Overdispersion in malaria count data was explained by Corder et al. as follows:  

“Statistical modeling of routinely collected malaria surveillance data can be particularly challenging. 

Poisson regression models are commonly used to analyze count-type data in epidemiology, but 

cannot adequately fit overdispersed malaria case distributions that are typically found in endemic 

settings. A variety of alternative models have been used instead, e.g. the negative binomial. However, 

as malaria rates decline, more subjects will remain uninfected over extended periods of time, 

increasing the proportion of zero counts in cohort studies. Zero-inflated statistical models, such as the 

zero-inflated negative binomial, usually provide a better fitting to malaria count data and household-

level malaria vector densities with an excess of zero counts.” (50) 

Several papers discussed challenges in relation with the modelling of heterogeneous phenomena. For 

example, important parameters of mechanistic models vary across subpopulation and over time, 

which raises the question at which level and at which frequency they need to be (re)estimated 
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(42,43). Moreover, some key factors cannot be directly measured or estimated. Hamley et al. 

described this as follows:  

“The phenomenological nature of density-dependent establishment of the parasite in the human host 

is an important limitation of this work. The use of population-level data to simultaneously estimate 

both density dependence and exposure heterogeneity allows the parameters involved to counteract, 

reducing identifiability and diminishing mechanistic interpretation. Since direct estimation of density-

dependent parasite establishment within humans is not feasible (…), data collection on heterogeneity 

in exposure to fly bites will be an important step in better resolving density dependence. This has been 

discussed previously but available data remain limited. Since blackflies have very specific 

environmental requirements, with breeding sites varying in distance to human settlements, the 

estimation of individual-level variation in exposure to bites poses a substantial challenge.” (37) 

Finally, even if it is theoretically possible to estimate the parameters of complex (flexible) 

mathematical models, this is hindered in practice by the limitations in available epidemic data as 

illustrated in the following quote from Chowell et al.:   

“Limited epidemic data limits the complexity of the mathematical models in terms of the number of 

mechanisms and parameters that can be estimated from data. These models often use a 

metapopulation framework to incorporate population heterogeneity by dividing the population into 

socio-demographic groups based on the susceptibility, infectivity, mobility patterns, or other 

individual characteristics related to the transmission dynamics. The individuals in the same group are 

assumed to be homogenous, and the heterogeneity of the population is limited by the number of 

groups. Even when the number of parameters that can be estimated from limited data is small, the 

model must include enough complexity to account for the underlying transmission dynamics.” (46) 

 

4.2 How can statistical models for the early growth of an outbreak capture 

heterogeneity? 
 

4.2.1 Introduction 
The present section contains a more technical discussion on how heterogeneity can be taken up in 

statistical models. After the broad overview of the previous section, the focus now goes to one 

particular case: phenomenological models for the characterisation of the early growth phase of 

disease outbreaks. In this setting, the purpose of statistical modelling is to understand how the 

number of cases grows before coordinated control measures or herd immunity alter the course of 

the outbreak. Early growth models have direct applications in public health: they are used to predict 

pattern, height, and time course of epidemic trajectories during the first generations of infection 

transmission. These phenomenological models can also be used to estimate parameters such as the 

force of infection which feed into mathematical, mechanistic models of disease transmission (14).  

The synthesis below draws from seven publications in which a generalised growth model is used to 

examine different outbreaks (14,36,52–56). The authors work with well-known historical datasets, 

for example concerning plague in Bombay in 1905, influenza in San Francisco in 1918, and HIV/AIDS 

in the US and Japan in the 1980s. They also characterise more recent epidemics such as Zika virus 

disease in Colombia in 2015, and especially Ebola virus disease in West Africa in 2013 to 2016. In five 

of the seven publications, the authors produce simulated data to examine, contrast, and visualise the 

consequences of specific methodological choices (14,36,52,54). The synthesis below is organised 

from a perspective of heterogeneity.  
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4.2.2 Ways to ignore or address heterogeneity 

Equidispersion and overdispersion 

To characterise the early growth phase of an outbreak, we need a model that predicts the number of 

new illness cases (incidence) over time. As a starting point, we use a Poisson approach, in which we 

assume that the incidence is a random variable that follows a Poisson distribution (Box 4.3). This 

growth model has two parameters: the number of cases at the start of the outbreak (C0) and the 

growth rate (r). The number of new illness cases at time t (yt) is a Poisson random variable with mean 

μt. We assume that at the start of an outbreak, C0 is close to zero and nearly the whole population 

can get the illness because there is no immunity yet. We also assume that in the early phase of an 

outbreak, there is exponential growth of the form μt = C0*ert  (4). The counts predicted by this model 

depend on the time but are, apart from the time, independent of each other (conditional 

independence). The parameters C0 an r can be estimated from observed data. The growth rate r is 

related to the basic reproduction number R0 known from classical compartmental models as follows: 

R0 = 1 + r/γ where 1/γ is the mean infectious period (36,57).  

An essential property of a Poisson distribution is equidispersion: at each time point, the variance of 

the incidence yt is assumed to be equal to its mean (variance=mean=μt). In other words, the 

incidence yt is allowed to fluctuate randomly around the mean but yt is also expected to closely 

follow the qualitative behaviour of the mean trend μt. This implies that both the mean and the 

variance of the incidence are a consequence of time and nothing else. Hence, unobserved 

heterogeneity -which would lead to larger variance- is not considered (52).  

The Poisson model is illustrated in Figure 4.1 (panel A), where C0 is set to be 1 and r is set to be 0.2. 

At each point in time, 100 counts are simulated from a Poisson distribution with μt = 1*e0.2*t
. It is clear 

from Figure 4.1 (panel A) that the variability in the simulated counts follows the pattern of the mean.  

 

Figure 4.1 Illustration of the relation between variance and mean in Poisson and negative binomial 
exponential growth models  

Figure legend. At each point in time, 100 counts are simulated from a Poisson model (panel A) and negative binomial 

models (panels B and C) with initial case number C0=1 and growth rate r=0.2. The black dots represent the simulated 

counts. The red line represents the fixed mean count predicted by the Poisson model (μt = 1*e0.2*t). 

In real-life settings, observed data often display more variability than what is predicted by a Poisson 

model. This greater-than-expected variability is called overdispersion and can be viewed as a result of 

unobserved heterogeneity (52). The overdispersion reflects the effects of variables that are not in the 

model as well as other sources of randomness. One way of dealing with overdispersion is to assume 

that at a given time t, μt is not fixed (as in the Poisson approach) but that it comes from a distribution 
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of μt’s. A gamma distribution is often chosen to represent the variability of μt’s due to unknown 

reasons. Averaging over all possible values of μt gives the negative binomial model (Box 4.3) (52).  

The negative binomial model includes three parameters that are to be estimated from the data: the 

same two parameters as in the Poisson model (initial number of cases C0 and growth rate r) and the 

dispersion parameter θ. As explained in Box 4.3, if θ is small, there is considerable overdispersion. If 

θ goes to infinity, the negative binomial model reduces to the Poisson model. Figure 4.1 illustrates 

the negative binomial model with C0=1, r=0.2, and two different values for the dispersion parameter 

θ. In panel B, θ is large (θ=50) and the model comes close to the Poisson model. In panel C, θ is small 

(θ=5) and the variance does not clearly follow the pattern of the mean anymore.  

Exponential and sub-exponential growth 

Exponential models are commonly used to describe growth in diverse domains such as demography, 

biology, and economy. The basis for these growth models was laid by Robert Malthus in the 18th 

century. The underlying idea is that populations tend to grow exponentially as long as the necessary 

resources abound (58). In classical outbreak studies, it is often assumed that the early growth phase 

is exponential, as long as there is no lack of susceptible individuals and before interventions are put 

in place (4,14,57). This assumption is called the mass action principle. It implies that the anticipated 

trajectory of an epidemic relates to the number of susceptible persons in a population, the number 

of infectious individuals, the incubation period, and the infection transmission parameter which is 

constant for a specific infectious disease (59). This mass action principle is related to the law of mass 

action in chemistry, which states that -in a solution with homogeneous mixing- the rate of a chemical 

reaction is directly proportional to the product of the concentrations of the reactants. 

In practice, however, the observed growth of outbreaks can be less than exponential, even in very 

early phases. Sub-exponential growth has been documented for diverse infectious diseases, such as 

HIV/AIDS, Ebola, and hand foot and mouth disease (Figure 4.2) (14,36,52,53). One explanation for 

sub-exponential growth is that when an infection is transmitted via close contact, it does not spread 

smoothly through a population due to constraints in people’s contact structures. The cubic 

polynomial trajectory of the HIV/AIDS epidemic in the United States in the 1980s has been explained 

in this way, i.e. via population mixing mechanisms (53,60). Second, behavioural changes may 

interfere with transmission, for example when people spontaneously reduce the number of contacts 

per unit time when they feel ill. A third explanation may be the heterogeneity in susceptibility and 

infectiousness within populations (36). However, for the majority of infectious disease outbreaks, the 

precise mechanisms underlying sub-exponential growth are poorly understood (14).  

One way of visualising the difference between exponential and sub-exponential growth is by using 

epidemic trees. Figure 4.3 is taken from a review paper about mathematical models to characterize 

early epidemic growth (14). In the exponential tree (Panel A), the number of new cases increases 

smoothly from generation to generation, while the sub-exponential tree (Panel B) seems to falter. 

Sub-exponential growth dynamics can be addressed by using a flexible generalised-growth model 

(Box 4.4) This model comes from the field of demography (61,62) and was introduced in outbreak 

research in 2016 (36). In this model, a tuning parameter p, called the growth scaling or growth 

deceleration parameter allows to reproduce a variety of growth profiles. The parameter p helps to 

quantify departure from the exponential situation: if p equals 1, growth is exponential; values of p 

between 0 and 1 correspond to sub-exponential growth; and if p equals 0, the incidence is constant, 

i.e. the number of new cases is the same at each point in time. In theory, p can also be larger than 1 

(more-than-exponential growth), but because this situation has not been documented in real illness 

outbreaks, it will not be considered further. 
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4.3 Box: growth models using Poisson and negative binomial distributions 

Note: the content of this box is adapted from Ganyani et al. 2020 (52) 

 
The Poisson distribution has one parameter μt which represents both the mean and the variance 
of the distribution (equidispersion). Under a Poisson distribution, the probability that at time t, the 
incidence  is given by:   

 
If we assume exponential growth, then  

 
 
In the context of growth models, using a Poisson approach implies that we assume (i) that there is 
a fixed mean value μt at each time point t and (ii) that variation only occurs because the incidence 
is observed at different time points. There is no room for other sources of variation. However, in 
real-life settings, the variance in observed data is often larger than what is predicted by a Poisson 
model. This phenomenon is called overdispersion.  
 
The assumption of equidispersion can be relaxed if we assume that, at a given time t, μt is not 
fixed but that it comes from a distribution of μt’s. This new  is given by , where  is 

a random error term that represents the combined effects of all processes that are not captured 
by the variables included in the model. If  is chosen to be a white-noise process, the conditional 

independence assumption is preserved. This corresponds to the introduction of a random effect 
into a Poisson distribution, which can then be written as a continuous mixture distribution:  

 
Where: 

 is a Poisson distribution with mean μt  

h describes the variability of the mean μt 
 is a marginal distribution of the counts (continuous mixture of a discrete distribution) 

 
Several choices are possible for  some of which have an analytical solution. For example:   

if  is a gamma distribution,  corresponds to a negative binomial distribution;  

if  is an inverse Gaussian distribution,  is a Poisson-inverse Gaussian distribution; 

if  is a generalised inverse-Gaussian distribution,  is a Sichel distribution.  

 
A common choice for  is a gamma distribution, i.e.  is assumed to be a gamma white-noise 

process. Using a gamma with scale parameter αt and shape parameter βt as a mixing distribution 
results in a negative binomial model with parameters  and .  

 

 

The mean of this negative binomial distribution is μt and the variance is . The negative 

binomial model can be used to model count data with varying degrees of overdispersion. If the 
dispersion parameter θ goes to infinity, the negative binomial model is equivalent to the Poisson 
model because in that case, variance = mean = μt (equidispersion). If the dispersion parameter θ 
takes on low values, the variance is much larger than the mean; in other words, the deterministic 
solution is swamped by noise.  
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Figure 4.2 Two different growth patterns during the 2013-2016 Ebola epidemic in West Africa  

Figure legend. This figure is reproduced from Viboud et al. 2016 (36). The left panel shows exponential growth observed in 

Montserrado, Liberia. The right panel shows sub-exponential growth observed in Western Area Urban, Sierra Leone. The 

blue dots are observed counts; the red fitted curve is based on a generalised growth model with two parameters: the 

growth rate r and the growth scaling factor p. If p is close to 1, the growth pattern is close to exponential (left panel); lower 

values of p correspond to less-than-exponential growth (right panel).  

 

 

Figure 4.3 Schematic epidemic trees illustrating exponential and sub-exponential growth  

Figure legend. This figure is reproduced from Chowell et al. 2016 (14). In both panels, the index case is located in the centre 

and there are 12 generations of disease transmission (concentric ellipses). In the exponential growth scenario, the numbers 

are generated stochastically based on a mean reproduction number of 1.5. In the sub-exponential growth scenario, the 

effective reproduction number decreases from 1.5 to 1 over subsequent generations.   

If we use a Poisson model allowing for sub-exponential growth, we have to estimate three 

parameters from the data: the initial number of cases C0, the growth rate r, and the growth scaling 

parameter p. Figures 4.4 and 4.5 illustrate what happens with the expected mean number of new 

cases over time if these three parameters vary. If we use a negative binomial model, a fourth 

parameter θ needs to be estimated as well.  

A. B. 
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Figure 4.4 Illustration of the effect of varying the three parameters of a Poisson model allowing for 
sub-exponential growth on the expected mean number of new cases over time  

Figure legend. In each panel, one parameters varies and the other two are fixed. Panel A illustrates the effect of the initial 

case number C0, panel B the effect of the growth rate r, and panel C the effect of the growth scaling parameter p. 

 

 

Figure 4.5 Illustration of the effect of varying the three parameters of a Poisson model allowing for 
sub-exponential growth on the expected mean number of new cases over time, on a 
semilogarithmic scale 

Figure legend. In each panel, one of the three parameters varies. Panel A illustrates the effect of the initial case number C0, 

panel B the effect of the growth rate r, and panel C the effect of the growth scaling parameter p. On a semilogarithmic 

scale, straight lines indicate exponential growth and lines with downward curvature indicate sub-exponential growth. 

Populations and sub-populations 

The phenomena of overdispersion and sub-exponential growth described above can be assumed and 

described in a statistical analysis without knowing the underlying reasons. However, as discussed in 

section 4.1, if considerable heterogeneity is observed, understanding where this comes from is of 

public health importance. If data are available for variables that are potentially relevant, the 

population can be disaggregated  and growth models can be fitted for sub-populations. For example, 

an outbreak can be described at the level of a country, its provinces, or districts, which may highlight 

differences both within and between levels (heterogeneity in space). A population can also be 

disaggregated based on personal characteristics such as age, socio-economic conditions, or health-

related behaviour (heterogeneity in person). Finally, one can also imagine heterogeneity in time.  
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4.4 Box: generalised growth model 

Note: the content of this box is adapted from Viboud et al. 2016 and Ganyani et al. 2020 (36,52) 

 
The generalised growth model is based on the differential equation: 
  

  

Where:  
Ct represents the cumulative number of cases at time t (cumulative incidence).   

The derivative of the function can also be written as . It describes the incidence over time.  

The parameter r is the growth rate; r can take positive values. 
The parameter p is the growth scaling parameter; p can take values from 0 to 1. 
 
Interpretation of p:  
- If p = 0, the incidence is constant and the cumulative incidence grows linearly. 
- If p = 0.5, incidence grows linearly and cumulative incidence follows a quadratic polynomial. 
- If p = 2/3: incidence grows quadratically and cumulative incidence follows a cubic polynomial. 
- If p equals 1: growth is exponential (Malthus equation). 
- If p > 1: growth is faster than exponential; this is not considered here.   
- Values of p between 0 and 1 indicate sub-exponential growth. 
 
In practice, outbreak data are observed in discrete time intervals. A discrete approximation is:   

  

Where:  
h denotes the length of the discrete time step between consecutive reporting periods 
C(t+h) - Ct is the number of individuals who become infected during the time interval [t, t+h)  
 
The generalised growth model can be solved via a polynomial equation of degree m:  

 
Where:  

The parameter m is a positive integer, and the growth scaling parameter .  

A is related to the number of cases at the start of the outbreak C0 as follows:  

 
The generalised growth model is formulated as a generalised nonlinear model, which consists of 
three elements:  (i) a probability function of the exponential family; (ii) a nonlinear predictor; and 
(iii) a link function. Two candidate probability functions (Poisson and negative binomial) are 
discussed in Box 4.3. Let yt denote the observed number of individuals who become infected in the 
interval [t, t+h), then  or  where  

is the nonlinear predictor with identity link function. This implies that given Ct and model 
parameters, the incidence counts yt are independent (conditional independence assumption).  
 
For sub-exponential growth dynamics, the relative growth rate decreases with time:  

 
Exponential growth is characterised by constant doubling times. However, when growth dynamics 
are sub-exponential, the doubling time Td increases with time:  

 



 

22 
 

For example, the spread of Ebola in West Africa in 2013 to 2016 appeared exponential at country 

level over short time intervals. However, that turned out to be a composition of smaller epidemics at 

district or county level. These epidemics at a lower level of aggregation had varying growth patterns 

(from sub-exponential to exponential) and occurred one after the other (Figure 4.2) (53,55,63).  

4.2.3  Consequences of ignoring heterogeneity 

Biased parameter estimates and low coverage of the 95% confidence intervals 

Using a Poisson distribution in a generalised growth model when, in fact, there is overdispersion, can 

lead to misleading results. Ganyani et al. used a simulation experiment to evaluate parameter 

estimation procedures in different circumstances (52). Three problems with the Poisson model were 

identified in the presence of overdispersion, regardless of whether the true growth pattern was 

exponential or sub-exponential. First, the Poisson model overestimates the growth rate r and 

underestimates the growth scaling factor p (the point estimates are biased). Second, the sample-to-

sample variability of the parameter estimates is high (sample-to-sample estimates are not well 

concentrated around their average). Third, the coverage, calculated as the proportion of times that 

the 95% confidence interval contains the true value, is low (the 95% confidence intervals are narrow 

but this impression of precision is false). As expected, the negative binomial model gives better 

results in the presence of overdispersion: bias and sample-to-sample variability are smaller and 

coverage is higher. On the other hand, the estimate of the dispersion parameter θ is variable and 

tends to underestimate the degree of dispersion. In absence of overdispersion, the Poisson and 

negative binomial models yield similar results (52). The problems related with overdispersion and 

model misspecification are especially prominent if time series are short (few data points) (52,56).  

Mismatch between predictions and observed data  

Different types of models are being used to predict the trajectory and size of an epidemic, including 

phenomenological (e.g. logistic growth) and mechanistic (e.g. compartmental) models. The classical 

standard versions of these models assume homogeneous mixing and exponential growth during the 

early phase of an epidemic (57). In outbreaks with an exponential growth pattern such as the 1905 

outbreak of bubonic plague in Bombay and the 1918 influenza epidemic in San Francisco, 

compartmental models provide an excellent fit (64,65). On the other hand, if growth is sub-

exponential, classical compartmental models may produce poor forecasts. More elaborated 

mechanistic models such as metapopulation and individual-based models can account for sub-

exponential growth if the sources of heterogeneity are known, identifiable, and quantifiable (14). 

When this is not the case, the generalised growth model is expected to fare better for short-term 

forecasting of epidemic growth (36,52). Indeed, as illustrated in Figure 4.4, epidemic size is highly 

sensitive to small variations in the growth scaling parameter p (36). 

Predictions of the expected number of Ebola cases in West Africa based on models assuming 

exponential growth greatly overestimated final epidemic size (14). Some researchers forecasted 

hundreds of thousands and up to 1.4 million Ebola cases (66). However, according to the US Centres 

of Disease Control, the outbreak ended with approximately 28600 cases and 11325 deaths (67). This 

led to criticism in academic as well as in newspaper publications (14,68,69). For example, one 

journalist described it as “a habit of willfully ignoring the complexities of disease outbreaks, resulting 

in estimates that overdramatize how bad an outbreak could get — estimates that may be skewed by 

politics. They say (…) also overestimate how much vaccine is needed and how beneficial it has been” 

(69). It is important to note that if model assumptions are not met, not only the forecasted case 

numbers are wrong, but also the predicted and reported impact of disease control measures.  
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4.2.4 Consequences of addressing heterogeneity 

Interpretation of generalised growth model parameters 

In a generalised growth model, the interpretation of the parameters changes because they are now 

correlated (Box 4.4, p is in the exponent of the expression). The estimated initial case number C0 and 

the growth rate r do not have an easy interpretation anymore. In addition, the parameter r depends 

on the scaling of time in the equation (53). As a consequence, a generalised growth model does not 

give a direct equivalent to the basic reproduction number R0 which has become a well-known 

parameter in the domain of public health and beyond (36).   

On the other hand, the growth scaling parameter p is an essential parameter of the generalised 

growth model. It helps to assess whether the assumption of exponential growth is appropriate. This 

information is important for the development of further disease transmission models, whether they 

are phenomenological or mechanistic (54). Moreover, the parameter p by itself can be interpreted as 

a signature feature of the growth kinetics of an outbreak: it helps to understand the transmission 

dynamics of an infectious disease and may shed light on the type and intensity of interventions that 

are needed (36,53). For example, the parameter p could be used to assess the risk of observing a 

major outbreak: a value close to 1 indicates a high threat level. 

In the Ebola outbreak in West Africa in 2013 to 2016, there was a clear correlation between the 

estimated parameter p before the epidemic peak and the observed epidemic size later on. For 24 

subnational outbreaks in the West African epidemic, Spearman’s rank correlation coefficient for the 

correlation between the parameter p estimated three weeks before the peak and the final observed 

epidemic size was 0.67 (95% confidence interval 0.33-0.87) (53). It was also possible -by defining a 

negative binomial regression model- to predict the epidemic size of other Ebola outbreaks (in DRC in 

1976 and in Uganda in 2000) based on the parameter p (53).   

Identification of growth patterns across contexts 

Fitting growth models for relevant subgroups of a population (e.g. at fine spatial scales) can lead to 

insights that cannot be obtained via the study of a larger population  (55). Such insights could be 

used to target control measures to areas with close-to-exponential growth. Fine-scale information is 

also immediately useful if response decisions are taken at sub-national level (53,55,63). Such an 

approach can also be used to assess shifts in epidemic growth patterns at lower levels. In this way, 

the characterisation of growth patterns across contexts (in terms of space, person, and time) can 

improve the reliability of forecasts and the assessment interventions (36). On the other hand, 

systematically characterising spatial (and other) heterogeneity increases complexity, which, in times 

of an emergency, may not be what politicians and the general public want to hear (69). 

 

4.3 Modelling early growth of COVID-19 in Belgium with considerations about 

heterogeneity 
 

4.3.1 Introduction 
The considerations about heterogeneity in phenomenological models describing the early growth of 

epidemics that were discussed in the previous section are now applied to the COVID-19 epidemic 

using publicly available incidence data. The specific research questions in this section are:  

- Are the COVID-19 incidence data for Belgium compatible with equidispersion or overdispersion? 

- Is the early growth pattern exponential or sub-exponential?    
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- Does the time window on which the model is based influence key parameter estimates?  

- Do models based on incidence versus cumulative incidence counts lead to similar conclusions? 

- Do different measures of disease frequency (incidence of COVID-19 cases, hospital admissions, or 

deaths) lead to similar parameter estimates? 

- Does an analysis of the data at provincial level lead to similar parameter estimates?  

- Does an analysis in subgroups based on age and sex affect the parameter estimates?  

- Do data from other countries lead to similar conclusions regarding overdispersion and sub-

exponential growth?  

4.3.2 Equidispersion or overdispersion 
One consideration in the statistical analysis is the choice of a probability distribution. In the 

conceptual framework by Krupnick et al. (Figure 3.1), this consideration is classified under model 

uncertainty (13). As this project is about modelling count data (incidence of admissions), I consider 

the following probability distributions as candidates: a Poisson distribution with two parameters 

(initial case number C0 and growth rate r) versus more flexible distributions with three parameters 

(initial case number C0,  growth rate r, and dispersion parameter θ) such as the negative binomial or 

the Poisson inverse Gaussian distribution.  

The incidence of hospital admissions in Belgium was approximated using Poisson, negative binomial, 

and Poisson inverse Gaussian distributions (Table 4.5). The AIC values of the more flexible models are 

clearly better than that of the simpler Poisson model, suggesting that there is considerable 

overdispersion. The low point estimates of the dispersion parameter θ lead to the same conclusion, 

because θ is parameterised such that lower values of θ indicate larger deviations from a Poisson 

process. Overdispersion can be interpreted as unobserved heterogeneity, i.e. there is more variability 

in the data than what can be explained by a simple model including time and no other covariates.   

Table 4.5 Comparison of Poisson, negative binomial, and Poisson inverse Gaussian distributions to 
model hospital admissions in Belgium: parameter estimates and Akaike’s information criterion 

 Poisson Negative binomial Poisson Inverse Gaussian 

C0 [95% CI] 44 [41-48] 24 [12-36] 20 [10-29] 

r [95% CI] 0.150 [0.145- 0.156] 0.204 [0.156- 0.251] 0.223 [0.179- 0.266] 

θ [95% CI] assumed ∞ 3.8 [1.8-8.2] 3.3 [1.3-8.1] 

AIC 549 240 245 
AIC: Akaike’s information criterion; CI: confidence interval; C0: initial number of cases; r: growth rate; θ: dispersion 

parameter. The time window for model fitting is 20 days (10 to 29 March). 

Because the negative binomial model gives the best AIC values, I used this as the standard approach 

for the remainder of the results section. However, to illustrate the impact of this decision, I repeated 

key analyses using the alternative approach (Poisson model) and present the results as 

supplementary material. Expected consequences of the choice for the negative binomial model are 

(i) wider confidence intervals (Table 4.5), and (ii) the possibility of computational difficulties due to 

the extra parameter θ that has to be estimated from limited data points. Of note, the decision on the 

probability distribution does not only affect the confidence intervals; it also leads to different 

estimates of parameters C0 and r. This is illustrated in Figure 4.6, where negative binomial and 

Poisson models lead to different fitted curves.  
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Figure 4.6 Incidence of hospital admissions in Belgium and comparison of Poisson and negative 
binomial model approximations (equidispersion versus overdispersion) 

Figure legend. The Poisson and negative binomial model approaches both assume exponential growth. The Poisson model 

(red dotted line) also assumes equidispersion. The negative binomial model (red dashed line) allows for overdispersion. 

Based on Akaike’s information criterion, the negative binomial model fits the data better than the Poisson model. The black 

solid vertical line indicates the lockdown date (16 March). The dots are the observed admission counts; those filled in black 

indicate the time window used for model fitting (10 to 29 March). Panel A: original scale. Panel B: semi-logarithmic scale. 

4.3.3 Exponential or sub-exponential growth 
Another consideration is whether it is appropriate to assume that the incidence data follow an 

exponential growth pattern. In the framework of Krupnick et al., such a consideration is classified 

under simplification and is viewed as a type of model uncertainty (13). The assumption of exponential 

growth can be relaxed through the formulation of a generalised growth model that incorporates a 

growth scaling parameter (Box 4.4). This growth scaling parameter p ranges from 0 to 1 and allows 

for less-than-exponential growth: p=0 indicates that the incidence count does not change over time; 

p=0.5 is equivalent to linearly growing counts; and p=1 is equivalent to exponentially growing counts.  

The incidence of hospital admissions in Belgium was approximated using negative binomial models 

with and without a growth scaling parameter. The findings are summarised in Table 4.6 and Figure 

4.7. The model allowing for sub-exponential growth appears to be the best choice because the 

growth scaling parameter p is smaller than 1 (confidence interval does not include 1). Moreover, 

despite the extra parameter p, this more complex model has a better AIC value (Table 4.6). The point 

estimate of p (0.59) indicates a growth pattern that lies between linear and exponential growth. On a 

semi-logarithmic scale, this results in a line with downward curvature (Figure 4.7). These findings 

indicate that the assumption of homogeneous mixing leading to exponential growth is unlikely. 

The approaches with and without growth scaling parameter p lead to different estimates of the 

growth rate r and the dispersion parameter θ. The point estimate of the growth rate r is higher in the 

model allowing for sub-exponential growth (4.120) than in the model assuming exponential growth 

(0.240). This can be interpreted as follows. In the scenario of sub-exponential growth, the outbreak 

has, in the early phase, the potential to grow very fast, but due to factors such as inhomogeneous 

population mixing and reactive behaviour changes (reflected in the exponent p smaller than 1), the 

effective growth rapidly decays. This decay is illustrated by the downward curvature of the blue 

dashed line in Figure 4.7. The point estimate for the dispersion parameter θ is also higher in the 
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model that allows sub-exponential growth (43.7) than in the exponential model (3.8). The sub-

exponential model comes closer to the Poisson situation (as higher values of θ correspond to less 

overdispersion as illustrated in Figure 4.1). In other words, a part of the overdispersion described 

before was due to model misspecification and can be reduced by allowing sub-exponential growth.  

Table 4.6 Comparison of a negative binomial model with and without growth scaling parameter p: 
parameter estimates and Akaike’s information criterion 

 
Negative binomial model 

 without growth scaling parameter  
(assuming exponential growth) 

Negative binomial model  
with growth scaling parameter  

(allowing for sub-exponential growth)  

C0 [95% CI] 24 [12-36] 0* 

r [95% CI] 0.204 [0.156-0.251] 4.120 [3.652-4.649] 

θ [95% CI] 3.8 [1.8-8.2] 43.7 [5.3-82.1] 

p [95% CI] assumed 1 0.59 [0.57-0.61] 

AIC 240 194 
AIC: Akaike’s information criterion; CI: confidence interval; C0: initial number of cases; p: growth scaling parameter; r: 

growth rate; θ: dispersion parameter. The time window for model fitting is 20 days (10 to 29 March). *The 95% confidence 

interval is not given as computation is not straightforward anymore (C0 indirectly parameterised). The interpretation of the 

parameters C0 and r is not the same in the two approaches: the estimates in the right column come from an expression 

with nonlinearity in the parameters (p is in the exponent of the expression), hence, the parameters are correlated. 

 

 

Figure 4.7 Incidence of hospital admissions in Belgium and comparison of negative binomial 
models with and without a growth scaling parameter (exponential versus sub-exponential growth) 

Figure legend. Two negative binomial models are compared. The red dashed line is based on a model assuming exponential 

growth, which is equivalent to fixing the growth scaling parameter p to 1. On a semi-logarithmic scale, exponential growth 

results in a straight line. The blue dashed line is based on a model allowing for sub-exponential growth, where the growth 

scaling parameter p is estimated from the data. The point estimate for p is 0.59 (95% confidence interval: 0.57 - 0.61). The 

sub-exponential model provides the best fit to the data. On a semi-logarithmic scale, sub-exponential growth results in a 

line with downward curvature. The black solid vertical line indicates the lockdown date (16 March). The dots are the 

observed admission counts; those filled in black indicate the time window used for model fitting (10 to 29 March).  
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Because the data are in line with a pattern of sub-exponential growth, I used the generalised growth 

model with a growth scaling parameter p as the standard approach for the remainder of the results 

section. To illustrate how this decision affects the findings,  I repeated key analyses under the 

alternative assumption of exponential growth and summarise them in the supplementary material. 

The decision to continue with the generalised growth model has several implications: (i) there is yet 

another parameter (p) to estimate from the data; (ii) problems with parameter identification may 

arise if there are various local minima; and (iii) the interpretation of the parameters C0 and r is not 

straightforward anymore because the different parameters are now correlated (nonlinearity in 

parameters: p appears in the exponent of expression Y). Therefore, from now onwards, the focus will 

be on characterising the early growth pattern of the incidence data by estimating the growth scaling 

parameter p, with less emphasis on the parameters C0 and r.  

4.3.4 Variability in time 
In this project, I try to characterise the pattern of the early ascending phase of the outbreak. The 

data used to estimate the model parameters should therefore represent the beginning of the 

outbreak, before formal interventions change its course. On the other hand, a sufficient amount of 

data points is needed to fit models with reasonable precision. To model hospital admissions, I took 

10 to 29 March as the basic time window. In this subsection, I assess if different choices would lead 

to different findings. In the framework by Krupnick et al., this can be viewed as a consideration of 

variability, i.e. the growth pattern may really change over time (true heterogeneity). There may also 

be a component of parameter uncertainty (and in particular extrapolation errors) if the way cases 

and admissions are diagnosed, registered, and reported changes over time (13).  

In Belgium, the first COVID-19 cases started to appear on 1 March 2020, but these people probably 

contracted the infection elsewhere as many of them had travelled in the days before symptom onset 

(19–22). Regarding hospital admissions, from 10 to 14 March, there is data available from 

newspapers and other situation reports. From 15 March onwards, systematically collected admission 

data is available via Sciensano (33). Decisions about control measures were taken in the week of 9 to 

15 March, and key elements of the lockdown were in place by Monday 16 March (20,24). The 

lockdown was expected to have a clear impact on the incidence of hospital admissions by the end of 

March, taking into account the incubation time (average of five days between exposure and 

symptom onset) and the additional time lag between symptom onset and hospital admission. 

Changing the length and the starting day of the time window used to estimate the model parameters 

does not affect the finding of sub-exponential growth: the growth scaling parameter p is always 

lower than 1 (Figure 4.8). Extending the time window to 25 days (Figure 4.8, panel C) results in a 

slightly lower point estimate of p (0.57) and a slightly narrower 95% confidence interval (0.56-0.60). 

Shifting the starting day of the time window has a larger impact. Taking 18 March as a starting day 

(Figure 4.8, panel F) gives a low estimate of the growth scaling parameter p (0.35; 95% confidence 

interval: 0.24-0.53). This last scenario seems to capture a different phase of the outbreak, where 

growth deviates even further from the exponential pattern.  

4.3.5 Incidence or cumulative incidence 
Model approximations for the ascending phase of an outbreak can be fitted using incidence or 

cumulative incidence data. As illustrated in Figure 4.9, the curve of the observed cumulative 

incidence counts (panel B) is smoother than that of the incidence counts (panel A). This is also 

reflected in the dispersion parameter θ: there is far less overdispersion with the cumulative 

incidence (high estimate of θ: 167.6) than with the incidence (low estimate of θ: 43.7).  
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Figure 4.8 Incidence of hospital admissions in Belgium: influence of time window on fitted curves 
using a negative binomial model with a growth scaling parameter 

Figure legend. The dots represent the observed admission counts and those filled in black indicate the time window used 

for model fitting. In panels A to C, the length of the time window varies. In panels D to F, the starting day of the time 

window varies. The models indicate sub-exponential growth regardless of the time window. The black solid vertical line 

indicates the lockdown date (16 March). 

Because the cumulative incidence somehow contains variability (e.g. noise in the data) that is carried 

forward from previous moments, the sequential measurement error is not independent. This would 

be problematic if model parameters were estimated via a least squares approach (68). However, in 

this study, maximum likelihood estimation was used, which allows for heteroscedasticity. As shown 

in Figure 4.9, modelling incidence or cumulative incidence of admissions leads to similar point 

estimates for the growth scaling parameter p (0.59 versus 0.60).  

Although the authors of the first publications on generalised growth models for outbreaks used 

cumulative incidence data (14,36), we chose to fit the models based on incidence data. This is a 

decision that concerns the way in which an empirical quantity is measured, which can be classified 

under extrapolation errors, a type of parameter uncertainty in the framework by Krupnick et al. 

(Figure 3.1) (13).  
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Figure 4.9 Incidence and cumulative incidence of hospital admissions in Belgium and fitted curves 
using a negative binomial model with a growth scaling parameter 

Figure legend. The dots represent the observed incidence counts (panel A) and cumulative incidence counts (panel B). The 

observed cumulative incidence (panel B) appears smoother than the incidence (panel A). The two approaches lead to 

similar estimates of the growth scaling parameter p. The black solid vertical line indicates the lockdown date (16 March). 

The dots filled in black indicate the time window used for model fitting (10 to 29 March). 

4.3.6 Incidence of registered cases, hospital admissions, or deaths 
In the Sciensano database, there are three measures of epidemic growth: the incidence of registered 

COVID-19 cases, hospital admissions, and deaths. None of these measures is perfect. The number of 

registered cases per day depended on the availability and accuracy of diagnostic tests, health seeking 

behaviour, testing processes in the health (and care) sector, and accuracy of the reporting, all of 

which changed over time (20,23,33). The incidence of hospital admissions could be considered a 

more stable measure than the case incidence, because -at least in Belgium- the admissions depended 

less on patient preferences and testing algorithms (nearly all admitted patients with COVID-19 

suspicion were tested). On the other hand, many COVID-19 patients living in homes for the elderly 

were never referred to a hospital, so they are underrepresented in the admission data. Finally, the 

incidence of deceased people may represent the severe subcomponent of the outbreak but does not 

necessarily reflect the spread of the virus in the whole population. In addition, the case definition of 

COVID-19-related death includes both confirmed and unconfirmed cases (32). The choice for one of 

the three measures implies considerations of parameter uncertainty (which measure is less prone to 

error) and of decision uncertainty (which measure reflects what is needed for policy; Figure 3.1) (13).  

The impact of the measure choice on the characterisation of the growth pattern is shown in Figure 

4.10. The three measures all lead to the conclusion of sub-exponential growth, but there are 

differences as well. First, although the point estimate of the growth scaling parameter p for the cases 

is similar to that of the admissions, the confidence interval is considerably wider, suggesting more 

uncertainty or variability for the cases. Second, using the incidence of deaths as a measure leads to a 

higher value of p (0.77) compared to the incidence of cases (0.60) or admissions (0.59). In other 

words, the deviation from exponential growth is more pronounced for the admissions than for the 

deaths.  
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Figure 4.10 Incidence of registered cases, hospital admissions, and deaths in Belgium with fitted 
curves from a negative binomial model approximation with a growth scaling parameter 

Figure legend. The black solid vertical line indicates the lockdown date (16 March). The dots represent the observed 

incidence counts; the dots in black were used to fit the models (time window from 10 to 29 March). 

4.3.7 Variability across provinces 
The next question is whether the growth patterns per province resemble that of the aggregated 

national level. This is can be viewed as a matter of variability (spatial heterogeneity) and of system 

resolution (classified under model uncertainty in Figure 3.1) (13).  

The estimates of the growth scaling parameter p for the 10 Belgian provinces and for the capital 

Brussels are summarised in Figure 4.11. The estimate at Belgian level is included in the figure for 

comparison. These estimates are based on the incidence of hospital admissions from 15 to 29 March. 

The province of Hainaut has the highest estimate for p and the confidence interval includes 1 

(p=0.84; 95% confidence interval: 0.66-1.07). Hence, the growth pattern in Hainaut cannot be 

significantly distinguished from exponential growth. In all other provinces, the growth pattern is sub-

exponential. The province with the lowest p value is Brabant wallon, but the confidence interval is 

very wide (p=0.37; 95% confidence interval: 0.14-0.98). Taken together, apart from Hainaut, there 

are no clear differences in growth patterns across provinces or between provincial and national level. 

In addition, there is no clear correlation between the growth scaling parameter p and outbreak size 

(as of 16 May 2020) per province: Spearman's rank correlation coefficient ρ is 0.42 (P-value 0.20).  

4.3.8 Variability according to age and sex 
Within one large population, there may be subpopulations displaying different patterns of epidemic 

growth. Indeed, characteristics of persons are yet another possible source of variability or true 

heterogeneity (Figure 3.1) (13). The Sciensano database contains information about age and sex for 

the incidence of registered cases and for the incidence of deaths (but not for the admissions).  

The findings according to sex are summarised in Table 4.7. When the incidence of registered cases is 

used to fit the models, the growth pattern is not well defined: for men, the confidence interval for 

the growth scaling parameter p is very wide; for women, the confidence interval could not be 

determined using the methods described in this project. When the incidence of deaths is used to fit 

the models, the point estimate of p is somewhat higher in women (0.80) than in men (0.74), but the 

confidence intervals overlap considerably.  
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Figure 4.11 Point estimates and 95% confidence intervals for the growth scaling parameter p per 
province in Belgium 

Figure legend. Negative binomial models allowing for sub-exponential growth were fitted using the incidence of admissions 

in each province and in the capital Brussels. The values at national level are also given for comparison. The time window for 

model fitting was from 15 to 29 March (admission data are not available per province before 15 March).  

Table 4.7 Comparison of the epidemic growth patterns in Belgian men and women using models 
based on incidence of cases and incidence of deaths 

 Men, p [95% CI] Women, p [95% CI] 

Registered cases 0.60 [0.41 - 0.87] 0.32* 

Deaths 0.74 [0.64 - 0.85] 0.80 [0.67 - 0.96] 
CI: confidence interval; p: growth scaling parameter. The time window for model fitting is 20 days (10 to 29 March). *The 

95% confidence interval is not given because of computational difficulties. The estimations are based on a generalised 

growth model using a negative binomial probability distribution.   

With regard to age, the findings for registered cases and deaths are summarised in Figure 4.12. As in 

previous comparisons, confidence intervals are wider if the  growth parameter p is estimated using 

cases compared to deaths, particularly for younger age categories. As illustrated in Figure 4.12, there 

is no clear trend in growth pattern according to age. Although it is clear from the clinical literature 

that the case fatality rate of COVID-19 increases with age (70), the pattern of epidemic growth does 

not appear to depend on age alone.  
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Figure 4.12 Point estimates and 95% confidence intervals for the growth scaling parameter p per 
age category, calculated for the incidence of registered cases and deaths 

Figure legend. A negative binomial model allowing for sub-exponential growth was fitted for each age category. The time 

window used for model fitting was from 10 to 29 March. The growth scaling parameter p was estimated in models 

approximating the incidence of registered cases (panel A) and deaths (panel B). Cases and deaths are reported in Belgium 

using different age categorisations.  

4.3.9 Comparison across countries 
In this last subsection, I explore whether incidence data from diverse settings outside Belgium lead to 

similar conclusions in terms of overdispersion and sub-exponential growth. This can be viewed as 

another dimension of variability (true heterogeneity); as extrapolation errors (a type of parameter 

uncertainty or heterogeneity due to methods); or both (Figure 3.1) (13).  

The findings regarding the issue of overdispersion are summarised in Table 4.8. As expected, the 95% 

confidence intervals obtained with the Poisson model are narrower than those obtained with the 

negative binomial model. However, the negative binomial distribution results in a better fit than the 

Poisson distribution in nearly all comparisons, across settings and measures (incidence of registered 

cases or deaths). The only exception is the model for the incidence of deaths in Chile, where the AIC 

value from the Poisson model is better than that from the negative binomial model. In this setting, 

the two models give nearly the same point estimate and 95% confidence interval for the growth 

scaling parameter p. The difference in AIC is 2, which corresponds to the penalisation for the extra 

parameter (dispersion parameter θ) in the negative binomial model. Taken together, assuming 

overdispersion appears to be the best option.  

Regarding the growth pattern, two settings are compatible with exponential growth: the incidence of 

cases at the Diamond Princess cruise ship and the cases in Belgium (Table 4.8 and Figure 4.13). All 

other settings indicate sub-exponential growth (Table 4.8 and Figure 4.14). For the incidence of 

cases, Belgium is the country with the highest point estimate for the growth scaling parameter p 

(0.88; closest to exponential growth) and Sweden has the lowest estimate (0.50). For the incidence of 

deaths, Belgium has the highest estimate for p (0.77) and Chile the lowest (0.19) (Figure 4.14). It is 

important to bear in mind that in this subsection, the data for Belgium come from the European 

Centre for Disease Prevention and Control (instead of Sciensano in previous subsections) and the 

time window for model fitting starts the first day of three consecutive days of monotonic growth 
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(instead of 10 March in previous subsections). For the incidence of cases, this leads to a higher point 

estimate of the growth scaling parameter p here (0.88 in Table 4.8) than before (0.60 in Figure 4.10). 

For the incidence of deaths, the estimates are similar (0.77 in Table 4.8 and 0.77 in Figure 4.10).  

Table 4.8 Comparison of Akaike’s information criterion and growth scaling parameter p using 
Poisson and negative distributions for the incidence of cases and deaths in different countries 

 Poisson 
AIC 

Poisson 
p [95% CI] 

Negative binomial  
AIC 

Negative binomial 
p [95% CI] 

A. Cases     

Diamond Princess 356 1.00* 152 0.92 [0.52 -  1.64] 

Belgium 713 0.93 [0.92 - 0.94] 277 0.88 [0.74 - 1.04] 

Spain 680 0.81 [0.80 - 0.82] 275 0.86 [0.83 - 0.89] 

Sweden 536 0.49 [0.47 - 0.51] 250 0.50 [0.44 - 0.57] 

Peru 614 0.68 [0.61 - 0.76] 223 0.63 [0.52 - 0.77] 

Chile 318 0.66 [0.64 - 0 .69] 231 0.70 [0.64 - 0.76] 

B. Deaths     

Belgium 328 0.79 [0.72 - 0.87] 189 0.77 [0.60 - 0.99] 

Spain 459 0.71 [0.69 - 0.73] 233 0.73 [0.62 - 0.86] 

Sweden 213 0.62 [0.54 - 0.73] 163 0.56 [0.45 - 0.70] 

Peru 161 0.45 [0.35 - 0.57] 130 0.45 [0.29 - 0.69] 

Chile 98 0.19 [0.08 - 0.47] 100 0.19 [0.08 - 0.48] 
CI: confidence interval; p: growth scaling parameter. For the Diamond Princess setting, all available data are used for model 

fitting. For the country data, the time window for model fitting is 25 days for the incidence of cases and 20 days for the 

incidence of deaths. The starting day of the time windows is chosen per indicator and per country: it is the first day of the 

first series of three days of monotonic growth. *The 95% confidence interval is not given because of computational 

difficulties. The estimations are based on a generalised growth model using a Poisson or a negative binomial probability 

distribution.   

 

Figure 4.13 Incidence of cases on board of the Diamond Princess cruise ship and fitted curve based 
on a negative binomial model with a growth scaling parameter p 

Figure legend. All available data (a series of 15 days) were used for model fitting. The growth pattern is close to exponential.  
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Figure 4.14 Incidence of deaths and estimation of growth scaling parameter p in different countries 

Figure legend. Negative binomial models with a growth scaling parameter p were used to approximate the incidence of 

deaths in various countries in Europe (Panels A to C) and Latin America (Panels D and E). In each country, day 0 is defined as 

the first day of the first three days of monotonic growth in the incidence of deaths. The dots represent the observed 

incidence of deaths; the dots filled in black are the data points that were used to fit the models.  
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5 Discussion 

 

5.1 Main findings 
 

Heterogeneity is addressed in the recent literature on the epidemiology of infectious diseases using 

diverse methodological approaches. Usually, there are attempts to pin down the variables that 

underly population heterogeneity (mechanistic). Sometimes, statistical techniques just allow the 

heterogeneity to be there (phenomenological). Approaches to define subpopulations are pragmatic 

(working with data at hand), deductive (based on theory about transmission and pathogenesis), or 

inductive (data-driven disaggregation of populations). Insight in what makes populations 

heterogeneous for specific infections helps to design interventions, reach key individuals or 

subgroups, and properly estimate the impact of interventions. 

In the case of COVID-19, I used a phenomenological generalised growth model to characterise the 

early phase of the outbreak and explored three ways to account for heterogeneity. First, there was 

overdispersion in the incidence data in nearly all the analyses, regardless of the level (province, 

Belgium, other countries), incidence measure (cases, admissions, deaths), and time window for 

model fitting. Second, the growth pattern was sub-exponential in most of the analyses, and the 

deviation from exponential growth varied depending on incidence measure and the starting date of 

the time widow. Third, growth patterns were similar across subgroups in Belgium defined based on 

age, sex, and province of residence. Repeating the analyses with data from other countries and 

comparing the findings revealed more variation in early growth patterns.  

Accounting for overdispersion and sub-exponential growth in the model structure has a marked 

influence on the expected course of the COVID-19 outbreak: the number of expected cases and 

deaths is smaller and the uncertainty is larger in comparison with simpler models.  

 

5.2 Limitations 
 

The findings of this work have to be seen in light of some limitations. First, the study of the early 

growth of COVID-19 in Belgium is limited by the availability of data. I worked with variables included 

in public datasets. In other words, I took the pragmatic approach which I criticise in other parts of 

this document. I also compared growth patterns across countries as an exercise, without a thorough 

discussion on differences in context, case definitions, and data collection. This study did not include a 

formal validation strategy, apart from repeating key analyses for different countries and visualising 

expected together with observed epidemic trajectories on the graphs. 

Second, the COVID-19 outbreak is ongoing and the sheer amount of information about it is daunting. 

Papers are being published at an unprecedented rate. As Nature Index put it: “COVID-19 is not just a 

global pandemic but also a research publishing phenomenon” (71). On 11 June 2020, about six 

months after the discovery of the virus, a PubMed search with “COVID-19” as a search term retrieved 

21275 records (not including papers on preprint platforms). I most likely missed research papers 

relevant for the discussion of the COVID-19-related findings, as many came out while I was trying to 

round up the writing. Moreover, the thesis project grew somewhat organically from theoretical 

considerations into a practical exercise. This report is, therefore, inevitably incomplete.  
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Third, I proposed a broad framework to reflect about variability and uncertainty (Figure 3.1) but did 

not explore all its dimensions in this project. For example, I did not discuss the following elements of 

parameter uncertainty: unpredictability, conflicting data, and misclassification (viewed in the 

framework as one specific type of extrapolation error). The latter element could open a line of 

discussion by itself, i.e. about the accuracy of diagnostic procedures and case definitions of COVID-19 

and differences in time-dependent misclassification across countries (72). I also disregarded decision 

uncertainty. An example of such a decision in the case of COVID-19 in Belgium is the emphasis that 

was put on hospital and intensive care unit admissions as a measure of disease frequency relevant 

for policy. Now, a few months later, some people argue post hoc that a focus on the number of cases 

in the community or in specific risk groups as a measure of disease frequency (instead of hospital 

admissions) could have led to different disease control interventions and a different outcome.  

Fourth, I started this thesis project from the impression that in many epidemiological studies, 

heterogeneity is insufficiently accounted for. Although I set out to explore -from a statistical 

perspective- how heterogeneity can be addressed, my personal view on this may have influenced the 

way in which I approached the literature and presented this report.  

 

5.3 Interpretation in the context of the COVID-19 pandemic 
 

COVID-19 modelling studies play a prominent role in decision making. Many modellers used 

mechanistic approaches and estimated the effects of disease control measures by comparing the 

observed situation with a hypothetical counterfactual scenario (without control interventions) (72–

76). In the context of this thesis, it is interesting to see how the modellers imagined these 

counterfactual scenarios. Some assumed that without centrally organised disease control 

interventions, the effective reproduction number Rt would remain constant, which is equivalent to 

assuming exponential growth (72,76). Others expressed Rt as a function of viral elements, season, 

and cross-immunity (75).  

Diverse sources of heterogeneity that may influence epidemic trajectory are proposed in the COVID-

19 literature.  They overlap with the type of variables studied in other infectious diseases (Table 4.2). 

Examples are time and weather (season and temperature) (74,75); place of residence; built and 

household environment (population density) (74); demographics (age, sex, ethnic background) (77);  

socioeconomic and cultural factors (74); human behaviour (74); interventions and response (72–

74,76); virus (transmission routes) (74); human biology and immunology (comorbidities and degree 

of cross-immunity with other coronaviruses) (75–77); and accuracy of diagnosis and reporting (77).  

The COVID-19 modelling studies apply a broad range of methods that capture specific aspects of 

heterogeneity. In the family of mechanistic approaches, there are, among others, individual-based 

models (73), population-based models with many compartments (75), metapopulation models with 

age and social activity structure (78), and Bayesian perspectives allowing parameters to vary (28,72). 

Some studies highlighted overdispersion in COVID-19 transmission (also called super-spreading) and 

dealt with the phenomenon by using negative binomial distributions (79) or by creating a special 

compartment for super-spreaders (80). The idea of super-spreading is not specific for COVID; it has 

been studied in the past for infectious diseases with various transmission routes such as malaria, 

tuberculosis, SARS, measles, smallpox, monkeypox, and pneumonic plague (51,81,82).   
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Regarding the family of phenomenological approaches, I found three studies in which a generalised 

growth model was used (similar to what I did in this project) (83–85). In two of these studies, the 

authors reported estimates of the growth scaling parameter: 0.99 in Hubei (exponential pattern), 

0.69 (sub-exponential pattern) in other Chinese provinces; and 0.9 (exponential pattern) in Lima, 

Peru (83). The fact that growth patterns vary across settings is in line with what I found. However, I 

reported a lower value for the growth scaling parameter p in Peru (0.63 compared to 0.9). Of note, 

there were at least five differences between the pre-published study (85) and my approach: they 

focused on the capital Lima while I looked at country level; they took the data from Peruvian sources 

(Centro Nacional de Epidemiología, Prevención y Control de Enferemedades and Instituto Nacional de 

Salud) while I took them from the European Centre for Disease Prevention and Control (30); they 

calibrated the model using an earlier time window (starting 29 February compared to 10 March in 

this study); they did not include the initial number of cases as a parameter in the model; and they 

used least squares while I used maximum likelihood estimation. One additional study using another 

type of growth model reported early sub-exponential growth in various countries (86). Taken 

together, such varying and sometimes sub-exponential growth patterns indicate that population 

factors may decelerate the spread of COVID-19 before official control measures have an effect.  

Many COVID-19 models did not incorporate the possibility of subnational variation and of gradual or 

informal behaviour changes (72,75,76). Another strong assumption was that the efficacy of the 

interventions is constant over time and similar across countries (72). In addition, authors described 

concerns about parameter uncertainty, related to for example the number of imported cases, the 

amount of underreporting, and the effects of different, almost simultaneously organised 

interventions (72,75). The more authoritative studies mentioned such issues as study limitations 

(72,75). These studies usually contained a sensitivity analysis, which tended to focus more on 

parameter uncertainty than on model uncertainty (72,73,75).  

One may wonder whether capturing fine-scale variation is relevant in times of a public health crisis 

where the positive impact of large standardised control measures appears to be clear (69,72,73,75). 

However, if specific sources of heterogeneity are structurally excluded from modelling studies, it 

becomes of course impossible to see their relevance. In a different domain, that of malaria 

elimination strategies, Peeters-Grietens et al. described such processes as follows: “A crucial 

component of this misdirection process is the global standardization of intervention methodologies 

operating independent of local social contexts and the perceived impossibility to ‘localize’ such 

interventions. This conviction requires – and is simultaneously supported by- the production of 

decontextualized evidence through the application of methodologies aiming at generalizability, in 

detriment of social context and variability. This process produces pseudo measurements and 

conclusions that are at the same time real in their adherence to paradigmatically valid methodologies 

and fake as they either remain empty of empirical significance or whose validity cannot be assessed 

as we have lost sight of the (local, social, cultural) variation it has decided to ignore.” (87)  

It is worth mentioning that there is a clear and growing opposition against generalised control 

measures to reduce the spread of COVID-19. Arguments in this discussion overlap with those 

described in Table 4.1 about other infectious diseases.  The motivation for the opposition is 

sometimes political, sometimes academic, and is fuelled by concerns about the negative impact of 

general measures on health (health problems other than COVID-19), wellbeing, and the economy, 

especially in low-and middle-income countries (88). It is worth noting that some countries have 

chosen, from the beginning, for a localised rather than a national lockdown (29); and some appeal to 

voluntary rather than enforced behaviour changes (29).  
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5.4 Challenges 
 

While I was reviewing papers for this project, I came across recurring challenges that appear to be 

triggered by attempts to accommodate heterogeneity in studies of disease frequency. I summarised 

these challenges in five categories:  

Confusion. There is confusion about the meaning of heterogeneity and its relation with uncertainty. 

In the literature, there are several classification schemes but no consensus. In the document 

introducing the framework of Figure 3.1, this is explained as follows: “For example, take the 

circularity of the sentence, “There are two kinds of uncertainty: variability and uncertainty.” 

Depending on the context, uncertainty might refer to the overall degree of imprecision or 

unpredictability or it might refer only to that not due to the inherent heterogeneity across individuals, 

space, or time” (13). Even when there is clarity about the concept of true heterogeneity, it is usually 

impossible, in practice, to disentangle it from parameter, model, and decision uncertainty.  

Data sparsity. Taking up heterogeneity in statistical models implies that model flexibility increases. 

More parameters need to be estimated and this estimation requires more data. In addition, more 

flexible statistical methods tend to be more variable. As models get more flexible, assessing bias-

variance trade-offs is increasingly important, and the validation procedures to do this require more 

data (89). The issue of data sparsity in relation with model complexity is known in some fields as the 

curse of dimensionality. More flexible models may also pose computational challenges.  

Changing methods. The field of modelling infectious diseases is evolving rapidly. Diverse 

methodological approaches have been proposed, many of which address population heterogeneity 

in one way or another. Keeping track of the strengths and weaknesses of new methods has become a 

challenge in itself.  

Mismatch with what people want to hear. Considerations about heterogeneity and uncertainty may 

be unwelcome in situations where quick and clear answers are demanded by politicians and the 

general public, for example at the beginning of an outbreak (69). Mechanistic models can provide 

direct quantitative arguments for decision-making but are heavily dependent on model structure and 

assumptions. Sometimes, key parameters are inherently unmeasurable (e.g. density-dependent 

helminth establishment in humans) (37) or very difficult to capture (e.g. reactive behaviour changes 

during an outbreak). Phenomenological models contain less risky assumptions. They do not require 

detailed knowledge about the mechanics of disease transmission, which is a valuable characteristic in 

case of newly emerging infectious diseases such as COVID-19. However, although phenomenological 

models allow us to imagine sources of heterogeneity, they do not prove what the drivers of an 

outbreak are and they cannot directly show the expected impact of disease control interventions.  

Questions about level of decision-making. Considerations about heterogeneity may lead to politically 

sensitive questions about the appropriate level of autonomous decision-making in public health. 

Some have argued that it is convenient to model an outbreak at the level at which decisions are 

taken (resolution of the model determined by administrative entities) (63). However, one can also 

argue that the way in which an infectious disease spreads and clusters should determine the 

administrative level at which disease control is organised. The “political dance” between the 

president of Colombia and the mayor of Bogotá regarding coronavirus control measures is one of 

many examples in the world where the coronavirus pandemic acutely sharpens the tension between 

local and national levels (90). Similar tensions abound -albeit in a more chronic way- in the field of 

global elimination initiatives against neglected tropical diseases.  
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5.5 Recommendations 
 

Based on this project, I have formulated recommendations for studies about the frequency of 

infectious diseases in heterogeneous populations in general and for studies about COVID-19 in 

particular.  

Concerning heterogeneity in general:  

• Reflect about the possibility of heterogeneity and what it implies for research and policy. In this 

reflection, avoid confusion between heterogeneity and uncertainty. In practice, variance is  

composed of different elements some of which are reducible while others are not. Recognise the 

tension between the pursuit of reproducibility, consistency, and standardised solutions on the 

one hand and the identification of heterogeneity on the other.  

• Learn from conceptual and technical developments in fields where heterogeneity is studied 

intensively. The views from academic disciplines with an experienced eye for human behaviour 

and local context are enriching in this respect. Also within the biomedical environment, there are 

fields (e.g. ecohealth and tropical infectious diseases) where considerations about heterogeneity 

come in naturally, for example when there are biological reasons (e.g. in the domains of helminth 

infections and vector-borne diseases) or when universal interventions such as mass drug 

administration or generalised lockdowns do not work as expected.  

• Plan routine and research data collection and statistical analyses in a way that allows the 

possibility of heterogeneity. Which variables define relevant population subgroups and how can 

these variables be measured? Skipping this step means opting for the pragmatic attitude, i.e. 

working with the data at hand. Investing in this step implies that the data that are to be collected 

may differ across pathogens and contexts, which leads to less standardised and seemingly less 

generalisable findings.   

Concerning COVID-19 in particular:  

• Consider aspects of model uncertainty throughout the entire process of producing, reporting, 

interpreting, and using evidence. Model uncertainty is analysed less frequently than parameter 

uncertainty but may have a larger impact on the findings (13). Allowing the possibility of 

overdispersion and sub-exponential growth affects the findings of a simple COVID-19 growth 

model. This raises questions about the accuracy of models used for decision-making that assume 

equidispersion or exponential growth. The incorporation of dispersion and growth scaling 

parameters in other families of COVID-19 models is worth considering. The technicalities of the 

incorporation as well the interpretation of these parameters are areas of further research. 

Examples of research questions in this direction are: is there a better option than the gamma 

distribution to account for overdispersion in the case of COVID-19? How does the growth scaling 

parameter correlate with final epidemic size? Which of several extra parameters proposed in 

phenomenological growth models (dispersion, growth scaling, sub-epidemics) is most useful in 

the case of COVID-19 in different contexts?  

• Plan data collection for a possible next wave of COVID-19 (and for outbreaks of other pathogens) 

based on lessons learned in the past. The growth pattern of the COVID-19 outbreak may differ 

across subpopulations within a country. Such differences could not be identified in this thesis 

project because the relevant information was not (publicly) available. The possibility of 

heterogeneous populations was also underexplored in some key COVID-19 publications. 

Collecting and reporting data on a few additional, carefully chosen variables would facilitate 

analyses that can generate potentially relevant insights. Examples of research questions along 
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this line are: Is the growth pattern of the COVID-19 outbreak closer to exponential in constrained 

or vulnerable populations (e.g. people living in homes for the elderly in Belgium) than in other 

population groups? Does the level of overdispersion vary across population subgroups (urban 

versus rural, commuters versus noncommuters, people with large versus small social networks)? 

Assuming that phenomenological models allowing for sub-epidemic waves will fit the COVID-19 

incidence data well, can these sub-epidemic waves then be linked to population subgroups?  

 

5.6 Conclusions 
 

When heterogeneity is ignored, mathematical and statistical models can produce misleading results 

such as biased estimates, narrow confidence intervals that do not contain the true value, and 

inappropriate generalisations. Such mistakes are difficult to identify once papers are published, but 

can be discovered when specific assumptions are investigated. In the case of the COVID-19 outbreak, 

incidence data are often assumed to present equidispersion and exponential growth. In Belgium and 

in diverse other settings, these two assumptions are not met. Assuming an exponential growth 

pattern when, in fact, the growth is slower than exponential typically leads to an overestimation of 

the epidemic size and an overestimation of the impact of disease control interventions.  

Alternative methodological approaches that account for heterogeneity do exist. Two examples of 

research fields where such approaches are commonly used are the epidemiology of helminth 

infections (longstanding tradition) and the characterisation of the Ebola virus outbreak in West Africa 

(more recent tradition). Some of these approaches require knowledge of the sources of 

heterogeneity so that the population can be disaggregated in relevant subgroups (e.g. mechanistic 

models). Other approaches are more generic: they allow the existence of heterogeneity without 

knowing its sources (e.g. phenomenological models).  

Methodological approaches that account for heterogeneity are typically more complex (contain more 

parameters) than their simpler counterparts assuming homogeneous populations. However, taking 

up one or two extra parameters is still relatively straightforward, as illustrated in this thesis project. 

Approaches incorporating heterogeneity also produce results surrounded by more uncertainty than 

simpler methods. Although this finding of more uncertainty may not look attractive at first sight, it is 

better than the false impression of certainty produced by overly simple approaches. In the end, 

information will only be useful for public health if it reflects the true uncertainty and variability that is 

associated with the presence of infectious diseases in a population. 

 



 

41 
 

6 References  
 

1. Zinsser H. Rats, Lice and History. Boston: Little, Brown and Company; 1935. 301 p.  
2. Coggon D, Rose G, Barker D. Epidemiology for the uninitiated. London: BMJ Books; 2003. 

Chapter 1. What is epidemiology? Available from: https://www.bmj.com/about-bmj/resources-
readers/publications/epidemiology-uninitiated/1-what-epidemiology (accessed 14 June 2020).  

3. Cairncross S, Periès H, Cutts F. Vertical health programmes. Lancet. 1997; 349: S20-S21. 
4. Hens N, Shkedy Z, Aerts M, Faes C, Van Damme P, Beutels P. Modeling infectious disease 

parameters based on serological and social contact data. A modern statistical perspective. New 
York: Springer; 2012. 298p. 

5. Reen T. Glad tidings. Lulu.com; 2011. 192 p. 
6. Cambridge Online Dictionary [Internet]. Heterogeneity. Available from: 

https://dictionary.cambridge.org/dictionary/english/heterogeneity (accessed 14 June 2020). 
7. Wikipedia [Internet]. Homogeneity and heterogeneity. Available from: 

https://en.wikipedia.org/wiki/Homogeneity_and_heterogeneity (accessed 14 June 2020). 
8. Schünemann H, Brożek J, Guyatt G, Oxman A, editors. Handbook for grading the quality of 

evidence and the strength of recommendations using the GRADE approach (updated October 
2013). GRADE Working Group; 2013. Chapter 5.2 Factors that can reduce the quality of the 
evidence. Available from: https://gdt.gradepro.org/app/handbook/handbook.html (accessed 14 
June 2020). 

9. Tversky A, Kahneman D. The framing of decisions and the psychology of choice. Science. 1981; 
211: 453-458. 

10. van Asselt MBA. Perspectives on uncertainty and risk. The PRIMA approach to decision support. 
Springer Netherlands; 2000. 436 p.  

11. Wynne B. Uncertainty and environmental learning. Reconceiving science and policy in the 
preventive paradigm. Global Environmental Change. 1992; 2: 111-127. 

12. Funtowicz SO, Ravetz JR. Uncertainty and quality in science for policy. Springer Netherlands; 
1990. 231p.  

13. Krupnick A, Morgenstern R, Batz M, Nelson P, Burtraw D, Shih JS, et al. Not a sure thing: Making 
regulatory choices under uncertainty. Washington: Resources for the future; 2006. 233p.  

14. Chowell G, Sattenspiel L, Bansal S, Viboud C. Mathematical models to characterize early 
epidemic growth: a review. Phys Life Rev. 2016; 18: 66-97. 

15. Stanford encyclopedia of philosophy, fall 2012 edition [Internet]. Models in science. Available 
from: https://plato.stanford.edu/archives/fall2012/entries/models-science/ (accessed 14 June 
2020) 

16. Baker RE, Peña JM, Jayamohan J, Jérusalem A. Mechanistic models versus machine learning, a 
fight worth fighting for the biological community? Biol Lett. 2018; 14: 20170660. 

17. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for 
scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018; 169: 467-473.  

18. Sciensano. Fact sheet COVID-19 disease (SARS-CoV-2 virus). Sciensano; 2020. Available from: 
https://covid-19.sciensano.be/sites/default/files/Covid19/COVID-19_fact_sheet_ENG.pdf 
(accessed 14 June 2020).   

19. Belgian federal public service; health, food chain safety and environment. Six new cases of 
Covid-19 by the end of the spring holidays [Internet]. Available from: https://www.info-
coronavirus.be/en/news/6-new-cases-of-covid-19-by-the-end-of-the-spring-holidays/ (accessed 
14 June 2020).  

20. Wikipedia. COVID-19 pandemic in Belgium [Internet]. Available from: 
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_Belgium (accessed 14 June 2020). 

21. Advanced Solutions Nederland. Covid-19: Netherlands – a disastrous combination of events 
[Internet]. Available from: https://www.advsolned.com/covid-19-netherlands-a-disastrous-

https://www.bmj.com/about-bmj/resources-readers/publications/epidemiology-uninitiated/1-what-epidemiology
https://www.bmj.com/about-bmj/resources-readers/publications/epidemiology-uninitiated/1-what-epidemiology
https://dictionary.cambridge.org/dictionary/english/heterogeneity
https://en.wikipedia.org/wiki/Homogeneity_and_heterogeneity
https://gdt.gradepro.org/app/handbook/handbook.html
https://plato.stanford.edu/archives/fall2012/entries/models-science/
https://covid-19.sciensano.be/sites/default/files/Covid19/COVID-19_fact_sheet_ENG.pdf
https://www.info-coronavirus.be/en/news/6-new-cases-of-covid-19-by-the-end-of-the-spring-holidays/
https://www.info-coronavirus.be/en/news/6-new-cases-of-covid-19-by-the-end-of-the-spring-holidays/
https://en.wikipedia.org/wiki/COVID-19_pandemic_in_Belgium
https://www.advsolned.com/covid-19-netherlands-a-disastrous-combination-of-events/


 

42 
 

combination-of-events/ (accessed 14 June 2020). 
22. Oltermann P, Davidson H, Laughland O, Ratcliffe R, Walters J, Willsher K, et al. The cluster effect: 

how social gatherings were rocket fuel for coronavirus. The Gardian [Internet]. 2020 Apr 9. 
Available from: https://www.theguardian.com/world/2020/apr/09/the-cluster-effect-how-
social-gatherings-were-rocket-fuel-for-coronavirus (accessed 14 June 2020).  

23. Sciensano. COVID-19 weekly epidemiological update of 26 March 2020. Sciensano; 2020. 
Available from: https://covid-19.sciensano.be/nl/covid-19-epidemiologische-situatie (accessed 
14 June 2020). 

24. Official information and services [Internet]. Coronavirus: reinforced measures. Beligum.be; 2020. 
Available from: https://www.belgium.be/en/news/2020/coronavirus_reinforced_measures 
(accessed 14 June 2020). 

25. Food and Agriculture Organization and World Bank population estimates [Internet]. Population 
density (people per sq. km of land area). Available from: 
https://data.worldbank.org/indicator/EN.POP.DNST (accessed 14 June 2020).  

26. Aron J, Muellbauer J. Measuring excess mortality: England is the European outlier in the Covid-
19 pandemic. VOX  CEPR Policy Portal [Internet]. 2020 May 18. Available from: 
https://voxeu.org/article/excess-mortality-england-european-outlier-covid-19-pandemic 
(accessed 14 June 2020).  

27. Moriarty LF, Plucinski MM, Marston BJ, Kurbatova E V., Knust B, Murray EL, et al. Public Health 
Responses to COVID-19 Outbreaks on Cruise Ships - Worldwide, February-March 2020. MMWR 
Morb Mortal Wkly Rep. 2020; 69: 347‐352.  

28. Mizumoto K, Chowell G. Transmission potential of the novel coronavirus (COVID-19) onboard the 
diamond Princess Cruises Ship, 2020. Infect Dis Model. 2020; 5: 264‐270.  

29. Dunford D, Dale B, Stylianou N, Lowther E, Ahmed M, de la Torre Arenas I.Coronavirus: The 
world in lockdown in maps and charts. BBC News [Internet]. 2020 Apr 7. Available from: 
https://www.bbc.com/news/world-52103747 (accessed 14 June 2020).  

30. European Centre for Disease Prevention and Control. COVID-19 situation update worldwide, as 
of 4 June 2020 [Internet]. Available from: https://www.ecdc.europa.eu/en/geographical-
distribution-2019-ncov-cases (accessed 5 June 2020).  

31. Sciensano [Internet]. Sciensano & Coronavirus. What role does Sciensano play? Available from: 
https://www.sciensano.be/en/health-topics/coronavirus/role (accessed 14 June 2020).  

32. Sciensano [Internet]. COVID19BE open data codebook. Available from: 
https://epistat.sciensano.be/COVID19BE_codebook.pdf (accessed 14 June 2020).  

33. Sciensano [Internet]. COVID-19 datasets. Available from: https://epistat.wiv-isp.be/Covid/ 
(accessed 14 June 2020).  

34. World Health Organization [Internet]. Coronavirus disease (COVID-2019) situation reports. 
Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-
reports/ (accessed 14 June 2020).  

35. European Centre for Disease Prevention and Control [Internet]. Download today’s data on the 
geographic distribution of COVID-19 cases worldwide. Available from: 
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-
distribution-covid-19-cases-worldwide  

36. Viboud C, Simonsen L, Chowell G. A generalized-growth model to characterize the early 
ascending phase of infectious disease outbreaks. Epidemics. 2016; 15: 27‐37.  

37. Hamley JID, Milton P, Walker M, Basáñez MG. Modelling exposure heterogeneity and density 
dependence in onchocerciasis using a novel individual-based transmission model, EPIONCHO-
IBM: Implications for elimination and data needs. PLoS Negl Trop Dis. 2019; 13: e0007557.  

38. Oswald WE, Halliday KE, McHaro C, Witek-McManus S, Kepha S, Gichuki PM, et al. Domains of 
transmission and association of community, school, and household sanitation with soil-
transmitted helminth infections among children in coastal Kenya. PLoS Negl Trop Dis. 2019; 13: 
e0007488.  

39. Chavy A, Nava AFD, Luz SLB, Ramírez JD, Herrera G, Dos Santos TV, et al. Ecological niche 

https://www.advsolned.com/covid-19-netherlands-a-disastrous-combination-of-events/
https://www.theguardian.com/world/2020/apr/09/the-cluster-effect-how-social-gatherings-were-rocket-fuel-for-coronavirus
https://www.theguardian.com/world/2020/apr/09/the-cluster-effect-how-social-gatherings-were-rocket-fuel-for-coronavirus
https://covid-19.sciensano.be/nl/covid-19-epidemiologische-situatie
https://www.belgium.be/en/news/2020/coronavirus_reinforced_measures
https://data.worldbank.org/indicator/EN.POP.DNST
https://voxeu.org/article/excess-mortality-england-european-outlier-covid-19-pandemic
https://www.bbc.com/news/world-52103747
https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases
https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases
https://www.sciensano.be/en/health-topics/coronavirus/role
https://epistat.sciensano.be/COVID19BE_codebook.pdf
https://epistat.wiv-isp.be/Covid/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide


 

43 
 

modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest 
biome. PLoS Negl Trop Dis. 2019; 13: e0007629.  

40. de Oliveira Padilha MA, de Oliveira Melo J, Romano G, Malveira de Lima MV, Alonso WJ, Mureb 
Sallum MA, et al. Comparison of malaria incidence rates and socioeconomic-environmental 
factors between the states of Acre and Rondônia: A spatio-temporal modelling study. Malar J. 
2019; 18: 306.  

41. Brunner NC, Chacky F, Mandike R, Mohamed A, Runge M, Thawer SG, et al. The potential of 
pregnant women as a sentinel population for malaria surveillance. Malar J. 2019; 18:370.  

42. Vegvari C, Truscott JE, Kura K, Anderson RM. Human population movement can impede the 
elimination of soil-transmitted helminth transmission in regions with heterogeneity in mass drug 
administration coverage and transmission potential between villages: a metapopulation analysis. 
Parasit Vectors. 2019; 12: 438.  

43. Truscott JE, Ower AK, Werkman M, Halliday K, Oswald WE, Gichuki PM, et al. Heterogeneity in 
transmission parameters of hookworm infection within the baseline data from the TUMIKIA 
study in Kenya. Parasit Vectors. 2019; 12: 442.  

44. Otiende V, Achia T, Mwambi H. Bayesian modeling of spatiotemporal patterns of TB-HIV co-
infection risk in Kenya. BMC Infect Dis. 2019; 19: 902.  

45. Martinez EZ, Zucoloto ML, Galdino G, Nunes AA, da Silva Lizzi EA. Spatiotemporal distribution of 
acquired immunodeficiency syndrome incidence in Brazil between 2012 and 2016. Rev Soc Bras 
Med Trop. 2019; 53: e20190086.  

46. Chowell G, Tariq A, Hyman JM. A novel sub-epidemic modeling framework for short-term 
forecasting epidemic waves. BMC Med. 2019; 17: 164.  

47. Li J, Zhang X, Wang L, Xu C, Xiao G, Wang R, et al. Spatial-temporal heterogeneity of hand, foot 
and mouth disease and impact of meteorological factors in arid/ semi-arid regions: a case study 
in Ningxia, China. BMC Public Health. 2019; 19: 1482.  

48. Xiao C, Jike C, Liu D, Jia P, Xu X, Xiao L, et al. The changing modes of human immunodeficiency 
virus transmission and spatial variations among women in a minority prefecture in southwest 
China: an exploratory study. Medicine (Baltimore). 2020; 99: e18776.  

49. Solomon T, Loha E, Deressa W, Gari T, Lindtjørn B. Spatiotemporal clustering of malaria in 
southern-central Ethiopia: a community-based cohort study. PLoS One. 2019; 14: e0222986.  

50. Corder RM, Paula GA, Pincelli A, Ferreira MU. Statistical modeling of surveillance data to identify 
correlates of urban malaria risk: a population-based study in the Amazon Basin. PLoS One. 2019; 
14(8): e0220980.  

51. Cooper L, Kang SY, Bisanzio D, Maxwell K, Rodriguez-Barraquer I, Greenhouse B, et al. Pareto 
rules for malaria super-spreaders and super-spreading. Nat Commun. 2019; 10: 3939.  

52. Ganyani T, Faes C, Hens N. Inference of the generalized-growth model via maximum likelihood 
estimation: a reflection on the impact of overdispersion. J Theor Biol. 2020; 484: 110029.  

53. Ganyani T, Roosa K, Faes C, Hens N, Chowell G. Assessing the relationship between epidemic 
growth scaling and epidemic size: the 2014-16 Ebola epidemic in West Africa. Epidemiol Infect. 
2018; 147: 1‐6.  

54. Ganyani T, Faes C, Chowell G, Hens N. Assessing inference of the basic reproduction number in 
an SIR model incorporating a growth-scaling parameter. Stat Med. 2018; 37: 4490‐4506.  

55. Chowell G, Viboud C, Hyman JM, Simonsen L. The Western Africa ebola virus disease epidemic 
exhibits both global exponential and local polynomial growth rates. PLoS Curr. 2015; 7: 
ecurrents.outbreaks.8b55f4bad99ac5c5db3663e916803261.  

56. Roosa K, Luo R, Chowell G. Comparative assessment of parameter estimation methods in the 
presence of overdispersion: a simulation study. Math Biosci Eng. 2019; 16: 4299‐4313.  

57. Anderson RM, May RM. Infectious Diseases of Humans: dynamics and control. Oxford: Oxford 
University Press; 1991. 757p.  

58. Bacaër N. A short history of mathematical population dynamics. London: Springer; 2011. 160 p.  
59. Oxford Reference [Internet]. Mass action principle. Available from: https://www.oxford

reference.com/view/10.1093/oi/authority.20110803100138688 (accessed 14 June 2020).  

https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100138688
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100138688


 

44 
 

60. Colgate SA, Stanley EA, Hyman JM, Layne SP, Qualls C. Risk behavior-based model of the cubic 
growth of acquired immunodeficiency syndrome in the United States. Proc Natl Acad Sci U S A. 
1989; 86: 4793‐4797.  

61. Tolle J. Can growth be faster than exponential, and just how slow is the logarithm? The 
Mathematical Gazette. 2003; 87: 522-525. 

62. Reppell M, Boehnke M, Zöllner S. The impact of accelerating faster than exponential population 
growth on genetic variation. Genetics. 2014; 196: 819‐828.  

63. Santermans E, Robesyn E, Ganyani T, Sudre B, Faes C, Quinten C, et al. Spatiotemporal evolution 
of Ebola Virus Disease at sub-national level during the 2014 West Africa epidemic: model 
scrutiny and data meagreness. PLoS One. 2016; 11: e0147172.  

64. Kermack WO, McKendrick AG. A contribution to the mathematical theory of epidemics. Proc  R 
Soc A. 1927; 115: 700–721. 

65. Chowell G, Nishiura H, Bettencourt LM. Comparative estimation of the reproduction number for 
pandemic influenza from daily case notification data. J R Soc Interface. 2007; 4: 155‐166.  

66. Meltzer MI, Atkins CY, Santibanez S, Knust B, Petersen BW, Ervin ED, et al. Estimating the future 
number of cases in the Ebola epidemic--Liberia and Sierra Leone, 2014-2015. MMWR Suppl. 
2014; 63: 1‐14. 

67. US Centers for Disease Control and Prevention [Internet]. 2014-2016 Ebola Outbreak in West 
Africa. Available from: https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/index.html 
(accessed 14 June 2020).  

68. King AA, Domenech de Cellès M, Magpantay FM, Rohani P. Avoidable errors in the modelling of 
outbreaks of emerging pathogens, with special reference to Ebola. Proc Biol Sci. 2015; 282: 
20150347.  

69. Stobbe M. CDC’s overblown estimate of Ebola outbreak draws criticism. The Seattle Times 
[Internet]. 2015 Aug 1. Available from: https://www.seattletimes.com/nation-world/cdcs-
overblown-estimate-of-ebola-outbreak-draws-criticism/ (accessed 14 June 2020).   

70. Petrilli C, Jones S, Yang J, Rajagopalan H, O’Donnell L, Chernyak Y, et al. Factors associated with 
hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New 
York City: prospective cohort study. BMJ. 2020; 369: m1966.  

71. Nature index [Internet]. The most influential coronavirus research articles. Available from: 
https://www.natureindex.com/news-blog/the-top-coronavirus-research-articles-by-metrics 
(accessed 14 June 2020).  

72. Flaxman S, Mishra S, Gandy A, Unwin H, Mellan T, Coupland H, et al. Estimating the effects of 
non-pharmaceutical interventions on COVID-19 in Europe [published online ahead of print, 2020 
Jun 8]. Nature. 2020;10.1038/s41586-020-2405-7.  

73. Ferguson NM, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, et al. Impact of non-
pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand 
[Report]. Imperial College London; 2020. https://www.imperial.ac.uk/media/imperial-
college/medicine/mrc-gida/2020-03-16-COVID19-Report-9.pdf (accessed 14 June 2020).  

74. Eubank S, Eckstrand I, Lewis B, Venkatramanan S, Marathe M, Barrett CL. Commentary on 
Ferguson, et al., "Impact of Non-pharmaceutical Interventions (NPIs) to Reduce COVID-19 
Mortality and Healthcare Demand". Bull Math Biol. 2020; 82: 52.  

75. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of 
SARS-CoV-2 through the postpandemic period. Science. 2020; 368: 860‐868.  

76. Hens N, Vranck P, Molenberghs G. The COVID-19 epidemic, its mortality, and the role of non-
pharmaceutical interventions. Eur Heart J Acute Cardiovasc Care. 2020; 9: 204‐208.  

77. Sominsky L, Walker DW, Spencer SJ. One size does not fit all - patterns of vulnerability and 
resilience in the COVID-19 pandemic and why heterogeneity of disease matters [published 
online ahead of print, 2020 Mar 20]. Brain Behav Immun. 2020; S0889-1591(20)30366-4.  

78. Britton T, Ball F, Trapman P. The disease-induced herd immunity level for Covid-19 is 
substantially lower than the classical herd immunity level [e-print]. arXiv. 2020. Available from: 
https://arxiv.org/abs/2005.03085 (accessed 14 June 2020).  

https://www.cdc.gov/vhf/ebola/history/2014-2016-outbreak/index.html
https://www.seattletimes.com/nation-world/cdcs-overblown-estimate-of-ebola-outbreak-draws-criticism/
https://www.seattletimes.com/nation-world/cdcs-overblown-estimate-of-ebola-outbreak-draws-criticism/
https://www.natureindex.com/news-blog/the-top-coronavirus-research-articles-by-metrics
https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-03-16-COVID19-Report-9.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/mrc-gida/2020-03-16-COVID19-Report-9.pdf
https://arxiv.org/abs/2005.03085


 

45 
 

79. Endo A, Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group, 
Abbott S, Kucharski AJ, Funk S. Estimating the overdispersion in COVID-19 transmission using 
outbreak sizes outside China [version 1; peer review: 1 approved, 1 approved with reservations]. 
Wellcome Open Res. 2020; 5: 67.  

80. Ndaïrou F, Area I, Nieto JJ, Torres DFM. Mathematical modeling of COVID-19 transmission 
dynamics with a case study of Wuhan [published online ahead of print, 2020 Apr 27]. Chaos 
Solitons Fractals. 2020; 135: 109846.  

81. Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual 
variation on disease emergence. Nature. 2005; 438: 355‐359.  

82. McCreesh N, White RG. An explanation for the low proportion of tuberculosis that results from 
transmission between household and known social contacts. Sci Rep. 2018; 8: 5382.  

83. Roosa K, Lee Y, Luo R, Kirpich A, Rothenberg R, Hyman JM, et al. Real-time forecasts of the 
COVID-19 epidemic in China from February 5th to February 24th, 2020. Infect Dis Model. 2020; 
5: 256‐263.  

84. Roosa K, Lee Y, Luo R, Kirpich A, Rothenberg R, Hyman JM, et al. Short-term forecasts of the 
COVID-19 epidemic in Guangdong and Zhejiang, China: February 13-23, 2020. J Clin Med. 2020; 
9: 596.  

85. Munayco C, Tariq A, Rothenberg R, Soto-Cabezas G, Reyes M, Valle A, et al. Early transmission 
dynamics of COVID-19 in a southern hemisphere setting: Lima-Peru: February 29th-March 30th, 
2020 [Preprint]. medRxiv. 2020; 2020.04.30.20077594.  

86. Manchein C, Brugnago EL, da Silva RM, Mendes CFO, Beims MW. Strong correlations between 
power-law growth of COVID-19 in four continents and the inefficiency of soft quarantine 
strategies. Chaos. 2020; 30: 041102.  

87. Peeters Grietens K, Gryseels C, Verschraegen G. Misdirection in the margins of malaria 
elimination methods. Crit Public Health. 2019; 29: 390-400. 

88. Hodgins S, Saad A. Will the higher-income country blueprint for COVID-19 work in low- and 
lower middle-income countries? [published online ahead of print, 2020 Jun 10]. Glob Health Sci 
Pract. 2020; GHSP-D-20-00217.  

89. James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statiscal Learning with Applications 
in R. New York: Springer; 2013. 426 p.  

90. Alsema A. Colombia’s two presidents combating coronavirus. Colombia Reports [Internet]. 2020 
May 6. Available from: https://colombiareports.com/colombia-combating-coronavirus-with-two-
presidents/ (accessed 14 June 2020).   

https://colombiareports.com/colombia-combating-coronavirus-with-two-presidents/
https://colombiareports.com/colombia-combating-coronavirus-with-two-presidents/


 

46 
 



 

47 
 

7 Annexes  
 

7.1 MEDLINE search strategy and syntax  
 

MEDLINE was searched through PubMed on 14 March 2020. The search terms combined four 

concepts: disease frequency, infectious disease, statistical modelling, and heterogeneity. There were 

no restrictions regarding language, publication type, or study design. 

Concept Search terms 

Disease frequency 
prevalence [MeSH Terms] OR Incidence [MeSH Terms] OR epidemiology 

[MeSH Terms] OR Prevalence OR Incidence 
AND  

Infectious disease infections [MeSH Terms] OR disease outbreak, infectious[MeSH Terms] 

AND  

Statistical modelling models, statistical[MeSH Terms] OR modeling  OR modelling OR Bayes* 

AND  

Heterogeneity heterog* 

 

The search ((((prevalence [MeSH Terms] OR Incidence [MeSH Terms] OR epidemiology [MeSH Terms] 

OR Prevalence OR Incidence)) AND (infections [MeSH Terms] OR disease outbreak, infectious[MeSH 

Terms])) AND heterog*) AND (models, statistical[MeSH Terms] OR modeling OR modelling OR 

Bayes*) retrieved 1206 hits. These were sorted anti-chronologically; and he first 15 eligible records 

were included in the review. 

 

7.2 Core R code 
 

Key elements of the code are given below; the complete and detailed code is available via figshare: 

https://figshare.com/articles/R_code_for_thesis_project_entitled_Estimating_the_frequency_of_inf

ectious_diseases_in_heterogeneous_populations_methodological_overview_and_application_to_th

e_COVID-19_outbreak_in_Belgium_/12479303. 

 

Figure 4.1. Illustration of the relation between variance and mean in Poisson and negative binomial 

exponential growth models 
 

Time<-seq(0,40,by=1)  

C0=1 

r=0.2 

CountsP <- matrix(nrow = length(Time), ncol = 100) 

for(i in 1:length(Time)) 

{CountsP[i,]<-rPO(100,mu=C0*exp(r*Time[i]))} 

CountsP<-as.vector(CountsP) 

CountsPTime<-cbind(Time, CountsP) 

CountsPTime<-as.data.frame(CountsPTime) 

plot(CountsPTime$Time,CountsPTime$CountsP, main="A. Poisson", xlab="time", 

ylab="simulated counts", ylim=c(0,5000), pch=20) 

lines(Time,C0*exp(r*Time),col="red") 

https://figshare.com/articles/R_code_for_thesis_project_entitled_Estimating_the_frequency_of_infectious_diseases_in_heterogeneous_populations_methodological_overview_and_application_to_the_COVID-19_outbreak_in_Belgium_/12479303
https://figshare.com/articles/R_code_for_thesis_project_entitled_Estimating_the_frequency_of_infectious_diseases_in_heterogeneous_populations_methodological_overview_and_application_to_the_COVID-19_outbreak_in_Belgium_/12479303
https://figshare.com/articles/R_code_for_thesis_project_entitled_Estimating_the_frequency_of_infectious_diseases_in_heterogeneous_populations_methodological_overview_and_application_to_the_COVID-19_outbreak_in_Belgium_/12479303
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theta=50 

sigma=1/theta 

CountsNB10 <- matrix(nrow = length(Time), ncol = 100) 

for(i in 1:length(Time)) 

{CountsNB10[i,]<-rNBI(100,mu=C0*exp(r*Time[i]),sigma)} 

CountsNB10<-as.vector(CountsNB10) 

CountsNB10Time<-cbind(Time, CountsNB10) 

CountsNB10Time<-as.data.frame(CountsNB10Time) 

plot(CountsNB10Time$Time,CountsNB10Time$CountsNB10, main="B. Negative binomial\n 

theta=50", xlab="time", ylab="simulated counts", ylim=c(0,5000), pch=20) 

 

theta=5 

sigma=1/theta 

CountsNB10 <- matrix(nrow = length(Time), ncol = 100) 

for(i in 1:length(Time)) 

{CountsNB10[i,]<-rNBI(100,mu=C0*exp(r*Time[i]),sigma)} 

CountsNB10<-as.vector(CountsNB10) 

CountsNB10Time<-cbind(Time, CountsNB10) 

CountsNB10Time<-as.data.frame(CountsNB10Time) 

plot(CountsNB10Time$Time,CountsNB10Time$CountsNB10, main="B. Negative binomial\n 

theta=5", xlab="time", ylab="simulated counts", ylim=c(0,5000), pch=20) 

 

Table 4.5. Comparison of Poisson, negative binomial, and Poisson inverse Gaussian distributions to 

model hospital admissions in Belgium: parameter estimates and Akaike’s information 

Figure 4.6. Incidence of hospital admissions in Belgium and comparison of Poisson and negative 

binomial model approximations (equidispersion versus overdispersion) 
 

#Data Belgium country; from 10 March to 30 April 2020 - updated 16 May 2020 

Cases<-c(99, 172, 252, 338, 179, 213, 386, 417, 534, 713, 663, 470, 487,  

1329, 1196, 1198, 1363, 1519, 844, 683, 1739, 1682, 1503, 1460, 1691, 925,  

665, 1922, 1501, 1585, 2221, 2321, 1023, 517, 532, 1561, 1619, 1658, 1379, 

701, 448, 1266, 1257, 768, 965, 793, 387, 203, 744, 565, 512, 579) 

Hosp<-c(0, 7, 26, 70, 56, 71, 90, 123, 183, 212, 295, 332, 290, 278, 434, 540, 490, 

575, 629, 545, 478, 553, 584, 568, 504, 499, 358, 314, 490, 459, 462, 421, 393, 

270, 242, 250, 310, 320, 303, 265, 232, 172, 263, 211, 210, 217, 202, 127, 123, 

174, 178, 152)  

Deaths<-c(1, 3, 1, 3, 4, 6, 11, 11, 21, 27, 31, 39, 41, 78, 74, 98, 101, 123, 133, 

138, 168, 185, 247, 210, 232, 274, 233, 275, 304, 319, 273, 320, 290, 344, 283, 

277, 275, 254, 203, 211, 214, 199, 202, 191, 173, 147, 155, 176, 125, 114, 98, 84)   

Days<-seq(0,length(Cases)-1,by=1) 

Dates<-seq(as.Date("2020-03-10"),as.Date("2020-04-30"), by="days") 

Belgium=data.frame(Cases, Deaths, Hosp, Dates, Days) 

 

#Subselect time period used to build model 

x1<-1 

x2<-20 

BelIni=Belgium[x1:x2,] 

 

PoiH<-function(par1,par2){-sum( 

dPO(BelIni$Hosp,par1*exp(par2*BelIni$Days),log=TRUE))} 

fit.PoiH<-mle(PoiH,start= list(par1=100, par2=0.10),method = "Nelder-Mead") 

 

NBH<-function(par1,par2,par3){-sum( 

dNBI(BelIni$Hosp,m=par1*exp(par2*BelIni$Days),sigma=exp(par3),log=TRUE)} 

fit.NBH<-mle(NBH,start= list(par1=100, par2=0.10,par3=-2.06),method = "Nelder-

Mead") 

 

PIGH<-function(par1,par2,par3){-sum( 

dPIG(BelIni$Hosp,m=par1*exp(par2*BelIni$Days),sigma=exp(par3),log=TRUE))} 
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fit.PIGH<-mle(PIGH,start= list(par1=100, par2=0.10,par3=-2.06),method = "Nelder-

Mead") 

 

window<-Belgium$Days 

window[window<20]<-16 

window[window>19]<-1 

plot(Belgium$Days,Belgium$Hosp, xlab="Days since first local cases (day 0 =  

10 March 2020)", ylab="Number of admissions", ylim=c(0,1000), xlim=c(0,40), 

main="A. Admissions in Belgium\n original scale", pch=window) 

lines(Belgium$Days, coef(fit.PoiH)[1]*exp(coef(fit.PoiH)[2]*Belgium$Days),  

lty=3,col="darkred") 

lines(Belgium$Days, coef(fit.NBH)[1]*exp(coef(fit.NBH)[2]*Belgium$Days),  

lty=5,col="darkred") 

abline(v=6,lty=1,col="black") 

legend("topleft", c("Poisson", "Neg Bin"), col=c("darkred", "darkred"),  

lty=c(3,5),bg="white") 

 

plot(Belgium$Days,log10(Belgium$Hosp), xlab="Days since first local cases  

(day 0 = 10 March 2020)", ylab="Log10(number of admissions)",  

 ylim = c(0,5), xlim=c(0,40), main="B. Admissions in Belgium\n semi- 

logarithmic scale", pch=window) 

lines(Belgium$Days, 

log10(coef(fit.PoiH)[1]*exp(coef(fit.PoiH)[2]*Belgium$Days)), 

lty=3,col="darkred") 

lines(Belgium$Days,  

log10(coef(fit.NBH)[1]*exp(coef(fit.NBH)[2]*Belgium$Days)), 

lty=5,col="darkred") 

abline(v=6,lty=1,col="black") 

legend("topleft", c("Poisson", "Neg Bin"), col=c("darkred", "darkred"),  

lty=c(3,5),bg="white") 

 

fit.PoiH 

LLcH<-coef(fit.PoiH)[1]-qnorm(0.975)*sqrt(diag(fit.PoiH@vcov)[1]) 

ULcH<-coef(fit.PoiH)[1]+qnorm(0.975)*sqrt(diag(fit.PoiH@vcov)[1]) 

CIcH<-round(c(LLcH,ULcH),0) 

LLrH<-coef(fit.PoiH)[2]-qnorm(0.975)*sqrt(diag(fit.PoiH@vcov)[2]) 

ULrH<-coef(fit.PoiH)[2]+qnorm(0.975)*sqrt(diag(fit.PoiH@vcov)[2]) 

CIrH<-round(c(LLrH,ULrH),3) 

round(AIC(fit.PoiH),0) 

 

fit.NBH 

round(1/exp(coef(fit.NBH)[3]),1) 

LLcHNB<-coef(fit.NBH)[1]-qnorm(0.975)*sqrt(diag(fit.NBH@vcov)[1]) 

ULcHNB<-coef(fit.NBH)[1]+qnorm(0.975)*sqrt(diag(fit.NBH@vcov)[1]) 

CIcHNB<-round(c(LLcHNB,ULcHNB),0) 

LLrHNB<-coef(fit.NBH)[2]-qnorm(0.975)*sqrt(diag(fit.NBH@vcov)[2]) 

ULrHNB<-coef(fit.NBH)[2]+qnorm(0.975)*sqrt(diag(fit.NBH@vcov)[2]) 

CIrHNB<-round(c(LLrHNB,ULrHNB),3) 

LLthHNB<-coef(fit.NBH)[3]-qnorm(0.975)*sqrt(diag(fit.NBH@vcov)[3]) 

ULthHNB<-coef(fit.NBH)[3]+qnorm(0.975)*sqrt(diag(fit.NBH@vcov)[3]) 

CIthHNB<-round(1/exp(c(LLthHNB,ULthHNB)),1) 

round(AIC(fit.NBH),0) 

 

fit.PIGH 

1/exp(coef(fit.PIGH)[3]) 

round(AIC(fit.PIGH),0) 

LLcHPIG<-coef(fit.PIGH)[1]-qnorm(0.975)*sqrt(diag(fit.PIGH@vcov)[1]) 

ULcHPIG<-coef(fit.PIGH)[1]+qnorm(0.975)*sqrt(diag(fit.PIGH@vcov)[1]) 

CIcHPIG<-round(c(LLcHPIG,ULcHPIG),0) 

LLrHPIG<-coef(fit.PIGH)[2]-qnorm(0.975)*sqrt(diag(fit.PIGH@vcov)[2]) 

ULrHPIG<-coef(fit.PIGH)[2]+qnorm(0.975)*sqrt(diag(fit.PIGH@vcov)[2]) 

CIrHPIG<-round(c(LLrHPIG,ULrHPIG),3) 

LLthHPIG<-coef(fit.PIGH)[3]-qnorm(0.975)*sqrt(diag(fit.PIGH@vcov)[3]) 
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ULthHPIG<-coef(fit.PIGH)[3]+qnorm(0.975)*sqrt(diag(fit.PIGH@vcov)[3]) 

CIthHPIG<-round(1/exp(c(LLthHPIG,ULthHPIG)),1) 

 

Figure 4.7. Incidence of hospital admissions in Belgium and comparison of negative binomial models 

with and without a growth scaling parameter (exponential versus sub-exponential growth) 
 

SENBHb<-function(A,r,p,theta){-sum( 

dnbinom(BelIni$Hosp,mu=exp(r)*(exp(A)+exp(r)*(1-exp(p))*BelIni$Days)^(exp(p)/(1-

exp(p))),size=theta,log=TRUE))} 

fit.SENBHb<-mle(SENBHb,start= list(A=1, r=-0.10,p=-0.8,theta=1),method = "BFGS") 

LLp<-coef(fit.SENBHb)[3]-qnorm(0.975)*sqrt(diag(fit.SENBHb@vcov)[3]) 

ULp<-coef(fit.SENBHb)[3]+qnorm(0.975)*sqrt(diag(fit.SENBHb@vcov)[3]) 

CInewp<-round(c(exp(LLp),exp(ULp)),2) 

newp<-exp(coef(fit.SENBHb)[3]) 

 

plot(Belgium$Days,log10(Belgium$Hosp), xlab="Days since first local cases  

(day 0 = 10 March 2020)", ylab="Log10(number of admissions)",  

ylim=c(0,5), xlim=c(0,40), main="Admissions in Belgium\n semi- 

logarithmic scale", pch=window) 

lines(Belgium$Days, 

log10(coef(fit.NBH)[1]*exp(coef(fit.NBH)[2]*Belgium$Days)), 

lty=5,col="darkred") 

lines(Belgium$Days,  

log10(exp(coef(fit.SENBHb)[2])*(exp(coef(fit.SENBHb)[1])+ 

exp(coef(fit.SENBHb)[2])*(1-exp(coef(fit.SENBHb)[3]))*Belgium$Days)^ 

(exp(coef(fit.SENBHb)[3])/(1-exp(coef(fit.SENBHb)[3])))), lty=5,col="navy") 

abline(v=6,lty=1,col="black") 

legend("topleft", c("Neg Bin, exponential", "Neg Bin, sub-exponential"),  

col=c("darkred", "navy"), lty=c(5,5), bg="white") 

 

Figure 4.9. Incidence and cumulative incidence of hospital admissions in Belgium and fitted curves 

using a negative binomial model with a growth scaling parameter 
 

SENBHb<-function(A,r,p,theta){-sum( 

dnbinom(BelIni$Hosp,mu=exp(r)*(exp(A)+exp(r)*(1-exp(p))*BelIni$Days)^(exp(p)/(1-

exp(p))),size=theta,log=TRUE))} 

fit.SENBHb<-mle(SENBHb,start= list(A=1, r=-0.10,p=-0.8,theta=1),method = "BFGS") 

LLp<-coef(fit.SENBHb)[3]-qnorm(0.975)*sqrt(diag(fit.SENBHb@vcov)[3]) 

ULp<-coef(fit.SENBHb)[3]+qnorm(0.975)*sqrt(diag(fit.SENBHb@vcov)[3]) 

CInewp<-c(exp(LLp),exp(ULp)) 

newp<-exp(coef(fit.SENBHb)[3]) 

summary(fit.SENBHb) 

 

SENBCumHb<-function(A,r,p,theta){-

sum(dnbinom(cumsum(BelIni$Hosp),mu=(exp(A)+exp(r)*(1-exp(p))*BelIni$Days)^(1/(1-

exp(p))),size=theta,log=TRUE))} 

fit.SENBCumHb<-mle(SENBCumHb,start= list(A=1, r=-0.10,p=-0.8,theta=1),method = 

"BFGS") 

LLpCumH<-coef(fit.SENBCumHb)[3]-qnorm(0.975)*sqrt(diag(fit.SENBCumHb@vcov)[3]) 

ULpCumH<-coef(fit.SENBCumHb)[3]+ qnorm(0.975)*sqrt(diag(fit.SENBCumHb@vcov)[3]) 

CInewpCumH<-c(exp(LLpCumH),exp(ULpCumH)) 

newpCumH<-exp(coef(fit.SENBCumHb)[3]) 

summary(fit.SENBCumHb) 
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7.3 Supplementary tables and figures 
 

Comparison of a Poisson model with and without growth scaling parameter p: parameter 

estimates and Akaike’s information criterion 
 

Poisson model 
 without growth scaling parameter  

(assuming exponential growth) 

Poisson model  
with growth scaling parameter  

(allowing for sub-exponential growth)  

C0 [95% CI] 44 [41-48] 0* 

r [95% CI] 0.150 [0.145-0.156] 4.038 [3.686-4.425] 

p [95% CI] assumed 1 0.60 [0.58-0.61] 

AIC 549 250 

 

AIC: Akaike’s information criterion; CI: confidence interval; C0: initial number of cases; p: growth scaling parameter; r: 

growth rate. The time window for model fitting is 20 days (10 to 29 March). *The 95% confidence interval is not given as 

computation is not straightforward anymore (C0 indirectly parameterised). The interpretation of the parameters C0 and r is 

not the same in the two approaches: the estimates in the right column come from an expression with nonlinearity in the 

parameters (p is in the exponent of the expression), hence, the parameters are correlated. 

 

Incidence of hospital admissions in Belgium and comparison of a Poisson model with and 

without a growth scaling parameter (exponential versus sub-exponential growth). 

 

Figure legend. Two Poisson models are compared. The red dotted line is based on a model assuming exponential growth, 

which is equivalent to fixing the growth scaling parameter p to 1. On a semi-logarithmic scale, exponential growth results in 

a straight line. The blue dotted line is based on a model allowing for sub-exponential growth, where the growth scaling 

parameter p is estimated from the data. The point estimate for p is 0.60 (95% confidence interval: 0.58-0.61). The sub-

exponential model provides the best fit to the data. On a semi-logarithmic scale, sub-exponential growth results in a line 

with downward curvature. The black solid vertical line indicates the lockdown date (16 March). The dots are the observed 

admission counts; those filled in black indicate the time window used for model fitting (10 to 29 March). 
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Estimates of the growth scaling parameter p using a Poisson approach and comparing 

incidence and cumulative incidence of admissions 

 

Incidence measure Estimates of growth scaling parameter p [95% CI]  
Poisson model  

Incidence of admissions 0.60 [0.58-0.61] 

Cumulative incidence of admissions 0.61 [0.60-0.63] 

 

Estimates of the growth scaling parameter p using a Poisson approach and comparing the 

incidence of registered cases, hospital admissions, and deaths  

 

Incidence measure Estimates of growth scaling parameter p [95% CI]  
Poisson model  

Cases 0.55 [0.53-0.58] 

Admissions 0.60 [0.58-0.61] 

Deaths 0.77 [0.75-0.81] 

 

 

 

 


