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Preface 
 

Dear reader 

 

Thank you for showing interest in this report. This Master’s Thesis is my final 

assignment in the Master of Transportation Sciences. And just like my Bachelor’s 

Thesis, it is about cyclists. As I try to do all my trips using sustainable modes, I 

care a lot about cycling infrastructure and, more generally, the attention cyclists 

get in transportation policies. What if we could make cycling policies more 

evidence-based? Or what if we could adjust the demand for cycling and the built 

environment to each other? Maybe my thesis can give a start to answer these 

questions. The model I developed aims to predict the number of cyclists on a 

location, based on the built environment characteristics of that location. As you 

will be able to read here, the model is quite promising! 

Although I wrote this thesis on my own, it would not have been what it is now 

without the help of some people. I would especially like to thank my promotor, 

prof. dr. Luc Int Panis, and co-promotor, dr. Evi Dons. Their knowledge and their 

willingness to discuss my progress each week were truly valuable for this study. 

Their feedback was always constructive and their enthusiasm motivated me each 

time. Steven Soetens and Jelle Dekeyser also deserve my thanks, for providing 

me with their bicycle count data. In these strange times of COVID-19 lockdown 

and social isolation, I would also like to thank my friends and family for their 

support.  

And thanks to the uncountable Skype-hours with my videocall-buddy, my stress 

level remained acceptable.  

 

I hope you enjoy reading this report! 

Tim Vervoort 

 

 

 

 

 

This master’s thesis was written during the COVID-19 crisis in 2020. This global health crisis has had 
an impact on the proces of writing and analyzing, on performing the study and on the results, 

because: 

- Follow-up with the team of promotors could only take place digitally; 

- Discussing the results with stakeholders and practitioners through physical meetings was 
impossible. These discussions would have been useful for feedback or identification of use cases. 
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Summary  
 

Introduction, background and aims  

 

Bicycle traffic volume measurements in Flanders happen rather arbitrary and this 

leads to a knowledge gap regarding built environment (BE) characteristics that 

influence bicycle use. Studies show that there is an association, but studies 

focusing on Flanders have not been performed yet. Additionally, bicycle volume 

data that are available are mostly a posteriori collected data. Being able to predict 

bicycle traffic volumes would be useful because it helps supporting knowledge-

based policy decisions. This master’s thesis explored the possibilities and accuracy 

of applying a Land Use Regression (LUR) model to bicycle counts in Flanders. The 

objective was to develop a LUR model using existing bicycle count data and BE 

characteristics as predictor variables.  

Methods  

 

A literature review of 30 papers identified 107 BE characteristics that potentially 

influenced bicycle use. Sociodemographic variables were included in the literature 

review. Of these 107 characteristics, 51 were available as a GIS-layer in Flanders.  

Bicycle counts were retrieved from 26 permanent and 11 temporary counting 

points in the province of Antwerp for the year 2019. Using buffers in GIS (radii 

100, 300, 500, 1000, 2000, 4000, 6000 m) predictor variables were generated 

from these BE characteristics for each counting point. Initially, 294 variables were 

available for model development. These data were checked for correlation, with no 

variables being allowed to correlate more than 95% and no more than 60% if they 

were divided into the same category. Model development started with 112 

remaining variables.  

A linear regression model was developed using the supervised forward linear 

regression method in R. By leaving out one of the counting points that was close 

to the Dutch border and developing the model again, a sensitivity analysis was 

performed.  

The performance of the model was checked through leave-one-out cross validation 

and external validation. Leave-one-out cross validation used the same data the 

model was developed with. The parameter coefficients were estimated again while 

leaving out one counting point at a time and repeating this 37 times. External 

validation consisted of estimating the number of cyclists at 83 new counting points 

in the provinces of Antwerp and Flemish Brabant, using the original model.  
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Results  

 

All 112 variables were presented to the model and ten iterations led to an initial 

model with nine variables. After checking for significance, five variables remained. 

The final model consists of: the number of buildings within 1000 m of a counting 

point, the length of highways within 1000 m, the length of cycleways within 500 

m, the number of different types of land use within 2000 m, and the weighted 

average percentage of registered partnerships within 500 m of a counting point. 

This model had an R² of 0.74. 

The sensitivity analysis resulted in the same model parameters, with only one 

parameter being different from the original model. Leave-one-out cross validation 

resulted in an R² of 0.58. External validation yielded an R² of 0.41. Performance 

of the model (external validation in the province of Antwerp) resulted in an R² of 

0.52, while its transferability (external validation in the province of Flemish 

Brabant) yielded an R² of 0.00008. 

Conclusions and future research  

 

Future research could focus on finetuning the model by using more accurate data 

and by dividing the bicycle counting points into different categories. Furthermore, 

this study is of societal relevance. A LUR model that predicts bicycle traffic volumes 

can be used as a tool to make policy decisions regarding bicycle infrastructure 

investments. The model could be used to identify areas that need attention. Due 

to the (very) poor transferability, the model in this study can only be used in the 

area it was developed in, being the province of Antwerp. Scientific relevance can 

be found in the fact that this study is the first one to apply the land use regression 

method to bicycle counts in, to the best of the author’s knowledge, Europe.  
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Nederlandstalige samenvatting 
 

Inleiding, achtergrond en doelen 

 

In Vlaanderen gebeuren fietstellingen op een eerder arbitraire basis. Hierdoor is 

er een gebrek aan kennis betreffende bepaalde omgevingskarakteristieken die het 

fietsgebruik zouden kunnen beïnvloeden. Er zijn wel onderzoeken die dit verband 

aantonen, maar aan studies specifiek in Vlaanderen ontbreekt het nog. Daarbij 

komt nog dat de fietsteldata die beschikbaar zijn, meestal data zijn die achteraf 

verzameld werden. Het zou nochtans handig zijn om het aantal fietsers op een 

bepaalde plek op voorhand te kunnen voorspellen, omwille van de kansen die dit 

biedt om beleidsbeslissingen te ondersteunen. Deze masterthesis onderzocht de 

mogelijkheden en nauwkeurigheid van het gebruik van een Land Use Regression 

(LUR) model om fietsersaantallen te voorspellen in Vlaanderen. Het doel was 

daarbij om een LUR-model te ontwikkelen op basis van bestaande fietstellingen, 

met omgevingskarakteristieken als voorspellingsvariabelen. 

Methodologie  

 

Een literatuurstudie in 30 papers, die ook de socio-demografische variabelen 

betrok, identificeerde 107 variabelen als mogelijk van invloed op het fietsgebruik. 

Van deze 107 waren er in Vlaanderen 51 beschikbaar als GIS-datalaag. 

De fietsteldata van 2019 van 26 permanente en 11 tijdelijke telpunten in de 

provincie Antwerpen werden voor het onderzoek gebruikt. De 

voorspellingsvariabelen werden voor elk telpunt berekend door middel van de 

bufferfunctie in GIS, waarbij er stralen van 100, 300, 500, 1000, 2000, 4000, en 

6000 m gehanteerd werden. Dit leidde tot een aanvankelijk aantal van 294 

variabelen die gebruikt konden worden voor de ontwikkeling van het model. De 

correlatie van deze variabelen werd gecontroleerd, waarbij variabelen niet meer 

dan 95% met elkaar mochten controleren, of zelfs niet meer dan 60% als ze tot 

dezelfde categorie behoorden. Uiteindelijk begon het ontwikkelen van het model 

met 112 variabelen.  

Er werd een lineair regressiemodel opgesteld in R aan de hand van de supervised 

forward linear regression-methode. Door een telpunt, dat dichtbij de Nederlandse 

grens gelegen was, weg te laten en het model opnieuw te ontwikkelen, werd een 

sensitiviteitstoets uitgevoerd.  

Door middel van een leave-one-out cross validatie en een externe validatie werd 

de prestatie van het model nagegaan. De leave-one-out cross validatie gebruikte 

dezelfde dataset als diegene die gebruikt werd voor de ontwikkeling van het model. 

De coëfficiënten van de verschillende parameters werden opnieuw geschat, 

waarbij er telkens een telpunt werd weggelaten. Dit werd 37 keer herhaald. De 

externe validatie had als doel het aantal fietsers op 83 nieuwe telpunten in de 

provincies Antwerpen en Vlaams Brabant te schatten aan de hand van het originele 

model. 
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Resultaten 

 

Elk van de 112 variabelen werd aan het model aangeboden. Tien iteraties leidden 

tot een initieel model dat bestond uit negen variabelen, waarvan er na het 

controleren op significantie nog vijf overbleven. Het uiteindelijke model bestaat 

uit: het aantal gebouwen in een straal van 1000 m van het telpunt, de lengte aan 

snelwegen binnen 1000 m, de lengte aan fietspaden binnen 500 m, het aantal 

verschillende soorten landgebruik binnen 2000 m en het gewogen gemiddelde 

percentage aan wettelijk samenwonenden binnen 500 m van een telpunt. De R² 

van dit model bedraagt 0.74. 

De sensitiviteitstoets leverde een model op met dezelfde parameters, waarvan er 

slechts één verschilt van het originele model. De leave-one-out cross validatie 

zorgde voor een R² van 0.58, terwijl de externe validatie een R² opleverde van 

0.41. Het opsplitsen van de externe validatie in enerzijds de prestatie van het 

model (externe validatie in de provincie Antwerpen) en anderzijds de 

overdraagbaarheid van het model (externe validatie in Vlaams-Brabant), leverde 

een R² op van 0.52 en 0.00008 respectievelijk. 

Conclusies en toekomstig onderzoek  

 

Toekomstig onderzoek kan zich richten op het verder scherpstellen van het model 

aan de hand van meer accurate data enerzijds en het onderverdelen van de 

verschillende soorten telpunten anderzijds. Verder heeft dit onderzoek een 

maatschappelijke relevantie omdat het model gebruikt kan worden als tool om 

beleidsbeslissingen rond investeringen met betrekking tot fietsinfrastructuur te 

ondersteunen. Het model kan gebruikt worden om locaties die bijkomende 

aandacht nodig hebben te identificeren. Als gevolg van de slechte 

overdraagbaarheid komt uit dit onderzoek een model voort dat enkel gebruikt kan 

worden binnen het gebied waar het ontwikkeld is, namelijk de provincie 

Antwerpen. De wetenschappelijke relevantie van dit onderzoek kan gevonden 

worden in het feit dat het het eerste is dat de LUR-methode toepast op 

fietstellingen in, voor zover de auteur weet, Europa.  
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1 Introduction  
 

Cycling and overall attention for bicycles in Flanders has significantly increased in 

the past few years. In comparison to 2016, the number of cyclists in 2018 has 

clearly increased, not only during rush hours or weekends, but at any time of the 

day and week. Specifically in the Province of Antwerp, there were 14% more 

cyclists in 2018 compared to 2017. An increase of 21% has been measured 

compared to the beginning of the data collection in 2015. Cycling clearly has 

become more popular, both for functional and leisure trips (Fietsberaad 

Vlaanderen, 2019; Provincie Antwerpen, 2019b; VAB, 2019). 

Together with the increasing volume of bicycle traffic, the means and attention for 

bicycle infrastructure increase as well. The Flemish Government’s Coalition 

Agreement prioritizes investments in bicycle infrastructure, investing €300 million 

in the next five years. The aim is to overcome any possible resistance that could 

hold cyclists from using their bicycle (Vlaamse Regering, 2019). 

It is not easy to find exact figures on bicycle traffic in the literature, and it is even 

harder to find figures in order to make a valid comparison with previous years. An 

important cause for this problem is that bicycle counts in Flanders happen 

inconsistently. The Province of Antwerp has 18 permanent counting points, divided 

over 70 municipalities. Separate projects exist as well, such as the Telraam project 

which uses cameras to count bicycle traffic volumes among other traffic modes 

(Provincie Antwerpen, 2019a; Telraam, 2019). 

The above results in two issues. First, the rather arbitrary measurement of bicycle 

traffic volumes leads to a knowledge gap on Built Environment (BE) characteristics 

that influence the willingness to use the bicycle. Several studies all over the world 

have shown that there is an association between BE characteristics and bicycle 

use. Studies specifically focusing on Flanders have not been performed yet. As a 

consequence, there is no knowledge as to which characteristics influence bicycle 

use the most. This knowledge is useful as it can help motivate policy decisions and 

can be used to help allocate means and resources for bicycle investments. (Gao et 

al., 2018; Le et al., 2018; Mertens et al., 2017; Yang et al., 2019). 

The second issue is that, when bicycle volume data are available, these are mostly 

data that were collected a posteriori. Being able to predict bicycle traffic volumes 

would be useful to support knowledge-based policy decisions. The need for a 

prediction tool exists, and a technique that is promising is the Land Use Regression 

(LUR) modeling method. LUR modeling is a commonly used technique to predict 

air pollution concentrations and their health effects. It is often used in 

epidemiological studies and is based on a number of predictor variables that are 

usually traffic-, population- and land use-related. A Geographic Information 

System (GIS) is used to obtain these variables. A LUR comprises of a number of 

components (Boniardi et al., 2019; Dons et al., 2013a; Hoek et al., 2008; Int 

Panis, 2018): 
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1. Measuring/monitoring dependent variables. Dependent variables are 

usually measured or monitored at 20 to 100 locations spread over the 

research area. In this study, the dependent variables were the bicycle 

counts. 

2. Collecting independent variables. These variables have to be available 

for use in GIS. In this study, the independent variables were the BE 

characteristics.  

3. Estimating and validating the model. Using linear regression, the model 

parameters are estimated. To test its accuracy, the model will then be 

validated.  

4. Applying the model.  

LUR models predict air pollution concentrations such as NO2, NOx, PM2.5 and VOCs 

surprisingly good in a variety of situations (Hoek et al., 2008). It is expected that 

LUR performance in a bicycle traffic-related context will be good as well. 
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2 Problem statement  
 

In Flanders, the number of permanent bicycle counting points is limited and 

unknown, as both the Flemish Region, the provinces and the individual 

municipalities can install such points. As a consequence, bicycle traffic data are, if 

available in the first place, hard to compare. It is not possible to find out the 

number of cyclists on randomly selected locations, since this is only possible for 

locations where bicycle counts took place.  

BE characteristics influence bicycle use. It is not clear however, which factors do 

so in Flanders, which have the most significant correlation, and most importantly, 

which of these factors are available. Literature in Flanders that handles the 

application of the LUR method to predict bicycle volumes is non-existent. 

The above forms the main problem this study aimed to resolve: it is not clear how 

many cyclists are to be expected at any given location in Flanders. This makes it 

difficult to make efficient policy decisions, to take precise measures, or to identify 

locations with a lot of cycling potential. 

  



16 
 

  



17 
 

3 Objectives and research questions  
 

3.1 Objectives  
 

The main objective of this research was to identify which BE characteristics 

influence bicycle use, and if these characteristics can be used in a LUR model in 

Flanders to predict bicycle traffic volumes at any given location.  

The following sub-objectives were defined as well:  

• Identify characteristics with the greatest influence.  
• Verify how a LUR model differs from a classic four step traffic model.  
• Verify whether a LUR model can be used for other than air quality-related 

purposes. 

3.2 Research questions  
 

The main research question for this study was: Can a land use regression 

model be used to predict bicycle traffic volumes and potential in Flanders, using 

built environment characteristics as predictor variables?  

Additional sub-questions were defined. 

1. Which built environment characteristics influence bicycle use?  

 

2. Which of the characteristics defined in sub-question 1 can be translated into 

data that are available in Flanders?  

 

3. What are the similarities and differences between a classic four step traffic 

model and a land use regression model?  

 

4. How is a land use regression model that aims to predict bicycle traffic 

volumes developed?  

 

5. Which of the characteristics identified in sub-question 1 are most important 

regarding bicycle use?  

 

6. To what extent is the model able to predict bicycle traffic volumes?  
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4 Methodology 
 

4.1 Research design  
 

Definitions and assumptions  

 

Bicycles were defined as any vehicle that requires the user to pedal. This includes 

electric bicycles with electric support up to 25 km/h, and speed pedelecs, with 

support up to 45 km/h.  

Bicycle sharing systems were not considered in the literature review. In the 

Province of Antwerp, only the city of Antwerp has a bicycle sharing scheme, 

together with a few municipalities that offer Mobit or Blue-bike (Blue-bike, 2019; 

Mobit, 2019). Since bicycle counts do not make a distinction between privately-

owned bicycles and other types of bicycles, sharing stations were presented to the 

LUR model.   

Focus area 

 

This study focused on Flanders without the Brussels Capital Region. The LUR model 

was developed using Province of Antwerp’s bicycle count data (Provincie 

Antwerpen, 2019a). After finishing the model, its performance was compared with 

bicycle count data from the provinces of Antwerp and Flemish Brabant, using data 

retrieved from Dataplatform Fiets (Dataplatform fiets, 2019). 

 

Figure 1. Province of Antwerp's Fietsbarometer open data platform (Provincie Antwerpen, 
2019a). 
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4.2 Procedure  
 

Literature review  

 

Research questions 1 to 4 fully or partially relied on acquiring information from the 

literature. These questions were answered through a literature review, in which 

the exploratory literature review from the plan of approach was expanded. 

Literature was retrieved using mainly Hasselt University library’s online platform.  

The following search strings were used to find BE characteristics that influence 

bicycle use: bicycle determinants, bicycle use determinants, bicycle built 

environment, land use bicycle, environmental characteristics bicycle use, and built 

environment characteristics bicycle use. Results concerning bicycle sharing 

systems were filtered out. The interpretation of BE characteristics for this study 

was rather broad. Features such as educational status or age of the population 

were considered BE characteristics as well. For each sub variable, a hypothesis 

was mentioned whether the influence on bicycle use will be positive or negative. 

It was based on the papers the variable was mentioned in. 

To find literature on LUR modeling and four step models, the following search 

strings were used: land use regression model, air quality modeling, and four-step 

model. Additionally, Google Scholar was used with the search string land use 

regression. These papers were supplemented with papers from the reference lists 

of the found papers, papers that were already known, and papers provided by the 

promotor and co-promotor of the master’s thesis. 

Data collection  

 

Both dependent (bicycle count data) and independent (BE characteristics – land 

use variables) GIS-compatible data had to be collected. These data sets were 

searched for on websites of federal (Belgian), regional (Flemish) or other 

governmental institutions, as well as through search strings in Google. 

Model development  

 

Model development followed the approach outlined by Beelen et al. For the 

ESCAPE-project, Beelen et al. developed LUR models to explain differences in air 

pollution levels. Beelen et al. was cited 396 times and was therefore considered a 

well-suited approach for this study (Beelen et al., 2013). 

To develop the model, the bicycle count data had to be standardized first. Land 

use variables had to be calculated, using buffers and intersect functions in GIS. To 

prevent overfitting, the land use data had to be cleaned and checked for 

correlations.  

Next, a linear regression model was developed. Starting with zero variables and 

adding one variable with each iteration, a variable was added to the model if it 

yielded the highest increase in adjusted R². If, after n iterations, the model’s 
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adjusted R² did not increase with more than 1%, no more variables were added 

and the estimates (the coefficients and intercept) were calculated. The estimates 

had to be statistically significant at 95%. If not, these variables were removed 

from the model and the estimates were calculated again, until each variable in the 

model was significant at 95% (Beelen et al., 2013).  

 

Figure 2. Schematic overview of the study. 
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4.3 Data  
 

Dependent variables: bicycle count data  

 

Because of time restrictions, the study relied on existing data. No data were 

measured specifically for the purpose of this study. Two main sets of data were 

collected: the dependent data, which are the bicycle counts, and the independent 

data, which are the BE characteristics or land use variables.  

Two sets of bicycle counts were retrieved; one for developing the model and one 

for the external validation of the model. The development of the model relied on 

data from the Province of Antwerp. Since 2015, in collaboration with its cities and 

municipalities, the province collects bicycle count data through a number of 

permanent counters. For 2019, data from 20 permanent counters were available, 

as shown in Figure 3.  

 
Figure 3. Permanent counting points 
available for this study. 

 
Figure 4. All counting points available for 
this study. 

For each counting point, the average number of cyclists in both directions for each 

day of the week was available for each month of the year. As stated in the 

introduction on page 14, a minimum of 20 locations is required. Moreover, Figure 

3 shows that, although they are equally spread throughout the province, the 

density of locations is rather low. Therefore, additional data were collected, from 

11 temporary counting points. Also, bicycle counts from 6 permanent bicycle 

counters in the city of Antwerp were retrieved.  

The bicycle count data collection scheme performed by the Province of Antwerp 

was a benchmark in Europe when it started in 2014. They use both temporal and 

permanent counting methods and they collect both functional and recreational 

bicycle data. The project is spread throughout the whole province (Provincie 

Antwerpen, 2014).  

The permanent counters count bicycle traffic 24 hours per day and seven days per 

week. Optical fiber technology is used. The temporal counters use counting hoses, 

and in each municipality it is aimed to perform counts on three locations. These 

locations are strategically chosen and are situated on different routes of the 

Regional Functional Bike network, as well as on different types of infrastructure 

(Provincie Antwerpen, 2014).  
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For the external validation, another set of bicycle counts had to be obtained. 

Dataplatform fiets collects bicycle count data all over Flanders, and its latest data 

set dates from 2018. This data set contains 197 counting points, spread over 

Flanders (Dataplatform fiets, 2019).  

Independent variables: built environment characteristics  

 

Based on the literature review, data were collected regarding built environment in 

Flanders. Seven sources provided these data. Most of them were publicly available 

on websites of governmental institutions. Data that could not be found on 

governmental websites, were provided by Open Street Map (OSM). OSM is an open 

source platform, containing information that is fully provided by volunteers 

(OpenStreetMap, 2019).  
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4.4 Data analysis  
 

Bicycle count data standardization 

 

The basic dependent variable for the development of the model would be the 

number of cyclists in both directions, on an average day of the year, regardless of 

week or weekend days. Thus, for each day in 2019, the number of cyclists per 

counting point had to be calculated. A distinction was made between the 

permanent counting points and the temporary counting points. Permanent 

counting points had counted cyclists each day of the year, whereas temporary 

counting points only counted during a specific period. 

The average number of cyclists for each day of the week, for each month was 

available for 26 permanent counting points in 2019. Therefore, there were bicycle 

counts for each day of 12 average weeks. Each day in every month of 2019 was 

assigned the corresponding number of cyclists. For example, January 2019 had 

four Mondays, so every Monday in January had the same number of cyclists. Then, 

the yearly average number of cyclists for each counting point was calculated. Also, 

the median for each day of the year was calculated over all counting points.  

 

Figure 5. Standardization for permanent counting points. 

In addition to the counting points in the paragraph above, there were also 11 

temporary counting points. The data provided were the number of cyclists for the 

specific days counting took place. For each counting point, the average daily 

number of cyclists for the counting period was calculated. Also, the average for 

the short temporary period of counting was calculated from the daily medians of 

the permanent counting points. This value was then divided by the yearly average 

median. This yielded a factor that indicated by how much the temporary counting 

period over- or underestimated the yearly number of cyclists. Finally, the average 

daily number of cyclists for each temporary counting point was divided by this 

factor. Now, each temporary counting point had a standardized yearly average 

daily number of cyclists.  
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Figure 6. Standardization for temporary counting points. 

Calculating land use variables  

 

The land use variables were calculated using QGIS. Around each counting point, 7 

buffers were created with sizes (radii) of 100, 300, 500, 1000, 2000, 4000, and 

6000 meters. Through the intersect function, the value of each variable within a 

certain buffer distance of the counting point was determined.  

 

Figure 7. Seven buffers were created around each counting point. 
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Data cleaning  

 

To prevent overfitting, some variables were omitted. If a variable had ‘0’ as value 

for more than 32 of the 37 counting points, the value was omitted. Also, incomplete 

data sets were removed from the variables list.  

Although first included in the variables list, variables regarding ethnicity were 

removed. The literature identified ethnicity as possibly of influence on bicycle 

rates. However, this literature is mainly based on large American cities, where 

ethnic distinctions between neighborhoods are larger than in Flanders. This study 

did not have enough counting points to clarify this distinction. Moreover, the 

percentage of inhabitants could be a proxy for urbanization.  

Correlation between independent variables  

 

A correlation matrix of all variables, including the number of cyclists, was 

generated in R. Variables that correlated more than 95% with each other, were 

considered as measuring the same thing. If two variables correlated more than 

95% with each other, they were checked for their correlation with the number of 

cyclists. The one that correlated least with the number of cyclists, was removed.  

After this first check for correlation, within-category correlation was checked for. 

The remaining variables were divided into a number of categories. These 

categories were determined subjectively, and were rather broad. For each 

category, the variable that correlated most with the number of cyclists was 

selected. This variable was the significant variable for its category. Then, each 

variable in each category that correlated for more than 60% with the significant 

variable, was removed. Henderson et al. (2007) used a similar technique 

(Henderson et al., 2007). 

The remaining variables were all presented to the model. 

Model development  

 

The model was developed in R, following the supervised linear forward regression 

method as applied by Beelen et al. This method develops the model bottom-up, 

starting without any variables and adding a new variable with each iteration. After 

each iteration, a variable was added to the model if 1) its slope corresponded to 

the slope mentioned in the hypothesis; and 2) it had the highest adjusted R². This 

was repeated as long as the increase in adjusted R² was higher than 1%. Variables 

that entered the model, were still presented to the model in different buffer sizes 

in the following iterations. At the point where no additional variables were added, 

the significance of each variable was checked. Variables that were not statistically 

significant at 95% were omitted. The coefficients of each variable were then 

calculated again. This was repeated until only the significant variables remained 

(Beelen et al., 2013). 

Two regression analysis checks were performed. Cook’s D indicates the counting 

points that strongly influence the model. Counting points should not have a Cook’s 
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D higher than 1. The Variance Inflation Factors (VIF) were calculated as well, and 

these should not exceed 3 (Beelen et al., 2013).  

One counting point was situated close to the Belgian-Dutch border. Since the 

variables that were used to develop the model were based on Belgian or Flemish 

data sets, no Dutch data were included. As only a small part of each of the seven 

buffers was situated on the Belgian side of the border, the model was developed 

again without this counting point. 

 

Figure 8. Approximately 2/3 of the buffers are situated on the Dutch side of the border. 

This redevelopment of the model can be considered a sensitivity test, which would 

check whether a model developed without this counting point would differ from 

the initial model. There were no new checks for correlation, the 36 remaining 

counting points and their variables were immediately offered to the model. The 

same procedure of model development was followed.  

Leave-one-out cross validation  

 

Evaluation of the model happened through leave-one-out cross validation and 

external validation. Leave-one-out cross validation happens with the data set the 

model has been developed with. Leaving out one counting point at a time, the 

parameter estimates (coefficients and intercept) were estimated again. With these 

new estimates, the number of cyclists was calculated for the point that was left 

out. This was repeated 37 times, leaving another counting point out each time. 
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External validation  

 

External validation is the method where the model’s performance is tested on an 

external data set, in this case the 197 counting points from Dataplatfom Fiets. To 

avoid coincidental over- or undercounts, due to meteorological circumstances for 

example, only those points that had counted for 14 days or more were used for 

the external validation. This resulted in 83 counting points, all located in the 

provinces of Antwerp and Flemish Brabant, as shown in Figure 9. 

 

Figure 9. 83 Counting points were used for external validation. 

The bicycle count data were standardized following the same method described on 

pages 24 and 25, and with the same permanent counting points as described there. 

Because these counting points are only situated in the province of Antwerp and 

date from 2019, external validation happened with both raw and standardized 

data. By doing so, R² from both data sets could be checked. Since external 

validation consists of an estimation of bicycle numbers, it could impossibly result 

in negative values. Therefore, the minimum number of cyclists was fixed on the 

lowest measure minus 50%. The values for each counting point were estimated by 

filling in the model’s equation with the values of the counting point’s variables. 

External validation tests both the performance of the model and its transferability. 

To make a distinction between these two, the counting points from the province of 

Antwerp and those from the province of Flemish Brabant were considered two 

distinctive data sets after the general external validation. The estimated values 

remained equal to those in the general external validation. R² was calculated for 
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both data sets, with the one from the province of Antwerp describing the 

performance of the model and the one from the province of Flemish Brabant 

describing the model’s transferability. This was done with the standardized data 

set.  

Software 

 

Analyses of the data, which is mainly data cleaning and preparation and the 

development of the model, took place mainly using three programs.  

To generate the values for each BE characteristic variable, QGIS was used. QGIS 

is geographic information system software and allows to perform spatial analyses 

of data.  

The development of the model was done through R. R is programming software, 

and a script was used to develop the model using the supervised forward 

regression method.  

All results and data sets were saved and cleaned in Excel spreadsheets. Simple 

calculations were done in Excel as well.  

 

Figure 10. Example of analysis in GIS. 
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5 Literature review  
 

5.1 Context  
 

A great share of the literature on BE characteristics influencing bicycle traffic was 

published in the US. Together with Australia, the cycling culture in this country 

strongly differs from the one in (Western) Europe. In Europe, cycling as a means 

of commuting is very common, whereas in the US and Australia cycling is more 

popular as a means of recreation. This means that some findings from the 

literature have to be interpreted with caution (Heinen et al., 2010; Moudon et al., 

2005; Rietveld & Daniel, 2004).  

5.2 Built environment characteristics 
  

In total, 30 papers were reviewed concerning BE characteristics. Most of them 

identify factors that significantly influence bicycle use through statistical analyses 

or models. Three review papers were consulted as well. North America was the 

study area in the majority of the consulted works, followed by Europe. Three 

papers had a study area in Australia, one in South America and one in China. The 

study area is important because, as stated above, cycling cultures strongly differ 

between countries and continents.  

Table 1 gives an overview of the results from the literature. Table 2 summarizes 

all significant variables mentioned in Table 1. They are categorized in variables 

and sub variables. The significant variables are related to land use and urban 

spatial structure, bicycle network, relative position with respect to cars, personal 

safety, traffic safety, motorized vehicle’s network, parking, socio-demographic 

characteristics, the presence of public transport, public space, cycling culture, and 

cycling policies.  

Most variables are mentioned by more than one paper. Destination accessibility 

and trip length is the sub variable that was mentioned by the highest number of 

authors. It has a significant influence on bicycle use in 11 papers. This sub variable 

is categorized under land use and urban spatial structure, since destination 

accessibility is a direct derivative of land use planning.  

For some sub variables, the hypothesis is inconclusive (+/-), meaning that the 

variable had different effects in different papers.  For example, Rietveld and Daniel 

(2004) state that City size can have both positive and negative effects on bicycle 

use in The Netherlands. Vandenbulcke et al. (2011) however, finds that the 

number of cyclists is highest in the largest towns in Belgium.  
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Table 1. Overview of the consulted literature in chronological order. 

Paper Type Context/Setting Data sample Significant factors Notes 

(Rietveld & 

Daniel, 2004) 

Paper based 

on bivariate 

and 

multivariate 

analyses 

103 Dutch 

municipalities 

Bicycle use Number of stops cyclists have to 

make, road use hindrances, 

relative position with respect to 

cars, travel time (spatial 

structure, adequacy cycling 

infrastructure, detours, waiting 

time at crossings), physical needs 

and comfort (quality of 

infrastructure, weather, flatness 

of surface), traffic safety, risk of 

theft or vandalism, parking cost, 

personal security. 

Most of the inner-

municipality variation in 

bicycle use is related to 

physical aspects such as 

altitude differences and city 

size. Cycling is mainly 

considered as a recreational 

tool in the USA. Cycling is 

determined by culture – 

immigrants do not use the 

bicycle as often as native 

people from the Netherlands. 

(Moudon et 

al., 2005) 

Paper based 

on a model 

Urbanized Kings 

County, 

Washington 

Cycling 

behavior data 

Presence of agglomerations of 

offices, clinics/hospitals, and fast 

food restaurants. 

Cycling happens more often 

for recreational purposes 

than for transportation. 

Decision to cycle rests largely 

on personal and not on 

environmental factors. Bike 

lanes, traffic conditions and 

street connectivity remain 

insignificant. 

(Hunt & 

Abraham, 

2007) 

Paper based 

on a model 

Edmonton, 

Canada 

Stated 

preference 

questionnaire 

with current 

cyclists 

Trip length, cycling facilities 

(mixed traffic, lanes, paths), 

secure parking. 

 

(Parkin et al., 

2008) 

Paper based 

on a logistic 

regression 

model 

8.800 Welsh 

electoral wards 

Whole 

population  

Physical condition of the highway, 

rainfall, temperature, hilliness, 

proportion of off-road bicycle 

routes, car ownership.  

Cultural norms with respect 

to cycling may be different 

across ethnic groups within 

society. 
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Table 1 (continued). 

(Heinen et al., 

2010) 

Review   Distance, function mixture, 

storage facilities, block size and 

density, presence of bicycle 

infrastructure and its continuity, 

traffic lights and stop signs, land 

use, parking facilities, showers at 

work, weather, car ownership, 

bicycle ownership, adjacent car 

parking, hilliness. 

Cycling for commuting is 

likely to be influenced by 

other determinants than 

cycling for recreational 

purposes 

(Owen et al., 

2010) 

Paper based 

on logistic 

regression 

models 

Adelaide, 

Australia and 

Ghent, Belgium 

Objectively 

measured data 

from Adelaide, 

perceived data 

from Ghent 

Gender, neighborhood 

walkability, employment. 

Living in a high-walkable 

neighborhood was associated 

with significantly higher odds 

of bicycle use for transport in 

both cities 

(Pucher et al., 

2010) 

Review   Overall bikeability measures, on-

road bicycle lanes, two-way travel 

on one-way streets, shared 

bus/bike lanes, off-street paths, 

signed bicycle routes, bicycle 

boulevards, cycle tracks, colored 

lanes, shared lane markings, bike 

boxes, bicycle phases – traffic 

signals, maintenance of facilities, 

wayfinding signage, techniques to 

shorten cyclists’ routes, traffic 

calming, home zones, car-free 

zones, complete streets, bike 

parking, showers at workplaces, 

bicycle stations. 

 

(Winters et 

al., 2010) 

Paper based 

on a model 

Metro Vancouver, 

Canada 

Bike and car 

trips by adults 

Topography, intersection density, 

highway, arterial road, road 

markings or signage for cyclists, 

traffic calming, cyclist-activated 

lights, density, land use mix. 
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Table 1 (continued). 

(Kirner 

Providelo & da 

Penha 

Sanches, 

2011) 

Paper based 

on focus 

group 

Rio Claro, Sao 

Paulo, Brazil 

Focus group Lane width, motor vehicle speed, 

visibility at intersections, 

presence of intersections, street 

trees. 

 

(Vandenbulcke 

et al., 2011) 

Paper based 

on a model 

The 589 

municipalities in 

Belgium 

Bicycle use Relief, traffic volumes, bike 

accidents, town size, distance 

travelled, demographic and socio-

economic determinants (age, 

income, gender, education, family 

commitments), cultural, societal 

and environmental determinants 

(weather, urban spatial structure, 

infrastructure, hilliness, 

population and job densities, 

connectivity), policy-related 

determinants (land use and 

transport planning, pro-cycling 

policies). 

More cycling in one 

municipality can stimulate 

cycling in neighboring 

municipalities. Increased 

safety is often valued higher 

by cyclists than other factors. 

Heavy traffic does not have 

an influence on cycling in 

Flanders, because many 

cyclists create high visibility 

and feeling of security 

(Buehler & 

Pucher, 2012) 

Paper based 

on statistical 

analyses  

90 of the 100 

largest US cities 

Dataset on 

length of bike 

lanes and paths  

Bike lane supply, bike path 

supply, cycling safety, college 

students, car access, sprawl 

index, gasoline price. 

Percentage of college 

students in the city is 

significant predictor of bike 

commuting. There is no 

statistically significant 

difference between paths and 

lanes 

(Sallis et al., 

2013) 

Paper based 

on 

multivariable 

models 

Seattle, 

Washington and 

Baltimore, 

Maryland, USA 

Survey 

conducted on 

1780 adults 

(aged 20-65) 

Region, age, vehicle ownership, 

BMI, ethnicity, education, marital 

status, land use mix, 

pedestrian/traffic safety. 
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Table 1 (continued). 

(Zhao, 2013) Paper based 

on statistical 

analyses 

Beijing, China Household 

interview 

survey 

Destination accessibility, urban 

design at the community level, 

diversity of land use, number of 

exclusive bicycle lanes, number of 

street crossings, number of 

mainroad or expressway 

crossings. 

Number of street crossings 

has more significant effects 

on cycling than street 

density. Residential density, 

one of the most important 

factors affecting cycling in 

Europe and North America, 

has no significant effects in 

Beijing. 

(Cui et al., 

2014) 

Paper based 

on models 

Maryland, USA Data from 

national, state 

and local 

planning 

organizations 

Population-, household-, workers-

,employment density, school 

enrollment, number of retail 

locations, number of recreational 

locations, congestion and free 

flow speed, Amtrak presence. 

When land use diversity 

increases, especially with 

transit stations, grocery 

stores, and retail stores, 

people tend to rely on non-

automobile modes more 

frequently. 

(Broberg & 

Sarjala, 2015) 

Paper based 

on a model 

Helsinki region School 

journeys 

Density of major roads, 

connectivity, intersection density, 

proportion of land covered by 

single-family housing, population 

and housing densities, proximity, 

traffic safety, car ownership. 

 

(Heesch et al., 

2015) 

Paper based 

on statistical 

analyses 

Brisbane, 

Australia 

Study of 

physical 

activity, 

sedentary 

behavior, and 

health in adults 

aged 40-65 

Disadvantagedness level of the 

neighborhood, network distance, 

bike path length, tree coverage, 

street lights, network distance to 

coast, connectivity. 
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Table 1 (continued). 

(Piatkowski & 

Marshall, 

2015) 

Paper based 

on a model  

Denver, 

Colorado, USA 

Survey data Gender, age, race, household 

size, education level, household 

income level, car availability, trip 

distance, link-to-node ratio, 

intersection density, safety and 

infrastructure, security and 

comfort, relative convenience. 

Barriers to cycling are 

different for people who 

already cycle compared to 

those who do not cycle yet, 

but are interested. 

Infrastructure improvements 

and presence of bicycle 

facilities is frequently 

associated with increased 

bicycle commuting.  

(Schoner et 

al., 2015) 

Paper based 

on a model 

City center and 

suburban 

neighborhoods in 

the Minneapolis 

area, USA 

Survey data Job accessibility, commute 

distance, employer’s parking 

policy, bike routes beyond the 

neighborhood, bike lanes. 

Establishing causality 

between travel behavior and 

the built environment is 

challenging. Bicycle 

infrastructure might work as 

a magnet rather than a 

catalyst: people who are 

motivated to cycle, tend to 

move to places with bicycle 

infrastructure.  

(Buehler & 

Dill, 2016) 

Review   Bikeway networks, type of cycling 

infrastructure (separated tracks 

or bike lanes), traffic volume, car 

traffic speeds, car parking, 

intersections, bicycle-specific 

traffic control devices (bike 

boxes, bike traffic signals, bicycle 

signal activation. 
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Table 1 (continued). 

(Mertens et 

al., 2016) 

Paper based 

on conjoint 

analysis 

 1950 middle-

aged adults’ 

answers to a 

web-based 

questionnaire 

Separated cycle paths, speed 

limit, traffic density, 

evenness of surface, 

vegetation, upkeep, 

walkability, connectivity, 

residential density, land use 

mix diversity, access to 

shops/services/work. 

Consistent relationships between 

macro scale factors (walkability, 

access to shops/services/work, 

degree of urbanization) and 

transport-related cycling in 

adults. Providing streets with 

separated cycle path increases 

appeal for cycling for transport. 

When a separated path is already 

present, comfort and aesthetic 

measures become more 

important 

(Zahabi et al., 

2016) 

Paper based 

on a model 

Montreal, Canada Automobile and 

bicycle trip 

information 

from OD-

surveys 

Bicycle infrastructure 

accessibility, age. 

Residential self-selection bias: 

people who like to cycle are more 

likely to choose to live in 

locations that are most amenable 

to cycling (i.e. with high 

population density), and the 

effect of built environment 

variables may also be capturing 

this self-selection 

(Chen et al., 

2017) 

Paper based 

on a model 

Seattle, 

Washington, USA 

Bicycle counts 

at 50 locations  

Land use, landscape 

(presence of water, hilliness), 

workplaces, bicycle 

infrastructure, neighborhood 

racial and age compositions, 

trip distance (city size, 

density, road connectivity, 

block size, destination 

accessibility, compact urban 

environment…), car related 

costs, amenities at 

destination, weather, season, 

peak travel hour, weekends. 

Built environment factors can be 

categorized as either functional, 

safety, or aesthetic-related. 

Majority of trips had 

recreational purpose. 
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Table 1 (continued). 

(Mertens et 

al., 2017) 

Cross-

sectional 

study 

Ghent (BE), 

Randstad (NL), 

Paris (FR), 

Budapest (H), 

London (UK) 

Data from 

online survey 

Traffic calming features, 

number of bicycle lanes, 

speed limit, trees, litter, age, 

gender, educational level. 

Two distinct dimensions of the 

physical environment: objective 

and perceived attributes 

(perceived attributes may be 

biased). Living in a neighborhood 

with more traffic calming features 

or fewer bicycle lanes was 

associated with being less likely 

to engage in cycling for transport.  

(Osama et al., 

2017) 

Paper based 

on a model 

134 Traffic 

Analysis Zones in 

Vancouver, 

Canada 

Land use and 

road facility 

data 

Length of bike network, bike 

network connectivity, bike 

network coverage, continuity, 

recreational bike networks, 

slope, bike network linearity, 

residential zoned areas, 

recreational zoned areas, 

arterial roads, collector roads. 

Cyclists are highly sensitive to 

distance.  

(Sun et al., 

2017) 

Paper based 

on a model 

Glasgow Cycling trips 

through Strava 

Metro app. 

Road length, road 

connectivity, residential land 

use, volume of motor 

vehicles. 

This paper focuses on 

recreational cycling. 

(Aziz et al., 

2018) 

Paper based 

on a model 

New York City, 

USA 

Regional 

Household 

Travel Survey 

data 

Gender, ethnicity, sidewalk 

width, total bike lane length, 

traffic safety, land use related 

to vacant lots; open space; 

parking facilities or industry. 

Three major elements in the built 

environment are transportation 

infrastructure, land use pattern, 

and urban design. Higher 

fractions of open and vacant land 

use decreases likelihood of using 

bike mode. Perception of traffic 

safety plays a significant role in 

mode choice decision. 
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Table 1 (continued). 

(Le et al., 

2018) 

Paper based 

on a model 

20 US 

metropolitan 

areas 

Bicycle and 

pedestrian 

counts from 

National Bicycle 

and Pedestrian 

Documentation 

Project 

Easy access to water, high 

job density, high rates of 

active commuting, bike lanes, 

shared lane markings, off-

street trails. 

 

(Cervero et 

al., 2019) 

Paper based 

on a model  

36 cities and 

towns in Britain 

Cycle trips, 

retrieved from 

UK Census 

Circuity, on-road stress, land 

use mix, landscape, cycling 

culture, weather and 

topography. 

 

There is no single factor, even in 

cities with remarkably high 

commuter cycling. 

(Sarjala, 

2019) 

Paper based 

on a model 

2 neighborhoods 

in Tampere, 

Finland 

73 commute 

routes 

Institutional land use, 

hilliness, intersection density, 

age of buildings, forests, 

height of buildings. 

Most significant associations are 

found mainly with the smallest 

buffer (15m). Intersections and 

long, steep slopes are to be 

avoided. Institutional land uses, 

slight hilliness, dwellings, forests 

, high buildings and variation in 

land use are preferred features 

along commute routes.  

(Weliwitiya et 

al., 2019) 

Paper based 

on 8 

generalized 

linear 

models 

Melbourne, 

Australia 

Bicycle access 

counts at 207 

metropolitan 

rail stations 

Train frequency, availability 

of secure bicycle parking, 

elevation, patronage, 

percentage of local roads, 

land use mix, bicycle crash 

count density. 
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Table 2. (Sub) variables found to be significant in the literature. 

Variable Sub variables Effect 

hypothesis 

Papers 

Land use and 

urban spatial 

structure 

Land use mix + (Cervero et al., 2019; Heinen et al., 2010; Mertens 

et al., 2016; Sallis et al., 2013; Vandenbulcke et al., 

2011; Weliwitiya et al., 2019; Winters et al., 2010; 

Zhao, 2013) 

 Job density + (Chen et al., 2017; Cui et al., 2014; Vandenbulcke 

et al., 2011) 

 Population density + (Broberg & Sarjala, 2015; Cui et al., 2014; Mertens 

et al., 2016; Osama et al., 2017; Vandenbulcke et 

al., 2011) 

 Residential zoned areas + (Broberg & Sarjala, 2015; Osama et al., 2017; 

Pucher et al., 2010; Sun et al., 2017) 

 Institutional land use + (Sarjala, 2019) 

 Destination accessibility & trip length + (Broberg & Sarjala, 2015; Chen et al., 2017; Cui et 

al., 2014; Hunt & Abraham, 2007; Mertens et al., 

2016; Moudon et al., 2005; Piatkowski & Marshall, 

2015; Rietveld & Daniel, 2004; Schoner et al., 2015; 

Vandenbulcke et al., 2011; Zhao, 2013) 

 Land use related to vacant lots - (Aziz et al., 2018) 

 Land use related to industry - (Aziz et al., 2018) 

 Land use related to open space - (Aziz et al., 2018) 

 Land use related to parking facilities - (Aziz et al., 2018) 

 City size +/- (Chen et al., 2017; Rietveld & Daniel, 2004; 

Vandenbulcke et al., 2011) 

 Density + (Buehler & Pucher, 2012; Chen et al., 2017; Heinen 

et al., 2010; Winters et al., 2010) 

 Block size & intersection density +/- (Broberg & Sarjala, 2015; Chen et al., 2017; Heinen 

et al., 2010; Piatkowski & Marshall, 2015; Sarjala, 

2019; Winters et al., 2010) 

 Building age - (Sarjala, 2019) 

 Building height +/- (Sarjala, 2019) 



41 
 

Table 2 (continued). 

Bicycle network Presence of bicycle infrastructure + (Buehler & Pucher, 2012; Chen et al., 2017; Heinen 

et al., 2010; Piatkowski & Marshall, 2015; 

Vandenbulcke et al., 2011; Winters et al., 2010; 

Zahabi et al., 2016) 

 Physical condition and maintenance of the 

infrastructure 

+ (Mertens et al., 2016; Parkin et al., 2008; Pucher et 

al., 2010; Rietveld & Daniel, 2004) 

 Hindrances in road use - (Rietveld & Daniel, 2004) 

 Length of bike network + (Aziz et al., 2018; Heesch et al., 2015; Osama et al., 

2017) 

 Circuity - (Cervero et al., 2019; Pucher et al., 2010; Rietveld & 

Daniel, 2004) 

 Continuity + (Buehler & Dill, 2016; Heinen et al., 2010; Osama et 

al., 2017) 

 Connectivity + (Broberg & Sarjala, 2015; Heesch et al., 2015; 

Mertens et al., 2016; Osama et al., 2017; Piatkowski 

& Marshall, 2015; Vandenbulcke et al., 2011) 

 Coverage + (Osama et al., 2017) 

 Linearity + (Osama et al., 2017) 

 Signed bicycle routes + (Pucher et al., 2010) 

 Bike routes beyond the neighborhood + (Schoner et al., 2015) 

 Distance to the coast - (Heesch et al., 2015) 

 Presence of a recreational bike network + (Osama et al., 2017) 

 Waiting time at crossings - (Rietveld & Daniel, 2004) 

 Number of stops cyclists have to make - (Heinen et al., 2010; Rietveld & Daniel, 2004) 

 Bike boxes + (Buehler & Dill, 2016; Pucher et al., 2010) 

 Bike traffic signals - (Buehler & Dill, 2016; Pucher et al., 2010) 

 Bike signal activation + (Buehler & Dill, 2016; Winters et al., 2010) 

 Bike parking facilities + (Heinen et al., 2010; Pucher et al., 2010; Weliwitiya 

et al., 2019) 

 Storage facilities + (Heinen et al., 2010) 

 Amenities at destination + (Chen et al., 2017) 
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Table 2 (continued). 

 Showers at destination + (Heinen et al., 2010; Pucher et al., 2010) 

Relative position 

with respect to 

cars 

Relative position with respect to cars +/- (Rietveld & Daniel, 2004) 

 Proportion of off-road bicycle routes + (Parkin et al., 2008) 

 Separated tracks & paths + (Buehler & Dill, 2016; Buehler & Pucher, 2012; 

Heesch et al., 2015; Hunt & Abraham, 2007; 

Mertens et al., 2016; Pucher et al., 2010) 

 Bike lanes + (Buehler & Dill, 2016; Buehler & Pucher, 2012; Hunt 

& Abraham, 2007; Mertens et al., 2016; Pucher et 

al., 2010; Schoner et al., 2015; Zhao, 2013) 

 Bike boulevards + (Pucher et al., 2010) 

 Shared bus/bike lanes + (Pucher et al., 2010) 

 Mixed traffic - (Hunt & Abraham, 2007) 

 Two-way travel on one-way streets + (Pucher et al., 2010) 

 Shared lane markings + (Pucher et al., 2010) 

 Colored lanes + (Pucher et al., 2010) 

Personal safety Personal safety + (Piatkowski & Marshall, 2015; Rietveld & Daniel, 

2004) 

 Risk of theft - (Hunt & Abraham, 2007; Rietveld & Daniel, 2004) 

 Risk of vandalism - (Rietveld & Daniel, 2004) 

Traffic safety Traffic safety + (Aziz et al., 2018; Broberg & Sarjala, 2015; Buehler 

& Pucher, 2012; Piatkowski & Marshall, 2015; 

Rietveld & Daniel, 2004; Sallis et al., 2013) 

 On-road stress - (Cervero et al., 2019) 

 Bicycle accidents - (Vandenbulcke et al., 2011; Weliwitiya et al., 2019) 

 Visibility at intersections + (Kirner Providelo & da Penha Sanches, 2011) 

Motorized vehicles’ 

network 

Road connectivity +/- (Chen et al., 2017; Sun et al., 2017) 

 Road length +/- (Sun et al., 2017) 

 Highways - (Broberg & Sarjala, 2015; Winters et al., 2010) 
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Table 2 (continued). 

 Arterial roads - (Broberg & Sarjala, 2015; Osama et al., 2017; 

Winters et al., 2010) 

 Collector roads - (Broberg & Sarjala, 2015; Osama et al., 2017) 

 Percentage of local roads +/- (Weliwitiya et al., 2019) 

 Intersections + (Buehler & Dill, 2016; Kirner Providelo & da Penha 

Sanches, 2011; Zhao, 2013) 

 Mainroad or expressway crossings - (Zhao, 2013) 

 Lane width - (Kirner Providelo & da Penha Sanches, 2011) 

 Car traffic speeds +/- (Buehler & Dill, 2016; Kirner Providelo & da Penha 

Sanches, 2011; Mertens et al., 2016, 2017) 

 Congestion speeds +/- (Cui et al., 2014) 

 Free flow speeds +/- (Cui et al., 2014) 

 Traffic calming features + (Mertens et al., 2017; Pucher et al., 2010) 

 Car related costs + (Chen et al., 2017) 

 Gasoline price  + (Buehler & Pucher, 2012) 

 Traffic volumes - (Buehler & Dill, 2016; Sun et al., 2017; 

Vandenbulcke et al., 2011) 

 Traffic density - (Mertens et al., 2016) 

Parking Car Parking - (Buehler & Dill, 2016) 

 Adjacent car parking - (Heinen et al., 2010) 

 Parking cost + (Heinen et al., 2010) 

 Employer’s parking policy  +/- (Schoner et al., 2015) 

Socio-

demographic 

Ethnicity +/- (Aziz et al., 2018; Chen et al., 2017; Piatkowski & 

Marshall, 2015; Sallis et al., 2013) 

 Age +/- (Chen et al., 2017; Mertens et al., 2017; Piatkowski 

& Marshall, 2015; Sallis et al., 2013; Vandenbulcke 

et al., 2011; Zahabi et al., 2016) 

 Income +/- (Piatkowski & Marshall, 2015; Vandenbulcke et al., 

2011) 

 



44 
 

Table 2 (continued). 

 Gender +/- (Aziz et al., 2018; Mertens et al., 2017; Owen et al., 

2010; Piatkowski & Marshall, 2015; Vandenbulcke et 

al., 2011) 

 Body Mass Index - (Sallis et al., 2013) 

 Education +/- (Cui et al., 2014; Mertens et al., 2017; Piatkowski & 

Marshall, 2015; Sallis et al., 2013; Vandenbulcke et 

al., 2011) 

 Marital status +/- (Sallis et al., 2013) 

 Family commitments - (Vandenbulcke et al., 2011) 

 Household size + (Piatkowski & Marshall, 2015) 

 Employment +/- (Owen et al., 2010) 

 Number of college students + (Buehler & Pucher, 2012) 

 Car ownership - (Broberg & Sarjala, 2015; Heinen et al., 2010; 

Parkin et al., 2008; Sallis et al., 2013) 

 Car access - (Buehler & Pucher, 2012; Piatkowski & Marshall, 

2015) 

 Bicycle ownership + (Heinen et al., 2010) 

 Neighborhood disadvantagedness + (Heesch et al., 2015) 

Presence of PT Amtrak presence (long-distance trains) - (Cui et al., 2014) 

 Train frequency + (Weliwitiya et al., 2019) 

Public space Weather and season +/- (Cervero et al., 2019; Chen et al., 2017; Heinen et 

al., 2010; Parkin et al., 2008; Rietveld & Daniel, 

2004; Vandenbulcke et al., 2011) 

 Topography and hilliness - (Cervero et al., 2019; Heinen et al., 2010; Osama et 

al., 2017; Parkin et al., 2008; Sarjala, 2019; 

Vandenbulcke et al., 2011; Weliwitiya et al., 2019; 

Winters et al., 2010) 

 Presence of water + (Chen et al., 2017) 

 Urban design + (Zhao, 2013) 

 Vegetation + (Heesch et al., 2015; Kirner Providelo & da Penha 

Sanches, 2011; Mertens et al., 2016, 2017) 
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Table 2 (continued). 

 Street lights + (Heesch et al., 2015) 

 Upkeep + (Mertens et al., 2016, 2017) 

 Complete streets + (Pucher et al., 2010) 

 Car free zones + (Pucher et al., 2010) 

 Bikeability + (Pucher et al., 2010) 

 Walkability + (Mertens et al., 2016; Owen et al., 2010) 

 Sidewalk width + (Aziz et al., 2018) 

 Forests + (Sarjala, 2019) 

Cycling culture Cycling culture + (Cervero et al., 2019) 

Policies Pro-cycling policies + (Vandenbulcke et al., 2011) 

 

107 BE characteristics had a possible significant influence on bicycle use, according to the literature. They are listed in Table 

2. 51 of these 107 so-called predictors were available in Flanders and the province of Antwerp. They are listed in Table 3, which 

is quite similar to Table 2. Table 3 mentions the data source, the predictor and its hypothesized effect, together with the 

corresponding variable that was available for developing the model.  
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Table 3. Predictor variables from Table 2 and corresponding variables available for Flanders and the Province of Antwerp. 

Source Predictor Effect Available variables Notes 

OSM Land use mix + Different types of land use  

OSM Job density + Points of interest; industrial land use  

Geo.be Population density + Inhabitants per statistical sector   

OSM Residential zoned areas + Residential land use   

OSM Destination accessibility & trip length + Points of interest  

OSM Land use related to industry - Industrial land use  

OSM Land use related to parking - Parking facilities  

OSM Density + Buildings  

OSM Block size and intersection density +/- Intersections  

Statbel Building age - Percentage of buildings built after 

2001, after 1991, before 1991 

Data on municipal 

level. 2011 data. 

OSM, 

Geopunt 

Length of bike network + Cycle paths, lanes, tracks  

OSM Connectivity + Intersections  

Geopunt Separated tracks & paths + Separated tracks  Only for AWV bicycle 

infrastructure 

Geopunt Bike lanes + Tracks that are not separated Only for AWV bicycle 

infrastructure 

AWV Traffic safety - Locations with most severe accidents  

OSM Road connectivity +/- Intersections  

OSM Road length +/- Roads  

OSM Highways - Highways  

OSM Intersections + Intersections  

Geopunt Car traffic speeds +/- Speed limit for each road  

Geopunt Traffic volumes and density - Road categories Only for AWV roads 
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Table 3 (continued). 

OSM Car parking - Parking facilities  

Statbel Ethnicity +/- People immigrated after 1980; 

foreigners; people born abroad 

Data on municipal 

level. 2011 data. 

Statbel Age +/- Average age of population Data on municipal 

level. 2011 data. 

Statbel Income +/- Average income Data on municipal 

level. 

Statbel Gender +/- Ratio female/male Data on municipal 

level. 2011 data. 

Statbel Education +/- People older than 20 with high degree Data on municipal 

level. 2011 data.  

Statbel Marital status +/- Married people; People with 

registered partnerships 

Data on municipal 

level. 2011 data.  

Statbel Household size + Average household size  Data on municipal 

level. 2011 data. 

Statbel Employment +/- Percentage of employees Data on municipal 

level. 2011 data.  

OSM Number of college students + Schools, universities, colleges  

OSM Amtrak presence (Long distance trains) + Train stations  

OSM Topography and hilliness - Bridges; tunnels   

Corine Presence of water + Water bodies  

Corine Vegetation + Vegetation types  

OSM Street lights  + Street lamps  

OSM  Car free zones +  Pedestrian-only streets  

Corine Forests + Forests  

Stad 

Antwerpen 

Bike sharing + Bike sharing stations  
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5.3 LUR modeling  
 

Land Use Regression (LUR) modeling is a commonly used technique to predict air 

pollution concentrations. It is often used in epidemiological studies and is based 

on a number of predictor variables, which are usually traffic-, population- and land 

use-related. To obtain these variables, a GIS is used. A LUR was first used in the 

SAVIAH study by Briggs et al. (1997), who called the technique regression 

mapping. The objective was to predict respiratory diseases in children, based on 

air pollution concentrations. Regression mapping seems to be a more suitable 

name for the technique, as the predictor variables that are used are not always 

related to land use (Boniardi et al., 2019; Briggs et al., 1997; Dons et al., 2013b; 

Hoek et al., 2008; Int Panis, 2018). 

LUR models have become very popular in the past years, thanks to the 

developments in Geographic Information Systems (GIS). The SAVIAH study was 

the first one to compile air pollution-related variables, such as traffic measures, 

population density, land use and altitude variables, in a GIS. Using various buffers 

and linear regression, the variables were calculated and the model was developed 

(Briggs et al., 1997; Hoek et al., 2008).   

As stated before, a LUR consists of a number of steps, each of them is explained 

below. 

The first part of composing a LUR is data monitoring. Existing data have to be 

collected as input for the model. They are considered the dependent variables in 

the model. Either routine monitoring or purpose-designed monitoring can be used. 

Routine monitoring networks are existing networks that have been installed for 

another purpose than the study itself. In the case of bicycle counts, routine 

monitoring could exist of fixed counting devices that count bicycles continuously. 

Usually, routine networks lack density and cannot enable modelling of variability 

on small scales. Therefore, most studies monitor data for the specific purpose of 

the model. For bicycle counts, these are the typical installations with rubber hoses. 

An important advantage of purpose-designed monitoring is the fact that 

investigators can control the locations where they want to monitor the data. 

Disadvantages are the cost and limited temporal coverage of the data monitoring. 

In contrast to routine monitoring, purpose-designed monitoring typically happens 

during one to four periods of generally seven to 14 days (Hoek et al., 2008; Ryan 

& LeMasters, 2006). 

Most studies were based on between 20 and 100 monitoring sites. As the size of 

the city and population should be taken into account, 40 to 80 monitoring sites 

seems a reasonable number. However, the locations of the monitoring sites may 

be more important than the number of sites used, as the latter seems not to be 

correlated with the model R². Thus, data with very low or high numbers of cyclists 

should not be ignored, as they define the outcomes of the model (Hoek et al., 

2008; Int Panis, 2018; Ryan & LeMasters, 2006).  

The second step of composing a LUR model is the collection of predictor 

variables. They are considered the independent variables. For this report, this 

has happened in chapter 6.2. Initially, most studies start with a large set of 
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potential predictor variables, even up to 140 predictors. The final models however 

only contain a small number of these predictors (Hoek et al., 2008; Ryan & 

LeMasters, 2006).  

How these predictor variables are defined depends mainly on the availability of the 

data and the unique features of the study area. Potential problems with the 

collection of these data are the accessibility, completeness and precision of the 

predictor variables. Especially traffic intensity data often tend to be problematic to 

acquire. Often, they are not accessible, or if they are, only for major roads. This 

implies that counts have to be extrapolated along and between road links or that 

traffic models can be used to assign traffic counts to roads of which data are not 

available. In cases where traffic counts were completely unavailable, the length of 

specific road types has proved to be a suited alternative (Hoek et al., 2008; Ryan 

& LeMasters, 2006). 

When the predictor variables are obtained, they are usually computed using buffer 

functions in GIS. Doing so, the selection of the buffer size is critical, as it 

determines the amount of surrounding traffic, road length and land cover which 

may explain the variability of the dependent variable. It thus defines the 

performance of the model. Usually, the buffer radii are based on the decay of the 

modeled pollutant. (Hoek et al., 2008; Ryan & LeMasters, 2006).  

The third step is the actual development and validation of the model. To 

develop the model, most studies use linear regression techniques by constructing 

a regression equation based on the predictor variables. Some studies predefine 

the sign of the regression slopes for specific variables. This increases the 

applicability of the model beyond the investigation site. Some studies also use 

different predictors for different spatial scales (Briggs et al., 1997; Hoek et al., 

2008).  

The model validation itself is a crucial part of applying a LUR. It indicates how good 

the model predicts the values of the dependent variable. Most models consider 

annual average concentrations Two methods are commonly applied (Dons et al., 

2013b; Hoek et al., 2008; Meng Wang et al., 2012): 

• Leave-one-out cross-validation. With this type of validation, the model is 

developed for all sites except for one. The predicted values are then 

compared with the actual measured ones at the left-out site. After repeating 

this for all sites, the overall level of fit between the predicted and observed 

values is computed. The result can then be considered as a measure of 

model performance. 

• Hold-out validation: the group of monitoring sites is subdivided into a 

training data set, that will be used for the model development, and a smaller 

group of sites, that will be used for validation of the model. This enables 

less intensive computer processing, yet subdividing the sites a priori may 

be a disadvantage.  

• A third validation method can be to compare the LUR estimates with the 

data from fixed monitors (Int Panis, 2018). 

The last step is the application of the model. 
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Whether the models are transferable between different areas, will most likely 

depend on the availability of equivalent variables in these areas. Models may not 

be transferable between areas that have a different structure in terms of land use. 

In the SAVIAH study, a separate model was used for each city, based on the same 

features: traffic volume, land cover and topography predictors, and similar buffers 

(Briggs et al., 1997; Hoek et al., 2008). 

For air pollution (NO2) LUR models, the R² value, which explains the variation of 

the prediction model, is typically between 50 and 80%. A robust model is 

characterized by similar R² values for both the model and the cross-validation. In 

studies that compare LUR to other modelling methods, LUR typically has much 

higher R² than these other methods (Hoek et al., 2008; Ryan & LeMasters, 2006).  

Land Use Regression modeling is an empirical method, which means it can be 

readily adapted to local circumstances and availability. Studies that focus on a 

small spatial scale with little monitored data will benefit from applying LUR. Thus, 

they allow for the accounting for small scale variability in the dependent variable 

(Briggs et al., 1997; Ryan & LeMasters, 2006). 

LUR models have some limitations. Specifically for air pollutants, the ability to 

separate the different impacts of different pollutants is limited. Furthermore, LUR 

models may not be able to predict extremely local variations, but this is mainly 

related to the precision of the input data. Finally, the short temporal coverage of 

purpose-designed monitoring campaigns does not allow the precise calculation of 

absolute concentrations (Hoek et al., 2008). 

Comparison with a traditional four-step model 

 

In this study, bicycle counts will be forecasted using a LUR model. However, other 

methods exist to predict travel demand. The most commonly used is the traditional 

four-step travel demand model.  

A traditional four-step model, or gravity model, predicts traffic volumes. It is often 

used to support infrastructure decisions and consists of four unique steps. These 

steps are the trip generation, trip distribution, modal split and traffic assignment. 

Each step applies to a traffic analysis zone (TAZ). Trip generation determines the 

number of trips every TAZ produces or attracts, regardless of the travel mode. Trip 

distribution matches trip productions to trip attractions while considering both the 

time or cost of connections and the spatial distribution of these productions and 

attractions. The third step determines the travel mode that is used for each trip. 

Traffic assignment assigns trips to the networks of each mode. This step 

determines the routes that are taken (Anderson et al. , 2006; Clifton et al., 2016; 

Park et al., 2019).  

Existing travel patterns, obtained from surveys, deliver input for estimating the 

model. Calibration and validation happens by comparing the predicted trips to the 

actual travel patterns from the survey (Park et al., 2019).  

An important limitation of the four-step model are its TAZs. The model performs 

rather inaccurate on predicting trips within the same zone, as all trips in a zone 

depart from the TAZ’s centroid. This results in an aggregation bias where the data 
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set for each TAZ is aggregated and cannot be influenced by intrazonal land use or 

other characteristics (Clifton et al., 2016; Park et al., 2019). 

Similar to the LUR model that will be developed for this study, a four-step model 

is used to predict traffic volumes. Both methods consist of four steps of which 

some are rather similar. For both models, the first step, either data monitoring or 

trip generation, relies on existing data. Both models have to be validated using 

existing data.  

An important difference between four-step and LUR models is the spatial scale. 

Whereas four-step models apply to TAZs and are consequently spatially rather 

aggregated, LUR models can be applied to a very small scale. This makes the LUR 

method more suited for this study, as the aim is to predict bicycle counts on 

specific locations.  
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6 Results 
 

6.1 Data cleaning and preparation  
 

Bicycle count data were available for 26 permanent counting points and 11 

temporary counting points. Descriptive statistics of these measurements are 

shown in Table 4. The table also shows descriptive statistics for the different 

categories of counting points, both permanent and temporary. A distinction 

between bike highways, urban counting points and rural counting points was made 

as well. 32% of the counting points was located on a bicycle highway, while 46% 

of the counting points was located in a rural area.  

Table 4. Descriptive statistics of bicycle counts by category. 

Type  Variable Number (%) Min Max Average Median 

Overall  N 37 (100%) 113.03 2804.83 827.47 697.31 

Permanent N 26 (70%) 183.19 2804.83 858.41 676.73 

Temporary N 11 (30%) 113.03 1626.66 754.33 806.82 

Bike Hwy N 12 (32%) 473 1827.21 929.41 814.77 

Urban N 8 (22%) 463.19 2804.83 1349.05 1307.62 

Rural N 17 (46%) 113.03 1413.92 510.05 394.71 

 

Through buffering and the intersect function in QGIS, these 37 counting points 

received a value for each of the 294 land use variables. How to interpret these 

variables can be found in Table 18 on page 93. 

The variables were then cleaned to prevent overfitting of the model. 21 variables 

had ‘0’ as a value for more than 32 of the 37 counting points. These were mainly 

variables with small buffer sizes (100-500 m). Additionally, each of the 25 AWV 

bicycle infrastructure variables was omitted, as AWV only manages a small part of 

bicycle infrastructure in the province of Antwerp. Instead, cyclepath data from 

OSM were used. Finally, a road length variable was added with buffer sizes of 100, 

300, 500, 1000, 2000, 4000 and 6000 m. After this cleaning process, 224 variables 

remained.  

 

6.2 Correlation between independent variables  
 

After checking for variables that correlated at least 95% with each other, 135 

variables remained. All variables were then divided into five categories specifically 

chosen for this data set: Land use variables, Sociodemographic variables, 

Infrastructure variables, Collective mode variables, and Traffic variables. 

After omitting variables that correlated for 60% or more with the significant 

variable of a category, a total of 112 variables remained. Descriptive statistics of 

these variables are shown in Table 5. 
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Table 5. Descriptive statistics of independent variables (see Table 18 in appendix for the 
meaning of these variables). 

Variable Min Max Average Median 

l_cycleway100 0 644 312.24 290.00 

l_cycleway300 0 3618 1227.32 1256.00 

l_cycleway500 0 7392 2334.86 2205.00 

brdg_100 0 1 0.30 0 

brdg_300 0 1 0.54 1 

brdg_500 0 1 0.59 1 

brdg_1000 0 1 0.81 1 

tun1000 0 1 0.59 1 

zp500 0 3 0.27 0 

park300 0 36039 2368.05 0.00 

park500 0 207991 13831.70 0.00 

park1000 0 1035105 80363.49 38242.00 

park2000 0 1925456 276684.30 97381.00 

ind300 0 126733 10215.00 0.00 

ind500 0 210546 28886.00 0.00 

ind1000 0 873678 102488.00 10217.00 

ind2000 0 2785733 434939.00 169622.00 

ind4000 10781 7546295 2087532.00 1436021.00 

ind6000 392185 19017926 5399359.00 4222663.00 

resi100 0 31398 8999.60 0.00 

station1000 0 1 0.30 0.00 

station4000 0 7 2.35 2.00 

avg_popdens4000 191 2749 952.65 642.20 

agri100 0 31399 8977.40 0.00 

agri500 0 632146 207954.00 133564.00 

for500 0 651353 81271.00 0.00 

for1000 0 2310473 324622.00 0.00 

lowveg1000 0 2785209 358308.60 0.00 

water300 0 132940 17361.14 0.00 

water500 0 285614 52392.54 0.00 

water1000 0 978633 16453.16 0.00 

parking100 0 8511 422.70 0.00 

parking300 0 14208 2141.35 1096.00 

parking_b1000 0 2 0.16 0.00 

sch500 0 2 0.19 0.00 

sch1000 0 6 0.84 0.00 

sch2000 0 16 3.32 2.00 

sch6000 0 46 15.49 9.00 

h_edu2000 0 2 0.35 0.00 

h_edu4000 0 4 0.78 0.00 

h_edu6000 0 4 1.03 0.00 

jobs100 0 12 0.76 0.00 

poi100 0 12 1.24 0.00 

poi1000 1 1337 118.87 48.00 

int500 4 1328 392.00 276.00 

l_hwy1000 0 12684 1058.38 0.00 

prim300 0 1838 204.81 0.00 

prim1000 0 8429 1108.27 0.00 

prim4000 0 49950 16689.19 15062.00 

sec300 0 1212 209.00 0.00 

sec1000 0 6026 1292.65 0.00 
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Table 5 (continued). 

Variable Min Max Average Median 

sec2000 0.00 15242.00 4547.43 3776.00 

sec4000 0.00 35750.00 17834.05 17129.00 

sec6000 0.00 71406.00 37304.95 38670.00 

velo300 0 4 0.32 0 

velo1000 0 32 3.76 0 

avg_inc500 46217.00 74460.45 53811.76 53046.00 

reg_partner100 0.02 0.04 0.03 0.03 

reg_partner500 0.02 0.04 0.03 0.03 

married1000 0.48 0.58 0.54 0.56 

r_femalemale500 94.89 107.19 100.96 101.65 

r_femalemale1000 94.89 105.65 100.70 101.65 

avg_age100 39.76 43.30 41.26 41.49 

avg_age500 39.76 43.40 41.35 41.51 

u15_100 0.14 0.18 0.16 0.16 

u15_1000 0.14 0.18 0.16 0.16 

65plus_300 0.15 0.21 0.18 0.17 

before1991_500 0.02 0.22 0.10 0.08 

after1991_1000 0.09 0.37 0.22 0.24 

after2001_300 0.03 0.18 0.10 0.11 

avg_inc4000 41103.62 72883.78 53924.28 54136.65 

avg_inc6000 47475.80 72657.25 55203.70 54909.60 

empl_r2000 0.78 0.88 0.85 0.86 

empl_r4000 0.78 0.93 0.85 0.86 

empl_r6000 0.78 0.87 0.85 0.85 

avg_hh4000 1.95 2.72 2.37 2.40 

reg_partner2000 0.03 0.04 0.03 0.03 

reg_partner4000 0.02 0.30 0.04 0.03 

reg_partner6000 0.02 0.06 0.03 0.03 

married4000 0.48 0.65 0.54 0.56 

married6000 0.48 0.78 0.55 0.56 

20hi_edu2000 0.21 0.41 0.27 0.26 

20hi_edu4000 0.22 0.49 0.28 0.26 

20hi_edu6000 0.22 0.37 0.28 0.27 

r_femalemale4000 76.38 114.54 100.58 101.67 

r_femalemale6000 94.89 132.77 102.09 102.49 

avg_age2000 39.78 43.45 41.25 41.39 

avg_age4000 30.99 46.32 41.10 41.35 

avg_age6000 40.14 54.60 41.75 41.40 

u15_2000 0.14 0.18 0.16 0.16 

u15_6000 0.14 0.24 0.16 0.16 

15-65_2000 0.64 0.68 0.66 0.66 

15-65_4000 0.64 0.75 0.67 0.66 

15-65_6000 0.65 0.93 0.67 0.65 

65plus_2000 0.15 0.21 0.18 0.17 

65plus_6000 0.15 0.20 0.18 0.18 

before1991_2000 0.02 0.21 0.11 0.09 

before1991_4000 0.02 0.43 0.11 0.10 

before1991_6000 0.02 0.19 0.10 0.10 

after1991_4000 0.09 0.43 0.23 0.25 

after1991_6000 0.10 0.42 0.23 0.25 

after2001_4000 0.03 0.34 0.11 0.10 

 



56 
 

Table 5 (continued). 

Variable Min Max Average Median 

nbuildings1000 43 9386 2594.97 1569 

distnear_st 236.08 18708.98 3772.01 2395.31 

lu100 0 5 2.27 2 

lu300 1 7 4.19 4 

lu500 2 11 5.76 5 

lu1000 5 12 7.86 8 

lu2000 7 15 11.24 11 

lu4000 9 17 14.51 15 

lu6000 11 19 16.24 16 

 

6.3 Model development  
 

Ten iterations led to a linear regression model with nine variables, as described 

in Table 6. 

Table 6. Initial model. The significance symbols translate as follows: 0 '***' 0.001 '**' 
0.01 '*' 0.05 '.' 0.1 ' ' 1 

Variable Estimate Std. error t-value pr(>|t|) significance 

Intercept -3066 1578 -1.942 0.062596 . 

nbuildings1000 0.06659 0.03134 2.125 0.042883 * 

l_hwy1000 -0.1090 0.02186 -4.986 0.0000316 *** 

avg_popdens4000 0.2515 0.1353 1.860 0.073879 . 

l_cycleway500 0.1543 0.4032 3.828 0.000696 *** 

lu2000 105.0 31.06 3.382 0.002211 ** 

before1991_4000 -2144 798.7 -2.684 0.012268 * 

poi1000 0.5441 0.2640 2.061 0.049074 * 

reg_partner500 -29600 13410 -2.207 0.036011 * 

empl_r4000 3724 1956 1.904 0.067557 . 

 

This model had a multiple R² of 0.83 and an adjusted R² of 0.78. However, two 

variables (avg_popdens4000 and empl_r4000) are not statistically significant at 

95%. Thus, the parameters were estimated again without these variables and 

because of this re-estimating, another variable (before1991_4000) was found to 

be not significant at 95%. This is shown in Table 7. 
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Table 7. Initial model without insignificant variables (1). The significance symbols 
translate as follows: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Variable Estimate Std. error t-value pr(>|t|) significance 

Intercept 50.40 552.1 0.091 0.927883 
 

nbuildings1000 0.09834 0.02901 3.390 0.002031 ** 

l_hwy1000 -0.01097 0.02374 -4.622 0.0000725 *** 

l_cycleway500 0.01768 0.04368 4.047 0.000352 *** 

lu2000 121.5 33.76 3.600 0.001171 ** 

before1991_4000 -1264 813.9 -1.552 0.131390 
 

poi1000 0.6712 0.2854 2.351 0.025711 * 

reg_partner500 -33810 13400 -2.523 0.017383 * 

 

Because of this insignificance, the model parameters were estimated a third time, 

resulting in the values listed in Table 8. One variable was not significant at 95% 

again, this time the variable poi1000.  

Table 8. Initial model without insignificant variables (2). The significance symbols 
translate as follows: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Variable Estimate Std. error t-value pr(>|t|) Significance 

Intercept 216.9 554.1 0.391 0.698240 
 

nbuildings1000 0.1022 0.02957 3.455 0.001665 ** 

l_hwy1000 -0.1096 0.02429 -4.511 0.0000924 *** 

l_cycleway500 0.01513 0.04141 3.653 0.000981 *** 

lu2000 103.8 32.5 3.193 0.003299 ** 

poi1000 0.05075 0.2714 1.870 0.071293 . 

reg_partner500 -35080 13690 -2.564 0.015612 * 

 

The parameters were estimated for the fourth time, resulting in the final model 

with five variables. This model, shown in Table 9, has no insignificant (at 95%) 

variables. This model had an R² of 0.74 and an adjusted R² of 0.69. No variables 

in the model have a VIF higher than 3, as can be seen in Table 10. Cook’s D (Table 

11) indicated that four counting points (6, 7, 9, and 18) might have a strong 

influence on the model. Of these counting points, none has a Cook’s D higher than 

1. The highest value for Cook’s D is 0.59 for point 9, which is situated near a train 

station in the city center of Antwerp. The plots in Figures 11 and 12 (Residuals vs. 

fitted values and a Q-Q plot) of the model were generated as output in R. 

Thus, the final model is one with five variables: the number of buildings within 

1000 m of a counting point, the length of highways within 1000 m, the length of 

cycleways within 500 m, the number of different types of land use within 2000 m, 

and the weighted average percentage of registered partnerships within 500 m of 

a counting point. 
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Table 9. Final model, without insignificant variables. The significance symbols translate 
as follows: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Variable Estimate Std. error t-value pr(>|t|) Significance 

Intercept 492.1 56.38 0.761 0.45231   

nbuildings1000 0.1341 0.02510 5.343 0.00000804 *** 

l_hwy1000 -0.1160 0.02500 -4.639 0.0000603 *** 

l_cycleway500 0.1507 0.04305 3.501 0.00143 ** 

lu2000 87.71 32.58 2.692 0.01135 * 

reg_partner500 -36530 14200 -2.572 0.01512 * 

 

Table 10. Each of the model's variables and their VIF. 

Variable  nbuildings1000 l_hwy1000 l_cycleway500 lu2000 reg_partner500 

VIF  1.451315 1.765258 1.618721 1.240188 1.091672 

 

Table 11. Counting points’ Cook's D. Influential counting points are marked in bold. 

Counting 

point 

Cook’s D Counting 

point 

Cook’s D Counting 

point 

Cook’s D 

1 0.123 14 0.0239 26 0.0461 

2 0.147 15 0.0230 27 0.00777 

3 0.201 16 0.00000113 28 0.00695 

4 0.00273 17 0.160 29 0.0112 

5 0.0313 18 0.00166 30 0.00305 

6 0.506 19 0.0000289 31 0.000167 

7 0.00567 20 0.00588 32 0.00171 

8 0.00155 21 0.00313 33 0.00836 

9 0.590 22 0.000163 34 0.0398 

10 0.0000000253 23 0.00598 35 0.0653 

11 0.0116 24 0.00594 36 0.00834 

12 0.0480 25 0.00629 37 0.0106 

13 0.0252     

 
Figure 11. Residuals and fitted values. 

 
Figure 12. Q-Q plot.  
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6.4 Sensitivity analysis  
 

In the sensitivity analysis, the model was developed again without point 29 

(Meersel-Dreef), which was located close to the Dutch border. Again, ten iterations 

led to a linear regression model with nine variables. These variables are listed in 

Table 12 and are the same variables as those in Table 6, page 56.  

Table 12. Sensitivity analysis parameter estimates (1). The significance symbols 

translate as follows: 0  '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Variable Estimate Std. error t-value pr(>|t|) significance 

Intercept -3663 1851 -1.979 0.058456 . 

nbuildings1000 0.06524 0.03176 2.054 0.050132 . 

l_hwy1000 -0.1078 0.02219 -4.859 0.0000488 *** 

avg_popdens4000 0.2613 0.1376 1.899 0.068778 . 

l_cycleway500 0.1556 0.4082 3.812 0.000762 *** 

lu2000 107.8 31.70 3.400 0.002185 ** 

before1991_4000 -2267 830.3 -2.730 0.011212 * 

poi1000 0.5505 0.2672 2.061 0.049484 * 

reg_partner500 -28510 13670 -2.086 0.046976 * 

empl_r4000 4345 2204 1.971 0.059403 . 

 

Multiple R² for this model was 0.83 with an adjusted R² of 0.77. Three variables 

(nbuildings1000, avgpopdens4000, and empl_r4000) were not statistically 

significant at 95%. The parameters were estimated again, leaving out these three 

variables. The results are shown in Table 13. 

Table 13. Sensitivity analysis parameter estimates (2). The significance symbols 
translate as follows: 0  '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Variable Estimate Std. error t-value pr(>|t|) Significance 

Intercept -336.6 657.2 -0.512 0.312375 
 

l_hwy1000 -0.08931 0.02701 -3.306 0.002527 ** 

l_cycleway500 0.01981 0.05106 3.879 0.000556 *** 

lu2000 174.6 35.36 4.939 0.0000301 *** 

before1991_4000 -1463 957.5 -1.528 0.137236 
 

poi1000 1.208 0.2781 4.43 0.000157 *** 

reg_partner500 -35770 16010 -2.234 0.033330 * 

 

Yet again, one of the variables in this model (before1991_4000) turned out not to 

be statistically significant at 95%. The model was developed once again, without 

this variable, since it was not significantly different from zero. This resulted in a 

model with five variables, as shown in Table 14. 
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Table 14. Sensitivity analysis parameter estimates (3). The significance symbols 
translate as follows: 0  '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Variable Estimate Std. error t-value pr(>|t|) Significance 

Intercept -142.5 659.0 -0.216 0.830306   

l_hwy1000 -0.08828 0.02760 -3.199 0.003249 ** 

l_cycleway500 0.1689 0.04841 3.489 0.001520 ** 

lu2000 155.7 33.85 4.600 0.0000719 *** 

poi1000 1.040 0.2611 3.982 0.000401 *** 

reg_partner500 -37600 16310 -2.305 0.028275 * 

 

All variables are statistically significant at 95%. Compared to the model with 37 

counting points in 6.3, the model has an equal number of variables. The only 

difference is that here, poi1000 remains as one of the parameters. In the original 

model on the contrary, nbuildings1000 remains.  

6.5 Validation 
 

Leave-one-out cross validation 

 

Leave-one-out cross validation happened with the same data as the ones that were 

used to develop the model, yielded an R² of 0.58. Table 15 shows each counting 

point, its measured number of cyclists and its estimated number of cyclists. The 

leave-one-out cross validation resulted in a negative estimated value for point 3. 

Figure 13 shows the scatter plot for this table.  

Table 15. Results of leave-one-out cross validation.  

Point Measured Estimated Point Measured Estimated 

1 1868.00 1179.17 20 818.29 644.86 

2 1710.02 2223.16 21 431.30 290.47 

3 463.19 56.52 22 697.31 723.75 

4 752.36 885.53 23 289.49 540.24 

5 473.00 1007.28 24 113.03 297.35 

6 578.80 1330.52 25 400.44 190.76 

7 375.04 280.35 26 742.65 1125.40 

8 264.88 195.74 27 1413.92 1073.23 

9 2804.83 1853.04 28 1424.50 1252.91 

10 656.11 655.80 29 183.19 437.82 

11 943.52 632.37 30 192.25 74.67 

12 1629.66 1194.19 31 656.15 693.10 

13 985.57 1306.81 32 215.11 300.70 

14 1286.58 911.45 33 1045.19 825.25 

15 307.88 758.94 34 768.99 345.98 

16 609.91 611.92 35 558.63 1140.34 

17 388.98 1204.80 36 886.89 1094.53 

18 1827.21 1763.90 37 1046.59 800.43 

19 806.82 826.19    
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Figure 13. Scatter plot for leave-one-out validation. 

External validation  

 

The 83 counting points that were used for external validation, had a median of 35 

counting days and an average of 31. Validation of the raw data (non-standardized) 

yielded an R² of 0.40. The scatter plot is shown in Figure 14. External validation 

with the same data, but standardized according to 2019 permanent counting points 

in the province of Antwerp, yielded an R² of 0.41. This is slightly higher than in 

the case of the raw data. The scatter plot of the standardized data is shown in 

Figure 15. The external validation data set was split into bicycle counts in Antwerp 

(performance), and Flemish Brabant (transferability). Figure 16 describes the 

model’s performance, thus estimates of the number of cyclists on the counting 

points in the province of Antwerp. This yields an R² of 0.52. The transferability is 

shown in Figure 17. The model has a remarkably low R² (0.00008) here. 

Table 16. Descriptive statistics of the independent variables used for external validation. 
The first row shows the independent variable's values from model development. 

Variable Min Max Average Median 

N (model) 113.03 2804.83 827.47 697.31 

N (raw) 11.23 4101.75 757.26 482.57 

N (standardized) 10.77 3617.78 646.84 422.88 
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Figure 14. Scatter plot of external validation with RAW data. 

 

Figure 15. Scatter plot of external validation with STANDARDIZED data. 
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Table 17. Results of external validation. Points marked with a ‘*’ are located in Flemish 
Brabant and were used to test transferability. 

P
o

in
t 

Measured 

Estimated 

P
o

in
t 

Measured 

Estimated 

Raw Standard Raw 

Standar

d 

1 564.55 643.86 643.86 43* 101.84 823.10 823.10 

2* 14.56 123.67 123.62 44* 11.23 713.20 713.20 

3 1111.95 1223.11 1223.11 45* 155.59 463.76 463.76 

4 1914.50 2532.15 2532.13 46 1653.05 878.16 878.16 

5 1318.75 179.20 179.20 47* 771.78 673.73 673.73 

6 1582.10 2286.91 2286.91 48* 29.81 736.36 736.36 

7 1822.35 2165.22 2165.22 49* 1157.03 187.39 187.39 

8 1706.75 2174.11 2174.11 50* 362.37 701.78 701.78 

9 605.11 219.69 219.69 51* 466.81 693.48 693.48 

10 2856.75 2068.65 2068.65 52 131.80 171.09 171.09 

11 3062.40 2240.48 2240.48 53* 341.49 512.98 512.98 

12 1438.83 1141.39 1141.39 54* 662.73 368.16 368.16 

13 3040.90 2330.21 2330.21 55 2005.47 936.86 936.86 

14 4101.75 1923.43 1923.43 56* 426.70 1183.79 1183.79 

15 1315.20 2067.70 2067.70 57* 761.73 1033.80 1033.79 

16* 309.11 1379.45 1379.45 58 1353.08 706.34 706.34 

17* 71.38 387.53 387.53 59 1698.75 683.89 683.89 

18* 80.62 1094.39 1094.40 60 63.71 5.61 5.39 

19 216.31 761.76 761.76 61* 912.32 306.97 306.97 

20 613.56 1163.06 1163.06 62* 446.92 26.93 26.94 

21* 1030.23 1481.88 1481.88 63* 685.05 5.61 5.39 

22* 597.58 1364.76 1364.76 64* 482.57 239.84 239.84 

23 1961.53 556.07 556.07 65* 368.49 570.12 570.12 

24 921.43 1487.44 1487.44 66* 864.24 968.33 968.33 

25 1403.11 1679.23 1679.23 67 283.71 5.61 5.39 

26 435.21 1056.02 1056.02 68* 255.03 269.84 269.84 

27 800.43 678.56 678.56 69* 438.32 385.72 385.72 

28* 285.81 591.85 591.85 70* 349.61 716.97 716.97 

29* 146.40 482.38 482.38 71* 211.26 356.77 356.77 

30 893.95 870.61 870.61 72* 62.46 1124.96 1124.96 

31* 253.00 549.24 549.24 73* 106.97 5.61 5.39 

32* 573.98 510.98 510.98 74* 864.19 558.59 558.59 

33 357.43 226.99 226.99 75* 531.52 1203.40 1203.40 

34* 1088.16 285.17 285.17 76* 188.00 1220.13 1220.13 

35* 712.10 254.59 254.59 77* 243.81 773.99 773.99 

36* 507.58 5.61 5.39 78* 67.46 1130.65 1130.65 

37* 84.51 140.56 140.56 79* 204.38 1316.28 1316.28 

38* 338.86 130.83 130.83 80* 365.49 495.54 495.54 

39* 208.24 43.90 43.90 81* 640.49 1047.83 1047.83 

40 814.85 109.44 109.44 82* 226.24 247.32 247.33 

41 213.36 493.02 493.02 83* 373.67 553.32 553.32 

42 150.29 25.74 25.74     
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Figure 16. Scatter plot of model performance. 

 

Figure 17. Scatter plot of model transferability.  
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7 Discussion 
 

This study applied the land use regression modeling method to bicycle volume 

counts. Permanent and temporary bicycle counting point data from the province 

and city of Antwerp were used as dependent variables, while land use data from 

seven sources were used as independent variables. Supervised linear forward 

regression was used to develop a linear regression model that predicts the number 

of bicycles. A model with five variables was obtained:  

𝑁 =  492.1 +  0.1341(𝑛𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠1000) –  0.1160(𝑙_ℎ𝑤𝑦1000)  
+  0.1507(𝑙_𝑐𝑦𝑐𝑙𝑒𝑤𝑎𝑦500)  +  87.71(𝑙𝑢2000) –  36530 (𝑟𝑒𝑔_𝑝𝑎𝑟𝑡𝑛𝑒𝑟500) 

The number of cyclists at any given point is formed by an intercept, the number 

of buildings within 1000 m of a counting point, the length of highways within 1000 

m, the length of cycleways within 500 m, the number of different types of land use 

within 2000 m, and the weighted average percentage of registered partnerships 

within 500 m of a counting point.  

This model had an R² of 0.74. Leave-one-out cross validation resulted in an R² of 

0.58, and external validation yielded an R² of 0.41. External validation was split 

into performance (using only the counting points in the province of Antwerp), 

which resulted in an R² of 0.52, and transferability (counting points in the province 

of Flemish Brabant), with an R² of 0.00008. Although the model performs good, it 

lacks transferability. 

7.1 Methodology 
 

Two major sets of data were used in this study. The first set, the dependent 

variables, consisted of the bicycle counts, collected through permanent and 

temporary counting points. The used counting methods were optical fiber 

technology and counting hoses, respectively. These methods are reliable, yet 

counting hoses have an important limitation, being that they have to be installed 

at an off-street path to prevent motorized traffic from being counted as well. In 

this study, the geographical spread of counting points over the province of Antwerp 

could have been better. There is a gap in the central north, south and the south 

east areas of the province. That is why X and Y coordinates were removed from 

the variables list, they were considered proxy variables for urbanization (El Esawey 

et al., 2015; Hyde-Wright et al., 2014). 

The second data set consisted of the independent land use variables. 20 of these, 

94 if buffer distances are considered separately, were retrieved from OSM. Since 

OSM data are entirely provided by volunteers and thus not verified by any 

governmental instance, this raised some accuracy questions. Several studies have 

found however that OSM data sets are usually complete and accurate. They can 

be used for research purposes. Only in Karlsruhe in 2019, OSM data appeared not 

to be suited to model work-related trips in a travel demand model. With this 

remark in mind, close attention was paid during the data analyses. By doing so, it 

was found that OSM was not useable to indicate all traffic lights in the study area. 
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(Basiri et al., 2016; Briem et al., 2019; Kloog et al., 2018; OpenStreetMap, 2019; 

M. Wang et al., 2013).  

Another set of independent (land use related) variables were sociodemographic 

data. They were collected through Statbel, which is the Belgian statistical office. 

These are 2011 census data, which means they were nearly ten years old at the 

time of this study. The assumption was made that these data were still 

representative for the study area, in relative terms if not in absolute terms. Some 

slight changes in sociodemographic characteristics can be expected, but this would 

not significantly alter the results (Statbel, 2020a).  

Buffer sizes were chosen subjectively. To make sure all relevant effects were 

included in the model, multiple buffer sizes were used. The maximum buffer size 

was set to 6000 m, as variables beyond this distance were considered not to be 

relevant for bicycle volumes. Other studies used similar buffer sizes, but some 

used even smaller ones. Air pollution studies that use the LUR method sometimes 

use buffers with a radius of 50 or 40 m. In this study, the smallest buffer had a 

radius of 100 m (Gilbert et al., 2012; Hochadel et al., 2006; Ross et al., 2006). 

The independent variables were cleaned according to two correlation 

requirements. Individual variables should at least differ 5% in what they measure. 

In a category, they should differ at least 40%. These requirements were 

determined to make sure all variables were minimally distinct from one another.  

The initial goal for external validation was to apply the model to counting points 

spread all over Flanders. This would have been possible, since as Figure 18 shows, 

the data set contained counting points in each province. Yet to prevent coincidental 

variability in the counts, only those points were chosen with counts for at least 14 

days. As a result, only counting points in the provinces of Antwerp and Flemish 

Brabant remained for external validation.  

 
Figure 18. All counting points from 
Dataplatform Fiets 

 
Figure 19. Counting points that counted 14 
days or more. 
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7.2 Results  
 

The model consists of five variables. Apart from the weighted averaged percentage 

of registered partnerships, all variables are distinct land use variables. These 

registered partnerships are a somewhat unexpected variable. Registered 

partnerships represent the number of people engaged in an act of legally 

cohabiting (Statbel, 2020b). In this model, it is possible that they are a proxy 

variable for another BE characteristic, however there are no strong correlations 

with other variables in the data set. The number of buildings on the other hand 

correlates strongly (around 80%) with the average population density, for 

example.  

After the sensitivity analysis, the decision was made to keep the model the same, 

thus including point 29, that was close to the Dutch border. Two arguments 

support this decision. First, the number of available counting points was rather 

low, with only 37 counting points while the literature suggests a range of 20 to 

100 points. Leaving out a point was not desirable. Second, the sensitivity analysis 

shows that the model did not drastically change. Again, ten iterations lead to the 

same nine variables. After checking for significance, four of the five remaining 

variables are the same as in the original model. The variables that were different 

in both models, poi1000 as opposed to nbuildings1000, have a correlation of 

53.83% with each other. Yet, there are also arguments against this decision. Right 

now, the model is developed using a point for which 2/3 of each variable is 

unknown. If data layers for the Netherlands would have been available, the 

model’s parameters could have been different.  

The original model has an R² of 0.74, which means it explains 74% of the variation 

in the bicycle count data it was developed with. Compared to other model’s R²s, 

this is a rather high value. The Santa Monica bicycle model is a direct demand 

regression model based on observed counts. It was developed for the City of Santa 

Monica, near Los Angeles, California. This model estimates the evening peak 

bicycle and pedestrian volumes at an intersection and the bicycle model consists 

of an intercept and four variables, being the employment density, land use mix, 

proximity to bike routes and if an intersection is four-way. These variables are very 

similar to the ones in the model in Table 9. The R² of the Santa Monica model is 

0.401. Another example is the Seamless bicycle model, which has an R² of 0.439. 

Its study area was San Diego, California. This study aimed to develop a model that 

predicts bicycle volumes at intersections during the morning peak period (7 to 9 

A.M.). Similarly to the model in this study and the Santa Monica bicycle model, it 

was based on manual counts taken at 80 intersections. This model only has two 

variables, being the length of bicycle path and the employment density, both within 

a quarter of a mile of the intersection. Finally, Hankey et al reported an R² of 0.52. 

The direct demand model was developed using data from 101 locations in 

Blacksburg, Virginia. Again, both pedestrian and bicycle volumes were predicted. 

The bicycle model consists of five variables, being centrality, major roads, 

population density, on-street facilities and household incomes, which was 

negatively associated with bicycle volumes (Hankey et al., 2017; Transportation 

Research Board of the National Academies, 2014).  
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Both leave-one-out cross validation and an external validation were performed. 

The leave-one-out cross validation, with an R² of 0.58, did not result in any 

unexpected or strange values. There was one negative value, because of the high 

amount of highway meters. This warrants for the use of a cut off value to prevent 

estimates of bicycle counts getting negative. For example, Henderson et al. (2007) 

propose to truncate values to 120% of the maximum registered value. The same 

method could be applied at the lower end of the distribution (Henderson et al., 

2007). 

External validation was performed using different data than the ones the model 

was developed with. The external validation yielded an R² of 0.41. This is a drop 

of almost 30% compared to the original model, and more than 15% compared to 

the leave-one-out validation. External validation with raw, non-standardized data 

increased the R² from 0.40 to 0.41 and proved to be useful. Moreover, 

standardizing the bicycle counts was useful to include the evolution in bicycle rates 

from 2018 to 2019. Some outlying points probably contribute to this low R². An 

example is point 14 (ANT30) which counted 3617.78 cyclists, yet the model only 

estimated 1923.43, most probably because of the high amount of highway meters 

within 1000 m of this point. As can be seen in the scatter plot in Figures 14 and 

15, this point pulls the R² away from the ideal 1-1 line. Another contribution to 

this R² is the point cloud that emerged at the bottom of the scatter plot in Figures 

14 and 15. This cloud indicates points were the model either over- or 

underestimated the number of cyclists, and is one of the reasons of the model’s 

bad transferability. 

A first explanation for the external validation’s R² could be found in the 

independent variables. It is possible that not all data were equally accurate. This 

could have caused the model to select some variables rather than other ones, 

resulting in other parameters. As stated in 7.1, socio-demographic data originate 

from 2011, while the bicycle counts are from 2019. This might cause some 

disturbance on the validity of the data. Another explanation could be the counting 

points themselves. Perhaps the counting points consist of two or more sub 

categories. 24 of the 83 counting points (28.92%) that were used in the external 

validation are situated on a bicycle highway. For model development, 12 of the 37 

counting points (32.43%) were situated on a bicycle highway. Another sub 

category can be seen in the distinction between urban and rural counting points. 

The low R² of external validation could also be explained through the fact that 

some variables that were found in the literature were not available for the 

development of the model.   

External validation in the case of this study was a combination of testing the 

model’s performance, i.e. estimating bicycle counts on new locations in the 

province of Antwerp, and transferability, i.e. estimating bicycle counts in the 

province of Flemish Brabant. The performance test of the model was good, with 

an R² of 0.52. This confirms that the model performs very good in the province of 

Antwerp. The transferability of the model on the other hand, is very bad, with an 

R² of 0.00008. Some explanations can be found in the data set. The bicycle counts 

in Flemish Brabant are low compared to the ones in the province of Antwerp (see 

Table 17). This makes it harder to generate accurate estimates and as a result, a 
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point cloud occurs, as can be seen in Figure 17. It is possible that, if some counting 

points with higher numbers of cyclists would have been included in the data set, it 

would yield a better R². Moreover, the ratio between highway length and cycleway 

length differs from the one in the province of Antwerp. In Antwerp, there is on 

average only 600 m of highway for each kilometer of cycleway near a counting 

point, while in Flemish Brabant this is 940 m.  

The model developed in this paper can not be transferred to another study area 

than the province of Antwerp. The Transportation Research Board of the National 

Academies states that if a model has to be used in another study area, the 

parameters should be re-estimated. This was not done in this study, since the 

parameters from Table 9 were used to estimate the number of cyclists for the 83 

counting points in the provinces of Antwerp and Flemish Brabant (Transportation 

Research Board of the National Academies, 2014).  

7.3 Comparison with other bicycle count prediction methods 
 

A report by the Transportation Research Board of the National Academies (2014) 

lists a number of methods to predict or estimate bicycle and pedestrian traffic. Two 

groups of methods exist. There are comprehensive four-step trip-based travel 

forecasting models. These models are choice based, which means they predict the 

choice cyclists will make. They are described in chapter 5.3. Depending on how 

large the TAZs are, these models will perform poorly regarding bicycle trips, as 

cyclists have a smaller range than car users. A large share of bicycle trips will 

probably happen within the same TAZ, leaving the accuracy low (Transportation 

Research Board of the National Academies, 2014). 

The other group of models are the facility demand type models. They are count 

based and rely on existent data. Three types of models exist. Route choice models 

give quantitative information on how a cyclist weighs different characteristics of 

the environment against each other. The average cyclist would be willing to cycle 

one mile more on bike lanes if this avoids half a mile of mixed traffic, for example. 

Similarly to the above category of models, these models do not predict the number 

of bicycles as such, but the route these cyclists will take. Network simulation 

models simulate movement potentials between spaces and correlate them with 

counts. It is very difficult to evaluate the performance and validity of this type of 

models. Finally, the direct demand models use regression equations to model the 

number of cyclists. Typical performance values are already discussed in chapter 

7.2, and show that the model developed in this chapter has a similar R² for external 

validation. The Transportation Research Board of the National Academies suggests 

that a smaller research area results in a better goodness of fit (Transportation 

Research Board of the National Academies, 2014). 

An important note that has to be made is the fact that the model that was 

developed is a linear model. This means that the model would estimate the same 

number of additional cyclists, regardless of the current number of cyclists. A 

location with zero cyclists today would be given the same potential as that same 

location if it had already an average number of cyclists of 3000. The intercept 

intervenes a bit on this effect, but it should nevertheless be taken into account.  
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8 Implications 
 

This study aimed to develop a model that is able to predict the number of cyclists 

at any given location in Flanders. To the best of the author’s knowledge, it is the 

first time that this kind of model has been developed to predict bicycle volumes in 

Europe, and thus this study is of scientific relevance.  

The model predicts the number of cyclists based on five distinct variables. This 

means that, if the number of buildings within 1000 m, the length of highway within 

1000 m, the length of cycleways within 500 m, the number of different types of 

land use within 2000 m and the percentage of registered partnerships within 500 

m of the counting point are known for any given point, the model is able to explain 

74% of the variability in the number of cyclists. This rate could probably go up 

after finetuning of the model, e.g. dividing the counting points into different 

categories, as described in the discussion.  

Due to the poor transferability of the model, it can only be used in the province of 

Antwerp, where it has a very good performance R².  

A number of use cases is presented here to illustrate some of the contexts in which 

the model could be of support to policy makers in the province of Antwerp.  

Use case 1. The model predicts that location X has 500 cyclists more than what 

is actually counted. This overestimation highlights the strong cycling potential of 

location X, yet certain reasons (e.g. bad infrastructure) cause cyclists to avoid this 

location. The model’s prediction could then be an argument to invest in better 

cycling infrastructure on this location.  

Use case 2. Policy makers want to compare two locations (A and B). Location A 

has a high number of bicycle accidents, while location B appears to be a lot safer, 

with noticeably fewer bicycle accidents. To perform a valid comparison, the number 

of cyclists at each location has to be included in the analysis since more cyclists 

means a higher chance for accidents. There are however no bicycle count data 

available for locations A and B. In this case, the model could estimate the number 

of cyclists on both locations, which could then be used to calculate the accident 

risk for both A and B.  

Use case 3. A local government wants to stimulate bicycle use in a certain area 

of the city. Two scenarios have been composed, the first one allows new types of 

land use in the environment, while the second one consists of extensive 

investments in cycleways. The model could be used to predict the number of 

cyclists on several locations in the area in both scenarios. It helps to understand 

the results of certain policy measures.  
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9 Limitations and future research  
 

Like the discussion suggests, this study has some limitations that should be taken 

into account and that future studies could overcome. First of all, the relatively low 

number of bicycle count sites could be considered a limitation of this study. Future 

studies that have enough means – both financial and in terms of time – should 

collect bicycle and land use data themselves, at a sufficient amount of locations. 

This has several advantages. It allows to select the number of locations according 

to the literature, with around 40 counting points at minimum, but up to 100 

locations if the area is more diversified (Hankey et al., 2017; Le et al., 2018; 

Transportation Research Board of the National Academies, 2014). Moreover, it 

would enable to develop a more accurate model. Right now, the possibility exists 

for example that mopeds who were on the bicycle infrastructure were included in 

the bicycle count data as well. This would also allow to count for a long enough 

period and thus overcome the problem of only being able to use a limited number 

of counting points, as was the case with the external validation.  

It is possible that the use of existing data also influenced the transferability of the 

model, resulting in a model that can only be used in the province of Antwerp. 

Future research could try to identify the reasons why the transferability of this 

model is so poor. 

Another option is to develop a model using the Dataplatform Fiets data and to 

perform an external validation on the data provided by the province of Antwerp. If 

existing data have to be used for either model development or validation, other 

bicycle count initiatives could provide input data as well, such as Straatvinken or 

Telraam (Straatvinken, 2020; Telraam, 2019). 

The same limitation can be seen with the independent variables. Not all data are 

100% accurate and reliable. To make future research easier, governmental data 

layers that are easily accessible (open data) would be extremely valuable for this 

type of studies. CORINE land cover data is a good example of GIS-data that are 

reliable and easily accessible.  

The model that was developed in this study includes the weighted average 

percentage of registered partnerships. This variable, although a result from the 

literature, might be a parameter for another BE characteristic. In the variables list, 

there may be additional variables that are proxies for other BE characteristics. 

Future research could take a closer look at these variables and make sure each 

variable is unique.  

In the analysis, his study did not make a distinction between different types of 

counting points. Yet, this distinction was subtly present. A distinction can be made 

between bicycle highways, rural locations and urban locations. It would be 

interesting to have a look at these types of counting points separately and develop 

models for each kind. This would probably improve the performance of the model 

and increase the R². Other model variants can be made as well. It would be 

interesting to separate weekend- and weekdays from each other, as weekdays 

know a lot of commuter traffic while during weekends, people cycle more often as 
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a way of recreation. This distinction could lead to other variables being significant, 

making the model more accurate. Similarly, a model for peak hours and off-peak 

hours could be developed.  

Another remark made in the discussion were some extreme points, such as point 

14. They have an influence on how R² is formed and therefore an additional 

sensitivity analysis without the extreme points can give more insight in how the 

model reacts.  

  



75 
 

10 Conclusions 
 

A land use regression model can be used to predict bicycle traffic volumes in 

Flanders, based on built environment (BE) characteristics as predictor variables 

and if the model is applied in the same study area as it was developed in. 

A literature review in 30 papers showed that 107 BE characteristics can have a 

possible influence on bicycle use. Built environment was interpreted broadly, so 

that it also included sociodemographic variables. These variables can be found in 

Tables 1 and 2 in chapter 5.2. Of these variables, 51 were available for this study 

in the province of Antwerp and Flanders. They are listed in Table 3 in chapter 5.2. 

The direction of effect of each of the variables was taken from the literature as 

well, although sometimes the literature was inconclusive about the effects.  

There are some differences between a land use regression model and a traditional 

four-step travel demand model. The latter predicts traffic volumes based on route 

choice of the users of the network. This type of model consists of four unique steps 

and uses existing travel patterns as input for model estimation. A four-step model 

works with Traffic Analysis Zones (TAZs), which causes some spatial aggregation.  

This is an important difference between this type of model and a land use 

regression model. Four-step models rely on TAZs and are therefore spatially rather 

aggregated, whereas land use regression models usually have a much better 

spatial resolution.  

The land use regression model in this study was developed through different steps. 

First, data cleaning and preparation for both dependent (bicycle counts) and 

independent (land use variables) data was performed. Bicycle count data for each 

of the 37 counting points were standardized to obtain daily values, averaged over 

a whole year. Land use variables were calculated for each counting point and 

thoroughly checked for correlation. This resulted in 112 initial land use variables. 

Both sets of data were then put together to develop the model using supervised 

forward linear regression, which resulted in a linear regression equation with five 

variables. The number of bicycles (N) can be predicted by using the following 

equation: 

𝑁 =  492.1 +  0.1341(𝑛𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠1000) –  0.1160(𝑙_ℎ𝑤𝑦1000)  
+  0.1507(𝑙_𝑐𝑦𝑐𝑙𝑒𝑤𝑎𝑦500)  +  87.71(𝑙𝑢2000) –  36530 (𝑟𝑒𝑔_𝑝𝑎𝑟𝑡𝑛𝑒𝑟500) 

These variables represent the number of buildings within 1000 m of a counting 

point, the length of highways within 1000 m, the length of cycleways within 500 

m, the number of different types of land use within 2000 m, and the weighted 

average percentage of registered partnerships within 500 m of a counting point, 

respectively. The R² of this model is 0.74. It always predicts the daily number of 

cyclists in both directions, averaged over a whole year. 

The model’s performance was checked through a sensitivity analysis, a leave-one-

out cross validation and an external validation. The sensitivity analysis showed 

that when the model was redeveloped with 36 instead of 37 counting points 
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(leaving out one counting point close to the Dutch border), this did not drastically 

change the model. Leave-one-out validation of this model happened with the same 

data it was developed with. Leaving out one point at a time, estimating the 

coefficients again and then calculating the number of cyclists for the left-out point, 

yielded an R² of 0.58. For external validation, 83 counting points from an external 

data set were used. The model was applied to predict the number of cyclists for 

each one of these counting points, which resulted in an R² of 0.41. This R² value 

is similar to or slightly lower than R² of similar studies.  

When external validation is split into performance and transferability, the model 

performs very good in the area it was developed in (province of Antwerp), with an 

R² of 0.52. Transferability on the other hand is remarkably poor, with an R² of 

only 0.00008. As a result, the model can only be used in the province of Antwerp.  

This study is of societal and scientific relevance. The societal relevance lies in the 

fact that policy decisions regarding bicycle infrastructure investments can be 

supported by applying this model. The output of the model can also be used to 

identify areas that need attention, for example areas where the actual number of 

cyclists is lower than what would be predicted by the model, as this could indicate 

a bicycle potential that is not fully used. The model could also help identify land 

use interventions that would increase the number of cyclists.  

Scientific relevance can be found in the fact that this study is the first one to apply 

the land use regression method to bicycle counts in, to the best of the authors 

knowledge, Europe. This study could be a starting point for future studies in 

Flanders and Europe that could finetune the model and explore the possibilities of 

using land use regression for bicycle or other traffic related purposes.  
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Appendix 
 

Report feedback meeting February 17th  
 

Feedback part 1 

 

A few remarks were made concerning the first part of this master’s thesis. First, 

the final report should contain an evaluation of the model’s performance compared 

to other methods to predict bicycle counts. This evaluation could be integrated in 

the Discussion part. It could concern the model’s R², but it is possible that not all 

prediction methods use an R². Consequently, an elaboration of how other method’s 

performances are evaluated is possible as well. The fact that R² depends on the 

validation of the model has to be taken into account.  

The second remark is that the study in this master’s thesis uses an already-existing 

method, namely the LUR-method. This could mean that the study is not as 

innovative as other studies. The innovative aspect of this study can be found in 

the fact that this study applies the LUR method to bicycle counts instead of air 

pollution. Nevertheless, close attention will have to be paid when analyzing and 

interpreting the results to make sure the paper adds value to the literature. 

Approach part 2 

 

The time schedule for the second part of this master’s thesis is achievable. Certain 

points of attention were mentioned.  

The bicycle count data were collected from both temporal and permanent counting 

points. Because the temporal counters only registered cyclists during a limited 

period of the year certain irregularities may exist in the data set. Therefore, the 

temporal bicycle count data have to be rescaled. After rescaling, the average 

number of cyclists per day will be as representative for the temporal counting 

points as it is for the permanent ones.  

For the development of the model, R will be used. Variables will be calculated using 

QGIS. Two counting points are located near the Dutch border. This could cause 

some problems developing the model, as variables are usually only available for 

Belgium or Flanders. Two solutions are possible: either these counting points will 

not be used for the development of the model, or additional data layers that cover 

the Netherlands will be collected to be able to properly calculate the variables for 

these counting points.  

The model will be based on a linear regression equation. To develop this equation, 

certain conditions have to be met, for example both the predictor and the bicycle 

count variables have to be checked for multicollinearity. Every choice made during 

the study should be motivated, for example based on literature.  
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When an initial model is developed, alternative forms of the model could be looked 

at. A distinction could be made between bicycle counts on week and weekend days, 

for example.  

Finally, the link with the real world could be made by meeting with the province 

and/or the city of Antwerp. They provided the bicycle data and are very curious as 

to what the results of the study will be. They can also give useful feedback 

concerning the model and the applied methods.  



93 
 

Used variables and their meanings 
 

Table 18. Used variables. 

Variable Meaning Buffer sizes (radii - m) Source Note 

N Average number of cyclists per day   Dependent variable. 

X X-coordinate    

Y Y-coordinate    

L_cycleway Length of cycleways  100, 300, 500, 1000 OSM  

brdg_ Presence of bike bridges  100, 300, 500, 1000 OSM Value 0 or 1. 

tun Presence of bike tunnels  100, 300, 500, 1000 OSM Idem. 

zp Number of Zwarte punten 100, 300, 500, 1000 AWV Zwarte punten (black locations) are 

locations with the most severe 

accident rate.  

park Area of land use defined as ‘park’ 100, 300, 500, 1000, 2000, 

4000, 6000 

OSM  

ind Area of industrial land use  100, 300, 500, 1000, 2000, 

4000, 6000 

OSM  

resi Area of residential land use 100, 300, 500, 1000 OSM  

station Number of railway stations 100, 300, 500, 1000, 2000, 

4000, 6000 

OSM  

avg_popdens Weighted average population 

density 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Weighted by area of each municipality 

within the buffer. 

agri Area of agricultural land  100, 300, 500, 1000 Corine  

for Area of forest 100, 300, 500, 1000 Corine  

lowveg Area of land with low vegetation 100, 300, 500, 1000 Corine  

water Area of water bodies 100, 300, 500, 1000 Corine  

parking Area of parking space 100, 300, 500, 1000 OSM  

parking_b Number of parking buildings 300, 500, 1000 OSM Includes underground parking. 

traff_l Number of traffic lights 100, 300, 500, 1000 OSM  

ped Length of pedestrian-only streets 100, 300, 500, 1000 OSM  

sch Number of schools 300, 500, 1000 OSM  

h_edu Number of colleges and universities 1000, 2000, 4000, 6000 OSM  

poi Number of points of interest 100, 300, 500, 1000 OSM  
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Table 18 (continued). 

Variable Meaning Buffer distances (m) Source Note 

jobs Number of points of interest that 

create jobs 

100, 300, 500, 1000 OSM  

int Number of intersections 100, 300, 500, 1000, 2000, 

4000 

OSM Except motorway intersections. 

avg_v Average speed limit 100, 300, 500, 1000, 2000, 

4000, 6000 

AWV  

l_hwy Length of highways  100, 300, 500, 1000, 2000, 

4000, 6000 

AWV  

prim Length of primary roads 100, 300, 500, 1000, 2000, 

4000, 6000 

AWV  

sec Length of secondary roads 100, 300, 500, 1000, 2000, 

4000, 6000 

AWV  

velo Number of Velo bike sharing 

stations 

100, 300, 500, 1000, 2000, 

4000, 6000 

Stad 

Antwerpen 

 

avg_inc Weighted average yearly income 500, 1000 Statbel 2017 data, on municipal level. 

Weighted by area of each 

municipality within the buffer. 

empl_r Weighted average employment 

rate (%) 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel 2011 data, on municipal level. 

Weighted by area of each 

municipality within in the buffer.  

avg_hh Weighted average household size 100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. 

reg_partner Weighted average percentage of 

registered partnerships 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. People engaged in an act of 

legally cohabiting (Statbel, 2020b). 

married Weighted average marriage rate 

(%) 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. 

20hi_edu Weighted average rate of 

inhabitants (20y or older) with a 

higher educational degree 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. 

r_femalemale Weighted average female/male 

ratio 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. 

avg_age Weighted average age  100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. 
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Table 18 (continued). 

Variable Meaning Buffer distances (m) Source Note 

u15_ Weighted average percentage of 

population under 15 years 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel 2011 data, on municipal level. 

Weighted by area of each 

municipality within the buffer. 

15-65_ Weighted average percentage of 

population between 15 and 65  

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. 

65plus_ Weighted average percentage of 

population of 65 years and older 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. 

born_abr Weigthed average percentage of 

inhabitants born abroad 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. 

foreign Weighted average percentage of 

foreign inhabitants 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. 

imm Weighted average percentage of 

inhabitants immigrated after 1980 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. 

before1991_ Weighted average percentage of 

buildings built before 1991 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. 

after1991 Weighted average percentage of 

buildings built after 1991 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. 

after2001_ Weighted average percentage of 

buildings built after 1991 

100, 300, 500, 1000, 2000, 

4000, 6000 

Statbel Idem. 

nbuildings Number of buildings 100, 300, 500, 1000, 2000 OSM  

distnear_st Distance to the nearest railway 

station 

 OSM  

awv_aanl Length of adjacent cycle lanes 100, 300, 500, 1000, 2000, 

4000, 6000 

AWV Only for AWV roads. 

awv_aanlh Length of adjacent elevated cycle 

lanes 

100, 300, 500, 1000, 2000, 

4000, 6000 

AWV Idem. 

awv_vrijl Length of separated cycle tracks  100, 300, 500, 1000, 2000, 

4000, 6000 

AWV Idem. 

awv_sugg Length of shared lane markings 1000, 2000, 4000, 6000 AWV Idem. 

lu Number of land use types 100, 300, 500, 1000, 2000, 

4000, 6000 

OSM  

roadlength Combined length of all roads within 

the buffer 

100, 300, 500, 1000, 2000, 

4000, 6000 

OSM  
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Location counting points 
 

Table 19. Location of counting points that were used to develop the model. They are all 
situated in the province of Antwerp. ‘Area’ translates as follows: U = Urban, R = Rural, F 
= bike highway.  (Fietssnelwegen, 2019). 

Nr ID Location Area X Y 

1 ANT01 Steenplein, Antwerp U 51.219230 4.395599 

2 ANT02 Mercatorstraat, Antwerp U 51.209022 4.423149 

3 ANT05 Gerard Le Grellelaan, Antwerp U 51.190523 4.406125 

4 ANT09 Londenbrug, Eilandje, Antwerp U 51.231394 4.405468 

5 ANT10 IJzerlaanbrug, Antwerp F 51.235806 4.431231 

6 ANT12 Statielei, Antwerp U 51.216018 4.445766 

7 AREGV07 Hertevelden, Arendonk R 51.311713 5.092592 

8 BEEGV10 Antwerpseweg, Beerse R 51.301820 4.794931 

9 BERGV333 Cycle bridge Berchem Stn., Berchem U 51.197689 4.433259 

10 BORGV04A N16, Scheldedijk, Bornem R 51.118442 4.218056 

11 BORGV04B N16, Temsebrug, Bornem F 51.118442 4.218056 

12 BRB01 De Robianostraat, Borsbeek U 51.194450 4.483680 

13 BRB02 Jozef Reussenslei, Borsbeek U 51.197460 4.490080 

14 DUF03 Fietsostrade F1, Duffel F 51.083520 4.495640 

15 DUF04 Oude Liersebaan, Duffel R 51.107950 4.550640 

16 GROGV09 Jaagpad Albertkanaal, Grobbendonk F 51.183144 4.720932 

17 HOOGV06 Lodewijk de Koninckln, Hoogstraten R 51.394930 4.756819 

18 HOVGV03 Fietsostrade F1, Hove F 51.155999 4.463873 

19 HRS01 Westerlosesteenweg, Herselt R 51.081120 4.913730 

20 HRS02 Bergstraat, Herselt R 51.014928 4.831088 

21 HRS03 Diestsebaan, Herselt  R 51.060750 4.925090 

22 KAPGV02 Georges Spelierlaan, Kapellen F 51.321115 4.437013 

23 KAS01 Herentalsesteenweg, Kasterlee R 51.215700 4.908620 

24 KAS02 Zevendonkseweg, Kasterlee R 51.260080 4.914620 

25 KASGV18 Oudemolsedijk, Kasterlee R 51.222595 4.991111 

26 LIEGV05 Netedijk, Lier F 51.108683 4.526550 

27 LIN01 Kontichsesteenweg, Lint R 51.129940 4.479220 

28 MECGV17 Fietsostrade F1, Mechelen F 51.036077 4.490377 

29 MEEGV17 Markdijk, Meersel-Dreef R 51.498274 4.779328 

30 OELGV20 Zandhovensesteenweg, Oelegem R 51.212234 4.615297 

31 RAMGV11 Bergstraat, Ramsel F 51.031400 4.826072 

32 RIJ02 Merksplassesteenweg, Rijkevorsel R 51.349240 4.810780 

33 RUMGV13 Francis van den Eedebrug, Rumst R 51.071958 4.424261 

34 TONGV19 Oevelse Dreef, Tongerlo R 51.105392 4.903961 

35 TURGV08A Bels lijntje, Kanaalbrug, Turnhout F 51.331328 4.941526 

36 TURGV08B Bels lijntje, Jaagpad, Turnhout  F 51.331328 4.941526 

37 WILGV222 N177, Willebroek F 51.081785 4.358405 
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Figure 20. Locations of the counting points used to develop the model.
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Location counting points (external validation) 
Table 20. Counting points used for external validation and their locations. Points on a 
bicycle freeway are marked in bold (Fietssnelwegen, 2019). ‘*’ indicates locations that 
are located in Flemish Brabant and were used to test transferability. 

Point ID Location X Y 

1 AAR01 Kerkeneinde, Aartselaar 51.1364 4.35732 

2* AFF01 Bellestraat, Affligem 50.89135 4.11866 

3 ANT01 Boomsesteenweg, Wilrijk 51.17006 4.38643 

4 ANT02 Borsbeeksebrug, Berchem 51.200752 4.436997 

5 ANT03 D’Herbouvillekaai, Antwerp 51.20332 4.37388 

6 ANT16 Justitiestraat, Antwerp 51.20877 4.40541 

7 ANT17 Kasteelpleinstraat, Antwerp 51.21001 4.40194 

8 ANT20 Brug N184, Borgerhout 51.20806 4.44277 

9 ANT21 Scheldelaan, Berendrecht-Zandvliet-Lillo 51.368813 4.296445 

10 ANT23 Posthofbrug, Berchem 51.19576 4.43365 

11 ANT26 Ringfietspad, Borgerhout 51.20864 4.44469 

12 ANT28 Desguinlei, Antwerp 51.194203 4.405439 

13 ANT29 Van Eycklei, Antwerp 51.21111 4.41082 

14 ANT30 Stenenbrug, Borgerhout 51.21304 4.44736 

15 ANT31 Binnensingel, Berchem 51.19711 4.43067 

16* ASS01 Fietsostrade F212, Asse 50.90535 4.20876 

17* BEK01 Wissenbeemd, Bekkevoort 50.94929 5.00007 

18* BEK02 Staatsbaan, Bekkevoort 50.94507 4.97602 

19 BER01 Tulpenstraat, Berlaar 51.120425 4.64803 

20 BON01 Mechelsesteenweg, Bonheiden 51.03223 4.51636 

21* DIE01 Fabriekstraat, Diest 50.99361 5.03914 

22* DIE02 Fietspad Diest-Schaffen, Diest 50.99176 5.06546 

23 DUF01 Fietsostrade F1, Duffel 51.109507 4.487998 

24 EDE01 Kontichstraat, Edegem 51.150279 4.446689 

25 EDE02 Prins Boudewijnlaan, Edegem 51.16133 4.42901 

26 GEE02 Diestseweg, Geel 51.15149 4.99413 

27 GEE15 Snelwegstraat, Geel 51.13914 4.94106 

28* GOO01 Bettestraat, Gooik 50.80851 4.07713 

29* GRB01 Robert Dansaertlaan, Groot-Bijgaarden 50.8664 4.26737 

30 GRO01 Hofeinde, Grobbendonk 51.195493 4.754421 

31* HAA01 Haachtsebaan, Haacht 50.98531 4.64328 

32* HAA02 Schorisgat, Haacht 50.96839 4.63343 

33 HEM01 Voetweg, Hemiksem 51.14716 4.34486 

34* HER01 Vaartdijk, Herent 50.92807 4.6784 

35* HER02 Mechelsesteenweg, Herent 50.89639 4.68536 

36* HER03 Terbankstraat, Herent 50.87904 4.66141 

37* HOE02 Terhulpensesteenweg, Hoeilaart 50.77034 4.44117 

38* HOE04 Tumulidreef, Hoeilaart 50.77015 4.44035 

39* HOL01 Horststraat, Holsbeek 50.932004 4.82949 

40 HRT01 Fietsostrade F106, Herentals 51.149482 4.821079 

41 HRT02 Geelseweg, Olen 51.159627 4.883728 

42 HUL01 Vennekensstraat, Hulshout 51.04953 4.806299 

43* ITT01 Lenniksebaan, Sint-Pieters-Leeuw 50.81709 4.24949 

44* KAM01 Geilroedeweg, Kampenhout 50.94522 4.5527 

45* KAM02 Lauterweg, Kampenhout 50.9527 4.54797 

46 KON01 Fietsostrade F1, Kontich 51.134678 4.476007 

47* KOR01 Fietsostrade F3, Kortenberg 50.89631 4.58047 

48* LEN01 Losgatstraat, Lennik 50.80224 4.18443 

49* LEU12 Fietsostrade F3, Herent 50.902734 4.697651 
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Table 20 (continued). 

Point ID Location X Y 

50* LIED01 Affligemsestraat, Liedekerke 50.88196 4.09488 

51* LIED03 Stationsstraat, Liedekerke 50.8819 4.09332 

52 LIL01 Gierlebaan, Lille 51.25615 4.84928 

53* LON01 Leireken, Londerzeel 50.99695 4.26248 

54* LTR01 Fietsostrade F21/22, Linter 50.84481 5.5928 

55 MEC02 Fietsostrade F1, Mechelen 51.045027 4.494299 

56* NOS01 Zaventemsebaan, Zaventem 50.86765 4.2633 

57* NOS02 Mabtinusweg, Zaventem 50.88346 4.49114 

58 OUT01 Steenweg op Turnhout, Oud-Turnhout 51.3209882 4.9688066 

59 OUT02 Steenweg op Oosthoven, Turnhout 51.33574 4.96741 

60 RIJ01 Sint-Lenaartsesteenweg, Rijkevorsel 51.347847 4.73953 

61* ROT01 Dijledijk, Rotselaar 50.96888 4.692876 

62* ROT02 Heirbaan, Rotselaar 50.96159 4.75198 

63* ROT03 Walenstraat, Rotselaar 50.4421 4.69221 

64* SGR01 Waterloosestwg., St-Genesius-Rode 50.76845 4.38269 

65* SOZ01 Fietsostrade F214, Steenokkerzeel 50.9113 4.46078 

66* SPL01 Fietsostrade F20, St-Pieters-Leeuw 50.78784 4.29191 

67 STA01 Torense Weg, Stabroek 51.3324138 4.346626 

68* STB01 Antwerpselaan, Grimbergen 50.91284 4.34523 

69* STB02 Boechoutlaan, Grimbergen 50.90834 4.34326 

70* TER01 Brusselstraat, Ternat 50.8725 4.18333 

71* TER02 Nattestraat, Ternat 50.87828 4.17042 

72* TIE02 Molenbergweg, Tienen 50.80734 4.9108 

73* TRE01 Balenbergstraatje, Tremelo 51.00218 4.76581 

74* TRV01 Oud-Heverleestraat, Tervuren 50.83233 4.53896 

75* VIL01 Schoewever, Vilvoorde 50.94413 4.4483 

76* VIL02 Kleine Steenstraat, Vilvoorde 50.92793 4.4511 

77* WEM01 Tentoonstellingslaan, Wemmel 50.89503 4.31282 

78* WEO01 Astridlaan, Wezembeek-Oppem 50.831 4.5043 

79* WEO02 Lange Eikstraat, Wezembeek-Oppem 50.8523 4.4916 

80* ZAV01 Tramlaan, Zaventem 50.86222 4.48028 

81* ZEM01 Fietsostrade F1, Zemst 50.96004 4.45544 

82* ZEM02 Westvaartdijk, Zemst 50.99137 4.37859 

83* ZOU02 Fietsostrade F21, Zoutleew 50.2759 5.10412 
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Figure 21. Counting points used for external validation and their locations.
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