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Abstract

In this work we construct a multiderivative implicit-explicit (IMEX) scheme for a class of stiff ordinary differential equations
(ODEs). Our solver is high-order accurate and has an asymptotic preserving (AP) property for a large class of singularly perturbed
ODEs. In this context, the AP property means that the singular limit is discretely preserved when a stiff parameter ε goes to
zero. The proposed method is based upon a two-derivative backward Taylor series base solver, which we show has an AP property.
Higher order accuracies are found by iterating the result over a high-order multiderivative interpolant of the right hand side function,
which we again prove has an AP property. Theoretical results showcasing the asymptotic consistency as well as the high-order
accuracy of the solver are presented. In addition, an extension of the solver to an arbitrarily split right hand side function is
also offered. Numerical results for a collection of standard test cases from the literature are presented that support the theoretical
findings of the paper.
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1. Introduction

In this work we consider the numerical approximation of the system of differential equations

y′(t) = z(t), z′(t) =
g(y(t), z(t))

ε
, 0 ≤ t ≤ T, (1)

where g : R2 → R is a smooth function. Our goal is to construct and analyze a high-order, semi-implicit, mulitderiva-
tive asymptotic preserving solver for this class of equations. This problem is equipped with initial conditions at time
t = 0 defined by

y(0) = y0, z(0) = z0, (2)

and we assume 0 < ε � 1. The presence of this stiff relaxation parameter turns the problem into a singularly perturbed
equation. At this point there is a vast amount of literature on problems of this kind. We refer the interested reader to
the classical books [1, 2, 3] and the references therein for an overview on both analysis and applications of this class of
problems. The methods proposed in the current work have the so-called Asymptotic Preserving (AP) property, which
means that the numerical discretization for (1) is a self-consistent discretization for the limiting set of equations that
result from sending ε→ 0.

Provided that the initial conditions are appropriately chosen, Eqn. (1) exhibits a multiscale behavior due to the
presence of the stiff relaxation parameter. Modern solvers leverage this behavior by splitting the equation into ‘stiff’
and ‘non-stiff’ terms for efficient implementations of a numerical discretization. This procedure leads to the now
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famous implicit-explicit, or IMEX class of methods [4, 5, 6, 7, 8, 9, 10]. IMEX methods can usually be classified as
either being an IMEX Runge-Kutta method, or an IMEX multistep method. Recent work has included definitions for
IMEX General Linear Methods (GLMs) [11].

A distinct class apart from the aforementioned time integrators include multiderivative methods [12]. These
solvers have recently been proven to be promising alternatives to classical Runge-Kutta and multistep schemes, and
they are currently experiencing a renaissance with regard to their application to PDEs [13, 14, 15]. Much like Taylor
approximations, these solvers work with not only the first derivative, y′ ≡ z and z′ ≡ g

ε
, respectively, but they also

leverage higher time derivatives of the unknowns. In doing so, the formulation of a solver becomes more intricate,
but the tradeoff is that it makes the formulation more local, meaning additional information about the ODE can be
garnered from each time point or stage value in the solver. This is particularly beneficial for modern high-performance
computing architectures, as these solvers have the potential to reduce the memory overhead. To the best of our
knowledge, there currently exists no extensions of multiderivative methods to IMEX schemes, which is the subject
and aim of this work.

We propose a fourth-order multiderivative IMEX scheme that is based in part on an idea similar to the spectrally
deferred correction (SDC) method [16, 17, 18]. Our solver makes use of a second-order two-derivative IMEX Taylor
series base solver, which we carefully construct in such a way that it contains an asymptotic preserving property.
This solver serves as a ‘predictor’, upon which iterations are performed on a higher-order scheme that lets us pick
up the order of accuracy of the method. In the current work we stop at fourth-order accuracy but our method can be
extended to higher orders based upon what is presented here. In this work we analyze the method with respect to
its asymptotic properties, we show that it is asymptotically consistent [19, 20] with the continuous asymptotics, and
we show numerical results indicating we do indeed find high-order accuracy. Finally, we show that order reduction
common to many IMEX solvers for stiff relaxation problems can be overcome in some situations with our proposed
method.

Order reduction is in general the phenomenon that the observed convergence order of a solver is less than its
formal order of accuracy. For our specific application, this typically manifests itself whenever ∆t � ε. That is, the
observed order of convergence is not the theoretical order of convergence, and the theoretical order of convergence
is only achieved for small ∆t (compared to the stiff scaling parameter ε > 0). This is of course an undesirable
feature. Many authors have found special methods to cope with this phenomenon, for an early attempt in the context
of IMEX Runge-Kutta methods, we refer to [9]. Typically, order loss is attributed to the low stage order of Runge-
Kutta methods. Other methods, such as multistage methods (e.g., IMEX DIMSIM, see [21]) are less prone to order
reduction. Also worth mentioning are the IMEX-peer schemes, specifically designed to reduce the phenomenon of
order reduction by increasing the stage order. For an interesting, more exhaustive discussion on order reduction and
peer-schemes, consult the recent publication [22].

The paper is structured as follows: In Sec. 2, we discuss the necessary theoretical details for equation (1), including
restrictions on g and on the initial data. In Sec. 3, the proposed method is presented and consistency in the discretiza-
tion parameter ∆t is shown. This is followed by an asymptotic consistency analysis in Sec. 4, i.e., consistency in the
singular parameter ε is demonstrated. Numerically, in Sec. 5, we discuss the phenomenon of order reduction and show
how the algorithm can be used to address common challenges found with stiff IMEX solvers. As not all singularly
perturbed ODEs are of the form defined in (1), we extend the method to more general ordinary differential equation in
Sec. 6. Sec. 7 is a primer on how to use the method for PDEs. Finally, we offers conclusions and an outlook for future
work in Sec. 8.

2. The underlying equations: Necessary analytic properties

We consider the equation as given in (1). Although the solutions y and z depend on ε, we only bring this up
when necessary in our analysis. In addition, the dependence on the time variable is typically only written explicitly if
needed. Furthermore, we need some (frequently used) assumptions on ∂zg, which are related to stable manifolds of
the ε→ 0 limit of the solution [1].

Postulate 1. Assume that g is a smooth function, and that ∂zg(y, z) < −c for all y, z ∈ R, with c > 0 being a positive
constant.
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As our solver is a multiderivative solver, we need information about the second derivative of the unknown vari-
ables. A straightforward computation gives use the following Lemma.

Lemma 1. For the solutions y and z to (1), there holds

y′′ =
g(y, z)
ε

, and z′′ =
1
ε
∇g(y, z) ·

(
z

g(y,z)
ε

)
︸              ︷︷              ︸

=:
.
g(y,z)

. (3)

By ∇g, we denote the vector ∇g :=
(
∂yg, ∂zg

)
, i.e., differentiation with respect to y and z.

In order to prove convergence for our solver, we need to assume some form of regularity for the underlying
equations. We make the following assumptions on the right hand side function.

Postulate 2. We assume that g and
.
g are Lipschitz. That is, we assume there exist constants Lg, L .g > 0 with

‖g(y1, z1) − g(y2, z2)‖ ≤ Lg

∥∥∥∥∥∥y1 − y2
z1 − z2

∥∥∥∥∥∥ , ‖ .g(y1, z1) − .g(y2, z2)‖ ≤ L .g
ε

∥∥∥∥∥∥y1 − y2
z1 − z2

∥∥∥∥∥∥ , (4)

that are independent of ε. We note that the ε−1 scaling for
.
g is the correct one to use here (cf. La. 1).

Problems of the form (1) have an interesting structure in the asymptotic limit as ε → 0. The starting point for
analyzing these problems is to first assume that both y and z can be written in terms of a Hilbert expansion in ε, i.e.,

y(t) = y(0)(t) + εy(1)(t) + ε2y(2)(t) + O(ε3),

z(t) = z(0)(t) + εz(1)(t) + ε2z(2)(t) + O(ε3).
(5)

(For a proof of this identity and more related results, see [1] and the references contained within.) By substituting
these expansions into the system of differential equations, equations that each of the y(0), z(0), y(1), z(1), . . . must satisfy
can be derived. For example, substituting into the first equation in (1), we find that

y′(0)(t) + εy′(1)(t) + ε2y′(2)(t) + O(ε3) = z(0)(t) + εz(1)(t) + ε2z(2)(t) + O(ε3). (6)

As ε → 0, we have the identity y′(0) = z(0). After substituting the Hilbert expansion (5) into the second equation, we
find

z′(0)(t) + εz′(1)(t) + ε2z′(2)(t) + O(ε3) =
1
ε

g
(
y(0) + εy(1) + O(ε2), z(0) + εz(1) + O(ε2)

)
. (7)

A Taylor expansion of g is given by

g
(
y(0) + εy(1) + O(ε2), z(0) + εz(1) + O(ε2)

)
= g(y(0), z(0)) + ε∇g(y(0), z(0)) ·

(
y(1)
z(1)

)
+ O(ε2), (8)

which yields with (1)

εz′(0) + O(ε2) = g(y(0), z(0)) + ε∇g(y(0), z(0)) ·
(
y(1)
z(1)

)
+ O(ε2), (9)

from which one can conclude as ε→ 0
0 = g(y(0), z(0)). (10)

That is, under the assumption that y and z had Hilbert expansions, we have that the first order terms y(0) and z(0) fulfill
the differential-algebraic equation

y′(0) = z(0), 0 = g(y(0), z(0)). (11)

Eqn. (11) is the limit equation to first order, it is of course possible to extend this procedure. For example, based on
the Taylor expansion for g given in (8), we find that to second order there holds

y′(1) = z(1), z′(0) = ∇g(y(0), z(0)) ·
(
y(1)
z(1)

)
. (12)

These equations can be combined to produce identities for the higher derivatives not only of the original functions y
and z, but also of the asymptotic quantities y(0) and the like. For example, we have the following result.
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Lemma 2. The solutions y(0) and z(0) to (11) satisfy

y′′(0) =
−∂yg(y(0), z(0))z(0)

∂zg(y(0), z(0))
. (13)

Proof. Differentiate (11) with respect to time and make use of the chain rule.

Finally, we further note that thanks to g(y(0), z(0)) = 0 in Eqn. (11), we also have

0 =
d
dt

g(y(0), z(0)) = ∇g(y(0), z(0)) ·
(
y′(0)
z′(0)

)
(11),(12)

= ∇g(y(0), z(0)) ·
 z(0)

∇g(y(0), z(0)) ·
(
y(1)
z(1)

) (14)

This property is important in our asymptotic analysis.
The proposed numerical scheme makes use of not only the right-hand side of (1), but also on the temporal deriva-

tive thereof. Intuitively, it is therefore reasonable to extend the concept of well-preparedness [23] to cope also with
the limit equation to second order.

Definition 1 (Well-preparedness). We call the initial conditions (y0, z0) well-prepared if they possess a Hilbert expan-
sion. That is, there exist a collection of unique functions y0

(0), y
0
(1), . . . and z0

(0), z
0
(1), . . . for which the initial conditions

can be expanded as
y0 = y0

(0) + εy0
(1) + O(ε2), and z0 = z0

(0) + εz0
(1) + O(ε2). (15)

Furthermore, we must have

g(y0
(0), z

0
(0)) = 0, ∇g(y0

(0), z
0
(0)) ·


z0

(0)

∇g(y0
(0), z

0
(0)) ·

(
y0

(1)
z0

(1)

) = 0. (16)

Remark 1. A couple of comments regarding the definition of well-prepared initial conditions are in order.

• The well-preparedness property is a necessary condition that the solution to the ODE defined in (1) has a
Hilbert expansion given by (5).

• Typically, only the first equation in Eqn. (16) is enforced. However, the standard test cases shown in literature,
see, e.g., Section 5 in [9], fulfill this property. (In fact, using (12) and higher-version thereof will automatically
yield the initial conditions used in [9].)

• In [18], Boscarino and collaborators use a more general version of these initial conditions; the initial conditions
we are using are called ’well-prepared to order one’ in their nomenclature.

3. The multiderivative implicit-explicit (MD-IMEX) method

We now describe the numerical method proposed in this work, first starting with a definition of the scheme for the
class of equations presented in (1). Extensions of this method to larger classes of ODEs are discussed in Sec. 6, but
much of the notation that we define here remains the same.

To begin, we start with a mesh spacing

0 = t0 < t1 < t2 < · · · < tN = Tend, tn+1 − tn = ∆t, n = 0, 1, . . . ,N − 1, (17)

of the time domain [0,Tend]. We seek discrete numerical approximations yn ≈ y(tn) and zn ≈ z(tn) to the exact solutions
y(t) and z(t) of (1) at each time point t = tn. For the sake of exposition, we restrict our attention to uniform time steps,
but this work can certainly be extended to a non-uniform (or adaptive) time grid.
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One well known method for updating the solution to this problem would be to apply the Trapezoidal rule to
approximate the integral of the right hand side to produce a second-order solver via:

yn+1 := yn +
∆t
2

(
zn + zn+1

)
≈ yn +

∫ tn+1

tn
y′(t) dt = yn +

∫ tn+1

tn
z(t) dt, (18)

zn+1 := zn +
∆t
2ε

(
gn + gn+1

)
≈ zn +

∫ tn+1

tn
z′(t) dt = zn +

∫ tn+1

tn

g(y(t), z(t))
ε

dt, (19)

where gn := g(yn, zn), for n = 0, 1, . . . ,N. A lesser well-known strategy is to use a fourth-order integral approximation
to the right hand side that makes use of not only the first, but also the second derivative of the right hand side:

yn+1 := yn +
∆t
2

(
zn + zn+1

)
+

∆t2

12ε

(
gn − gn+1

)
≈ yn +

∫ tn+1

tn
z(t) dt, (20)

zn+1 := zn +
∆t
2ε

(
gn + gn+1

)
+

∆t2

12ε

( .
gn − .gn+1) ≈ zn +

∫ tn+1

tn

g(y(t), z(t))
ε

dt, (21)

where the total time derivative of the right hand side of z is defined as

.
gn := ∇gn ·

(
zn

1
ε
gn

)
, n = 0, 1, 2, . . . ,N. (22)

Of course neither of these methods are semi-implicit. Not only that, but we also seek a high-order method. Therefore,
we start with the latter of these two, but we make a modification to the solver so that it becomes a semi-implicit, rather
than a fully implicit solver.

Algorithm 1. For the solution of (1), we propose the following semi-implicit iterative IMEX method to advance the
solution from time t = tn to time t = tn+1:

1. Predict. Given the solution (yn, zn), we compute a second-order IMEX Taylor approximation

y[0] := yn + ∆tzn +
∆t2

2ε
g(yn, zn)︸   ︷︷   ︸

=:gn

, (23)

z[0] := zn +
∆t
ε

g(y[0], z[0])︸      ︷︷      ︸
=:g[0]

−∆t2

2ε
∇g(y[0], z[0]) ·

(
z[0]

1
ε
g(y[0], z[0])

)
︸                              ︷︷                              ︸

=:
.
g[0]

(24)

for the unknowns y[0] and z[0] that are our initial guesses for an approximation to y(tn+1) and z(tn+1). This
discretization is based upon a second-order forward Taylor series in y and a second-order backward Taylor
series in z. (In due course, we show that the presence of the implicit second order terms is important in the
asymptotic analysis of the method.)

2. Correct. For a total of kmax number of corrections, we iteratively solve for each 0 ≤ k < kmax

y[k+1] := yn +
∆t
2

(
zn + z[k]

)
+

∆t2

12ε

(
gn − g[k]

)
, (25)

z[k+1] := zn +
∆t
ε

(
g[k+1] − g[k]

)
− ∆t2

2ε

( .
g[k+1] − .g[k])

+
∆t
2ε

(
gn + g[k]

)
+

∆t2

12ε

( .
gn − .g[k])

, (26)

for y[k+1] and z[k+1]. For ease of notation, we define

g[k] := g(y[k], z[k]), and
.
g[k] := ∇g[k] ·

(
z[k]

1
ε
g[k]

)
, k = 0, 1, . . . kmax. (27)

These correction steps are primarily used to increase the overall order of accuracy of the solver while main-
taining desirable stability properties.
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3. Update. The update for the solution is defined as

yn+1 := y[kmax], zn+1 := z[kmax].

Consistency and stability are of central importance for any numerical discretization of a differential equation.
Furthermore, for AP schemes, the asymptotic stability and accuracy (as ε→ 0) are of paramount importance, as these
are the defining features of any AP numerical solver. We analyze the latter two central properties in the forthcoming
sections, but first we address the consistency of the numerical method by looking at the order of accuracy of the solver
(as a fixed function of ε > 0) and letting ∆t → 0. Stability is investigated in the numerical results section where we
consider a prototypical linear case after defining the appropriate extension of this solver to problems with an additive
right hand side.

Remark 2. In every iteration step, y[k] and z[k] are approximations to y(tn+1) and z(tn+1), respectively, of order
min{4, 2 + k}. That is, the iterates pick up a single order of an order of accuracy with each sweep of the solver,
up to a maximal order based on the underlying quadrature rule.

We formalize the statement of Rmk. 2 in Thm. 1 but we first lay down the foundational ingredients for its proof.
As this method is based on the integral formulation of the differential equation, we begin with some lesser well known
quadrature identities. Define, for some generic function f : R2 → R,

I
[
f n, f [k]

]
:=

∆t
2

(
f n + f [k]

)
+

∆t2

12

( .
f

n −
.
f

[k])
, (28)

with the obvious notation f n := f (yn, zn) and f [k] := f (y[k], z[k]). We note that I is a fourth-order accurate quadrature
rule, and therefore

I
[
z(tn), z(tn+1)

]
=

∫ tn+1

tn
z(t) dt + O(∆t5), and (29)

I
[
g(tn), g(tn+1)

]
=

∫ tn+1

tn
g(y(t), z(t)) dt + O(∆t5), (30)

assuming enough regularity in the underlying y, z, and g functions that define (1). For the sake of readability, we have
made the slight abuse of notation and are thinking of g(tn) := g(y(tn), z(tn)). it is obvious that the constants in the big-O
estimate do of course depend on ε > 0. Furthermore, observe that the defining equations for y[k], z[k], respectively,
with k > 0 in the correction step can then be written as

y[k+1] = yn + I
[
zn, z[k]

]
, and (31)

z[k+1] = zn +
∆t
ε

(
g[k+1] − g[k]

)
− ∆t2

2ε

( .
g[k+1] − .g[k])

+
1
ε
I

[
gn, g[k]

]
, (32)

with the understanding that
.
z := g

ε
, which is required to compute I

[
zn, z[k]

]
.

As is customary in a consistency analysis, assume that yn and zn are the exact solutions evaluated at time tn. That
is, we assume yn = y(tn) and zn = z(tn). Define

δ[k]
y := y[k] − y(tn+1), δ[k]

z := z[k] − z(tn+1), and δ[k] := ‖(δ[k]
y , δ[k]

z )‖. (33)

We compute ∣∣∣∣I [
z(tn), z(tn+1)

]
− I

[
z(tn), z[k]

] ∣∣∣∣ =

∣∣∣∣∣∣∆t
2

(
z(tn+1) − z[k]

)
+

∆t2

12

( .
z(tn+1) − .z[k])∣∣∣∣∣∣

≤ ∆t
2

∣∣∣(z(tn+1) − z[k])
∣∣∣ +

∆t2

12ε

∣∣∣g(tn+1) − g[k]
∣∣∣

≤ ∆t
2
δ[k] +

∆t2

12ε
Lgδ

[k],

(34)
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where Lg is the Lipschitz constant for g, and similarly∣∣∣∣I [
g(tn), g(tn+1)

]
− I

[
g(tn), g[k+1]

]∣∣∣∣ ≤ ∆t
2

Lgδ
[k] +

∆t2

12ε
L .gδ

[k], (35)

where L .g is the Lipschitz constant for
.
g. Since the exact solution of the differential equation satisfies

z(tn+1) = z(tn) +
1
ε

∫ tn+1

tn
g(y, z)dt, (36)

we have

∣∣∣δ[k+1]
z

∣∣∣ =

∣∣∣∣∣∣∣z(tn) +
∆t
ε

(
g[k+1] − g[k]

)
− ∆t2

2ε

( .
g[k+1] − .g[k])

+
1
ε
I

[
gn, g[k]

]
− z(tn) − 1

ε

∫ tn+1

tn
g(y, z)dt

∣∣∣∣∣∣∣
≤ ∆t

ε

∣∣∣g[k+1] − g[k]
∣∣∣︸         ︷︷         ︸

I

+
∆t2

2ε

∣∣∣∣ .g[k+1] − .g[k]
∣∣∣∣︸         ︷︷         ︸

II

+
1
ε

∣∣∣∣∣∣∣I [
gn, g[k]

]
−

∫ tn+1

tn
g(y, z)dt

∣∣∣∣∣∣∣︸                               ︷︷                               ︸
III

.

We estimate each of these terms separately:

|I| =
∣∣∣g[k+1] − g[k]

∣∣∣ ≤ ∣∣∣g[k+1] − gn+1
∣∣∣ +

∣∣∣gn+1 − g[k]
∣∣∣ ≤ Lg

∣∣∣δ[k+1]
∣∣∣ + Lg

∣∣∣δ[k]
∣∣∣ , (37)

and

|II| =
∣∣∣∣ .g[k+1] − .g[k]

∣∣∣∣ =
∣∣∣∣ .g[k+1] − .gn+1

+
.
gn+1 − .g[k]

∣∣∣∣ ≤ L .g
ε
δ[k+1] +

L .g
ε
δ[k]. (38)

Finally, we make use of (35) and (30) to estimate the third term in this inequality:

|III| =
∣∣∣∣∣∣∣I [

gn, g[k]
]
−

∫ tn+1

tn
g(y, z)dt

∣∣∣∣∣∣∣ ≤
∣∣∣∣I [

gn, g[k]
]
− I

[
gn, gn+1

]∣∣∣∣ +

∣∣∣∣∣∣∣I [
gn, gn+1

]
−

∫ tn+1

tn
g(y, z)dt

∣∣∣∣∣∣∣
≤ ∆t

2
Lgδ

[k] +
∆t2

12ε
L .gδ

[k] + O(∆t5).

(39)

All together, we have

∣∣∣δ[k+1]
z

∣∣∣ ≤ ∆t
ε
|I| + ∆t2

2ε
|II| + 1

ε
|III|

≤ Lg∆t
ε

δ[k+1] +
Lg∆t
ε

δ[k] +
L .g∆t2

2ε2 δ[k+1] +
L .g∆t2

2ε2 δ[k] +
∆t
2ε

Lgδ
[k] +

∆t2

12ε2 L .gδ
[k] + O(∆t5)

= O(∆tδ[k+1]) + O(∆tδ[k]) + O(∆t5).

(40)

We stress again that the constants in the O-terms depend on ε. Similar results hold for δ[k+1]
y , which show that∣∣∣δ[k+1]

y

∣∣∣ ≤ O(∆tδ[k+1]) + O(∆tδ[k]) + O(∆t5). (41)

These results indicate that δ[k+1] is one order (in ∆t) better than δ[k], until it reaches the maximum order of the quadra-
ture rule. We formalize this statement in the following theorem.

Theorem 1. The errors in the iterated approximations defined in Alg. 1 satisfy δ[k] = O(∆tmin{4,2+k}+1), with any
k ∈ Z≥0, and therefore when kmax ≥ 2, the method is fourth-order consistent.

7
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Stiff Equations Relaxed Equations

Discrete:

Continuous: w(ε) w(0)

w∆t,(ε) w∆t,(0)

ε→ 0

ε→ 0

∆t → 0 ∆t → 0

Figure 1. Asymptotic preserving methods. We say a method is asymptotic preserving if the limits in the above diagram commute with each other.
That is, lim∆t→0 limε→0 w∆t,(ε) = limε→0 lim∆t→0 w∆t,(ε) = w(0). This property is not automatically preserved with any arbitrary, but consistent
numerical method for the stiff equations.

Proof. The predictor is second-order accurate because y[0] and z[0] are computed by a second-order forward/backward
Taylor method. That is, δ[0] = O(∆t3). Combining (40) and (41) gives

δ[k+1] = O(∆tδ[k+1]) + O(∆tδ[k]) + O(∆t5),

which yields the desired result after applying induction on the number of iterates, k.

Remark 3. From the analysis it is evident that once the quadrature operator I is replaced by another, higher-order
quadrature, the method exhibits a higher overall order of accuracy. This route opens the possibility to investigate even
higher order semi-implicit multiderivative time integrators.

4. Asymptotic consistency

Considering the fact that the algorithm should approximate a singularly perturbed equation, it is evident that the
behavior of the algorithm in the limiting case ε → 0 is of utmost importance. Here, we investigate the asymptotic
preserving (AP) property of the proposed method. Roughly speaking, an asymptotic preserving scheme means that
the discretization found by sending ε → 0 but holding ∆t constant is a consistent discretization of the limit equation,
Eqn. (11), found by sending ε → 0 of the continuous problem. Generic differential equation solvers do not typically
have this property.

Formally, if w∆t,(ε) is a discretization of the stiff equations defined in (1), with w = (y, z), then there are two limits
that can be computed. We either send ∆t → 0 or we can send ε → 0, from which we send the other variable to zero.
On the one hand, if we first send ∆t → 0, then we end up with a (to be expected) numerical approximation w(ε) of (1),
which we understand relaxes to w(0) as ε→ 0. On the other hand, if we instead first send ε→ 0, then we end up with
a discretization w∆t,(0), which may or may not converge to the limiting solution w(0) as ∆t → 0. If it does, we say the
numerical method has the asymptotic preserving property. This property is summarized in Fig. 1, which is commonly
found in the literature.

We begin by showing the well-posedness of y[0], z[0], and the fact that these quantities possess Hilbert expansions.

Lemma 3. Assume, in addition to Postulate 2, that ∂zg and ∂z
.
g are Lipschitz in the second argument, i.e., for all

y, z1, z2 ∈ R, we have

|∂zg(y, z1) − ∂zg(y, z2)| ≤ L∂zg|z1 − z2|, |∂z
.
g(y, z1) − ∂z

.
g(y, z2)| ≤ L∂z

.
g

ε
|z1 − z2|, (42)

8
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and furthermore assume that all occurring derivatives of g are uniformly bounded, and, in the spirit of [1, Sec. VI.3]
that

g(yn, zn) = O(ε∆t),
.
g(yn, zn) = O

(
∆t
ε

)
. (43)

If, in addition to these criteria, we assume yn and zn possess Hilbert expansions, then there exists a fixed ε0 > 0 and
∆t0 > 0, such that for all 0 < ε < ε0 and 0 < ∆t < ∆t0, we have that y[0] and z[0] possess Hilbert expansions.

Remark 4. Under the assumption that there exists a Hilbert expansion, one can show that the identities in (43) hold
with O(ε). Behind this formulation is hence the implicit assumption that ε � ∆t.

Proof. Due to the fact that y[0] is computed explicitly, and g(yn, zn) = O(ε∆t), it is evident that y[0] possesses a Hilbert
expansion, can hence be written as

y[0] = y[0]
(0) + εy[0]

(1) + O(ε2).

More challenging is showing that z[0] has a Hilbert expansion, given that this is nonlinear and implicit. We note that
this term is supposed to be a zero of

F(z[0]) := z[0] − ∆t
ε

g(y[0], z[0]) +
∆t2

2ε
.
g(y[0], z[0]) − zn = 0. (44)

As typically done, see [1], we apply Newton-Kantorovich’s theorem to this function F. Direct computation gives

F′(z) = 1 − ∆t
ε
∂zg(y[0], z) +

∆t2

2ε
∂z
.
g(y[0], z),

and hence

|F′(z1) − F′(z2)| ≤
(
∆t
ε

L∂zg +
∆t2

2ε2 L∂z
.
g

)
|z1 − z2|.

Furthermore, observe that ∣∣∣g(y[0], zn)
∣∣∣ = |g (yn + O(∆t), zn)| ≤ |g(yn, zn)| + O(∆t) ≤ Mg∆t,

for some constant Mg, because g(yn, zn) = O(ε∆t), ∂yg is bounded and there is some upper bound on ε. Because of
our assumption on bounded derivatives of g, we also have

∂zzg(y[0], zn)g(y[0], zn) ≤ M1∆t

for some M1 > 0.
Now, consider Newton’s method applied to F, with initial point zn. Choose an M2 such that

‖∂yzg‖∞|zn| + ‖∂yg‖∞ ≤ M2.

Then, taking into account Postulate 1, we have

F′(zn) = 1 − ∆t
ε
∂zg(y[0], zn) +

∆t2

2ε
∂z
.
g(y[0], zn)

≥ 1 +
∆t
ε

c +
∆t2

2ε

(
∂yzg(y[0], zn)zn + ∂yg(y[0], zn)

)
+

∆t2

2ε2

(
∂zzg(y[0], zn)g(y[0], zn) + (∂zg(y[0], zn))2

)
≥ 1 +

∆t
ε

c +
∆t2

2ε2 c2 +
∆t2

2ε

(
∂yzg(y[0], zn)zn + ∂yg(y[0], zn)

)
+

∆t2

2ε2

(
∂zzg(y[0], zn)g(y[0], zn)

)
≥ 1 +

∆t
ε

(
c − ∆t

2
M2

)
+

∆t2

2ε2

(
c2 − ∆tM1

)
.

9
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Choosing ∆t0 small enough (independently of ε!) so that the expressions in brackets are strictly positive (larger than
η > 0 say) for any ∆t < ∆t0, yields that F′(zn) , 0 and that

F′(zn) ≥ 1 +
∆t
ε
η +

∆t2

2ε2 η.

A similar computation, taking into account g(yn, zn) = O(∆t) and
.
g(yn, zn) = O

(
∆t
ε

)
, yields

|F(zn)| =
∣∣∣∣∣∣zn − ∆t

ε
g(y[0], zn) +

∆t2

2ε
.
g(y[0], zn) − zn

∣∣∣∣∣∣
≤ Mg

∆t2

ε
+ M .

g
∆t3

2ε2 ,

where M .
g is defined similarly to Mg.

The first Newton step would thus have step width

F(zn)
F′(zn)

≤ ∆t
Mg

∆t
ε

+ M .
g

∆t2

2ε2

1 + ∆t
ε
η + ∆t2

2ε2 η
.

This expression can be bounded by ∆t times a constant H that does not depend on ε and ∆t, i.e.,

F(zn)
F′(zn)

≤ H∆t.

Hence, there holds (
∆t
ε

L∂zg +
∆t2

2ε2 L∂z
.
g

)
|F′(zn)−1|

∣∣∣∣∣ F(zn)
F′(zn)

∣∣∣∣∣ ≤ ∆t
ε

L∂zg + ∆t2

2ε2 L∂z
.
g

1 + ∆t
ε
η + ∆t2

2ε2 η
H∆t.

Also this can be bounded by some constant times ∆t, hence, choosing ∆t sufficiently small makes the expression
smaller than one half, and the Newton-Kantorovich theorem can be used. Not only does this imply that z[0]−zn = O(1),
it also implies that z[0] has a Hilbert expansion, because we can repeat the argument for every Newton step.

Remark 5. Both statement and proof can be extended to the full method.

To continue, we show the AP-property for the forward/backward starting phase.

Lemma 4. Assume that y[0] and z[0] possess Hilbert expansions. That is, we are operating under the assumptions
presented in Lemma 3. Then, y[0] and z[0] are also well-prepared in the sense of Def. 1, i.e., there holds

g[0]
(0) := g

(
y[0]

(0), z
[0]
(0)

)
= 0, ∇g[0]

(0) ·


z[0]
(0)

∇g[0]
(0) ·

y[0]
(1)

z[0]
(1)


 = 0.

Proof. The proof starts by considering z[0], given by

z[0] := zn +
∆t
ε

g[0] − ∆t2

2ε
∇g[0] ·

(
z[0]

1
ε
g[0]

)
.

Inserting a Hilbert expansion for all occurring quantities reveals the fact that the highest order is O(ε−2), with corre-
sponding equation being given by

∂zg
[0]
(0)g

[0]
(0) = 0.

Due to our assumption on ∂zg, see Postulate 1, there follows g[0]
(0) = 0.

10
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Now, to O(ε−1), the limiting equations are (be aware that the term scaled with ε−2 also contributes, see Eqn. (8))
are given by

∆tg[0]
(0) −

∆t2

2
∇g[0]

(0) ·


z[0]
(0)

∇g[0]
(0) ·

y[0]
(1)

z[0]
(1)


 − ∆t2

2
∇(∂zg

[0]
(0)) ·

y[0]
(1)

z[0]
(1)

 · g[0]
(0) = 0.

Exploiting the fact that g[0]
(0) = 0 yields the claim.

Theorem 2 (The algorithm is AP). Assume that the discrete solution at time level t = 0 is well-prepared in the sense
of Def. 1. Assume furthermore that the discrete solution possesses a Hilbert expansion. Then, there holds for all times
tn that

g(yn
(0), z

n
(0)) = 0

and

∇g(yn
(0), z

n
(0)) ·


zn

(0)

∇g(yn
(0), z

n
(0)) ·

(
yn

(1)
zn

(1)

) = 0.

This implies that the method is asymptotic preserving.

Proof. The proof is very similar to the one of La. 4 and is hence omitted. Due to the ε−dependency of the ‘explicit’
terms g[k] and

.
g[k], terms as in Eqn. (16) at previous time/stage instances do show up. This, contrarily to La. 4,

necessitates the need for well-prepared initial conditions as in Def. 1.

5. Asymptotic accuracy

From a practical point of view, it is not only of interest whether the method is asymptotically consistent, but also
to what orders of accuracy the consistency is. This is a more delicate issue than pure consistency; in particular for
IMEX Runge-Kutta methods, this leads to undesirable results including order reduction being a limiting factor for the
solver. This is a result of the reduced stage order of the Runge-Kutta method [8, 1]. In order to investigate this, let us
consider van der Pol equation, being in the form (1) with g given by

g(y, z) = (1 − y2)z − y.

We put our initial conditions as

y(0) = 2, z(0) = −2
3

+
10
81
ε − 292

2187
ε2,

which is a frequent choice in literature, see, e.g., [9]. These initial conditions are well-prepared in the sense of Def. 1.
In Fig. 2, we show convergence results for the method presented in Alg. 1. The top row shows results for kmax = 0

(this means that yn+1 = y[0], similarly for z, i.e., only the predictor is taken into account). In the second row, kmax is
set to two, which is the minimal number of iterations required to produce a fourth-order scheme. We observe that
the second-order scheme (which is our second-order base IMEX Taylor solver) exhibits no order reduction. This
means that there is second-order convergence uniformly in ε. The fourth-order scheme shows severe order reduction,
meaning that the convergence is not uniformly fourth order over the whole range of ε and ∆t. We note that, in contrast
to well-known results from literature, see, e.g., [8], the order reduction phenomenon takes place in each component,
not only in the z−component. This is due to the fact that the second derivative ’couples’ the variables y and z more
closely. A similar phenomenon is observed when using different splittings [23]. On the bottom of Fig. 2, we increase
kmax to 20. It is clearly visible that this enhances convergence, no order reduction is visible for kmax = 20. The reason

11
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for this behaviour is that under the assumption that
(
y[k], z[k]

)
converges as k → ∞, the result of Alg. 1 is equal to the

fourth-order quadrature rule:

yn+1 = yn +
∆t
2

(
zn + zn+1

)
+

∆t2

12ε

(
gn − gn+1

)
,

zn+1 = zn +
∆t
2ε

(
gn + gn+1

)
+

∆t2

12ε

( .
gn − .gn+1)

,

which is apparently less sensitive to order reduction.
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Figure 2. Convergence results for van der Pol equation with different values of ε. Top row: kmax = 0, which amounts to only taking the predictor.
Second row: kmax = 2, with amounts to taking the full fourth-order scheme. Third rows: kmax = 20, which includes many more additional
corrections than are necessary to reach fourth-order accuracy but helps mitigate order reduction. Resulst for kmax = 100 are similar, but with
slightly smaller errors. The first column is the Euclidean norm of the total solution (y, z) at the final time Tend = 0.5. The second and third colums
are the absolute value of the error at the final time for the y and z components, respectively. These results indicate that the solver exhibits minor
order reduction for moderate values of kmax simulataneously in both variables, which can be mitigated by increasing the total number of iterates.

Remark 6. Increasing kmax introduces additional computational demands given the additional number of iterations.
While it is not the aim of this paper to perform a fully detailed runtime investigation, we would still like to give some
indication of the increased computational costs. In Fig. 3, we plot the runtime needed for ε = 10−1, ε = 10−3, and
ε = 10−5, respectively. The runtime is normalized by the time it takes to run the simulation for kmax = 0, which is
a straightforward implementation of the Alg. 1, with the same fixed tolerance parameters for our Newton GMRES
solvers as well as our fixed time step selection. We use the value from the previous time step for the initial guess for
our Newton iterations. We expect optimizations can be found with adaptive time stepping, adaptive tolerances, better
initial guesses, and the like. It can be seen that the extra time needed for computing additional correction steps is
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approximately proportional to kmax. This is in agreement with the naive view on Alg. 1: The dominating cost in each
time step comes from spending time solving the nonlinear equations.
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Figure 3. Runtime measurements for van der Pol equation with ε = 10−1 (left), ε = 10−3 (middle) and ε = 10−5 (right). Different kmax are
being investigated, the runtime is normalized to the runtime for kmax = 0. It can be clearly seen that the computational costs are approximately
proportional to the size of kmax. The increase for very fine ∆t and small ε for kmax = 20 and kmax = 100, respectively, is due to the fact that machine
zero is hit and therefore Newton’s method takes rather long to converge.

To investigate the loss of asymptotic order of accuracy numerically in some closer detail, we define δ(∆t; ε) to be
the Euclidean norm of the error in y and z at end time Tend for a given ∆t and a given ε, i.e.,

δ(∆t; ε) :=
√(

yN − y(Tend)
)2

+
(
zN − z(Tend)

)2.

(We note that δ does of course also depend on kmax, which we have not made explicit.) As for the solution, a Hilbert
expansion of δ in terms of ε is assumed, so we have

δ(∆t, ε) = δ0(∆t) + εδ1(∆t) + O(ε2). (45)

We approximate δ0(∆t) and δ1(∆t) numerically through

δ0 ≈ δ(∆t;αε) − αδ(∆t; ε)
1 − α , εδ1 ≈ ω1δ(∆t; ε) + ω2δ(∆t;αε) + ω3δ(∆t;α2ε) (46)

where we choose the rather arbitrary values α = 5
6 and ε = α2 · 10−5. (In our numerical testing, we verified that the

results obtained are not influenced to any significant accuracy by this choice of ε.) The weights ωi are chosen so that

ω1 + ω2 + ω3 = 0, ω1 + αω2 + α2ω3 = 1, ω1 + ω2α
2 + ω3α

4 = 0.

These conditions on the ωi come out naturally after inserting the expansion (45) into (46).
For the same test case as above (i.e., van der Pol’s problem with kmax = 0, 2, 20, 100, respectively) we plot δ0(∆t)

and δ1(∆t) in Fig. 4. For kmax = 0 we observe uniformly accurate convergence of order O(∆t2) for both δ0 and δ1.
This means that the full error is of order O(∆t2) + εO(∆t2). For kmax = 2, on the contrary, we observe that there is
some order degradation in δ1, it does not converge with fourth order, but with some order q < 3. Hence, the full error
is O(∆t4) + εO(∆tq). This is consistent to what other authors observe with classical order reduction, see [8]. It can be
seen that the slope of δ1(∆t) increases as kmax increases (until machine accuracy issues occur, of course), so that for
kmax ’large’ the total error is again of order O(∆t4) + εO(∆t4). We note that machine accuracy issues are different for
δ0 and δ1. The quantity δ1 can be seen as a finite difference, and hence experiences the same cancellation problems as
known for the finite approximation of a derivative.

6. Extensions to arbitrary splittings

So far, we have discussed the method for equations of type Eqn. (1), and we have proposed a solver for that class
of equations in Alg. 1. The method developed in this work has a natural extension to a larger class of ODEs, which
we now point out. Consider, for example a system of ODEs with a generic additive right hand side:

w′(t) = Φ(w) =: ΦE(w) + ΦI(w), (47)
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Figure 4. Asymptotic convergence results for van der Pol equation. Top left: kmax = 0, which amounts to only taking the predictor. Top right:
kmax = 2, which is the minimum required number of iterations to obtain the full fourth-order scheme. Bottom: kmax = 20 and kmax = 100,
respectively. Error measure is defined as the Euclidean norm of the y and z error at end time Tend = 0.5. Dashed lines indicate second- and
fourth-order convergence, respectively.

with w : R≥0 → Rn and ΦE,ΦI : Rn → Rn being a splitting of the right hand side function. The total time derivative
of each piece in the right hand side function is given by

.
ΦI(w) = Φ′I(w) (ΦI(w) + ΦE(w)) ,

.
ΦE(w) = Φ′E(w) (ΦI(w) + ΦE(w)) .

It is assumed that ΦI(w) contains “stiff” terms, and ΦE(w) contains non-stiff terms, so ΦI(w) should be treated
implicitly, while ΦE(w) can be treated explicitly in order to speed up the computations. We note that Eqn. (1) is of
this form, with ΦI(w) = (0, 1

ε
g(w)) and ΦE(w) = (z, 0). The choice of a suitable splitting is a subtle issue. We refer the

reader to [23] for other splittings.
We extend Alg. 1 in the following fashion to address arbitrary splittings. One of the chief goals is to retain the

implicit-explicit (IMEX) type flavor of the underlying ODE and reach higher orders of accuracy all the while keeping
the implicit solves as simple as possible.

Algorithm 2. Consider a differential equation with a split right hand side given by Eqn. (47). To advance the solution
from time level t = tn to t = tn+1 we perform the following predictor-corrector strategy:

1. Predict. Given the solution wn at time level t = tn, we first compute an approximation to w[0] ≈ wn+1 via

w[0] := wn + ∆t
(
ΦI(w[0]) + ΦE(wn)

)
+

∆t2

2

( .
ΦE(wn) −

.
ΦI(w[0])

)
. (48)

That is, we perform a forward Taylor expansion on ΦE and a backward Taylor expansion on ΦI and integrate
the results. This produces a second-order accurate predictor.

2. Correct. Based on this initial step, for each 0 ≤ k ≤ kmax − 1 solve

w[k+1] := wn + ∆t
(
Φ

[k+1]
I − Φ

[k]
I

)
− ∆t2

2

( .
ΦI

[k+1] −
.

ΦI
[k])

+
∆t
2

(
Φn + Φ[k]

)
+

∆t2

12

( .
Φ

n −
.
Φ

[k])
for w[k+1].
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3. Update. Set wn+1 := w[kmax].

The intermediate iterates need not be stored, and therefore this algorithm needs only the solution at a total of two
time levels. This is advantageous when compared to any multistep method, where the solution at each stage needs to
be stored, as well as most Runge-Kutta methods (save the methods of the low-storage variety).

Remark 7. Alg. 2 is a natural extension of Alg. 1. That is, with w = (y, z), ΦE(w) = (z, 0), and ΦI(w) =
(
0, g

ε

)
, Alg. 2

reduces to Alg. 1.

Remark 8. Similiar to what was carried out in [18] and earlier in [24], this method can be cast as a Runge-Kutta
method. Just like in [18], this would be a semi-implicit solver, but the new piece is that this time it is a two-derivative
Runge-Kutta method.

A problem that is not of the form defined in (1), and can hence serve as a numerical test problem, is the so-called
Kaps test problem [13]

y′ = −2y +
1
ε

(z2 − y), y(0) = 1,

z′ = y − z(1 + z), z(0) = 1,

with exact solution w := (y, z) = (e−2t, e−t) for any ε > 0.
We use the most straightforward splitting on this problem given by grouping all of the terms containing ε and

putting them into the implicit piece of the right hand side:

ΦE(w) := (−2y, y − z(1 + y))T , ΦI(w) :=
1
ε

(
z2 − y, 0

)T
.

We present numerical results in Fig. 5. These results echo the findings of the previous section:

• The second-order scheme does not exhibit order degradation, convergence is uniformly second order over the
whole range of ε and ∆t.

• For low kmax, we observe order degradation, meaning that the convergence is not uniformly fourth order over
the whole range of ε and ∆t.

• For kmax → ∞, the observed order degradation vanishes – meaning that there is uniform fourth order conver-
gence – and the errors are significantly smaller than for lower kmax.

We thus conclude that the algorithm is capable of also computing solutions to equations that are not given in form
(1). This is very important, in particular with respect to an extension of the scheme to singularly perturbed PDEs,
where the semi-discretized systems are rarely in the form defined in (1).

7. Extensions to Partial Differential Equations

In this last section, we apply the method to the temporal discretization of the linear convection-diffusion equation

ut + cux = εuxx, (49)

for constants c ∈ R and ε ∈ R≥0, and given initial conditions u(x, 0). The viscous part is treated implicitly, while the
convective part is treated explicitly. Typically, the spatial discretization of the uxx part gives rise to a matrix with real
negative eigenvalues, while the discretiztation of the ux part gives rise to a matrix with purely imaginary eigenvalues.
It has hence been pointed out in [6, 7] that a suitable prototype ODE for the discretization of (49) is

w′ = (λ + iµ)w ≡ λw + iµw, (50)

with λ ≤ 0 and µ > 0. The first part is treated implicitly, as it corresponds to the discretization of a diffusive operator,
while the second part is treated explicitly. For a more detailed explanation of the relation between this equation and
the convection-diffusion equation, we refer to [6]. In Sec. 7.1, we discuss the stability of the novel IMEX method
when applied to this ODE. In Sec. 7.2, we then discretize (49) using a spectral Galerkin method. The method from
Alg. 2 is used to advance the discrete solution in time; numerical results are shown.
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Figure 5. Convergence results for Kaps problem with different values of ε. Top left: kmax = 0, which amounts to only taking the predictor. Top
right: kmax = 2, with amounts to taking the full fourth-order scheme. Bottom: kmax = 20 and kmax = 100, respectively. Error measure is defined as
the Euclidean norm of the y and z error at end time Tend = 1.0.

7.1. Additive stability
To cast eq. (50) into the framework of Alg. 2, we define

ΦI(w) := λw, ΦE(w) := iµw,

which then yields
.

ΦI(w) = λ(λ + iµ)w,
.

ΦE(w) = iµ(λ + iµ)w.

We follow the steps done in [7] and define

λ̃ := λ∆t ≤ 0, µ̃ := µ∆t > 0.

The predictor step for Alg. 2 can hence be written as

w[0] =
1 + iµ̃ +

iµ̃λ̃
2 − µ̃2

2

1 − λ̃ + λ̃2

2 + i λ̃µ̃2
wn =: Ψ(λ̃, µ̃)wn.

As already noticed in [7] for IMEX Euler, for z := λ + iµ being on the imaginary axis, i.e., λ = 0, this can, for µ , 0,
never yield an unconditionally stable algorithm, as∣∣∣∣∣∣1 + iµ̃ − µ̃

2

2

∣∣∣∣∣∣2 =

(
1 − µ̃

2

2

)2

+ µ̃2 = 1 +
µ̃4

4
> 1.

This is of course not surprising, as the algorithm reduces to a purely explicit time marching scheme. In the spirit of
[7], we keep the ratio of λ and µ constant, i.e., we define

γ :=
λ

µ
≤ 0,
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and investigate whether, for a given ratio of the implicit to explicit eigenvalues, γ, the algorithm is stable. This may
produces restrictions on µ̃ ≡ µ∆t, which we can modify by changing the time step size. Any restrictions on µ̃ ≡ µ∆t
will in practice result in a timestep restriction.

Lemma 5. If γ ≤ −1 then the predictor w[0] for the method is stable. That is, for a single time step, we have

‖w[0]‖ ≤ ‖wn‖.
Proof. There holds γ = λ

µ
= λ̃

µ̃
and consider the expression

|Ψ(γµ̃, µ̃)| ≤ 1,

which is equivalent to (
1 − µ̃

2

2

)2

+

(
µ̃ +

γµ̃2

2

)2

≤
(
1 − γµ̃ +

(γµ̃)2

2

)2

+

(
γµ̃2

2

)2

.

This again reduces to
1 − γ4

4
µ̃4 + (γ3 + γ)µ̃3 − 2γ2µ̃2 + 2γµ̃ ≤ 0.

As µ̃ is positive and γ ≤ −1, this proves the claim.

Similar analysis can of course be made for the full algorithm. Due to the technical difficulties that come with high-
order polynomials in λ and µ, we restrict ourselves to a numerical investigation. In Fig. 6, the maximum allowable
µ̃ is shown as a function of γ both for the predictor and the full algorithm, where we have restricted ourselves to
kmax = 2. It can be seen that for γ → 0, the maximum allowable timestep for the predictor tends to zero, while for the
full algorithm, it tends to a fixed constant. This can be seen by computing the squared absolute value of the iteration
function for kmax = 2 and γ = 0 (hence λ = 0). Assuming it to be smaller than one leads to the inequality

µ̃6
(
µ̃6 + 76 µ̃4 + 1392 µ̃2 − 7488

)
82944

≤ 0,

which is fulfilled for µ̃ ∈ [0, 2.075]. The full algorithm hence gives a significant improvement in stability compared to
just the predictor.

Finally, we perform our analysis also for the ‘limiting’ method, i.e., the method defined by

wn+1 = wn +
∆t
2

(
Φn + Φn+1

)
+

∆t2

12

( .
Φ

n −
.

Φ
n+1)

. (51)

In the case that w[k] converges with k → ∞, the limit exactly coincides with wn+1 defined in (51). In terms of λ̃ and µ̃,
the iteration is given by

wn+1 =
1 + 1

2 (λ̃ + iµ̃) + 1
12 (λ̃ + iµ̃)2

1 − 1
2 (λ̃ + iµ̃) + 1

12 (λ̃ + iµ̃)2
wn =: Θ(λ̃, µ̃)wn.

For this fully implicit method, we have the following result; the finding here will be that the limiting solver defined in
(51) is numerically stable for any choice of time step.

Lemma 6. If γ < 0, the method defined in (51) has an amplification factor that satisfies

|Θ(γµ̃, µ̃)| ≤ 1.

Proof. The claim is equivalent to the inequality(
1 +

1
2
γµ̃ +

1
12

(γ2µ̃2 − µ̃2)
)2

+

(
1
2
µ̃ +

1
6
γµ̃2

)2

≤
(
1 − 1

2
γµ̃ +

1
12

(γ2µ̃2 − µ̃2)
)2

+

(
−1

2
µ̃ +

1
6
γµ̃2

)2

,

which is then again equivalent to asking that

γµ̃
(
12 + γ2µ̃2 + µ̃2

)
≤ 0.

Since this is true for any γ < 0, we conclude the desired result.
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Figure 6. Maximum allowable µ̃ to guarantee stability depending on γ. A restriction on µ̃ ≡ µ∆t will in practice yield a restriction on the timestep
∆t.

7.2. PDE results
In this section, we consider the following linear convection-diffusion equation, equipped with periodic boundary

conditions,

ut + πux = εuxx, (x, t) ∈ (−π, π) × (0, 1.2), (52)
u(x, 0) = sin (cos(4x) + sin(2x)) , x ∈ (−π, π). (53)

We discretize (52) using a spectral collocation method. This has the advantage that an extension to possibly nonlinear
equations is straightforward. For a given N, we consider hence the ansatz- and test-space

UN := {u ∈ L2 | u(x) =

N∑
k=−N

û(k)eikx, û(k) ∈ C,−N ≤ k ≤ N}.

Let us define the weighted L2−scalar product as

(u, ϕ) :=
1

2π

∫ π

−π
u(x)ϕ(x)dx,

where ϕ(x) denotes the complex conjugate of ϕ(x). The functions eikx are orthonormal with respect to this scalar
product. Then, an out-of-the-box Galerkin method applied to (52) yields the discretization

Find uh ∈ C1((0, 1.2),UN) such that (ut, ϕ) + (πux, ϕ) = −ε(ux, ϕx) ∀ϕ ∈ UN ,

with the obvious initial condition uh(0) being the projection of u0(x) onto UN . The integral is numerically approx-
imated by a trapezoidal rule with 4N points. It is well-known that this rule is exponentially convergent for smooth
periodic functions.

As a proof of concept, and as PDEs are not the main focus of this publication, we choose a rather small N, N = 10.
This then yields a linear system of ordinary differential equations that can be solved using the algorithm discussed in
Alg. 2 above. We treat the convective part πux explicitly, and the diffusive part εuxx implicitly. The resulting linear
system of equation is solved using a matrix-free GMRES method. The matrix-vector-products used in the GMRES
are computed using finite differences, which makes it possible to extend the method to nonlinear equations. (In fact,
we have also computed first results to the nonlinear equation, where ε was given as a simple function of u. The results
are very similar to the ones we present here, which is why we do not show them.)
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Numerical results are presented in Fig. 7. We include various values of ε and kmax ∈ {0, 2, 20} . Error is computed
as the ODE-error at time Tend = 1.2. We do not consider a simultaneous refinement of space and time, the focus here
is only on temporal integration. For kmax = 0, which is the second-order predictor, one clearly sees the second-order
convergence, while for kmax = 2, also fourth order convergence can be clearly seen. In all cases, there is convergence
as ε → 0 of the errors, which indicates the asymptotic consistency properties of the method numerically. Larger ∆t
could not have been used, as then, the method gets unstable. This is due to the explicit contribution of the convective
part, which needs a CFL condition to be stable. Some remainders of that can still be seen for the predictor in the
top right corner of the figure. For the same ∆t, there is no stability issue for the kmax = 2 and kmax = 20, which is
in good agreement with the analysis from the preceeding section. As a last point to note, we observe that additional
corrections provide benefits: the error curves for kmax = 20 lie approximately one to two orders of magnitude below
the ones for kmax = 2 (the minimal number of corrections to attain fourth-order accuracy).
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Figure 7. Convergence results for the PDE ut + πux = εuxx, with initial conditions u0(x) = sin(cos(4x) + sin(2x)). From left to right: kmax = 0,
which amounts to only taking the predictor, kmax = 2, with amounts to taking the full fourth-order scheme, and kmax = 20. Error measure is defined
as the Euclidean norm of the ODE error at end time Tend = 1.2.

8. Conclusion and outlook

In this work we have presented a novel time integrator, featuring aspects of the spectrally deferred correction,
implicit-explicit (IMEX) time integrators, and the multiderivative class of ODE integrators. We have shown that the
method is asymptotically preserving and we have presented results for a class of test cases from the literature. In
addition, stability results for this solver have been investigated based on a prototype equation for convection-diffusion
PDEs.

There are many extensions of this work that can be found. Next steps include investigating the application of
this solver to partial differential equations of the singularly perturbed type. In particular, we are interested in the
compressible Navier-Stokes equations at low [25] and all [26, 27, 28, 29, 30] Mach numbers. Suitable splittings have
already been developed in literature, see, e.g., [31, 32, 33, 34, 35, 36, 37, 38]. Similar to spectral deferred correction
(SDC) methods, the proposed algorithm can certainly be parallelized in time, which, again in particular for PDEs,
could make for a tremendous benefit in a parallel computing environment. Furthermore, extensions of this method
that include variable orders of accuracy introduce the potential to investigate adaptive time stepping which would
make for interesting results on their own merit.
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