
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Deep neural network to extract high-level features and labels in

multi-label classification problems

Peer-reviewed author version

BELLO GARCIA, Marilyn; NAPOLES RUIZ, Gonzalo; Sánchez, Ricardo; Bello,

Rafael & VANHOOF, Koen (2020) Deep neural network to extract high-level features

and labels in multi-label classification problems. In: Neurocomputing , 413 , p. 259 -270.

DOI: 10.1016/j.neucom.2020.06.117

Handle: http://hdl.handle.net/1942/32436

Deep neural network to extract high-level features
and labels in multi-label classification problems

Marilyn Belloa,c,∗, Gonzalo Nápolesa,b, Ricardo Sánchezd,
Rafael Belloc, Koen Vanhoofa

aFaculty of Business Economics, Universiteit Hasselt, Belgium
bDepartment of Cognitive Science & Artificial Intelligence, Tilburg University, The

Netherlands
cDepartment of Computer Science, Central University of Las Villas, Cuba

dInformatization Department, Central University of Las Villas, Cuba

Abstract

Pooling layers help reduce redundancy and the number of parameters in
deep neural networks without the need of performing additional learning pro-
cesses. Although these operators are able to deal with both single-label and
multi-label problems they are specifically aimed at reducing feature space.
However, in the case of multi-label data, this should also be done in the label
space. On the other hand, in spite of their success, existing pooling oper-
ators are not ideal when handling (multi-label) datasets that do not have
an explicit topological organization. In this paper, we present a deep neural
architecture using bidirectional association-based pooling layers to extract
high-level features and labels in multi-label classification problems. Our ap-
proach uses an association function to detect distinct pairs of neurons that
will be aggregated into pooled neurons. In the first pooling layer, our pro-
posal computes the Pearson correlation among the variables as the basis to
quantify the association values. In addition, we propose an iterative proce-
dure that allows estimating the association degree among pooled neurons in
deeper layers without the need of recomputing the correlation matrix. The
main advantage of this deep neural architecture is that it allows extracting
high-level features and labels on datasets with no specific topological orga-
nization. The numerical results show that our bidirectional neural network

∗Corresponding author
Email address: mbgarcia@uclv.cu (Marilyn Bello)

Preprint submitted to Neurocomputing October 1, 2020

helps reduce the number of problem features and labels while preserving
network’s discriminatory power.

Keywords: deep neural networks, multi-label classification, high-level
features, high-level labels, association-based pooling

1. Introduction

In traditional supervised machine learning algorithms [1], instances are
usually associated with a single label, so each observation belongs to a single
decision class. The distinctive characteristic of multi-label data is that each
instance can belong to several classes at the same time.

In a multi-label problem, every instance x is described by a number of
features while being associated with a set of labels. The label set L of x
can be represented as L = {l1(x), l2(x), . . . , lC(x)}, with C being the total
number of class labels. A value li(x) = 1 is interpreted as the presence of
label li for observation x, while li(x) = 0 indicates its absence. The general
format of a multi-label dataset is depicted in Table 1. The dataset contains
N elements described by M features F = {f1, f2, . . . , fM}.

Table 1: Multi-label dataset with N instances, M features and C labels.

f1 f2 . . . fM l1 l2 . . . lC
f1(x1) f2(x1) . . . fM (x1) l1(x1) l2(x1) . . . lC(x1)
f1(x2) f2(x2) . . . fM (x2) l1(x2) l2(x2) . . . lC(x2)

. .
f1(xN) f2(xN) . . . fM (xN) l1(xN) l2(xN) . . . lC(xN)

The multi-label classification (MLC) task consists in predicting the label
sets of unseen instances by analyzing the training set [11, 45]. This learning
concept appears in many real-world situations [31, 14, 34, 13]. For example,
a gene might have more than one function in yeast gene functional analysis
[6], an image might be associated with a set of labels in natural scene classifi-
cation [2], whereas a document might belong to several predetermined topics
in automatic webpage categorization [29].

Multi-label problems are often high-dimensional, so the extraction of fea-
tures helps reduce the complexity of building and exploiting the multi-label
classification algorithms. One of the tasks of deep learning [8] is dedicated

2

to learning high-level features from the available data. These high-level fea-
tures denote information granules that enable faster learning. In the case
of multi-label classification, extracting high-level features is not enough as
these problems regularly involve a large number of labels.

Several authors [46, 20, 38] have proposed multi-label classification solu-
tions inspired on deep learning techniques. Some of these solutions [4, 17]
rely on the autoencoders [12, 37], which allow for the unsupervised learning
of features. With this approach, the underlying features from any given data
can be efficiently extracted, thus resulting in a well-coded reduced dataset.
Meanwhile, other authors rely on Convolutional Neural Networks (CNNs)
[8, 18, 42] to solve prediction problems, such as images processing, sound,
text and videos [34, 36, 5, 47, 26]. CNNs use a mixture of convolutional, pool-
ing and standard processing layers for capturing abstract features describing
the problem. The role of convolutional layers is to detect local conjunctions
of features from the previous layer, while the pooling layers are used to merge
reasonably similar features into high-level ones.

Pooling layers help reduce redundancy and the number of parameters
before building a multilayer or recurrent neural network that performs the
remaining processing operations. In the literature, several pooling opera-
tors have been reported [24, 23]. Two common pooling methods are average
pooling and max pooling, which compute the average or maximal presence
of a feature in a certain neighborhood, respectively. The common ground
of these operators is that they focus on data with a well-defined structure
(such as image and video) where the term feature neighborhood makes sense.
However, while it is interesting to recognize faces, or classify objects in im-
ages and videos, the truth is that there are other domains in which the data
do not have a topological organization. In those cases, using standard pool-
ing operators might have little sense, even when the application problem at
hand could benefit significantly from a deep learning solution. Besides, al-
though these operators are able to deal with both single-label and multi-label
classification problems they are specifically aimed at reducing feature space.
However, in the case of multi-label data, we can benefit significantly from
implementing similar operations on the label space.

In this paper, we propose a bidirectional neural network to extract high-
level features and labels from multi-label data, which have no specific struc-
ture. This architecture is composed of several stacked association-based pool-
ing layers, which are built starting from the features and the labels at the
same time. This pooling operator uses an association-based function to de-

3

tect pairs of features to be aggregated into high-level features. These features
will compose the next pooling layer together with those neural entities that
did not fulfill a user-specified minimum association threshold. Aiming at
lightening the computational burden when computing the association among
the neurons, we also present an iterative method termed forward propagation
of the association. This method allows propagating the association on both
the features and the labels simultaneously.

Once the high-level features and labels have been extracted, we connect
them with one or several hidden layers composed of ReLU, sigmoid or hyper-
bolic tangent neurons. This provides our bidirectional deep neuronal network
with prediction capabilities since the pooling layers are only devoted to ex-
tracting the high-level features and labels. Finally, since the output layer of
the network is composed by an abstract and reduced representation of the
labels, it is necessary to carry out a decoding process. To do that, we connect
the high-level labels with the original ones by means of one or several hidden
processing layers. The numerical simulations on several MLC datasets show
a significant reduction in the number of problem features and labels, without
affecting network’s discriminatory capability. Having a smaller neural system
would imply that the training time is smaller when compared with a model
that uses the full set of features and labels.

This paper is organized as follows. Section 2 presents a brief discussion
of some relevant pooling variants, and some deep learning methods used to
solve the MLC problem. Section 3 describes the proposed association-based
pooling architecture. Finally, Section 4 is dedicated to numerical simulations
and discussion, while Section 5 provides closure to our paper.

2. Related Work

This section provides a brief discussion of some relevant pooling variants.
Likewise, we review the literature on deep learning models that have been
used to solve MLC problems.

2.1. Relevant pooling variants
The intuition behind pooling is that the exact location of a feature is

less important than its rough location relative to other features. Roughly
speaking, pooling goes about computing high-level features (that might not
be perfect) such that the problem representation is confined to the relevant

4

features. Simplifying the problem representation implies that we need less
parameters to solve the same problem, which translates into more efficient
models. Besides, pooling layers do not involve learnable parameters, so they
are easily computed. That is why it is common to insert a pooling layer
between convolutional layers in a CNN architecture.

The simplest (yet widely used and preferred) pooling methods are themax
pooling and the average pooling [39, 8]. The former selects the most repre-
sentative element in each pooling region, while the latter takes the arithmetic
mean of the elements in the region.

The generalized pooling proposed in [19] uses different strategies to com-
bine traditional max and average pooling. The mixed max-average pooling
is the simplest approach in which specific mixing proportion parameters are
learned from historical data, whereas the gated max-average learns a “gating
mask” with the same dimensionality as the pooled region. The scalar result
of the inner product between the gating mask and the region being pooled
is transformed with a sigmoid function to produce the mixing proportion.
Finally, the tree max-average pooling further learns pooling filters and their
responsive combination by using a binary tree.

The global average pooling in [21] replaces the fully connected layers with
the average of each feature map, which feeds a softmax layer. One advantage
of this operator is that it naturally fits the convolutional character by relating
feature maps and decision classes, which can be interpreted as confidence
values for outputs. Another advantage is that there is no parameter to be
optimized, which might prevent overfitting to happen.

The spatial pyramid pooling in [10] removes the fixed-size constraint of
CNNs by generating a fixed-length representation regardless of the image
scale, which is then fed into the fully-connected architecture. The information
aggregation at a deeper stage of the network’s hierarchy suppresses the need
for cropping, which not only allows for arbitrary aspect ratios but also enables
arbitrary scales. Thus, when the input images have different scales, the model
with the same filter sizes will extract features at different scales. Furthermore,
the coarsest pyramid level has a single bin that covers the entire image, which
resembles a global pooling operation.

Pooling received some criticism in [28] where the authors stated that it
might dispose information about the position, orientation or scale of the
features when there is no enough overlap. This information might be needed
to discover relations among parts of an object. An alternative to deal with
this issue could be to use capsules and routing-by-agreement, where capsules

5

denote different properties of the image. Capsules produce a vector using a
dynamic routing mechanism to ensure that the capsule’s output is sent to an
appropriate parent in the layer above. Beyond whether capsules are the best
option or not to deal with this issue, the reader can notice that there is an
underlying assumption regarding the main action field of pooling: data need
to have a specific topological organization.

2.2. Deep learning methods for MLC problems
Many researchers have employed neural network solutions [12, 9] to learn

the complex multi-label class boundaries. In literature, modifications to the
multilayer perceptron [44], radial basis functions [43], extreme learning ma-
chine [16] and deep neural networks [36] have been reported.

Within the deep learning field, CNNs have proved to be a powerful tool
when solving image-related tasks. In [32] the authors proposed a unified
framework for multilabel image classification, which uses CNNs and recurrent
neural networks to model the label co-occurrence dependency in a joint im-
age/label embedding space. Many other MLC problems have been addressed
with CNNs [41, 27, 7, 33, 40, 48, 22]. However, most of these solutions are
aimed at image and natural language processing.

Capturing the co-occurrence and interdependencies among multiple class
labels can help improve algorithms’ performance. With this goal in mind,
Wicker et al. [35] proposed a multi-label classifier that uses an autoencoder
to extract non-linear dependencies among features. Similarly, in [38] the
authors introduced a deep neural network to exploit the correlation of labels
by means of a canonical-correlated autoencoder.

On the other hand, in [25] a deep learning approach with restricted Boltz-
mann machines is proposed. This model attempts to reduce the interdepen-
dence among features, thus ending up in better feature-space representations.
In [17] a stacked autoencoder is used to generate a discriminating and reduced
input representation of the multi-label data. Stacked autoencoders are capa-
ble of extracting underlying features from any given data. In [4] the authors
proposed a kernel extreme learning machine autoencoder for the input space,
while also using a non-equilibrium label completion algorithm to discover the
underlying correlation among the labels.

2.3. Summary and motivation
After revising the literature two conclusions emerge. Firstly, using exist-

ing pooling and convolution operators on traditional MLC datasets (those

6

which are not oriented to image or video) might have little sense. The reader
can notice that a pooling region in an image is just a sub-image where pixels
preserve their location with respect to their neighbors. This is no longer true
when operating with traditional datasets since it would suffice to exchange
the order of instances to obtain different pooling regions. This suggests that
the invariance property of pooling regions is no longer preserved, thus more
adequate operators would need to be proposed. Secondly, MLC problems
often involve a large number of labels, thus leading to very dense networks.
This means that we can benefit from extracting both high-level features and
labels such that we can build simpler neural systems. The autoencoders
found in the literature do learn effective high-level feature representations
from tabular datasets, but they do not provide similar mechanisms to obtain
high-label representations for the label set.

3. Bidirectional deep neural network

In this section, we propose a bidirectional network composed of stacked
association-based pooling layers to extract high-level features and labels in
MLC problems with no specific topological organization.

3.1. Bidirectional association-based pooling
The main building-block of our bidirectional neural network architecture

refers to the association-based pooling layers, which are aimed at extracting
high-level features and labels. When operating with the features, the first
pooling layer is composed of neurons denoting the problem features them-
selves (referred to as low-level features), whereas in deeper pooling layers
the neurons denote high-level features that emerge from the pooling process.
The same reasoning applies when operating with the labels. In both cases,
the pooled neurons in the t-th layer will be composed of neurons belonging
to the previous layer such that they fulfill a certain association threshold.
This also suggests that low-level features (and labels) could reach the deeper
layers if they are poorly associated with each other.

Equations (1) and (2) show the operation to be performed to determine
in the t-th layer the pairs of neurons that will be aggregated into the k-th
pooled neuron for features and labels, respectively,(

f (t−1)
p , f (t−1)

q

)
= argmax

(f
(t−1)
i ,f

(t−1)
j)∈DF(t)

k

ψF
(
f
(t−1)
i , f

(t−1)
j

)
(1)

7

(
l(t−1)p , l(t−1)q

)
= argmax

(l
(t−1)
i ,l

(t−1)
j)∈DL(t)k

ψL
(
l
(t−1)
i , l

(t−1)
j

)
(2)

where 0 ≤ ψ
(
·, ·
)
≤ 1 computes the association degree between two neurons,

DF (t)
k and DL(t)

k represent the feasible domains of the k-th pooled neuron for
problem features and labels, respectively:

DF (t)
k =

{
(f

(t−1)
i , f

(t−1)
j) ∈ F (t−1) ×F (t−1) :

ψF(f
(t−1)
i , f

(t−1)
j) ≥ ξ1, i < j

}
\
k−1⋃
s=1

D̄F (t)
s

(3)

DL(t)
k =

{
(l

(t−1)
i , l

(t−1)
j) ∈ L(t−1) × L(t−1) :

ψL(l
(t−1)
i , l

(t−1)
j) ≥ ξ2, i < j

}
\
k−1⋃
s=1

D̄L(t)
s

(4)

where ξ1 and ξ2 denote two user-specified association thresholds, F (t−1) and
L(t−1) are the sets of neurons in the (t−1) pooling layers, while F (0) and L(0)

are the sets of features and labels, respectively. Moreover, D̄F (t)
s and D̄L(t)

s

are the sets of unfeasible pairs of neurons that result from the successive
pooling operations, which are computed as:

D̄F (t)
s =

{
(f (t−1)
si

, f (t−1)
sj

) ∈ F (t−1) ×F (t−1) : ∃f (t−1)
sr ,

f (t−1)
si

⊕ f (t−1)
sr = f (t)

s ∨ f (t−1)
sj

⊕ f (t−1)
sr = f (t)

s , si < sj

} (5)

and

D̄L(t)
s =

{
(l(t−1)si

, l(t−1)sj
) ∈ L(t−1) × L(t−1) : ∃l(t−1)sr ,

l(t−1)si
� l(t−1)sr = l(t)s ∨ l(t−1)sj

� l(t−1)sr = l(t)s , si < sj

} (6)

where f (t)
s and l(t)s denote the s-th pooled neurons in the current layer, and

⊕ and � stand for the operators used to conform the pooled neurons. The
current pooling layer of features and labels will be composed of pooled neu-
rons f (t)

k = f
(t−1)
p ⊕ f (t−1)

q and l
(t)
k = l

(t−1)
p � l(t−1)q , respectively, and also of

neurons that did not fulfill the association relation.

8

The intuition behind the pooling operation is as follows. Pooled neurons
in the t-th layer are derived from the neurons that belong to the (t−1) layer,
which can be either low-level or high-level features. Aiming at determining
the feasible set of features to conform the k-th pooled neuron in the t-th layer,
we need to compute the feasible domain of that neuron. This set involves all
pairs of neurons that belong to the (t− 1) layer, excluding those which have
already been used to create the k − 1 pooled neurons in the current layer.
The same applies when pooling the problem labels.

The association-based pooling causes high-level features and labels to ap-
pear, therefore progressively reducing the problem dimensionality. It should
be highlighted that the proposed architecture assumes that pooling layers
are stacked one after another, thus there are no learnable parameters to be
adjusted between two consecutive layers.

3.2. Computing the degree of association among neurons
In this subsection, we will discuss how to estimate the association degree

between two neurons in our neural system. The proposed method uses the
Pearson correlation among variables as the basis to compute the association
degree among pooled neurons. However, this would imply that the correlation
matrix needs to be re-calculated in each layer.

As an alternative, we can compute the correlation matrix among low-level
neurons (i.e., features and labels of the problem) and derive the degree of
association of the high-level features and labels from the degree of association
between each pair of neurons in the previous layer. This method is referred
to as forward propagation-based association, which suppresses the need for
scanning the training set at each pooling layer.

The intuition behind this approach is that we can estimate the association
degree between pairs of pooled neurons from the association degree among
neurons that compose the pooled ones. Therefore, only the association degree
values estimated in the previous pooling layer are required to determine the
association degree of neurons in the current layer. Overall, there are three
different scenarios that need to be considered.

Case 1. Aiming at conforming the first pooling layer, we must determine
the association among the problem features,

a) ψF(f
(0)
i , f

(0)
j), ψF(f

(0)
i , f

(0)
p), ψF(f

(0)
i , f

(0)
q), ψF(f

(0)
j , f

(0)
p), ψF(f

(0)
j , f

(0)
q) and

ψF(f
(0)
p , f

(0)
q), where f (0)

x with x ∈ {i, j, p, q} denotes the features.

9

b) ψL(l
(0)
i , l

(0)
j), ψL(l

(0)
i , l

(0)
p), ψL(l

(0)
i , l

(0)
q), ψL(l

(0)
j , l

(0)
p), ψL(l

(0)
j , l

(0)
q) and ψ(l

(0)
p ,

l
(0)
q), where l(0)x with x ∈ {i, j, p, q} denotes the labels.

This can be done by computing the absolute Pearson correlation among all
pairs of neurons denoting the problem features.

Case 2. In deeper layers, we should estimate the degree of association
between a pooled neuron and a non-pooled neuron.

a) Let us suppose that the neuron of pooled features in the t-th layer has the
form f

(t)
i ⊕ f (t)

j while the non-pooled neuron is f (t)
p . Equation (7) shows

how to compute the degree of association between them,

ψF(f
(t)
i ⊕ f (t)

j , f (t)
p) = ψF(f

(t)
i , f

(t)
j)×min

{
ψF(f

(t)
i , f (t)

p), ψF(f
(t)
j , f (t)

p)
}
(7)

b) Let us suppose that the neuron of pooled labels in the t-th layer has the
form l

(t)
i � l(t)j while the non-pooled neuron is l(t)p . Equation (7) shows how

to compute the degree of association between them,

ψL(l
(t)
i � l(t)j , l(t)p) = ψL(l

(t)
i , l

(t)
j)×min

{
ψL(l

(t)
i , l

(t)
p), ψL(l

(t)
j , l

(t)
p)
}
. (8)

Case 3. Similarly to the previous case, we should estimate the degree of
association between two pooled neurons.

a) Let us suppose that two pooled features in the t-th layer have the form
f
(t)
i ⊕f (t)

j and f (t)
p ⊕f (t)

q , respectively. Equation (9) shows how to compute
the degree of association between them,

ψF(f
(t)
i ⊕ f (t)

j , f (t)
p ⊕ f (t)

q) = min
{
ψF(f

(t)
i ⊕ f (t)

j , f (t)
p),

ψF(f
(t)
i ⊕ f (t)

j , f (t)
q), ψF(f (t)

p ⊕ f (t)
q , f

(t)
i), ψF(f (t)

p ⊕ f (t)
q , f

(t)
j)
} (9)

b) Let us suppose that two pooled labels in the t-th layer have the form
l
(t)
i � l(t)j and l(t)p � l(t)q , respectively. Equation (10) shows how to compute
the degree of association between them,

ψL(l
(t)
i � l(t)j , l(t)p � l(t)q) = min

{
ψL(l

(t)
i � l(t)j , l(t)p),

ψL(l
(t)
i � l(t)j , l(t)q), ψL(l(t)p � l(t)q , l(t)i), ψL(l(t)p � l(t)q , l(t)j)

}
.

(10)

10

In addition to this forward association method, we will reduce quadrati-
cally the association thresholds when moving from one pooling layer to the
next, that is, ξ(t+1)

1 = (ξ
(t)
1)2 and ξ(t+1)

2 = (ξ
(t)
2)2. This adjustment is advis-

able due to the fact that 0 ≤ ψ(·, ·) ≤ 1, thus the product operation will very
likely degrade the estimated association degree.

The reader can notice that, if the association among features and labels
is performed using the correlation-based association approach, then the com-
putational complexity is O(N2log2(|F| ∗ |L|)), where N denotes the number
of instances, |F| and |L| are the cardinality of the set of features and labels,
respectively. However, if we use the propagation-based association approach,
then the computational complexity is O(log2(|F| ∗ |L|)).

3.3. The proposed network architecture
In this subsection, we describe a bidirectional association-based architec-

ture that is composed of pooling and hidden layers.
Before doing that, it seems convenient to illustrate how the bidirectional

association-based pooling works. Figure 1 shows an example where two pool-
ing layers are running for both features (left figure) and labels (right figure).
In this example, five high-level neurons were formed from the association of
the features pairs (f1, f2) and (f3, f4), and the labels pairs (l1, l2) and (l3,
l4). The f5 feature is not associated with another feature, so it is transferred
directly to the following pooling layer. Our approach reduces the number of
features from 5 to 3, and the number of labels from 4 to 2, which represents
a reduction rate of 40% and 50%, respectively.

After extracting the high-level features we can design a neural system
to perform the multi-label classification process. The proposed architecture
involves two sub-networks, one performing a high-level classification and an-
other decoding the high-level predictions. In the first sub-network, the output
of the last pooling layer is used as the input to a fully connected network
with one or several hidden layers that maps high-level features to high-level
labels. The second sub-network is also composed of one or several hidden lay-
ers, which decodes the high-level labels (predicted by the first sub-network)
to the original problem labels. These hidden layers can be equipped with ei-
ther ReLU, sigmoid or hyperbolic tangent transfer functions, thus conferring
the neural system with prediction capabilities. The number of hidden layers
and hidden neurons are parameters to be defined by the user based on the
problem complexity and hardware availability.

11

f
(2)
1

f
(2)
3

f
(2)
2

f
(1)
1

f
(1)
2

f
(1)
3

f
(1)
4

f
(1)
5

f1 ∈ x

f2 ∈ x

f3 ∈ x

f4 ∈ x

f5 ∈ x

f
(2)
1 = f

(1)
1 ⊕ f

(1)
2

f
(2)
2 = f

(1)
3 ⊕ f

(1)
4

f
(2)
3 = f

(1)
5

l
(2)
1 = l

(1)
1 � l

(1)
2

l1 ∈ x

l2 ∈ x

l3 ∈ x

l4 ∈ xl
(2)
2 = l

(1)
3 � l

(1)
4

l
(2)
1

l
(1)
1

l
(1)
2

l
(1)
3

l
(1)
4

l
(2)
1

Features Pooling Labels Pooling

1

(a) Feature pooling process

f
(2)
1

f
(2)
3

f
(2)
2

f
(1)
1

f
(1)
2

f
(1)
3

f
(1)
4

f
(1)
5

f1 ∈ x

f2 ∈ x

f3 ∈ x

f4 ∈ x

f5 ∈ x

f
(2)
1 = f

(1)
1 ⊕ f

(1)
2

f
(2)
2 = f

(1)
3 ⊕ f

(1)
4

f
(2)
3 = f

(1)
5

l
(2)
1 = l

(1)
1 � l

(1)
2

l1 ∈ x

l2 ∈ x

l3 ∈ x

l4 ∈ xl
(2)
2 = l

(1)
3 � l

(1)
4

l
(2)
1

l
(1)
1

l
(1)
2

l
(1)
3

l
(1)
4

l
(2)
1

Features Pooling Labels Pooling

1

(b) Label pooling process

Figure 1: Bidirectional association-based pooling operating with five low-level features
and four low-level labels. In terms of features, the first pooling layer contains two pooled
neurons and one low-level feature. This suggests that the fifth low-level feature either did
not fulfill the association threshold or that the other features reported higher association
values. In terms of labels, the first pooling layer contains two pooled labels as both pairs
of low-level labels did fulfill the association threshold.

Figure 2 depicts the network architecture involving five high-level neu-
rons that emerge from the association-based pooling layers. In this example,
f
(2)
1 , f

(2)
2 , f

(2)
3 denote high-level features, l(2)1 , l

(2)
2 represents high-level labels,

while l(1)1 , l
(1)
2 , l

(1)
3 , l

(1)
4 are the low-level labels associated with the problem.

These high-level neurons are connected by means of two multilayered net-
works, each composed of two hidden layers. It is worth highlighting that the
second network is needed to transform the abstract representations (high-
level labels) back to its original form. Therefore, the model learns to recon-
struct the data from the encoded representations.

12

l
(2)
1

l
(2)
2

l
(1)
1

l
(1)
2

l
(1)
3

l
(1)
4

Hidden LayersEncoded Labels Original Labels

f
(2)
1

f
(2)
3

f
(2)
2

Encoded Features Hidden Layers

Classification Network Decoder Network

1

Figure 2: Neural network architecture involving three high-level features, two-high-level
labels, four low-level labels and four hidden layers. As mentioned, the number of hidden
layers and hidden neurons are parameters to be defined by the user based on the estimated
problem complexity and hardware availability.

Remark that the goal of this neural system is to extract high-level features
while performing the classification process without significant affectations.
Therefore, we should not expect higher prediction rates since our proposal is
not equipped with additional learning capabilities.

4. Numerical simulations

In this section, we evaluate the performance of the proposed network
architecture by using several MLC problems. More specifically, we will study
i) how the model performs in terms of both accuracy and number of high-level
features and labels when varying the association thresholds, ii) the reduction
in the problem representation, and iii) the accuracy loss induced by operating
with the extracted features and labels.

13

4.1. Experimental setup
To perform the simulations we used 15 MLC datasets from the RUMDR

repository [3]. In these problems, the number of instances ranges from 207
to 269,648, the number of features goes from 72 to 2,150, and the number
of labels from 4 to 400 (see Table 2). Moreover, we report the average max-
imal absolute correlation, as computed when the association-based pooling
procedure is performed on features and labels.

Table 2: Characterization of datasets used for simulations.

Dataset Name Instances Features Labels Correlation-F Correlation-L
D1 emotions 593 72 6 0.62 0.39
D2 scene 2,407 294 6 0.74 0.22
D3 yeast 2,417 103 14 0.49 0.57
D4 stackex-chemistry 6,961 540 175 0.18 0.13
D5 stackex-chess 1,675 585 227 0.27 0.24
D6 stackex-cooking 10,491 577 400 0.14 0.14
D7 stackex-cs 9,270 635 274 0.18 0.18
D8 GnegativePseAAC 1,392 440 8 0.29 0.22
D9 GpositivePseAAC 519 440 4 0.33 0.34
D10 VirusPseAAC 207 440 6 0.40 0.22
D11 mediamill 43,907 120 101 0.93 0.29
D12 bookmarks 87,856 2,150 208 0.37 0.23
D13 imdb 120,919 1,001 28 0.08 0.15
D14 nus-wide-BOW 269,648 501 81 0.32 0.16
D15 nus-wide-VLAD 269,648 129 81 0.1 0.16

The operators ⊕ and � to create the high-level features and labels are the
average (avg), and the minimum (min) and maximum (max), respectively.
Moreover, we set the number of pooling layers to 5 in all cases since adding
additional pooling layers for a given threshold would only have an impact
on the computational complexity. Finally, the association thresholds ξ1 and
ξ2 will range from 0.0 to 0.8 as we are interested in studying the impact of
these parameters on algorithm’s performance.

Regarding the two multi-layer networks that complement the pooling lay-
ers, in the first network, we used two fully-connected hidden layers such that
the number of hidden neurons is equal to 2∗M̄ and 2∗ C̄, respectively, where
M̄ and C̄ are the number of neurons resulting from the pooling process on
the problem features and labels, respectively. In the second network, we used
two fully-connected hidden layers comprised of ReLU neurons such that the
number of hidden neurons is equal to 2∗ C̄ and bC/2c, respectively, where C

14

represents the number of problem labels. It should be highlighted that other
strategies to configure these networks are possible.

The binary cross-entropy is adopted as the error measure while output
neurons are equipped with sigmoid transfer functions. The weights associated
with the multi-layer networks are adjusted by using an extension to stochastic
gradient descent, known as the Adam optimization algorithm [15], meanwhile
the number of epochs is set to 100. We employ drop-out regularization [30]
with probability 0.5 to alleviate the over-fitting problem.

We propose a measure to asses both the reduction achieved by our network
(i.e. the number of parameters to be estimated during the learning phase)
and its discriminatory power. Equation (11) attempts to establish a trade-off
between network’s accuracy and its density,

Γα = α ∗min
{

1,
accafter
accbefore

}
+ (1− α) ∗ denbefore − denafter

denbefore
(11)

where accbefore and accafter denote the accuracy of network without pooling
and using the proposed architecture, respectively, and denbefore and denafter
the number of parameters to be estimated during the learning phase before
and after applying our model, respectively. Moreover, 0 ≤ α ≤ 1 is a user-
specified parameter determining the relevance of the accuracy of network
over its density. Although this measure reports different values for different
α values, it is reasonable to use α > 0.6 since we regularly want to prioritize
the network precision over the parameter reduction.

Even though the Γα measure depends on the network architecture, if two
networks use the same topology then their sizes will depend on the number
of features and labels. Therefore, we will also report the number of high-level
features and labels extracted with the aid of pooling layers.

In all experiments conducted in this section, we use 80% of the dataset to
build the model and 20% for testing purposes, while all results are averaged
over 5 trials to draw more consistent conclusions.

4.2. Results and discussion
Tables 3 and 4 report the best performance achieved by the algorithm for

each dataset for both the max and the min operators, respectively. These
tables report the number of high-level features (#HLF), the reduction per-
centage in the number of labels (%Red-F), the number of high-level labels
(#HLL), the reduction percentage in the number of labels (%Red-L), the

15

accuracy obtained by the network using the extracted features and labels,
the accuracy using the original features and labels (baseline model), and the
loss of accuracy with respect to the baseline model.

Table 3: Performance assessment of the bidirectional association-based pooling approach
when using the max operator to create the pooled neurons.

Dataset #HLF %Red-F #HLL %Red-L Accuracy Baseline Accuracy Loss
D1 33 54.17% 6 0% 0.811 0.823 -0.012
D2 24 91.84% 6 0% 0.915 0.915 0
D3 28 72.82% 13 7.14% 0.796 0.80 -0.004
D4 17 96.85% 22 87.43% 0.987 0.987 0
D5 19 96.75% 29 87.22% 0.99 0.99 0
D6 19 96.71% 50 87.5% 0.995 0.995 0
D7 20 96.85% 35 87.23% 0.99 0.991 -0.001
D8 14 96.82% 8 0% 0.916 0.918 -0.002
D9 53 87.95% 4 0% 0.84 0.866 -0.026
D10 49 88.86% 6 0% 0.809 0.794 0.015
D11 4 96.67% 4 96.04% 0.965 0.965 0
D12 78 96.37% 23 88.94% 0.99 0.99 0
D13 80 92.01% 9 67.86% 0.927 0.988 -0.06
D14 18 96.4% 3 96.3% 0.977 0.977 0
D15 9 92.97% 5 93.83% 0.977 0.977 0

Table 4: Performance assessment of the bidirectional association-based pooling approach
when using the min operator to create the pooled neurons.

Dataset #HLF %Red-F #HLL %Red-L Accuracy Baseline Accuracy Loss
D1 43 40.28% 6 0% 0.815 0.823 -0.008
D2 24 91.84% 6 0% 0.913 0.915 -0.002
D3 44 57.28% 13 7.14% 0.798 0.80 -0.002
D4 17 96.85% 22 87.43% 0.988 0.987 0.001
D5 19 96.75% 29 87.22% 0.99 0.99 0
D6 19 96.71% 50 87.5% 0.995 0.995 0
D7 20 96.85% 35 87.23% 0.991 0.991 0
D8 14 96.82% 8 0% 0.915 0.918 -0.003
D9 53 87.95% 4 0% 0.837 0.866 -0.029
D10 49 88.86% 5 16.67% 0.805 0.794 0.011
D11 4 96.67% 7 93.07% 0.965 0.965 0
D12 78 96.37% 10 95.19% 0.99 0.99 0
D13 80 92.01% 14 50% 0.928 0.988 -0.06
D14 18 96.4% 3 96.3% 0.977 0.977 0
D15 9 92.97% 3 96.3% 0.977 0.977 0

From these results we can observe that our proposal significantly reduces
the number of features and labels with a percentage reduction up to 96%

16

and 87%, respectively. It can be noticed that the bidirectional association-
based pooling reports a maximal accuracy loss of 0.06 for the D13 dataset.
However, in some cases, we observed a small increase in the accuracy (e.g.,
dataset D10) even when our network was not conceived to increase the pre-
diction rates but to obtain the same performance with smaller networks. For
those problems having low variability in accuracy (datasets within the G2
and G4 groups), our proposal has no loss in accuracy. Moreover, the numer-
ical results suggest that the performance of the model when using the max
and min operators are similar to each other.

Figure 3 shows the average Γ0.95-values for different ξ1 and ξ2 values. Aim-
ing at better analyzing the results, we have gathered the datasets into four
groupsG1 = {D1, D2, D3, D8, D9, D10}, G2 = {D4, D5, D6, D7, D14, D15},
G3 = {D13}, and G4 = {D11, D12}. The difference among these groups re-
lies on the correlation among the problem features and among the the labels
attached to each problem, as well as the variability on the accuracy when
suppressing some problem features in a random way. The first group con-
tains the datasets having a high or middle correlation among their features
and labels, together with a high variability in their accuracy. The second
group consists of datasets having low correlation among their features and
labels, and a small variability on their accuracy. The third group consists of
problems with a high variability in its accuracy, and a low correlation among
their features and labels. The last group contains datasets with a high or
middle correlation among their features and labels, a small variability on
their accuracy. In this simulation, we have adopted the max operator as we
concluded that both operators lead to similar results.

From these results we can draw some interesting conclusions. Firstly, in
theG1 group our model produces the highest Γ0.95-values for large values of ξ2
and small values of ξ1. After further inspection, we noticed that the features
in these datasets are highly correlated but the correlation with respect to the
labels is less evident. Therefore, the granulation of the label space must be
finer (e.g., with ξ2 ≥ 0.5). The results for the G2 group reveal that the Γ0.95-
values increase when both parameter values decrease. This result is somehow
expected since these problems report small variability on their accuracy when
using random features. If this situation comes to light, then the association
matrix (resulting from the association function) can be replaced by a random
matrix. Thirdly, small variations in the values of the thresholds ξ1 and ξ2
produce drastic changes in the accuracy of the D13 problem. For the fourth
group, the values of the thresholds do not matter much since these problems

17

1
0.0 0.1 0.20.30.40.50.60.70.8

2 0.00.10.20.30.40.50.60.70.8

Pe
rf

or
m

an
ce

0.90

0.92

0.94

0.96

(a) G1

1

0.00.10.20.30.40.50.60.70.8
2

0.00.10.20.30.40.50.60.7 0.8

Pe
rf

or
m

an
ce

0.96
0.97
0.97
0.98
0.98
0.99
0.99
1.00

(b) G2

1
0.0 0.1 0.2 0.30.40.50.60.70.8

2 0.00.10.20.30.40.50.60.70.8

Pe
rf

or
m

an
ce

0.86

0.88

0.90

0.92

0.94

(c) G3

1

0.00.10.20.30.40.50.60.70.8
2

0.00.10.20.30.40.50.60.7 0.8

Pe
rf

or
m

an
ce

0.98
0.98
0.98
0.99
0.99
0.99
0.99

1.00

(d) G4

Figure 3: Average Γ0.95-values over G1, G2, G3 and G4 when changing the association
thresholds ξ1 and ξ2 together with the max operator.

can be solved with random features.
Figure 4 illustrates the differences in accuracy (Zacc) between the network

without pooling and using the proposed architecture, while Figure 5 shows
the reduction rate in terms of network density.

For problems in the G1 group, the accuracy loss is small when ξ1 and ξ2
are more strict (i.e. ξ1, ξ2 ≥ 0.6). However, the thresholds do not seem to
be very relevant for datasets in G2 and G4, as concluded from Figure 3. For
the G3 group, the threshold ξ2 seems to be very important in order to reduce
the loss of accuracy. For the datasets in G1 and G3, the threshold ξ2 does
not play a pivotal role since these datasets have few labels, so there is no

18

1
0.0 0.1 0.20.30.40.50.60.70.8

2 0.00.10.20.30.40.50.60.70.8

Z a
cc

-0.10

-0.08

-0.06

-0.04

-0.02

(a) G1

1

0.00.10.20.30.40.50.60.70.8
2

0.00.10.20.30.40.50.60.7 0.8

Z a
cc

-0.003

-0.003

-0.002

-0.002

-0.001

-0.001

0.000

(b) G2

1
0.0 0.1 0.20.30.40.50.60.70.8

2 0.00.10.20.30.40.50.60.70.8

Z a
cc

-0.14

-0.12

-0.10

-0.08

-0.06

(c) G3

1

0.00.10.20.30.40.50.60.70.8
2

0.00.10.20.30.40.50.60.7 0.8

Z a
cc

-0.018
-0.016
-0.014
-0.012
-0.010
-0.008
-0.006
-0.004
-0.002
0.000

(d) G4

Figure 4: Average of the Zacc values over over G1, G2, G3 and G4 according to the
association thresholds ξ1 and ξ2 together with the max operator.

significant reduction. However, for the datasets in G2 and G4 the opposite
holds since the number of labels is rather large.

The following experiment is dedicated to comparing our proposal against
a random pooling, which replaces the association values with random num-
bers. Figure 6 shows the differences in performance between the association-
based pooling and the random variant for different threshold values. Positive
values implies that our model performs better.

As expected, the differences in performance for the first group is more
explicit and always favors our approach (the Zacc values are always positive).
For the third group the behavior is similar, although the results depend on

19

1
0.0 0.1 0.20.30.40.50.60.70.8

2 0.00.10.20.30.40.50.60.70.8

Re
du

ct
io

nR
at

e

0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

(a) G1

1

0.00.10.20.30.40.50.60.70.8
2

0.00.10.20.30.40.50.60.7 0.8

Re
du

ct
io

nR
at

e

0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

(b) G2

1
0.0 0.1 0.20.30.40.50.60.70.8

2 0.00.10.20.30.40.50.60.70.8

Re
du

ct
io

nR
at

e

0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

(c) G3

1

0.00.10.20.30.40.50.60.70.8
2

0.00.10.20.30.40.50.60.7 0.8

Re
du

ct
io

nR
at

e

0.93
0.94
0.94
0.95
0.95
0.96
0.96
0.97
0.97

(d) G4

Figure 5: Reduction rate over G1, G2, G3 and G4 according to the association thresholds
ξ1 and ξ2 together with the max operator.

the association threshold as this dataset has a very low correlation among
the features and labels. The negative values suggest that computing the as-
sociation by means of the correlation is not always effective, mainly when the
dataset has low correlation among its features or labels. In these scenarios,
the greatest differences are observed when using high association thresholds,
which cause the bidirectional pooling to transfer the features from a layer
to another without reducing the network significantly. For the second group
these differences are very small since the datasets in that group report high
accuracy values for different settings. Something similar occurs for the fourth
group of datasets. However, we can obtain good results when ξ2 ≥ 0.5 since

20

1
0.0 0.1 0.20.30.40.50.60.70.8

2 0.00.10.20.30.40.50.60.70.8

Z a
cc

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(a) G1

1

0.00.10.20.30.40.50.60.70.8
2

0.00.10.20.30.40.50.60.7 0.8

Z a
cc

-0.003

-0.003

-0.002

-0.002

-0.001

-0.001

0.000

(b) G2

1
0.0 0.1 0.20.30.40.50.60.70.8

2 0.00.10.20.30.40.50.60.70.8

Z a
cc

-0.05
-0.03
0.00
0.02
0.05
0.08
0.10
0.12

(c) G3

1

0.00.10.20.30.40.50.60.70.8
2

0.00.10.20.30.40.50.60.7 0.8

Z a
cc

-0.015

-0.010

-0.005

0.000

0.005

0.010

(d) G4

Figure 6: Average of the Zacc values over G1, G2, G3 and G4 for the association thresholds
ξ1 and ξ2 together with the max operator.

these datasets, despite having small variability in their accuracy, show some
correlation among their features and labels.

The numerical simulations suggest that we can compute simpler models
without harming networks’ prediction power. Therefore, one would expect
this result to have a positive impact on the training time. Table 5 displays
the time (in seconds) needed to extract the high-level features and labels,
and the time needed to train the model using the extracted features and
labels with respect to the baseline model. This experiment was performed in
Kaggle notebook for a single training process.

The reader can notice that, once the high-level features and labels have

21

Table 5: Time (in seconds) needed to i) extract the high-level features and labels with the
aid of pooling layers, ii) train the model with the extracted features and labels, and iii)
train the model with all features and labels.

Dataset pooling-time model-training-time baseline-training-time
D1 0 1 0
D2 0 1 2
D3 0 1 1
D4 4 4 17
D5 1 2 6
D6 10 14 46
D7 8 8 35
D8 0 1 2
D9 0 1 1
D10 0 1 1
D11 1 13 23
D12 829 64 1,765
D13 250 14 578
D14 142 58 534
D15 12 64 145

been extracted, the training times are significantly smaller when compared
with the ones attached with the baseline neural model. The same holds if we
consider the times of extracting the high-level features and labels together,
mainly for larger datasets such as D12-D15. It comes with no surprise that
performing the pooling operations is a rather expansive process because of
the correlation component. This is why our further research efforts will be
dedicated to replacing the correlation-based association function with more
efficient functions. In that regard, the concept of granular entropy at a local
level seems to be a good starting point.

5. Concluding remarks

In this paper, we have introduced a new network architecture that uses
a bidirectional associations-based pooling to extract high-level features and
labels from multi-label data. Unlike the pooling approaches reported in the
literature, our proposal does not require input data to have any topological
properties as typically occurs with images and videos. Our architecture was
conceived so that the block of pooling layers does not involve learnable pa-
rameters changing during the training phase. Therefore, the goal behind our
model is to extract high-level features rather than producing better predic-

22

tions. However, the features or labels must show some degree of correlation,
which may not be applicable in all situations.

The numerical simulations have shown that our proposal is able to signifi-
cantly reduce the number of parameters in deep feed-forward neural networks
without harming their discriminatory power. It was also observed that the
association threshold regulating the pooling on the problem labels has a sig-
nificant effect on algorithm’s performance. In contrast, when the correlation
assumption is difficult to fulfill, the bidirectional-based pooling just transfers
the neurons from the current layer to the following one without harming the
performance or reducing the network.

Extracting high level features and labels increases the possibility of build-
ing networks with more transparent inference models. For example, by using
post-hoc interpretability techniques we could shed light into inner reasoning
of the model when operating with high level features. These techniques regu-
larly have an exponential algorithmic complexity, thus having networks with
fewer parameters certainly helps reach this goal.

Acknowledgment

The authors would like to thank the anonymous reviewers for their valu-
able and constructive feedback. Moreover, we would like to thank Isel Grau
from the Vrije Universiteit Brussel (Belgium) and Leonardo Concepción from
the Universiteit Hasselt (Belgium) for their comments.

References

[1] Bishop, C. M. (2006). Pattern recognition and machine learning .
Springer Science+ Business Media.

[2] Carneiro, G., Chan, A. B., Moreno, P. J., & Vasconcelos, N. (2007). Su-
pervised learning of semantic classes for image annotation and retrieval.
IEEE transactions on pattern analysis and machine intelligence, 29 ,
394–410.

[3] Charte, F., Charte, D., Rivera, A., del Jesus, M. J., & Herrera, F. (2016).
R ultimate multilabel dataset repository. In International Conference
on Hybrid Artificial Intelligence Systems (pp. 487–499). Springer.

23

[4] Cheng, Y., Zhao, D., Wang, Y., & Pei, G. (2019). Multi-label learning
with kernel extreme learning machine autoencoder. Knowledge-Based
Systems , 178 , 1–10.

[5] Choi, K., Fazekas, G., & Sandler, M. B. (2016). Automatic tagging
using deep convolutional neural networks. In ISMIR.

[6] Elisseeff, A., & Weston, J. (2002). A kernel method for multi-labelled
classification. In Advances in neural information processing systems (pp.
681–687).

[7] Gargiulo, F., Silvestri, S., Ciampi, M., & De Pietro, G. (2019). Deep
neural network for hierarchical extreme multi-label text classification.
Applied Soft Computing , 79 , 125–138.

[8] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning . MIT
press.

[9] Haykin, S. (1994). Neural networks: a comprehensive foundation. Pren-
tice Hall PTR.

[10] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in
deep convolutional networks for visual recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 37 , 1904–1916.

[11] Herrera, F., Charte, F., Rivera, A. J., & Del Jesus, M. J. (2016). Mul-
tilabel classification. In Multilabel Classification (pp. 17–31). Springer.

[12] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimension-
ality of data with neural networks. Science, 313 , 504–507.

[13] Jiang, M., Pan, Z., & Li, N. (2017). Multi-label text categorization us-
ing l21-norm minimization extreme learning machine. Neurocomputing ,
261 , 4–10.

[14] Jing, X.-Y., Wu, F., Li, Z., Hu, R., & Zhang, D. (2016). Multi-label
dictionary learning for image annotation. IEEE Transactions on Image
Processing , 25 , 2712–2725.

[15] Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic opti-
mization. CoRR, abs/1412.6980 .

24

[16] Kongsorot, Y., & Horata, P. (2014). Multi-label classification with ex-
treme learning machine. In 2014 6th International Conference on Knowl-
edge and Smart Technology (KST) (pp. 81–86). IEEE.

[17] Law, A., & Ghosh, A. (2019). Multi-label classification using a cascade of
stacked autoencoder and extreme learning machines. Neurocomputing ,
358 , 222–234.

[18] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature,
521 , 436–444.

[19] Lee, C.-Y., Gallagher, P. W., & Tu, Z. (2016). Generalizing pooling
functions in convolutional neural networks: Mixed, gated, and tree. In
A. Gretton, & C. C. Robert (Eds.), Proceedings of the 19th Interna-
tional Conference on Artificial Intelligence and Statistics (pp. 464–472).
PMLR volume 51 of Proceedings of Machine Learning Research.

[20] Lian, S.-m., Liu, J.-w., Lu, R.-k., & Luo, X.-l. (2019). Captured multi-
label relations via joint deep supervised autoencoder. Applied Soft Com-
puting , 74 , 709–728.

[21] Lin, M., Chen, Q., & Yan, S. (2014). Network in network. CoRR,
abs/1312.4400 .

[22] Liu, J., Chang, W.-C., Wu, Y., & Yang, Y. (2017). Deep learning
for extreme multi-label text classification. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in
Information Retrieval (pp. 115–124). ACM.

[23] McFee, B., Salamon, J., & Bello, J. P. (2018). Adaptive pooling opera-
tors for weakly labeled sound event detection. IEEE/ACM Transactions
on Audio, Speech and Language Processing (TASLP), 26 , 2180–2193.

[24] Passalis, N., & Tefas, A. (2017). Learning bag-of-features pooling for
deep convolutional neural networks. In The IEEE International Confer-
ence on Computer Vision (ICCV).

[25] Read, J., & Pérez-Cruz, F. (2014). Deep learning for multi-label classi-
fication. ArXiv , abs/1502.05988 .

25

[26] Rios, A., & Kavuluru, R. (2015). Convolutional neural networks for
biomedical text classification: application in indexing biomedical ar-
ticles. In Proceedings of the 6th ACM Conference on Bioinformatics,
Computational Biology and Health Informatics (pp. 258–267). ACM.

[27] Roman-Rangel, E., & Marchand-Maillet, S. (2019). Inductive t-sne via
deep learning to visualize multi-label images. Engineering Applications
of Artificial Intelligence, 81 , 336–345.

[28] Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between
capsules. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information
Processing Systems 30 (pp. 3856–3866). Curran Associates, Inc.

[29] Schapire, R. E., & Singer, Y. (2000). Boostexter: A boosting-based
system for text categorization. Machine learning , 39 , 135–168.

[30] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdi-
nov, R. (2014). Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15 , 1929–1958.

[31] Wan, S., Duan, Y., & Zou, Q. (2017). Hpslpred: an ensemble multi-
label classifier for human protein subcellular location prediction with
imbalanced source. Proteomics , 17 , 1700262.

[32] Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., & Xu, W. (2016).
Cnn-rnn: A unified framework for multi-label image classification. In
Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 2285–2294).

[33] Wang, S.-J., Lin, B., Wang, Y., Yi, T., Zou, B., & wen Lyu, X. (2019).
Action units recognition based on deep spatial-convolutional and multi-
label residual network. Neurocomputing , 359 , 130–138.

[34] Wei, Y., Xia, W., Lin, M., Huang, J., Ni, B., Dong, J., Zhao, Y., & Yan,
S. (2015). Hcp: A flexible cnn framework for multi-label image classifi-
cation. IEEE transactions on pattern analysis and machine intelligence,
38 , 1901–1907.

[35] Wicker, J., Tyukin, A., & Kramer, S. (2016). A nonlinear label com-
pression and transformation method for multi-label classification using

26

autoencoders. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining (pp. 328–340). Springer.

[36] Wu, F., Wang, Z., Zhang, Z., Yang, Y., Luo, J., Zhu, W., & Zhuang,
Y. (2015). Weakly semi-supervised deep learning for multi-label image
annotation. IEEE Transactions on Big Data, 1 , 109–122.

[37] Xie, Y., Zhang, J., Xia, Y., & Shen, C. (2019). A mutual bootstrap-
ping model for automated skin lesion segmentation and classification.
arXiv:1903.03313.

[38] Yeh, C.-K., Wu, W.-C., Ko, W.-J., & Wang, Y.-C. F. (2017). Learning
deep latent space for multi-label classification. In Thirty-First AAAI
Conference on Artificial Intelligence.

[39] Yu, D., Wang, H., Chen, P., & Wei, Z. (2014). Mixed pooling for
convolutional neural networks. In International conference on rough
sets and knowledge technology (pp. 364–375). Springer.

[40] Yu, Q., Wang, J., Zhang, S., Gong, Y., & Zhao, J. (2017). Combining
local and global hypotheses in deep neural network for multi-label image
classification. Neurocomputing , 235 , 38–45.

[41] Yu, W.-J., Chen, Z.-D., Luo, X., Liu, W., & Xu, X.-S. (2019). Delta: A
deep dual-stream network for multi-label image classification. Pattern
Recognition, 91 , 322–331.

[42] Zhang, J., Xie, Y., Xia, Y., & Shen, C. (2019). Attention residual
learning for skin lesion classification. IEEE transactions on medical
imaging , 38 , 2092–2103.

[43] Zhang, M.-L. (2009). M l-rbf: Rbf neural networks for multi-label learn-
ing. Neural Processing Letters , 29 , 61–74.

[44] Zhang, M.-L., & Zhou, Z.-H. (2006). Multilabel neural networks with
applications to functional genomics and text categorization. IEEE trans-
actions on Knowledge and Data Engineering , 18 , 1338–1351.

[45] Zhang, M.-L., & Zhou, Z.-H. (2013). A review on multi-label learning
algorithms. IEEE transactions on knowledge and data engineering , 26 ,
1819–1837.

27

http://arxiv.org/abs/1903.03313

[46] Zhang, N., Ding, S., & Zhang, J. (2016). Multi layer elm-rbf for multi-
label learning. Applied Soft Computing , 43 , 535–545.

[47] Zhu, J., Liao, S., Lei, Z., & Li, S. Z. (2017). Multi-label convolutional
neural network based pedestrian attribute classification. Image and Vi-
sion Computing , 58 , 224–229.

[48] Zhuang, N., Yan, Y., Chen, S., Wang, H., & Shen, C. (2018). Multi-
label learning based deep transfer neural network for facial attribute
classification. Pattern Recognition, 80 , 225–240.

28

