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Abstract. Rough set theory has many interesting applications in cir-
cumstances which are characterized by vagueness. In this paper, the ap-
plications of rough set theory in community detection analysis is dis-
cussed based on the Rough Net definition. We will focus the application
of Rough Net concept in community detection validity in both monoplex
and multiplex complex networks. Also, the topological evolution estima-
tion between adjacent layers in dynamic networks is discussed and a new
visualization schema combining both complex network representation
and Rough Net definition is adopted contributing to the understanding
of the community structure. We provide some examples demonstrating
how the Rough Net definition can be used to analyze the properties
of the community structure in real-world networks, including dynamic
networks.
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1 Introduction

Complex networks have proved to be a useful tool to model a variety of complex
systems in different domains including sociology, biology, ethology and computer
science. Most studies until recently have focused on analyzing simple static net-
works, namedmonoplex networks [7,17,18]. However, most of real-world complex
networks are dynamics. For that reason, multiplex complex networks have been
recently proposed as a mean to capture this high level complexity in real-world
complex systems over time [19]. In both monoplex and multiplex complex net-
works the key feature of the analysis is the community structure detection [11,19].

Community detection (CD) analysis like clustering analysis is a part of the
unsupervised field and consists in identify dense subgraphs whose nodes are
densely connected within itself, but sparsely connected with the rest of the net-
work [9]. CD in monoplex complex networks is obviously a very similar task to
classical clustering, with one difference though. When considering complex net-
works, the objects of interest are nodes, and the information used to perform the



2

partition is the network topology. In other words, instead of considering some
individual information (attributes) like for clustering analysis, CD algorithms
take advantage of the relational one (links). However, the result is the same in
both cases: a partition of the set of objects (nodes), which is called community
structure [9].

Several methods have been proposed to detect communities in monoplex
complex networks [7,8,12,16–18]. Also, different approaches have been recently
emerged to cope with this problem in the context of multiplex networks [10,11]
with the purpose of obtaining a unique community structure involving all inter-
actions throughout the layers. We can classify latter existing approaches into two
broad classes: (I) by transforming into a problem of CD in simple networks [6,9]
or (II) by extending existing algorithms to deal directly with multiplex net-
works [3,10]. However, the high-level complexity in real-world networks in terms
of number of nodes, links and layers and the unknown reference of classification
in real domain convert the evaluation of CD in a very difficult task. To solve
this problem, several quality measures (internal and external) have been pro-
posed [2, 13]. Due to the performance may be judged differently depending on
which measure are used, to be more confident in results one should use several
measures. Although, the modularity is the most widely used, it suffers the res-
olution limit problem [9]. Another goal of the community detection analysis is
the understanding of the structure evolution in a dynamic network, which is a
special type of multiplex that requires not only discovering the structure but
also offering interpretability about the structure changes.

Rough Set Theory (RST) has often proved to be an excellent tool for the
analysis the quality of information, means inconsistency or ambiguity which fol-
lows from information granulation [14]. To apply the advantages of RST in some
fields of community detection analysis, the goal of our research is to define the
new concept Rough Net. This concept is defined starting from a community
structure by the application of a CD algorithm to monoplex or multiplex net-
works. Rough Net allows us obtaining the upper and the lower approximations
of each community, as well as, their accuracy and quality. In this paper, we will
focus the application of the Rough Net concept in community detection validity
and topological evolution estimation in dynamic networks. Also, this concept
supports the visualization of the community detection quality.

This paper is organized as follows. Section 2 presents the general concepts
about extended RST and some measures of decision systems using RST. We
propose the definition of Rough Net in Section 3. Section 4 explains the appli-
cations of Rough Net in the community detection analysis in complex networks.
Besides, a new schema for visualizing the evaluation of community structures
based on RST is provided in Section 4. In Section 5, we demostrate how the
Rough Net definition can be used to analyze the properties of the community
structure in real-world networks, including dynamic networks. Finally, Section
6 concludes the paper and discusses future research.
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2 Extended Rough Set Theory

RST, introduced by Z. Pawlak [15], has often proved to be an excellent mathe-
matical tool for the analysis of the quality of information, means inconsistency
or ambiguity which follows from information granulation in a knowledge sys-
tem. The rough sets philosophy is based on the assumption that with every
object of the universe U there is associated a certain amount of knowledge ex-
pressed through some attributes A used for object description. Objects having
the same description are indiscernible with respect to the available information.
The indiscernibility relation R induces a partition of the universe into blocks of
indiscernible objects resulting in information granulation, that can be used to
build knowledge. The extended RST extends the classic approach to RST by
considering that objects which are not indiscernible but similar can be grouped
in the same class [14]. The aim is constructing a similarity relation R′ from
the relation R by relaxing the original conditions for indiscernibility. This re-
laxation can be performed in many ways, thus giving many possible definitions
for similarity. Due to that R′ is not imposed to be symmetric and transitive, an
object may belong to different similarity classes simultaneously. It means that
the covering induces by R′ on U may not be a partition. However, any similarity
relation is reflexivity. The rough approximation of a set X ⊆ U , using the sim-
ilarity relation R′, has been introduced as a pair of sets called R′ − lower and
R′ − upper approximations of X. A general definition of these approximations
which can handle any reflexive R′ are defined respectively by equations 1 and 2.

R′∗(X) = {x ∈ X : R′(x) ⊆ X} (1)

R′
∗
(X) =

⋃
x∈X

R′(x) (2)

α(X) =
R′
∗
(X)

R′∗(X)
(3)

The extended RST offers some measures to analyze information systems,
such as the accuracy and quality of approximation and quality of classification
measures. The accuracy of approximation of a rough set X, where |X| denotes
the cardinality of X 6= ∅, offers a numerical characterization of X. Equation 3
formalizes this measure such that 0 ≤ α(X) ≤ 1. If α(X) = 1, X is crisp (exact)
with respect to the set of attributes, if α(X) < 1, X is rough (vague) with respect
to the set of attributes. The quality of approximation formalized in Equation 4
expresses the percentage of objects which can be correctly classified into the
class X. Moreover, 0 ≤ α(X) ≤ γ(X) ≤ 1, and γ(X) ≤ 0 if α(X) ≤ 0, while
γ(X) ≤ 1 if α(X) ≤ 1 [14]. Quality of classification expresses the proportion of
objects which can be correctly classified in the system; Equation 5 formalizes
this coefficient where C1, · · · , Cm corresponds to the decision classes of the de-
cision system DS. Notice that, if a value is equal to 1, then DS is consistent,
otherwise is inconsistent [14]. Equation 6 shows the Accuracy of Classification,
which measures the averages the accuracy per classes with different importance
levels and a weighted version is formalized by Equation 7 [4].
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γ(X) =
|R′∗(X)|
|X|

(4)

γ(DS) =

∑m
i=1R

′
∗(Ci)

|U |
(5)

α(DS) =

∑m
i=1 α(Ci)

m
(6)

αw(DS) =

∑m
i=1(α(Ci) · |Ci|)∑m

i=1 α(Ci)
(7)

3 Rough Net Definition

Monoplex and Multiplex networks are special cases of complex networks, in
which the key feature of the topological analysis is the community detection.
Monoplex (simple) networks can be represented as graphs G = (V,E) where V
represents the vertices (nodes) and E represents the edges (interactions) between
these nodes in the network. Multiplex networks have multiple layers, where each
one is a monoplex network. Formally, a multiplex network can be defined as a
triplet < V,E,L > where E =

⋃
Ei such that Ei corresponds to the interactions

on layer i-th and L is the number of layers. This extension of graph model is
powerful enough though to allow modeling different types of networks includ-
ing: dynamic and attributed networks [9]. CD algorithms exploit the topological
structure for discovering a collection of dense subgraphs (communities). Sev-
eral multiplex CD approaches emphasize on how to obtain a unique community
structure throughout all layers, by considering as similar nodes with the same
behavior in most of layers [3, 10]. In the context of dynamic networks, the goal
is to detect the conformation by layers for characterizing the evolutionary or
stationary properties of the CD structures. Due to the quality of community
structure may be judged differently depending on which measure are used, to
be more confident in results one should use several measures [9]. In this section,
we recall some basic notions related to the definition of the extension of RST
in complex networks. Also, we will focus on the application of the Rough Net
concept in community validity or topological evolution estimation in dynamic
networks. This concept supports the visualization of the community structure
quality.

We use a similarity relation R′ in our definition of Rough Net, because two
nodes of V can be similar but not equal. Let s : V × V → R′ a function that
measures the similarity between nodes of V , we define the similarity class of the
node x, denoted R′(x), as shown in Equation 8. We use the definition of R′-
lower and R′-upper approximations for each similarity class taking into account
equations 1 and 2 respectively.

R′(x) = {y ∈ V : yR′x, iffs(x, y) ≥ ξ} (8)
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There is a variety of distances and similarities for comparing nodes [1], such
as Salton, HDI, HPI, similarities based on the topological structure, and Dice
and Cosine coefficients which capture the attributes relations. In this paper, we
use the Jaccard (Equation 9) similarity for computing the similarities based on
the topological structure because it has the attraction of simplicity and normal-
ization. In this paper, we emphasize the use of the network topology necessary to
apply the concepts of RST in complex networks. For that reason, the Equation
9 has been explicitly describe, where Γ (X) denotes the neighborhood of node x
including it.

SimJaccard(x, y) =
|Γ (x) ∩ Γ (y)|
|Γ (x) ∪ Γ (y)|

(9)

3.1 Decision system for applying RST on monoplex networks

The topological relation between nodes comprises an |V |× |V | adjacency matrix
M , in which each entry Mi,j indicates the relationships between nodes i and
j weighted or not. The weight can be obtained as result of the application of
both: a flattening process in a multi-relational network or a network construction
schema when we want to apply network-based learning methods to vector-based
datasets. If we apply some CD algorithm to this adjacency matrix, then we can
consider the combination of the topological structure and the CD results as a
decision systems DSmonoplex = (V,A ∪ d), where A is a finite set of topological
or non-topological features which may additionally be available if the network
is attributed and d /∈ A is the decision attribute resulting from the detected
communities.

3.2 Decision system for applying RST on multiplex networks

Multiplex are powerful enough though to allow modeling different types of net-
works including:

1. Multi-relational networks, in which each layer encodes one relation type.
Also, it is possible to be considered as a monoplex network by applying a
flattening process.

2. Attributed networks, in which additional layers can be defined over the
node set as a similarity graph induced by a similarity measure applied to
the set of node attributes, where each layer represents a different context.
Notice that, each subset of attributes or layer topology corresponds to the
features for a specific context of the problem.

3. Dynamic networks, in which each layer corresponds to the network state
at a given time stamp (or each layer represent a snapshot). Like a time-series
analysis if attributes are capture in each time, a dynamic complex networks
can be represented as an attributed dynamic network [19].

The topological interaction between nodes within each layer k-th of amultiplex
network comprises an |V | × |V | adjacency matrix Mk, in which each entry Mk

ij
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indicates the relationships between nodes i and j in the k-th layer. If we apply
some community detection algorithm to the whole multiplex network topology
by considering multiplex community detection approaches, then we can consider
the application of RST concepts over the multiplex network as the aggregation
of the application of the RST concepts over each layer k-th. Consequently, the
decision system for the k-th layer is the combination of the topological struc-
ture Mk and the community result as a decision systems DSlayerk = (V,Ak ∪d),
where Ak is a finite set of topological or non-topological features in the k-th layer
and d /∈ A is the decision attribute resulting from the detected communities in
the multiplex topology.

Besides, it is possible to transform a multiplex into a monoplex network
by a flattening process. The main flatten approaches are the binary flatten, the
weighted flatten and other more complex approaches used in the deep learning.
Taking into account these variant, we can consider the combination of the topo-
logical structure of the transformed network and the CD results as a decision
systems DSmonoplex = (V,A ∪ d), where A =

⋃
k∈L is a finite set of topological

or non-topological features that characterize the networks and d /∈ A is the deci-
sion attribute resulting from the detected communities. The multiple instance or
ensemble similarity measures are powerful for computing the similarity between
nodes taking into account the similarity per layers (contexts).

4 The application of Rough Net in the community
detection analysis

In this section, we briefly describe three important tasks in the community de-
tection analysis: community detection validity, the evolutionary estimation in
dynamic networks and the interpretable visualization schema for community
detection.

4.1 Community detection validity

A community can be defined as a subgraph whose nodes are densely connected
within itself, but sparsely connected with the rest of the network, though other
patterns are possible. The aim of a community detection algorithm is discovering
dense subgraphs by considering the structural information in terms of network
linkages between nodes. The existence of communities implies that nodes in-
teract more strongly with the other members of their community than they do
with nodes of the other communities. Consequently, there is a preferential link-
ing pattern between nodes of the same community (being modularity [13] one of
the most used internal measures [9]). This is the reason why link densities end
up being higher within communities than between them. Several methods and
measures have been proposed to detect and evaluate communities, respectively
in both monoplex and multiplex networks [2,3,13]. However, it is very difficult
to evaluate a community result because the major of complex networks occur in
real world situations since reference classifications are usually not available. We
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propose to use quality, accuracy and weighted accuracy of classification mea-
sures described in Section 2 to validate community results, taking into account
the application of accuracy and quality of approximation measures to validate
each community structure. Aiming at providing more insights about the vali-
dation, next we provide a general procedure with implementation details using
the Rough Net definition. Notice that, R′k(x) is computed by considering the
attributes or topological features of networks in the k-th layer, as shown in
Equation 8. The algorithm 1 allows us to measure the quality of the commu-
nity structure using Rough Net, by considering the quality and precision of each
community.

Algorithm 1 Community Detection Validity

Input: A Monoplex or multiplex network G (attributed or not), detected communi-
ties, a similarity threshold ξ and a similarity function between nodes (topological or
non-topological features)
Output: Values of quality, accuracy and weighted accuracy of classification measures

1: if G is a monoplex network then
2: DS[1]← DSmonoplex (See section 3.1)
3: C[1]← communities(G, d)
4: else if G is a multiplex network then
5: for k in L do
6: DS[k]← DSlayerk (See section 3.2)
7: C[k]← communities(layer(G, k), d)
8: end for
9: end if
10: for k in (1 : size(DS)) do
11: Obtain the similarity class R′k(x) based on Equation 8
12: for X in C[k] do
13: Calculate R′k∗(X) and R′∗k (X) approximations (See Equations 1 and 2)
14: Calculate α(X) and γ(X) approximation measures (See Equations 3-4)
15: end for
16: Calculate γ(DSk), α(DSk) and αw(DSk) in DSk (See Equations 4-7)
17: γG(DS)+ = γ(DSk), αG(DS)+ = α(DSk) and αwG(DS)+ = αw(DSk)
18: end for
19: γG(DS) = γG(DS)/L, αG(DS) = αG(DS)/L and αwG(DS) = αwG(DS)/L

4.2 The evolutionary estimation in dynamic networks

A huge of real-world complex networks are dynamic in nature and change over
time. The change can be usually observed in the birth or death of interactions
within the network over time. In a dynamic network is expected that nodes of the
same community have a higher probability to form link with their partners than
with the other nodes [19]. For that reason, the key feature of the community
detection analysis in dynamics networks is the evolution of communities over
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time. Several methods have been proposed to detect these communities over
time for specific time stamp windows [3, 10]. Often more than one community
structure is required to judge if the network topology has suffered transformation
over time for specific window size. To the best of our knowledge, there is no
measure able which captures this aspect. For that reason, in this paper, we
propose a new measure based on the Rough Net definition for estimating in a
real number the change level during a specific window time-stamp.

We need to consider 2-consecutive layers for computing the quality, accuracy
and weighted accuracy of classification measures in the evolutionary estimation.
For that reason, we need to apply the RST for community validity two times. The
former RST application is based on the decision system DS = (V,Ak ∪ dk−1),
where Ak is a set of topological attributes in the layer k and dk−1 /∈ Ak is
the result of the community detection algorithm in the layer k − 1 (decision
attribute). The latter RST application is based on the decision system DS =
(V,Ak−1 ∪ dk), where Ak−1 is a set of topological attributes in the layer k −
1 and dk /∈ Ak−1 is the result of the community detection algorithm in the
layer k (decision attribute). The measure can be applied over a window size K
by considering the aggregation of the quality classification between all pairs of
consecutive (adjacency) layers.

4.3 Visualization schema for community detection analysis

In many applications more than a unique real value that expresses the quality
of the community conformation is required for the understanding of the inter-
actions throughout the networks. Below we present a schema for visualizing the
interaction between communities taking into account the quality of the com-
munity structure by using the combination of the Rough Net definition and the
complex network representation. The algorithm 2 allows us to represent the com-
munity structure quality in an interpretable way. Notice that, real-world complex
networks usually are composed by many nodes, edges and communities.

The community similarity used for weighted the interactions between commu-
nities in the network representation is formalized in Equation 11. TheBN ′(X,Y ),
computed by sBN (X,Y ), captures the proportion of nodes member of the com-
munity X, which cannot be unambiguously classified into this community but
belong to the community Y . The above idea is computing based on the boundary
region BN of both communities X and Y . Due to BN ′ is non-symmetric, the
measure sBN is computed by considering the application of BN ′ (Equation 10)
in both senses (i.e., X → Y and Y → X).

BN ′(X,Y ) =
BN(X) ∈ ∩Y

BN(X)
(10)

sBN (X,Y ) =
BN ′(X,Y ) +BN ′(Y,X)

2
(11)
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Algorithm 2 Visualization for Community Structure Analysis

Input: A complex network G (attributed or not), detected communities, a similarity
threshold ξ and a similarity function between nodes (topological or non-topological
features)
Output: Community network representation

1: Create an empty network G′(V ′, E′)
2: for x in V do
3: Obtain the similarity class R′(x) based on Equation 8
4: end for
5: for X in communities(G, d) do
6: Calculate R′∗(X) and R′∗(X) approximations (See Equations 1 and 2)
7: Calculate α(X) and γ(X) approximation measures (See Equations 3-4)
8: Add a new node X where the size corresponds to quality or accuracy
9: end for
10: for X,Y in communities(G), X 6= Y do
11: Calculate the similarity sBN between communities X-th and Y -th
12: Add a new edge (I, Y, wXY ) where the weighted wij = sBN (X,Y )
13: end for

5 Illustrative examples

For illustrating the performance of the Rough Net definition in the community
detection analysis, we apply it to three networks, two known to have monoplex
topology and the third multiplex one. The performance of a CD algorithm may
be judged differently depending on which measure is used. To be more confident
in results we should use several measures [2, 5]. Thus, we compare the reported
result of our new community detection validity measures (Accuracy and Qual-
ity of Classification) with the more used internal and external measures used
for community detection validity: modularity, adjusted rand (AR), normalized
mutual information (NMI), rand, variation of information (VI) measures [2].
Modularity [13] quantifies when the division is a good one, in the sense of hav-
ing many within-community edges. It takes its largest value (1) in the trivial
case where all nodes belong to a single community. A value near to 1 indicates
strong community structure in the network. All other mentioned measures need
an external references for operating. These measures except VI, like a modular-
ity, express the best result though values near to 1. For that reason, we use the
notation VIC for denoting the complement of VI measure (i.e V IC = 1− V I).

5.1 Zachary Network

Zachary is the much-discussed network 5 of friendships between 34 members of
a karate-club at a US university. The two real communities (ground-truth) coin-
cide identically with the division of the network founded by the LP algorithm, as

5

http://networkrepository.com/ucidata-zachary.php
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shown in Figure 1(b). Here, we explore the performance of the Rough Net defi-
nition in the quality evaluation of the community structure reached by popular
CD algorithms.

Figure 1 shows the community structures reported by the application of the
standard community detection algorithms Multilevel Louvain (LV), Fast Greedy
Optimization (FGO), Leading Eigenvector (EV), Infomap (IM) and Walktrap
(WT) to the Zachary network. Each community has been identified with a differ-
ent colour. These algorithms detect communities, which mostly not correspond
perfectly to the division observed in real life (ground-truth). The community
structure reached by the LP algorithm coincides identically with the ground-
truth. For that reason, we can affirm that the LP algorithm reported the best
division. However, in Figure 2 we can observe that the modularity values not
distinguish the LP as a best conformation of nodes into communities, while the
proposed accuracy and quality measures based on the Rough Net definition, as-
sign the higher value to the LP conformation regardless of the threshold value
used. On the other hand, our measures grant the lowest quality results for the
CD structure obtained by the EV algorithm as expected. Notice that, FGO and
EV assign the orange node with high centrality in the orange community struc-
ture in a wrong manner. We can notice that the most neighbors of this node
are in another community. Indeed, the FGO and WT are the following lowest
results reported by our measures.
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Fig. 1: Communities detected by different algorithms in the Zachary network.
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Figure 3 shows the performance reported by the application of the standard
community detection algorithms before mentioned by using the proposed qual-
ity measures and the external ones. All measures exhibit the same monotony
behaviors with independence of the selected similarity threshold ξ.
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Fig. 3: Performance of the proposed measures on the Zachary CD evaluation.

5.2 Jazz Network

The Jazz network 6 represents the collaboration between jazz musicians, where
each node represent a jazz musician and interactions denoting that two musi-
cians playing together in a band. Six CD algorithms were applied to this network
with the objective of subsequently exploring the behavior of validation measures.
Figure 4 displays that LP obtains a partition in which the number of interac-
tions shared between nodes of different communities is smaller than the number

6 http://konect.cc/networks/arenas-jazz/
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Fig. 4: Communities detected by different algorithms in the Jazz network.

of interactions shared between the communities obtained by the FGO algorithm.
However, this behavior is not reflected in the estimation of the modularity val-
ues, while it manages to be captured by the proposed quality measures, as shown
in Figure 5. Besides, the number of interactions shared between the communities
detected by the algorithms LV, FGO, and EV is much greater than the number
of interactions shared between the communities detected by the algorithms LP,
WT, and IM. Therefore, this behavior was expected to be captured through the
Rough Net definition. Figure 5 shows that the results reported by our measures
coincide with the expected results. On the one hand, we can observe that our
quality measures exhibit a better performance in this example, than the mod-
ularity measure. On the other hand, our measures also capture the presence of
outliers, this is the reason why the community structure reported by the WT
algorithm is higher than the obtained by the LP algorithm.

5.3 CElegans network

Caenorhabditis elegans connectome (CElegans) is a multiplex network 7, which
consists of layers corresponding to different synaptic junctions: electric (Elec-
trJ), chemical monadic (MonoSyn), and polyadic (PolySyn). Figure 6 shows the
mapping of the community structure in each network layer, which has been

7 http://deim.urv.cat/˜alexandre.arenas/data/welcome.htm
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Fig. 5: Performance of the internal measures on the Jazz CD evaluation.

obtained by the application of the MuxLod CD algorithm [10]. Notice that, a
strong community structure result must correspond to a structure of densely
connected subgraphs in each network layer. This reflexion property is not evi-
dent for these communities in the CElegans network. For that reason, both the
modularity and the proposed quality community detection measures obtain low
results (Modularity = 0.07, α(ξ = 0.25) = 0.24 and γ(ξ = 0.25) = 0.14). Figure
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Fig. 6: Application of the MuxLod CD to the CElegans network.

7 shows the interactions between the communities in each layer by considering
the MuxLod community structure and the schema described in section 4.3. The
community networks show high interconnections and as expected, the results of
the quality measures are low. Figure 7 shows that the topologies of the PolySyn
and ElectrJ layers do not match exactly. In this sense, let us suppose without
loss of generalization, that we want to estimate if there has been a change in the
topology considering these layers as consecutive. To estimate these results, we
apply the methodology described in section 4.2. Figure 8 shows the modularity,
accuracy and quality obtained values, which reflect that the community struc-
ture between the layers does not completely match, so it can be concluded that
the topology has evolved (changed).
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(a) ElectrJ (b) PolySyn (c) MonoSyn

Fig. 7: Visualization of community quality based on the MuxLod CD to the
CElegans network.
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Fig. 8: Performance of the internal measures on the CElegans CD evaluation.

6 Conclusions and future work

In this paper, we have described new quality measures for exploratory analysis
of community structure in both monoplex and multiplex networks based on
the Rough Net definition. The applications of Rough Net in community detec-
tion analysis demonstrate the potential of the proposed measures for judging
the community detection quality. Rough Net allows us to asses the detected
communities without requiring the referenced structure. Besides, the proposed
evolutionary estimation and the visualization schema can be allowed to the ex-
perts a deep understanding of complex real systems. For the future work, we
propose to extend the applications of Rough Net definition to the estimation
of the community structure in the next time-stamp based on the refinement
between adjacent layers in dynamic networks.
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