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a b s t r a c t

In this paper, we build a recommender system based on Long-term Cognitive Networks (LTCNs), which
are a type of recurrent neural network that allows reasoning with prior knowledge structures. Given
that our approach is context-free and that we did not involve human experts in our study, the prior
knowledge is replaced with Pearson’s correlation coefficients. The proposed architecture expands the
LTCN model by adding Gaussian kernel neurons that compute estimates for the missing ratings. These
neurons feed the recurrent structure that corrects the estimates and makes the predictions. Moreover,
we present an extension of the non-synaptic backpropagation algorithm to compute the proper non-
linearity of each neuron together with its activation boundaries. Numerical results using several case
studies have shown that our proposal outperforms most state-of-the-art methods. Towards the end,
we explain how can we inject expert knowledge to the proposed neural system.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recommender Systems (RSs) play a key role in today’s Busi-
ess Intelligence as they allow companies to increase their rev-
nue while also offering personalized suggestions. At the same
ime, when properly implemented, users often appreciate being
uided through thousands of options. RSs address the information
verload problem by using machine learning methods to offer
sers with suitable recommendations on items based on users’
istory and data [1]. For example, this can be done by considering
he previous experience of each user and the preference of other
sers sharing similar interests.
When it comes to algorithms, existing RSs can be gathered into

hree broad categories [2]: context-aware [3,4], collaborative [5–
] and hybrid models [1,8,9]. In the first case, the RS learns a
rofile of new user’s interests based on the features describing
he items the user has rated. In the second case, the RS learns
o recognize patterns in a user–item matrix to provide a rec-
mmendation. This approach is based on the assumption that
sers who agreed in the past will agree in the future, thus they
ill probably prefer items that users with similar preferences
ave liked in the past. Collaborative filtering (CF) methods can
e further divided into two sub-categories: model-based [10–12]
nd memory-based models [13,14]. Finally, hybrid RSs combine
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two or more algorithms with the aim of improving the overall
performance. This paper contributes to the CF approach, thus Sec-
tion 2 will further elaborate on prominent CF methods reported
in the literature.

A common limitation of existing RSs is that they do not allow
for explicit knowledge injection. This means that human experts
(e.g., company managers, marketing experts) cannot modify the
model to adapt it when new trends – which are not reflected
on the data – emerge. The same problem arises with the bias
on historical data records: if we let the model learn only from
data, the model will reflect what happened in the past, not
necessarily what happens in the present. Both situations could be
addressed by allowing for human–machine interaction. However,
this is not trivial since we often rely on intelligent algorithms
to find patterns that human beings cannot discover. This issue
becomes more complex as most successful models often perform
as black-boxes, so we barely understand where to insert the
expert knowledge.

In this paper, we propose an RS using Long-term Cognitive
Networks (LTCNs) [15] that operates on the user–item rating ma-
trix. LTCNs are recurrent neural networks that allow the experts
to inject prior knowledge through the weight matrix. Overall,
LTCNs exhibit four key characteristics that distinguish them from
other neural systems: (i) each neuron maps to a problem feature,
thus explicit hidden neurons are not allowed, (ii) the weight ma-
trix can be given by the domain experts, (iii) each neuron has its
own transfer function, and (iv) the learning focuses on adjusting
the proper non-linearity degree of each neuron instead of mod-
ifying the weight matrix. It is worth mentioning that, since our
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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research did not involve human experts, the prior knowledge will
be replaced with Pearson’s correlation coefficients. Section 7 will
provide concrete guidelines on how to define the prior knowledge
structures. Similarly, we will further discuss the positive impact
of operating on previously defined knowledge structures and the
remaining challenges to be addressed.

Overall, this paper brings two contributions to life. Firstly, we
propose an LTCN-based neural architecture that expands the orig-
inal model with Gaussian kernel neurons. These neurons compute
estimates for the missing ratings in a user–item matrix, thus feed-
ing the LTCN with complete (probably inexact) patterns. Next,
these estimates are corrected by the LTCN when computing the
final recommendations. As a second contribution, we propose a
three-step learning procedure aimed at computing the weight
matrix (in case that the prior knowledge is not available), training
the Gaussian kernel neurons and adjusting the non-linearity of
the remaining neurons. To do the latter, we propose a new variant
of the non-synaptic backpropagation (NSBP) algorithm [15] that
also optimizes the boundaries of the activation space of each
LTCN neuron.

The rest of this paper is organized as follows. Section 2 re-
vises the literature on CF methods, which do not use explicit
information. Section 3 introduces the theoretical basis of the
LTCN model. Section 4 presents the LTCN-based RS, while Sec-
tion 5 describes the three-step learning procedure to compute
the learnable parameters. Section 6 evaluates the performance
of our model by using three popular case studies. Finally, Sec-
tion 7 provides guidelines on how the define the prior knowledge
structures, while Section 8 concludes the paper.

2. Related work on collaborative filtering

As previously mentioned, RSs aim at forecasting users’ in-
terests in order to suggest services or products. With the e-
commerce extension and the data generation explosion, the ap-
plication of RSs on the Internet has expanded, thus facilitating
their use in several areas [16]. Likewise, such systems have be-
come a key component within nowadays’ business intelligence
since they help companies better position their products or ser-
vices [17]. In this section, we elaborate on the related works on
RSs that relate to CF-based solutions.

CF methods are the most widely used approach for RSs [18].
This category comprises methods based on past interactions be-
tween users and items to produce new recommendations. Un-
like content-based methods, CF is recommended in areas where
no explicit information or ‘‘features’’ are available, or they are
difficult to process, such as opinions [18].

There are two broad subcategories of CF methods: memory-
based and model-based. In memory-based methods, users and
items are represented directly by their interaction, and recom-
mendations are made following the nearest neighbors’ informa-
tion (user–user or item–item). Therefore, these methods rely on
computing similarities between users (or items) through their
assigned ratings [19]. The k-nearest neighbor method [20] is
he most used memory-based method due to its efficiency and
mplementation simplicity [21].

Within the model-based methods, the preference of users on
pool of items is encoded as a user–item interaction matrix.
o further information about the users or items is used, thus
ecommendations are made following the model’s information.
xamples of these approaches are matrix factorization (MF) [22],
ingular value decomposition (SVD), autoencoders (AEs) [23], and
ariational autoencoders (VAEs) [24].
MF-based models transform both users and items into a joint

atent factor space and use the inner product of this space to
eflect user–item interactions [22]. Another type of MF for latent
odel generation is SVD [25].
Deep learning models [26] are integrated by multiple neural
building blocks as a single differentiable function and trained
end-to-end. These methods capture non-linear and non-trivial
users–items’ interactions allowing the encoding of more complex
abstractions from data [1]. The use of deep learning-based RSs
has become more popular due to several successes in providing
high-quality recommendations [18].

AE-based models [23] are deep unsupervised neural networks
trained to reconstruct a given pattern, which is the outcome of
the output layer. The golden rule when designing an AE is that
the size of the hidden layers decreases until reaching the desired
number of latent features. After that, the size of the remaining
hidden layers starts to increase until reaching the original number
of features. They are powerful in handling noisy data, however,
the training process is expensive due to the high parameter
tuning [18]. VAE-based models are a recent advancement in the
AE-based family. These neural networks are probabilistic gener-
ative models in the form of AEs whose training is regularized to
avoid overfitting [24].

One of the issues of CF-based recommenders is the data spar-
sity. This arises when there is insufficient data on user and
item interactions, thus affecting the accuracy and efficiency of
RSs [27]. One issue attached to this problem is how to extrapolate
unknown ratings from the known ones. In some papers, the
interaction matrix is transformed into a binary matrix. They treat
observed and unobserved values as ones and zeros, respectively.
This approach fails to accurately reflect the real world. It is chal-
lenging to describe users’ preferences using just one or zero [11].
By binarizing the interaction matrix, this approach neglects the
ratings of each user and their actual preferences while adding
noise to the data. Also, by replacing the missing interactions with
zero, the similarity measures treat these values as negative. In this
context, another approach is the Pearson correlation, which treats
missing values as average. This strategy allows handling both
‘‘difficult’’ and ‘‘easy’’ evaluators since it normalizes the items’
evaluations to a certain extent.

In terms of efficiency, CF-based methods often struggle to
process large datasets. The integration of hashing into CF-based
methods is deemed an interesting solution to this problem. The
rationale behind this technique is to learn a low-dimensional
binary vector representation of the interaction matrix [28]. The
binary code representation reduces the storage requirement for
large-scale RSs (each element only needs one bit), thus reducing
the cost of querying as the similarity calculation lies in the Ham-
ming space. The efficiency improvement comes with the sacrifice
of accuracy due to a large amount of information loss caused by a
quantization procedure [29]. In recently published papers [28,30],
the authors expand deep learning frameworks to learn binary
code (hash) for CF solutions. However, they recognize that ac-
curacy is still an issue when compared to traditional methods
reported in the literature.

Despite their success, CF methods still have space for im-
provements. The cold-start problem, data sparsity, decisions’ in-
terpretability, and trade-off between bias and variance are among
the open challenges. Moreover, most of these methods do not al-
low for human–machine interaction. Therefore, new approaches
with fewer parameters, which are interpretable (to some ex-
tent), and able to handle missing data while maintaining the
performance are welcome.

3. Long-term cognitive networks

In a nutshell, LTCNs are recurrent neural networks in which
neurons have a well-defined meaning for the system being mod-
eled [15]. This implies that neither explicit hidden layers nor
neurons are allowed. However, the recurrent reasoning mech-
anism of LTCNs does produce a sort of abstract layer in each
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iteration, each containing the activation values of neurons in
that iteration. Notice however that the weights connecting the
abstract layers do not change from an iteration to another. As
a matter of fact, the weight matrix of LTCNs is expected to
be provided by domain experts as prior knowledge, therefore
allowing for the human–machine interaction.

Eq. (1) shows how to compute the activation value of the ith
neural concept in each abstract layer (iteration in the recurrent
reasoning) for the kth initial stimulus,

a(t+1)
i (k) = f (t+1)

i

⎛⎝ M∑
j=1

wjia
(t)
j (k)

⎞⎠ (1)

where M is the number of neurons, wji is the weight connecting
the neuron Cj with Ci, 1 ≤ t ≤ T is the current abstract layer and
T is the number of abstract layers. Eq. (2) shows the (generalized)
sigmoid transfer function used to limit the neuron’s activation
value to the [Li,Ui] interval,

f (t)i (x) = Li +
Ui − Li

(1 + e−λ
(t)
i (x−h(t)i ))1/v

(t)
i

(2)

such that λi > 0, hi ∈ R and vi > 0 are parameters to
be adjusted during the nonsynaptic learning phase (discussed
in Section 5.3). In this function, λi denotes the function slope,
hi stands for the sigmoid offset and vi regulates toward which
asymptote the maximum growth occurs.

4. LTCN-based recommender system

In this section, we present an LTCN-based RS where each
neural entity denotes an item. The proposed model involves two
types of neurons and connections. On one hand, we have Gaus-
sian kernel neurons and sigmoid processing neurons. On the other
hand, we have non-recurrent links connecting the Gaussian ker-
nel neurons and recurrent links connecting the sigmoid neurons.
Overall, the proposed LTCN-based RS involves two sub-networks
that are connected sequentially such that the first network pro-
cesses the rough input sequences while the second one produces
the recommendations.

Fig. 1 shows the architecture of the proposed LTCN-based
system for three items. The reader can notice that the fact that
each neuron is mapped to a specific item makes our model
quite interpretable. In the context of this paper, interpretability
means that we understand where to insert the domain knowledge
rather than elucidating how the recommendations were com-
puted. Although such explanations can perfectly be extracted, it
goes beyond the scope of this paper.

In this architecture, Gaussian kernel neurons receive the in-
complete input sequences to be processed. The empty positions
mark the items for which we need to compute the recommenda-
tions. Gaussian kernel neurons are computed using the ratings
received by each item and the ratings provided by each user
as explained in Section 5.2. These input neurons are connected
through non-recurrent links so that they will be updated only once
fter being activated. Eq. (3) shows the information such granular
eurons exchange.
The second sub-network consists of sigmoid neurons con-

ected through recurrent links such that the neuron’s activation
values are updated in each iteration. Although the LTCN model
in this sub-network could complete the sequence without the
need for kernel neurons, it will likely need more iterations to pro-
duce acceptable outputs. The less information we have, the more
iterations we would need for the patterns to emerge. Overall,
increasing the number of iterations could cause problems when

adjusting the non-linearity of the model (see Section 5.3) since
Fig. 1. LTCN-based RS for three items such that xi(k) is the known recommen-
dation for the ith item according to the k user while x̃i(k) is the recommendation
computed by the network for that item. Moreover, G1 , G2 and G3 are Gaussian
kernel neurons connected with non-recurrent links (denoted with dashed arcs)
whereas C1 , C2 and C3 are sigmoid neurons connected with recurrent links
(denoted with solid arcs). If xi(k) is known, then the network should ensure
that xi(k) ≈ x̃i(k) after performing the inference process.

the gradient tends to either vanish or explode when operating
with very complex dependencies.

The reader can argue that, in the first sub-network, we could
have transformed the non-recurrent links into recurrent ones.
Such a strategy, however, would have implied to estimate the
Gaussian kernels in each iteration, thus increasing the compu-
tational burden. Besides, we should keep in mind that this sub-
network will not benefit from the non-synaptic learning and
that the role of the second sub-network is to correct the rough
estimates computed with the first one.

Each kernel neuron Gi involves two functions: a Gaussian ker-
nel density estimator Gi(·) and its inverse G−

i (·). The first function
is used to determine the probability of the ith item of receiving
a certain rating, while its inverse allows estimating the item’s
rating for a given probability. As mentioned, these functions are
computed from data during the learning procedure described in
the following Section 5.

Eq. (3) shows how to compute the activation value of a kernel
neuron, which will be adopted to feed the sub-network contain-
ing the recurrent links,

a(0)i (k) = G−

i

( M∑
j=1

δj(k)Gj(xj(k))
N(k)

)
(3)

such that δj(k) is a binary function that returns one when the
jth item was rated by the kth user (i.e., the xj(k) value is not
missing), and N(k) denotes the number of non-missing values in
the kth instance. These kernel functions return values in the [0, 1]
interval such that they compute estimates of the normalized
ratings for each item being analyzed.

It is relevant to mention that kernel neurons are only activated
when the neuron receives a missing value, otherwise they will
transfer the non-missing value to the recurrent architecture. This
sub-network will correct the rough estimates computed by the
kernel neurons using (i) the prior knowledge encoded into the
weight matrix, and (ii) the non-linear sigmoid functions learned
from the historical data. Moreover, the fact that kernels neurons
are independent of each other suggests that we could easily
paralyze their computation, thus notably boosting algorithm’s
speed when processing larger datasets.

5. Three-step learning procedure

In this section, we describe the necessary steps to train the

LTCN-based recommender system.
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5.1. Computing the weights matrix

The first learning step is devoted to estimating the weight
matrix. Ideally, the domain experts should provide (some of)
those weights to be used as prior knowledge. This would not
only allow obtaining reliable predictions with less effort but
also reasoning with pieces of knowledge that have not yet been
observed in the historical data. If this knowledge is not available,
then the LTCNs replace the weight matrix with the correlation
coefficients associated with the correlation among the variables
(i.e., the items to be recommended to the users).

Eq. (4) displays how to calculate the weights connecting the
neurons, which are equivalent to Pearson’s coefficients in multi-
ple regression models,

wji =
K
∑

k xi(k)xj(k) −
∑

k xi(k)
∑

k xj(k)
K (
∑

k xj(k)2) − (
∑

k xj(k))2
(4)

where xi(k) represents the value of the ith variable according to
the kth instance, while K is the number of instances (that is to
say the number of users) in the dataset.

Notice that this strategy might lead to dense networks, which
might not be a realistic representation of the knowledge that
domain experts would have provided. Moreover, having densely
connected networks makes the sigmoid neurons to be more likely
to be saturated (i.e., their activation values quickly move toward
either Li or Ui). To overcome this situation, we will prune the
network by only considering those weights connecting highly-
correlated items as indicated by a user-specified (absolute) cor-
relation threshold 0 ≤ ξ ≤ 1.

It should be stated that this training step is performed only
once and that the computed weight matrix will not be altered in
the subsequent learning steps.

5.2. Computing the kernel neurons

The second learning step consists in ‘‘training’’ the kernel
neurons. In practice, this means that we are going to estimate
the probability density function of each variable. This strategy
attempts to feed the network with estimates that replace the
missing values (e.g., non-rated items) in a given instance. This
can be done by computing a Gaussian kernel density estimator
– which is a non-negative function – for each variable. This non-
parametric procedure is a fundamental data smoothing problem
where inferences about the population are made, based on a finite
data sample. Eq. (5) formalizes the Gaussian kernel associated
with the ith neuron,

Gi(y) =

∑
xi(k)∈Xi

e−
(y−xi(k))2

2s4 (5)

such that Xi represents the set of users who have rated the ith
item, while s > 0 is a smoothing parameter called the band-
width, which establishes a trade-off between bias and variance.
A large bandwidth leads to a density distribution with high bias,
while a small bandwidth leads to a density distribution with
high-variance. Since our neural system operates with normalized
ratings, we have used a bandwidth equal to 0.05 in all simulations
conducted in this paper.

As mentioned, when performing the reasoning process for a
given instance, the known variable values are evaluated in their
respective kernels such that we obtain a set of probability values.
These values are averaged to obtain the average probability of
that user liking any item. To obtain the values that replace the
missing values in the given instance, we just evaluate the average
probabilities that characterize the user’s rating behavior in the
inverse of each kernel function. Notice that several solutions
might exist. Selecting the smallest one would imply that our
neural system is being conservative while the greatest one would
imply that our system is being optimistic. This paper will adopt
the former approach.

5.3. Adjusting the non-linearity

This step is based on the nonsynaptic learning principle [31]
which aims at adjusting the non-linearity degree of each sigmoid
neuron. As mentioned, the NSBP algorithm [15] assumes that
the weights are known, thus the target parameters are the ones
controlling the sigmoid function shape.

If the weights are provided by the experts, then the NSBP
would allow for the human–machine interaction. In contrast, if
the weights are estimated based on the correlation among the
items (which is the approach adopted in this paper) then the
NSBP algorithm would still preserve the semantics behind the
model. This is a valuable feature in RSs since users have the
tendency of relying on systems that are able to explain how the
recommendations were made.

Next, we present a variant of the NSBP algorithm that addi-
tionally optimizes the Li and Ui parameters (see Eq. (2)). These
parameters define the activation interval for the ith neuron. This
modification improves the algorithm by adding more flexibility,
thus alleviating the stringent (yet desirable) limitation of oper-
ating over fixed knowledge structures. Overall, the learning task
consists in adjusting the shape of the transfer function associ-
ated with the ith neuron in each iteration. This can be done by
computing the parameter set:

Θ =

{
θ
(t)
i =

(
λ
(t)
i , h(t)

i , v
(t)
i , L(t)i ,U (t)

i

)}
. (6)

Eq. (7) shows the loss (error) function to be minimized by the
SBP learning algorithm:

(Θ) =

M∑
i=1

δi(k)
(
xi(k) − a(t)i (k)

)2
2

(7)

where δi(k) takes one when the ith variable of the kth train-
ng instance is not missing, otherwise it takes zero. In addition,
(t)
i (k) represents the activation value of the ith neuron in the tth

abstract layer as calculated in Eq. (1).
Similarly to other backpropagation methods, the NSBP algo-

rithm starts the parameter updating backwards. By doing that,
we need to determine whether the current iteration t is the final
one or not, thus leading to the following scenarios.

Case 1. When t = T , the partial derivative of the global error
E(Θ) is computed as follows:

∂E

∂a(t)i (k)
= −δi(k)(xi(k) − a(t)i (k)) (8)

here a(t)i (k) is the activation value of the ith neuron in the tth
bstract layer, while xi(k) is the known value of the ith variable
ccording to the kth training example.
Case 2. When 1 < t < T , the partial derivative of the global

rror E(Θ) is calculated as follows:

∂E

∂a(t)i (k)
=

M∑
j=1

∂E

∂a(t+1)
j (k)

×
∂a(t+1)

j (k)

∂a(t)i (k)
(9)

=

M∑
j=1

∂E

∂a(t+1)
j (k)

×
∂a(t+1)

j (k)

∂ ā(t+1)
j (k)

×
∂ ā(t+1)

j (k)

∂a(t)i (k)

=

M∑ ∂E

∂a(t+1)(k)
×

∂a(t+1)
j (k)

∂ ā(t+1)(k)
× wij
j=1 j j
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where ā(t+1)
j (k) is the raw value of the jth neuron,

∂a(t+1)
j (k)

∂ ā(t+1)
j (k)

=

(
Uj − Lj

)
λ
(t+1)
j Γ

(t+1)
j (k)

v
(t+1)
j

(
1 + Γ

(t+1)
j (k)

)1+1/v(t+1)
j

(10)

nd
(t+1)
j (k) = eλ

(t+1)
j (−ā(t+1)

j (k)+h(t+1)
j )

. (11)

Once ∂E/∂a(t)i (k) have been calculated, we need to obtain the
partial derivatives of the global error with respect to the target
parameters θ

(t)
i (p) ∈ Θ ,

∂E

∂θ
(t)
i (p)

=
∂E

∂a(t)i (k)
×

∂a(t)i (k)

∂θ
(t)
i (p)

, (12)

such that p is the index of the parameter of the ith sigmoid
function in the current abstract layer.

Eqs. (13) to (17) portray the partial derivatives of the neuron’s
activation value with respect to each sigmoid function parameter
in the current iteration,

∂a(t)i (k)

∂θ
(t)
i (1)

=

(Ui − Li) Γ
(t)
i (k)

(
āi(t)(k) − h(t)

i

)
v
(t)
i

(
1 + Γ

(t)
i (k)

)1+1/v(t)i

, (13)

∂a(t)i (k)

∂θ
(t)
i (2)

=
− (Ui − Li) Γ

(t)
i (k)λ(t)

i

v
(t)
i

(
1 + Γ

(t)
i (k)

)(1+1/v(t)i )
, (14)

∂a(t)i (k)

∂θ
(t)
i (3)

=

(Ui − Li) log
[
1 + Γ

(t)
i (k)

]
(
v
(t)
i

)2 (
1 + Γ

(t)
i (k)

)1/v(t)i

, (15)

∂a(t)i (k)

∂θ
(t)
i (4)

= 1 −

(
Γ

(t)
i (k)

)−1/v(t)i
, (16)

∂a(t)i

∂θ
(t)
i (5)

=

(
Γ

(t)
i (k)

)−1/v(t)i
. (17)

Eq. (18) shows the gradient vector used to updated the sig-
oid function parameters attached to each neural processing
ntity in the tth abstract layer,

(t)
Θ E =

(
∂E

∂θ
(t)
1 (1)

, . . . ,
∂E

∂θ
(t)
i (p)

, . . . ,
∂E

∂θ
(t)
M (P)

)
. (18)

With respect to the sigmoid parameter initialization, we use
the following values for all layers: λi = vi = 1.0, Ui = maxi{Mi}

and Li = −Ui with Mi being the number of incoming connections
to the ith neuron after performing the network pruning, while hi
is given as follows:

hi =

M∑
j=1

γξ (xj, xi)φji

Mi
(19)

where γξ (xj, xi) is a binary function that returns one if the ab-
solute correlation value between variables xj and xi exceeds the
correlation threshold ξ , and

φji =

∑
k xj(k)

2∑
i xi(k) −

∑
k xi(k)xj(k)

∑
k xj(k)

K (
∑

k xj(k)2) − (
∑

k xj(k))2
. (20)

This method needs to establish some constraints to produce
feasible parameter values. For example, we need to ensure that
λ
(t)
i > 0 and v

(t)
i > 0, and that L(t)i ≤ U (t)

i . The easiest way
to enforce these constraints is to preserve the actual parameter
value if the new one does not fulfill the constraints. Of course,
other alternatives are also possible.
6. Numerical simulations

In this section, we will explore the overall accuracy of our
system on three case studies.

6.1. State-of-the-art algorithms

In this subsection, we describe the state-of-the-art algorithms
used for comparison purpose. Aiming at performing fair compar-
isons, we have selected methods that compute the recommenda-
tions based on the user–item rating matrix, thus they do not use
explicit (context) information. The selected algorithms are: the
k-nearest neighbor (kNN), a matrix factorization (MF), the SVD
algorithm, a neural network autoencoder (AE), and a variational
autoencoder (VAE). No algorithm performs hyperparameter tun-
ing since it would increase significantly the time required to build
an optimal model.

The simulations conducted in this section use the top-50, the
top-200 and the top-500 items for all problems. The parameter
settings described next take the dataset size into consideration.
The number of latent features in both the MF and SVD models is
set as the 20% of the number of items. The neural autoencoders
use three hidden layers such that the number of hidden neurons
in each layer is set as the 40%, 20% and 40% of the number
of items, respectively. The number of neighbors k in the kNN
algorithm is set to 10, while the cosine distance has been adopted
as the dissimilarity functional.

In the case of the LTCN model, we used three abstract layers
(T = 3) while the absolute correlation threshold ξ establishing
hether or not a weight is deemed relevant was set to 0.3.
e ensure that no neuron is isolated, thus each neuron will

eceive at least one incoming connection (the one having the
argest absolute correlation value). Moreover, all optimization-
ased algorithms uses the Mean Squared Error (MSE) as the loss
unction, with exception of the VAE which additionally includes
penalization component based on the Kullback–Leibler diver-
ence. Finally, we use the ADAM method [32] with learning rate
qual to 0.002, such that the batch size equal to 128 and the
umber of epochs is equal to 50. It goes without saying that other
arameter settings are also possible.

.2. Case study 1: anime

The first case study concerns with anime recommendation.1
his dataset contains the ratings (integers between 1 and 10)
f 73,516 users on a pool of 12,294 anime. However, a closer
nspection to the data shows that there are only 500 anime which
re frequently evaluated. Fig. 2 shows the relative (decreasing)
requency of those top-500 anime.

After normalizing the ratings, we create three datasets with
he top-50, top-200 and top-500 anime. This will serve to evalu-
te the scalability of our model as we expect the LTCNs’ accuracy
o deteriorate as the number of items increase (after all, the inner
nowledge of our model relies on the Pearson’s correlation). Also,
e removed the users who have less than 10 ratings, thus the
umber of users in each dataset is 34,764, 47,503 and 51,824,
espectively. The training set in all cases will contain 80% of the
sers while the remaining 20% will be used to test the accuracy
f the recommendations.
Tables 1, 2 and 3 display both the training and test errors

eported by each model on the anime-50, anime-200 and anime-
00 datasets, respectively. The lowest test errors is highlighted in
old. Notice that our model notably outperforms the remaining
nes for the anime-50 and the anime-500 datasets, while it

1 https://www.kaggle.com/CooperUnion/anime-recommendations-database.

https://www.kaggle.com/CooperUnion/anime-recommendations-database
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Fig. 2. Relative frequency of the top-500 anime.

Fig. 3. Relative frequency of the top-500 movies.

able 1
raining and test MSE on the anime dataset with the top-50 items.

kNN MF SVD AE VAE LTCN

Training NA 0.0187 0.0934 0.0136 0.0182 0.0087
Test 0.0387 0.0349 0.1480 0.0136 0.0179 0.0085

Table 2
Training and test MSE on the anime dataset with the top-200 items.

kNN MF SVD AE VAE LTCN

Training NA 0.0263 0.0895 0.0124 0.0188 0.0134
Test 0.0903 0.0397 0.1466 0.0137 0.0190 0.0132

Table 3
Training and test MSE on the anime dataset with the top-500 items.

kNN MF SVD AE VAE LTCN

Training NA 0.0354 0.0860 0.0110 0.0191 0.0148
Test 0.1333 0.0513 0.1463 0.0159 0.0192 0.0145

performs comparably to the AE for anime-200. There is also a
distinction on the number of trainable parameters (excluding the
kernel neurons). For example, in the case of anime-50 the AE in-
volves 2500 parameters while our model needs to adjust only 750
parameters. In the case of the MF, the number of parameters is
260,060, even when the parameter setting seems to be reasonable
for a system with 50 items.

For this case study, we can conclude that our model performs
etter than the selected state-of-the-art methods on the top-50
Table 4
Training and test MSE on the anime dataset with 50 randomly selected items.

kNN MF SVD AE VAE LTCN

Training NA 0.0100 0.0869 0.0147 0.0175 0.0031
Test 0.0656 0.0416 0.1532 0.0152 0.0181 0.0032

Table 5
Training and test MSE on the anime dataset with 200 randomly selected
items.

kNN MF SVD AE VAE LTCN

Training NA 0.0238 0.0838 0.0122 0.0191 0.0095
Test 0.1246 0.0456 0.1528 0.0139 0.0195 0.0097

Table 6
Training and test MSE on the anime dataset with 500 randomly selected
items.

kNN MF SVD AE VAE LTCN

Training NA 0.0784 0.0333 0.0110 0.0192 0.0130
Test 0.1530 0.1503 0.0469 0.0157 0.0196 0.0132

and top-500 anime, while being competitive in performance with
the AE model for anime-200.

However, operating on the top-k items could accentuate the
cold-start problem. Therefore, it would be interesting to evaluate
the performance on randomly selected items. For the next exper-
iments, we randomly select the items from a distribution based
on their frequency.

Tables 4, 5 and 6 display both the training and test errors
reported by each model on the anime datasets, with 50, 200,
and 500 randomly selected items, respectively. Similarly to the
previous experiment, we removed the users who have less than
10 ratings, thus the number of users in each dataset is 10,054,
36,371 and 47,582, respectively.

The results show that our model outperforms the state-of-the-
art for all datasets when using randomly selected items, even
obtaining better results than the AE model.

6.3. Case study 2: movielens-10M

The second case study is movielens-10M2 which contains 10
million ratings applied to 10,000 movies by 72,000 users. Simi-
larly to the previous case study, a closer inspection to the data
shows that there are about 500 movies which are often rated
by the users. Fig. 3 shows the relative (decreasing) frequency of
those top-500 movies.

Aiming at creating the datasets with the top-50, top-200 and
top-500 movies, we normalized the ratings and removed the
users with less than 10 ratings. This resulted in three datasets
(movie-50, movie-200 and movie-500) with 44,830, 62,241 and
67,847 users, respectively. The training sets and the test sets were
created as explained before.

Tables 7, 8 and 9 show both the training and test errors re-
ported by each method on the movie-50, movie-200 and movie-
500 datasets, respectively. The best results are highlighted in
bold. In this case study, the proposed model stands as the best-
performing algorithm for the movie-50 dataset, while ranking
second for movie-200 and movie-500.

This case study confirms the superiority of our model when
operating on the top-50 items. However, the results do not de-
teriorate as much as expected for larger item sets as the LTCN
reports the best results after the AE model.

Similarly to the previous case study, we replicate the ex-
periment on randomly selected 50, 200, and 500 items. After

2 https://grouplens.org/datasets/movielens/.

https://grouplens.org/datasets/movielens/
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Fig. 4. Relative frequency of the top-500 netflix movies.

Table 7
Training and test MSE on the movielens dataset with the top-50 items.

kNN MF SVD AE VAE LTCN

Training NA 0.0109 0.0634 0.0030 0.0082 0.0044
Test 0.0081 0.0160 0.1002 0.0050 0.0082 0.0041

Table 8
Training and test MSE on the movielens dataset with the top-200 items.

kNN MF SVD AE VAE LTCN

Training NA 0.0151 0.0633 0.0056 0.0085 0.0082
Test 0.0155 0.0199 0.0985 0.0058 0.0084 0.0081

Table 9
Training and test MSE on the movielens dataset with the top-500 items.

kNN MF SVD AE VAE LTCN

Training NA 0.0211 0.0620 0.0055 0.0086 0.0081
Test 0.0221 0.0271 0.0986 0.0068 0.0087 0.0082

Table 10
Training and test MSE on the movielens dataset with 50 randomly selected
items.

kNN MF SVD AE VAE LTCN

Training NA 0.0052 0.0579 0.0037 0.0084 0.0027
Test 0.0122 0.0175 0.1077 0.0037 0.0084 0.0027

Table 11
Training and test MSE on the movielens dataset with 200 randomly selected
items.

kNN MF SVD AE VAE LTCN

Training NA 0.0137 0.0574 0.0050 0.0086 0.0051
Test 0.0207 0.0181 0.1028 0.0053 0.0087 0.0051

the preprocessing, we obtain datasets containing the rates from
10,101, 48,285, and 62,721 users, respectively. Tables 10, 11, and
12 show that our model outperforms the other algorithm for
movie-50 while performing comparably to AE model for movie-
200. In the case of movielens dataset with 500 randomly selected
items, the AE is the best-performing algorithm followed by the
proposed model.

6.4. Case study 3: netflix

The third case study concerns with the Netflix Prize dataset3
which contains 480,189 users and 17,770 integer ratings between

3 https://www.kaggle.com/netflix-inc/netflix-prize-data.
Table 12
Training and test MSE on the movielens dataset with 500 randomly selected
items.

kNN MF SVD AE VAE LTCN

Training NA 0.0199 0.0539 0.0050 0.0085 0.0069
Test 0.0262 0.0249 0.1006 0.0059 0.0086 0.0070

Table 13
Training and test MSE on the netflix dataset with the top-50 items.

kNN MF SVD AE VAE LTCN

Training NA 0.0148 0.0698 0.0024 0.0092 0.0027
Test 0.0066 0.0185 0.1088 0.0023 0.0092 0.0028

Table 14
Training and test MSE on the netflix dataset with the top-200 items.

kNN MF SVD AE VAE LTCN

Training NA 0.0176 0.0677 0.0058 0.0094 0.0049
Test 0.0124 0.0211 0.1083 0.0059 0.0093 0.0048

Table 15
Training and test MSE on the netflix dataset with the top-500 items.

kNN MF SVD AE VAE LTCN

Training NA 0.0236 0.0643 0.0057 0.0095 0.0054
Test 0.0218 0.0274 0.1095 0.0061 0.0095 0.0053

Table 16
Training and test MSE on the netflix dataset with 50 randomly selected items.

kNN MF SVD AE VAE LTCN

Training NA 0.0141 0.0630 0.0009 0.0086 0.0017
Test 0.0098 0.0200 0.1060 0.0010 0.0086 0.0017

1 and 5. Given the large size of this dataset, we selected the first
80,000 users to perform the simulations. For that sample, the data
also show that there are only 500 movies that are often rated by
the user. Fig. 4 shows the relative (decreasing) frequency of those
top-500 movies.

Tables 13, 14 and 15 show both the training and test errors
obtained by each model on the netflix-50, netflix-200 and netflix-
500 datasets, respectively. The lowest test errors are highlighted
in bold. Our model reports the lowest errors for all datasets
except for netflix-50, followed by the AE, while the SVD model
reported the highest test errors.

In this case study, we also analyze the impact of choosing
random items instead of the top-k ones. After the preprocessing
steps described above, we obtain datasets with the ratings of 50,
200, and 500 random movies from 80,000 users. The Tables 16,
Tables 17 and 18 show similar results to those obtained in the
top-k experiment. Our model outperforms the state-of-the-art for
200 and 500 randomly selected items, while for 50 items it ranks
second after the AE model.

Overall, the numerical simulations show the LTCN is capable
of produce high-quality recommendations when learning from
popular items, even when it involves much less learnable param-
eters than the other models. Surprisingly, a mix of random and
frequently rated items results in better overall performance that
selecting the top items, even when the LTCN’s weights depend on
the correlation matrix.

6.5. The inner workings of the LTCN algorithm

In this subsection, we will briefly illustrate the inner workings
of the LTCN algorithm. More specifically, we will show how the
kernel neurons and the adjusted sigmoid transfer functions look

https://www.kaggle.com/netflix-inc/netflix-prize-data
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Fig. 5. Gaussian kernel neurons for selected anime. The x-axis denotes the normalized rating each anime has received (according to the training data), the left y-axis
is the frequency while the right y-axis denotes the probability density. Kernel neurons are used to complete the missing values with estimates that combine the
preference of all users for the anime with the rating behavior of the user.
Fig. 6. Adjusted sigmoid transfer functions for selected neurons (using T = 5 abstract layers). The reader can notice that the transfer functions in the first abstract
layers have a higher degree of non-linearity, which decreases as long as the LTCN model goes deeper. This could be a result of the gradient traveling back through
functions with different non-linearity degrees.
t
s
i
c

like. In order to perform these simulations, we will use the anime-
50 dataset and an LTCN with five abstract layers. The remaining
parameter settings hold.

Fig. 5 shows some Gaussian kernel neurons computed during
the second learning step (see Section 5.2). These neurons contain
valuable pieces of information on the ratings received by each
anime. Besides, they provide rough estimates for the missing
values for a given instance, which are later on corrected by the
recurrent reasoning layer.

Fig. 6 displays the shape of selected sigmoid transfer functions
(using T = 5 abstract layers) that result from the third learning
phase. Notice that the functions in the first abstract layers have a
higher degree of non-linearity when compared with the functions
estimated in the last abstract layers. This behavior is expected
somehow if we consider that most parameters optimized by the
NSBP algorithm control the non-linearity of an exponential-based
function. On the other hand, when the gradient goes backward
from the deeper layers to the first ones, it needs to travel through
the partial derivatives that change their non-linearity from a layer
to another.

Figs. 7–9 show the overall effect of increasing in one unit
the arguments of ∂ fi(x)/∂vi, ∂ fi(x)/∂λi and ∂ fi(x)/∂hi, respectively.
Observe that the shape of both ∂ fi(x)/∂vi and ∂ fi(x)/∂λi changes
significantly, while ∂ fi(x)/∂hi is shifted. It is worth mentioning
hat, in these plots the remaining parameters are fixed for the
ake of simplicity. However, this is not the reality when train-
ng an LTCN-based model since all sigmoid function parameters
hange simultaneously.
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Table 17
Training and test MSE on the netflix dataset with 200 randomly selected
items.

kNN MF SVD AE VAE LTCN

Training NA 0.0176 0.0612 0.0050 0.0094 0.0030
Test 0.0180 0.0212 0.1126 0.0050 0.0095 0.0031

Table 18
Training and test MSE on the netflix dataset with 500 randomly selected
items.

kNN MF SVD AE VAE LTCN

Training NA 0.0233 0.0594 0.0054 0.0095 0.0046
Test 0.0220 0.0271 0.1121 0.0058 0.0096 0.0046

Fig. 7. Result of increasing the argument of ∂ fi(x)/∂vi in one unit, such that
hi = Li = 0 and λi = Ui = 1.

Fig. 8. Result of increasing the argument of ∂ fi(x)/∂λi in one unit, such that
hi = Li = 0 and vi = Ui = 1.

A suitable alternative that could be explored in next research
studies is to include a regularization component to minimize the
variability of the sigmoid transfer functions attached to the same
neuron across different abstract layers.

7. Further discussion

Although our model performs well in terms of accuracy when
compared with other methods, it seems worth reiterating that
its main power still relies on its capability of reasoning with
prior knowledge structures. Besides, the literature already in-
cludes abundant prediction models producing outstanding results
when it comes to accuracy. For example, we could obtain better
results with a neural autoencoder if we increase the number of
hidden layers and neurons, or if we use other transfer functions.
However, the model would also become less interpretable and
more difficult to be trained.
Fig. 9. Result of increasing the argument of ∂ fi(x)/∂hi in one unit, such that
Li = 0 and λi = vi = Ui = 1.

In this paper, we have claimed that our model can be deemed
interpretable to some extent since its components have a well-
defined meaning. This brings some advantages that are difficult
to obtain with the solutions reported in the literature. Firstly,
we could elucidate how some recommendations are done, which
is often appreciated by the user. Although our model certainly
allows for that, in presence of networks comprised of hundreds
of items, we would need some post-hoc methods to derive con-
cise explanations. Secondly, if the model is transparent enough,
then we could inject domain knowledge without changing the
theoretical formalism surrounding the model. Reasoning with
prior knowledge structures does not only allow producing more
consistent results with less effort but also correcting the bias
present in the historical data. In that way, the reasoning will not
be entirely controlled by what the data dictate.

The reader can fairly question to which extent it would be
realistic to ask business analysts or marketing experts to define
the whole weight matrix. This is however not the intention but
the enable the human–machine interaction. Being more explicit,
we should request human intervention when the experts suspect
that there are new trends that have not yet been observed in the
data. This means that the experts can be requested to provide
the relationship among a few items, the remaining ones can be
effortlessly estimated from the data.

For example, let us suppose that a company included a new
item to its stock, thus they have no record on the preference
of users on that item. In this case, the correlation coefficients
attached to this item could not be derived directly from data.
However, an expert could envisage that the new item will likely
be preferred in a similar way to X already established items.
In the same way, the expert could envisage that the preference
of users on the new item will oppose to items provided by
competing companies. Then, it would suffice to set up large
positive weights to links connecting the new item with the ones
associated with it, and large negative weights to items that are
opposed to it. The remaining weights can be computed from
historical records. Observe that, unlike models that use explicit
features, our approach does not require to define new features
every time that a new piece of knowledge is available (which
would probably lead to a new learning problem).

Finally, it is worth mentioning that such cognitive processes
can be automated to some extent. Our perception that experts
are often unable to formalize their mental processes would only
reflect that we have failed to overcome that problem. This does
not imply that such a task is not possible or unrealistic. For ex-
ample, in [33,34] the authors proposed an automated knowledge
engineer to formalize mental representations related to the travel
behavior of people in Belgium. Later on, such structures were
automatically translated into fuzzy cognitive maps in order to
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perform simulations and predictions. Such a result can certainly
serve a starting point to accomplish something similar in the
context of recommender systems.

8. Concluding remarks

In this paper, we have presented a neural recommender sys-
tem based on LTCNs operating on the user–item interaction ma-
trix. The proposed model exploits the Pearson’s correlation in the
user–item matrix while using Gaussian kernel neurons and sig-
moid neurons with varying non-linearity degrees. The simulation
results using several case studies have shown that our model
outperforms most state-of-the-art models in terms of recommen-
dation error. We have also observed that our model performs
very well when operating on randomly selected items from a
distribution based on their frequency. This makes sense since the
inner knowledge of LTCNs relies on the correlation coefficients.
However, we believe that the most attractive feature of the LTCN-
based model is that it allows experts to inject knowledge into
the network. Therefore, the next step of our research will be con-
cerned with exploiting this feature with the aid of an automated
knowledge engineer. At the same time, we could use the context
information about the items to define the LTCNs’ weight matrix.
This can be done prescriptively with low computational effort,
thus leading to an efficient context-aware approach.
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