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This paper presents an interpretable neural system—termed Evolving Long-term Cognitive
Network—for pattern classification. The proposed model was inspired by Fuzzy Cognitive
Maps, which are interpretable recurrent neural networks for modeling and simulation.
The network architecture is comprised of two neural blocks: a recurrent input layer and
an output layer. The input layer is a Long-term Cognitive Network that gets unfolded in
the same way as other recurrent neural networks, thus producing a sort of abstract hidden
layers. In our model, we can attach meaningful linguistic labels to each neuron since the
input neurons correspond to features in a given classification problem and the output neu-
rons correspond to class labels. Moreover, we propose a variant of the backpropagation
learning algorithm to compute the required parameters. This algorithm includes two
new regularization components that are aimed at obtaining more interpretable knowledge
representations. The numerical simulations using 58 datasets show that our model
achieves higher prediction rates when compared with traditional white boxes while
remaining competitive with the black boxes. Finally, we elaborate on the interpretability
of our neural system using a proof of concept.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CCBY
license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Pattern classification [1] is devoted to assigning class labels to patterns based on a certain recognition model. Such a
model is often trained in a supervised manner using a set of patterns whose class labels are known. Classification is one
of the key machine learning tasks, so one can find a range of mature classification algorithms among which we find neural

reasoning models.

Neural models are composed of neural units arranged in layers, so the task of classification is performed by forwarding
the input signal through consecutive layers of the network. Forwarding is executed by multiplying the weights by the input
signal encoding a certain pattern. Besides the multiplication step, there is a range of further actions to be performed with the
network. Examples of such actions are the application of a transfer function to the signal, random elimination of certain val-
ues, and more as described by Huang et al. [2]. The most elemental example of a neural system is the perceptron. This model
involves a single neuron whose actions can be broken down into three steps: multiplication (input vector by corresponding
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weights), aggregation, and the application of a transfer function. As Vargas et al. [3] point out, the class label is assigned
based on the value returned by the activation function. In the simplest model, the perceptron uses the unit step function
which entails that it is a binary classifier. Meanwhile, as Lépez-Rubio et al. [4] illustrate, contemporary neural models are
composed of multiple layers and other transfer functions. Maji and Mullins [5] advocate to call those networks “deep”
because of the increased number of hidden layers. The prevailing trend in the domain of neural models is to focus on clas-
sification accuracy with less concern about the ease of model interpretation. This happens because a complex architecture
usually rewards us with high-quality predictions, but at the same time hinders the transparency of the decision mechanism
attached to the model.

The class of neural models particularly relevant to the subject matter of this paper is the Recurrent Neural Network
model. We depict it as a network composed of three layers: input, hidden, and output. Marquez et al. [6] conclude that
the difference between the plain feedforward model and the recurrent model is that, in the feedforward model, connections
are outgoing from the layer t to the layer t + 1. Likewise, Hardy and Buonomano [7] highlight that in the recurrent model,
hidden layers have connections between their neurons. These connections allow us to translate the recurrent model into an
unfolded architecture. The action of unfolding replicates the hidden layer into a sequence of several hidden layers each made
of the same number of neurons as the original hidden layer in the recurrent model. Wang et al. [8] mention that the unfold-
ing is performed as many times as the designer sets. The unfolded architecture preserves the basic properties of the feed-
forward model, namely, there are only connections from the layer ¢t to t + 1 and there are no connections the other way
around. Liu and collaborators emphasize that Recurrent Neural Networks are usually deep because the unfolding adds hid-
den layers [9]. However, as stressed by Han et al. [10], the interpretation of weights between hidden layers, similarly as the
interpretation of weights in other deep neural models, is not feasible. This happens because hidden neurons lack meaning.

When it comes to building naturally interpretable neural systems (i.e., models that allow explaining their reasoning pro-
cess by themselves), Fuzzy Cognitive Maps (FCMs) [11] provide some interesting characteristics. Froelich and Pedrycz [12]
described them as information networks which are composed of neural concepts (which are equivalent to neurons in tradi-
tional neural networks) and causal relationships. An important feature of FCM-based models is that each concept corre-
sponds with a phenomenon, variable, problem feature or entity, while graph arcs denote the relationship between the
concepts. This means that every component in these recurrent neural systems involves a well-defined meaning for the prob-
lem being modeled. Fig. 1 shows a generic FCM-based model incoming three neural concepts with self-connections.

In FCMs, arcs are weighted with real numbers in the [—1, 1] interval, that is w; € [-1,1] for j,i =1,...,P where P is the

number of neurons in the network. In the model depicted in Fig. 1, a!”,a’, ... a denote the activation values of neurons
in the t-th iteration, which describe the current state of a given phenomenon. During the reasoning, the FCM processes this
state and produces a*V and so on, until a stop condition is met.

Unfortunately, FCMs are not very good at solving classification problems. There are two major reasons for this. Firstly, as
Napoles et al. [13] point out, the weights are confined to the [-1, 1] interval, thus making FCMs’ prediction horizon quite
limited when compared to other neural models. Secondly, we can indeed decompose any FCM into a deep feed-forward neu-
ral network, however, its width will be determined by the number of neural concepts. On top of that, the weights connecting
these abstract layers will not change from an iteration to another. Aiming at overcoming the first problem, Napoles et al. [13]
14 introduced the Short-term Cognitive Networks (STCNs) and the Long-term Cognitive Networks (LTCNs), respectively.
However, the problem of having fixed weights from an iteration to another persists.

In this paper, we present an interpretable neural system—termed Evolving Long-term Cognitive Network (ELTCN)— for pat-
tern classification. The ELTCN model builds upon the LTCNs developed by Napoles et al. [ 13], which provide interesting inter-
pretability features. The distinctive characteristic of this model is that it allows for the LTCN’s weights to change from an
iteration to another during the reasoning process. We envisioned that the LTCN model can be fused as the input layer of
our neural classifier, while its outputs can be connected to the decision neurons. This model can get unfolded without losing
the ability to interpret the neurons and weights. The proposed construction methodology aims at foregoing the standard per-
ception of neural networks as black boxes. Having well-defined neurons facilitates immediate understanding of the model
and the decision process it illustrates, however, the lack of hidden neurons might hinder its accuracy. Hence, the second con-
tribution of this paper is related to a backpropagation algorithm which is used to adjust the weights and some transfer func-

Fig. 1. A generic Fuzzy Cognitive Map with three nodes.
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tion parameters. This learning algorithm includes two new regularization components that attempt at producing networks
with little variability in their dynamic parameters. Finally, we explain how to get insight into the decision mechanism of the
network by determining the importance of each neural concept in the classification process.

The rest of this paper is organized as follows. Section 2 revises the existing approaches to pattern classification based on
FCMs. Section 3 describes the theoretical underpinnings of the LTCN model. Section 4 presents our neural system, whereas
Section 5 elaborates on the backpropagation algorithm and the regularization components. Section 6 describes a procedure
to normalize the weights attached to the network, which allows better inspecting the model. Section 7 contains an empirical
analysis that covers both the performance and interpretability angles. Section 8 concludes the paper.

2. Pattern classification with Fuzzy Cognitive Maps

Our proposal falls into the category of Cognitive Map-based models, which have been used to solve pattern classification
problems. Next, we will discuss the most prominent approaches reported in the literature.

Firstly, it shall be mentioned that the majority of research on classification with Cognitive Maps is devoted to the appli-
cation of the FCM model that operates on the problem features directly. Other kinds of Cognitive Maps are rarely applied. For
example, Napoles et al. [15] used Granular Cognitive Maps, which are a generalization of the FCM model.

The existing methodology for pattern classification with FCMs is based on the idea of using separate neural concepts that
return the most likely decision class. Typically, there are N of such decision concepts, where N is the number of classes in a
given multi-class classification problem. Papageorgiou and Kannappan [16] explored this approach. In contrast, Natarajan
etal. [17] discussed a model with a single decision neuron where the activation values are discretized to obtain class labels.
If we would switch to the terminology used in the neural network literature, then the concepts performing the class assign-
ment would form the final (output) layer. The first layer (input layer) is made of concepts corresponding to features describ-
ing the patterns. Sometimes, the architecture is just made of those two layers. Christodoulou et al. [18] followed this
approach, while in the work of Song et al. [19], the FCM is constructed with one or more intermediate layers, which would
be the hidden layers in the neural network formalism. Imposing the layer-like architecture upon an FCM-based model entails
the necessity of canceling certain weights. In particular, connections originating from the output layer and incoming to the
input layer are removed. In most cases, with a few exceptions like the ones discussed by Guo et al. [20], links between output
concepts are removed as well. In another study, Napoles et al. [21] suggested suppressing self-loops.

An important topic when building FCM-based classifiers refers to the learning algorithm. This aspect is of elemental
importance since the weight matrix determines the quality of classification. A popular approach researched by Papakostas
et al. [22] is the Hebbian-like learning. It starts with an initial weight matrix that should ideally be given by the experts. The
algorithm performs an iterative routine that calculates activation values in the next iteration based on current activation val-
ues and updates the weights. The new weights are typically computed as a difference between the current weights and some
small value, which is obtained by multiplying a learning rate by some expression involving the difference between the com-
puted and expected activation values. Some algorithms, such as the Differential Hebbian Learning studied by Salmeron and
Palos-Sanchez [23], do not perform well when the initial state is random. It shall be also mentioned that Amirkhani et al. [24]
utilized Active Hebbian Learning for FCM-based classifiers. Active Hebbian Learning is also present in the work of Papakostas
et al. [22], where six different types of Hebbian learning algorithms were tested. The conclusion of this study is that such
algorithms perform poorly. Overall, we strongly suggest discontinuing the usage of Hebbian-type algorithms for training
FCM-based prediction models.

Heuristic optimization strategies have also been researched. For example, Kannappan and Papageorgiou [25] explored the
application of Adaptive Clonal Selection in a map-based classification procedure. Heuristic search methods modify one or
several candidate solutions in each iteration, according to some predefined update formula. While these methods often pro-
vide better prediction rates than Hebbian-like approaches, they have several drawbacks that must be taken into considera-
tion. For example, they are slow and their overall performance is often compromised as non-progress situations (e.g.,
stagnation, premature convergence) lead to very poor local optima.

Bhutani et al. [26] presented an FCM-based classifier whose processing scheme is entirely different from the models dis-
cussed so far. This model uses two layers. The first layer is interpreted as the features’ domain and the output layer is inter-
preted as class labels. The FCM was constructed based on an already-existing fuzzy inference model. Therefore, we can say
that the actual usage of the FCM was only to illustrate the existing inference model. Pajares et al. [27] investigated another,
entirely distinct usage of FCMs for pattern classification. In this research, the authors designed a two-step procedure for pixel
clustering and then image classification. They proposed to create k FCM models, where k is the number of desired clusters,
such that each concept denotes a pixel in the original image. After performing several iterations of the FCM reasoning, the
outputs of the FCMs were interpreted as degrees of membership to the decision classes. Despite the novelty, image classi-
fication is something that can be successfully done with existing deep learning methods. Thus, in terms of accuracy, an FCM-
based classifier would report little added value.

What the literature review shows is that there is a lack of FCM-based classifiers equipped with learning algorithms having
strong mathematical foundations. As Nair et al. [28] underline, such algorithms must take into consideration the main
advantage of FCM-based classifiers: they can naturally elucidate their decision process without the need of using a post-
hoc procedure. On one hand, the FCM-based classifiers should produce competitive prediction rates when compared with
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traditional classifiers. On the other hand, the interpretability feature of FCMs has been reduced to showing the learned
weights to domain experts such that they can draw conclusions by themselves. However, the extent to which human beings
can understand the decision process of a network comprised of hundreds of weights is questionable.

In the next section, we describe the theoretical foundations behind the LTCN model, which is deemed the cornerstone of
our proposal.

3. Long-term Cognitive Networks

Roughly speaking, LTCNs are recurrent neural networks where each neural concept c; denotes either an input or output
(continuous) variable in a given domain. In these interpretable neural systems, the weight w;; € R denotes the rate of change
in the conditional mean of c; with respect to c;, assuming that the activation values of the remaining neurons impacting c; are
fixed. This is similar to interpreting the coefficients in a (logistic) regression model. Section 7 will further elaborate on this
feature. Napoles et al. [14] point out that hidden neurons are not allowed as they do not correspond with any problem fea-
ture. The weights in LTCNs follow the rules depicted below:

e w;; > 0: If positively activated, ¢; will impact positively c;. Thus, the higher (lower) the activation value of ¢; in the current
iteration, the higher (lower) the value of c; in the following iteration;

e w;; < O: If positively activated, ¢; will impact negatively c;. Thus, the higher (lower) the activation value of ¢; in the current
iteration, the lower (higher) the value of ¢; in the following iteration.

Eq. (1) shows the reasoning rule of LTCNs, which computes the activation value aﬁ”” of the neural concept ¢; in the
(t + 1)-th iteration for a given input pattern as the initial activation vector,

P
t+1 (t+1) t
a1t (S 0
j=1

where P is the number of neural concepts in the network, whereas fﬁ””() is the transfer function adopted to confine the
activation value of each neuron to the desired interval. The reader can notice that the transfer function attached to each neu-
ral concept can change from one iteration to another. The nonsynaptic learning of LTCNs proposed by Napoles et al. [13] [29]
is devoted to adjusting the shape of each transfer function in each iteration while preserving the weights defined by domain
experts. However, in the neural system depicted in the next section, only the weights and the function offset (which is equiv-
alent to the bias component in other neural models) will be adjusted. The remaining transfer function parameters will hold
for all neural concepts and iterations, thus, the nonsynaptic learning is no longer required.

4. Evolving Long-term Cognitive Networks

In this section, we present a new LTCN-based neural system termed Evolving Long-term Cognitive Networks for pattern
classification.

4.1. Network architecture

Duda et al. [1] describe the supervised classification problem as the task of building a mapping I' : X — Y that assigns to
each instance x € X the proper decision class y € Y such that Y = {y,,Y,,...,yy}. Each problem instance x is described by a
set of variables or features xi,...,xy. Therefore, we have M input variables and N possible outcomes. This problem can be
modeled by using an LTCN-based architecture. Before going any further, it is worth reiterating that the added value of
our proposal would rely on its interpretability rather than obtaining outstanding prediction rates.

As explained by Népoles et al. [21], problem variables are mapped onto input neural concepts, which can be either depen-
dent or independent. The former ones can be influenced by other input neurons, while the latter ones just propagate their
initial activation vector without being influenced by any other input neuron, therefore, their activation values remain static.
Output neurons are used to compute the decision class for an initial activation vector.

In our neural system, each input neuron is connected with the others (unless the experts state otherwise) thus providing
the system with a recurrent network topology. Moreover, each input neuron is connected with the outputs. Fig. 2 displays, as
an example, the network topology for a classification problem with three features and three decision classes.

4.2. Evolving reasoning rule

One might think that this type of neural architecture is “limited” when it comes to the number of hidden neurons and
layers. On one hand, the universal approximation theorem (as discussed by Leshno et al. [30] and Scarselli and Chung Tsoi
[31]) is clear about the role of hidden neurons to compute good approximations. On the other hand, we should take into
account that any recurrent neural network can be unfolded into a multilayer network with a fixed width but unlimited
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Fig. 2. Neural model comprised of M = 3 input neurons (c;, ¢2, ¢3) and N = 3 output neurons (cy4, Cs, Cs ). Overall, the network has P = M + N = 6 neurons. In
this example, the input signal is denoted as x; while output signal is denoted as y;. These two values correspond to a}o) and agT), respectively.

length, theoretically speaking. The problem with this multilayer network is that we will have the same weight connecting
the neurons c¢; and ¢; in all abstract hidden layers.

Aiming at overcoming this issue, we will allow our neural system to change its weights from an iteration to another as it
performs the recurrent reasoning process. This causes the emergence of T abstract hidden layers, each containing M abstract
hidden neurons, thus equipping the network with improved learning capabilities. Eq. (2) shows how to compute neurons’
activation values by following the evolving reasoning principle,

aI(H] t+1 <Z ! > (2)

(t+1)

wheref )(x) can be either the sigmoid function,

1
(t)
s (x 3
1 ( ) _l e X ht)) ( )

or the hyperbolic tangent function,
(4)

such that ).;” > 0 and hf.” € R are two parameters denoting the function slope and its offset, respectively. Given N decision
classes, the activation values for output neurons will be computed as follows:

g _ (=) _ 5)
(S0 ()

It is worth highlighting that, unlike LTCNSs, the proposed ELTCN model does not aim at preserving all weights defined by
the expert while focusing on learning the nonsynaptic parameters. Overall, we need parameters having two main properties:
1) they produce competitive prediction rates when compared with state-of-the-art classifiers, 2) they can elucidate, to the
same extent, how the model arrived at a particular decision.

5. Supervised learning

This section explains how to train the proposed neural system. Firstly, we introduce a backpropagation algorithm to esti-
mate the network parameters (i.e., the weights and the transfer function offsets). Secondly, some of these equations are
rewritten to include two regularization components, which allow minimizing the weight variability between two consecu-
tive abstract layers (thus making the model easier to interpret) and the offset values.
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5.1. Backpropagation algorithm

The backpropagation algorithm is devoted to estimating the weights wj(.f) and the offset parameter h}” associated with the

i-th neuron in each iteration. Notice that optimizing the slope /l,@ does not bring much-added value since it would only re-
scale the argument of each transfer function. Instead, this parameter will be used to normalize the weights such that we can
produce weights in the [—1, 1] interval, which is often appreciated by the experts.

As a first step, we perform the forward pass to compute the total error £, which is calculated as the cross-entropy between
the expected response vector Y and the predicted one for a given instance.

Case 1. When t = T, we have the following:

£ = -3 Yilog(a®) (6)
i=1

where y; is the actual value of the i-th decision class, while afr) is the activation value of that decision neuron. Consequently,
we have:

2 ¥y 1-y
T ’

The output neurons use a softmax transfer function. Therefore, we need to calculate the partial derivatives of the output
they produce a}” with respect to the raw activation values El;t). More generally, we have:

Case 2. When 1 < t < T, we have the following:

o€ ZM: oc  oa ZM: o oa™" oay XM: o oa™ o)
= X = X X = X X Wi
aalgr) r aa;m) aalgr) r aa;m) 8&;”1) 8a§t) p (?aj(m) 8&}”1) ij
oa" Y 1(t+1) . . .
where T = fi7(x). For the sigmoid function, we have:
J
oa™h  q 1
g _ Lo 2( Loy (S (et
8(‘1}”” _4/1j sech <2 A (aj h; ))

while for the hyperbolic tangent, we have:

aagtﬂ)
—jt = S gach? (AW) (agm) _ h(-H]))).
aa}g +1) i i J J

Next, we need to obtain the partial derivatives of the total error with respect to the transfer function parameters h,@ as
follows:

oc 9 oaaV
oh ~ 0" < o (19
1

1 1

e For the sigmoid transfer function, we have:

¢ For the hyperbolic tangent function, we have:

zzl((z 0 <_sech2 <;“1('t> (algt) _ h;“))). (12)

1
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Eq. (13) shows how to compute the partial derivative of the total error with respect to the weights in the t-th abstract
layer,
o oc _oa oa’

— = X = X (13)
owy oa " oa " ow)

such that
¢ (t=1),,,(t)
t—
8(1([) 8(2(11' WU >
b =1 (=)
ow® WO =4 (14)
Wi i

Eq. (15) shows the gradient vector for the transfer function parameters attached to the (input) neurons in the t-th abstract
layer,

o o 9E
V}PS(—,...,—,...,—). (15)
o o onl)

Similarly, Eq. (16) shows the gradient vector corresponding with the weights connecting the t-th abstract layer with the
following one,

Vg ( g oe o ) 16)

(0" 07 g0
owy; owy Wiy

Notice that these gradient vectors are all we need to adjust the network parameters employing a gradient descent
method. In this paper, the Adam optimization method [32]33 will be used during the numerical simulations. It is worth men-
tioning that the proposed backpropagation algorithm could be adjusted to deal with a large number of abstract layers (re-
current iterations), however, that is beyond the scope of this paper.

5.2. Regularization

The reader can notice that the backpropagation algorithm presented in the previous section aims at obtaining the highest
prediction rates possible, so it does not differ much from the traditional approach. Particularly, the loss function does not
take into consideration the network variability along the recurrent process. This might result in “unsteady” models with
a significant variability of the weights connecting two consecutive abstract layers. That would hinder the process of deriving
consistent explanations.

To deal with this problem, we introduce two new regularization methods. As Kim et al. [34] underline, regularization
itself is a technique frequently applied in neural models to reduce potential overfitting. However, our regularization methods
are not oriented to improving the generalization capabilities of ELTCN-based classifiers. Instead, they attempt to reduce the
variability of weights from an abstract layer to another and the offset parameters attached to the transfer functions. The for-
mer strategy allows obtaining more consistent weights through the ELTCN'’s reasoning process while the latter reduces the
impact of the bias components on the classification process.

In order to introduce the new regularization components, we have to modify some equations of the backpropagation
method presented in the previous subsection. The first modification concerns the loss (error) function in Eq. (6) that com-
putes the global dissimilarity between the actual values stored in the dataset and the responses produced by our neural
system.

Eq. (17) shows the new error function (that replaces the Eq. (6)) which includes the regularization components,

N
1
&= —;J’ilog(a,(t)) +5(Ri+Rs) (17)

such that

-1 M M

Ri=> 38 (Aw,g.”)2 (18)

t=1 i=1 j=1
where f; > 0is a user-specified parameter to control the extent to which we allow the weight w; to change from the current

(t) (t+1)
i ij

Re = Y03 () (19)

t=1 i=1

iteration to the next one, AWE]-[) =w; —w; ", while R, is defined as follows:
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such that ; > 0 is another user-specified parameter to control the extent to which we allow the offset parameter h;” to
increase. Larger parameter values cause the error function in Eq. (17) to be more harshly penalized when the absolute values
of the offset parameters increase.

The second modification to the backpropagation algorithm concerns the gradient equations used to update the weights
and the offset parameters (Eq. (15) and Eq. (16), respectively). This needs to be done with caution. For example, when using
stochastic gradient descent, the L, regularization and weight decay regularization [35] are equivalent. This is not necessarily
true for all gradient-based learning algorithms. Loshchilov and Hutter [33] reported that, when combined with adaptive gra-
dients, the L, regularization leads to weights with large historic parameter and/or gradient amplitudes being regularized less
than they would have been when using weight decay.

Having mentioned this issue, we introduce Egs. (20) and (21) to replace Eq. (10) and Eq. (13), respectively,

o o oaV ®
h;

1 .

on® ~ oa® " on® "

1

: (20)

oa  oa)
ag(t) = ai) Xty X+ ByAwy). (21)
8Wij aaj 8aj (9WU-

In summary, the regularization term R; attempts to reduce the variability between two consecutive weight matrices,
thus forcing the model to produce “stable” weight sets across the evolving process. On the other hand, regularization term
‘R, aims to reduce the L,-norm of the offset vector at each iteration, therefore the predictions will mainly rely on the weights.
The reader can notice that both regularization terms have the common purpose of producing neural models being easier to
interpret.

Algorithm 1 presents the steps needed to build and train our neural classifier. Overall, we need the training set Z = [X|Y],
where X is a matrix containing the initial activation vectors for the input neurons and Y contains the corresponding outputs,
the number of abstract layers T, the number of training epochs Q and the regularization parameters f; and ;.

Algorithm 1: Construction and learning of ELTCN classifiers.
Input: training set Z, layers T', parameters 3;; and 1;, epochs @

Output: trained ELTCN model
1 #construction process
2 Generate the network’s architecture: M input neurons, T abstract
hidden layers, and N output neurons

3 #training process

I

foreach epoch in Q do
5 foreach batch in Z do

6 Perform forward pass all instances in batch

7 Compute total error € by Equation (17)

8 foreach t in T do

9 Compute the partial derivatives of £ with respect to hgt) by

Equation (20)
10 Compute the partial derivative of £ with respect to wl(j) by

Equation (21)

11 Update bias hgt) and weights w respectively

1y

Notice that the number of input neurons M and the number of outputs N can be obtained directly from the training set Z.
Algorithm 1 does not include the hyperparameters associated with the optimization algorithm since they often change from
an optimizer to another.
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6. Network normalization

After the learning phase is complete, we can interpret the knowledge learned from historical data. This can be achieved by
either getting insight into how the network arrived at the decision class given a specific instance or inspecting the network as
a whole. In the former case, we would need the final activation values of neurons and the weight matrix, while in the latter
case only the weight matrix would suffice. Whichever the case might be, we can certainly increase the transparency of our
model by transforming the weights into the [-1, 1] interval. Recently, Napoles et al. [36] introduced a weight normalization
procedure that can be adapted to the proposed model.

Let W" and W, be the weight matrices connecting the input neurons in the t-th abstract layer, and the input neurons
with the output ones, respectively. Furthermore, let a,(”” be the value produced by the i-th neural concept in the (t + 1)-
th iteration, which is computed as follows:

agm) :fl(m) (agm)) (22)

where

t+1) (t)

(_11( = 7}v,-(w1,-a] +...+ Wﬁ(l;t) +...+ WMia}\f,) — h,)

Aiming at normalizing the weights in W}” and W, we should determine whether c; is an input neuron or a decision one.

For example, if ¢; is an input neuron then we can rewrite a;”” as follows:
—(t+1) Wii ) Wii (1) Wi (1) hi)
a; :—A-¢-<—a +.oo+—a'+.. . +—0ay ——
: RN ¢ o M ¢

such that ¢; = maxj{|wj(.f) |},Vt and wj; € W,“). If we now make wj; = Zi )= Jip; and h; = 2‘7' then we obtain:

90

a™t = —nwha + ..+ W;‘ia;t) + oo+ Wigay — )

1

such that the weight wj; € [-1, 1] as desired. The same procedure can be applied to the weights connecting the input neurons
with the output ones, which would imply that ¢; = max;{|w{’|},Vt and wj; € W.

The reader might wonder why the weight normalization is performed separately when we could simply make
¢ = maxj{|w}f)\},Vt and w; € (W |W,). While that would be a possibility indeed, we have to take into consideration that

these matrices play different roles within our neural system, hence it would be reasonable to assume that they behave
differently.

7. Numerical simulations

In this section, we explore both the predictive power of the ELTCN model and its interpretability. The steps of the exper-
imental methodology can be summarized as follows: (i) select representative datasets devoted to traditional pattern classi-
fication, (ii) explore the effect of regularization parameters on algorithm’s behavior, (iii) choose the state-of-the-art
classifiers to be used for comparison, (iv) select the performance metric and conduct the statistical analysis, and (v) illustrate
how to derive explanations from the knowledge structures attached to the network. All the details of each step are given in
the following subsections together with the research hypotheses.

7.1. Benchmark problems

The experiments concerned 58 pattern classification datasets. Such benchmark problems (see Table 1) have been col-
lected both from the KEEL [37] and the UCI Machine Learning [38] repositories. Benchmark problems emulate different chal-
lenges that may occur in real-life data and allow assessing the classifier's performance on different scenarios.

A closer inspection of these datasets shows that the number of instances goes from 106 to 10,992, the number of features
ranges from 3 to 262 while the number of classes goes from 2 to 100. In this pool, we have 10 noisy datasets and 18 imbal-
anced datasets (we say that a dataset is imbalanced if the ratio between the majority and minority class sizes exceeds 5:1).
During the data preparation step, we have normalized the numerical features, removed identifier-type ones, and replaced
the missing values with the mean or the mode depending on the feature being numerical or nominal.

7.2. Exploring the effect of regularization parameters

As mentioned in Section 5.2, the proposed learning algorithm includes the regularization components R; and R,. The for-
mer (see Eq. (18)) includes a user-specified parameter f; that controls the variability of w;; from one iteration to another. The
latter (see Eq. (19)) involves the parameter y; to control the size of the transfer function offset. In this subsection, we explore
the sensitivity of the proposed model to both parameters.
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Table 1

Benchmark problems used during the simulations.
ID Name Instances Features Classes Noisy Imbalance
1 acute-inflammation 120 6 2 no no
2 acute-nephritis 120 6 2 no no
3 appendicitis 106 7 2 no no
4 arrhythmia 452 262 13 no 123:1
5 balance-noise 625 4 3 yes 5:1
6 balance-scale 625 4 3 no 5:1
7 blood 748 4 2 no no
8 breast-cancer-wisc-prog 198 34 2 no no
9 cardiotocography-10 2,126 19 10 no 11:1
10 cardiotocography-3 2,126 35 3 no 10:1
11 collins 500 21 15 no 13:1
12 dermatology 366 15 6 no 6:1
13 ecoli 336 7 8 no 71:1
14 flags 194 28 8 no 15:1
15 glass 214 9 6 no 8:1
16 haberman 306 3 2 no no
17 heart-5an-nn 270 13 2 yes no
18 heart-statlog 270 13 2 no no
19 ionosphere 351 34 2 no no
20 iris 150 4 3 no no
21 iris-10an-nn 150 4 3 yes no
22 iris-20an-nn 150 4 3 yes no
23 iris-5an-nn 150 4 3 yes no
24 libras 360 26 15 no no
25 liver-disorders 345 6 2 no no
26 mfeat-morphological 2,000 6 10 no no
27 mfeat-zernike 2,000 25 10 no no
28 monk-2 432 6 2 no no
29 new-thyroid 215 5 2 no 5:1
30 optdigits 5,620 64 10 no no
31 ozone 2,536 72 2 no 34:1
32 page-blocks 5473 10 5 no 175:1
33 parkinsons 195 22 2 no no
34 pendigits 10,992 13 10 no no
35 pima 768 8 2 no no
36 pima-10an-nn 768 8 2 yes no
37 pima-20an-nn 768 8 2 yes no
38 pima-5an-nn 768 8 2 yes no
39 planning-relax 182 12 2 no no
40 plant-shape 1,600 64 100 no no
41 saheart 462 9 2 no no
42 segment 2,301 19 7 no no
43 sonar 208 60 2 no no
44 spectrometer-1 531 100 48 no 55:1
45 vehicle 846 18 4 no no
46 vehicle0 846 18 2 no no
47 vehiclel 846 18 2 no no
48 vehicle2 846 18 2 no no
49 vertebra-column-2c 310 6 2 no no
50 vertebra-column-3c 310 6 3 no no
51 wall-following 5,456 24 4 no 7:1
52 waveform 5,000 40 3 no no
53 wine 178 13 3 no no
54 wine-10an-nn 178 13 3 yes no
55 wine-5an-nn 178 13 3 yes no
56 winequality-red 1,599 11 6 no 68:1
57 winequality-white 4,898 11 7 no 440:1
58 yeast 1,484 8 10 no 93:1

In this following experiments, the ELTCN classifier was configured as follows. We used the popular Adam optimization
algorithm [32] with its default parameter setting, the number of epochs was set to 200, the number of abstract layers
was set to five, and the number of folds in the cross-validation process was set to five to keep the simulations time manage-
able. The number of folds will be increased to 10 when comparing our model against state-of-the-art classifiers, which is a
more popular setting in the literature.

The first measure to be explored in this analysis concerns the average Kappa statistic for different parameter settings.
While accuracy is considered a mainstream measure of classification quality, the Kappa statistics is a more robust measure.
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This coefficient takes into account the agreement occurring by chance, which Japkowicz and Shah [39] report to be especially
relevant for datasets with class imbalance. The second measure is the average absolute variability of weights across all
abstract layers. Overall, we are interested in measuring the effect of the regularization parameters on both the accuracy
and the variability attached to the proposed neural classifier.

Fig. 3 shows the average Kappa and the average absolute variability of weights when changing the values of §; and ;. The
average values are computed over the 58 datasets using a 5-fold cross-validation process. Moreover, the parameter values
change from 0 to 0.5 with a step size of 0.01. The values of §; and ; change evenly for all components.

Fig. 3 a) shows that the performance goes down when increasing the values of both regularization parameters. Similarly,
in Fig. 3 b), we can observe a tendency to decrease the variability of the weights as both parameters increase. It can also be
noticed that the model is more sensitive to the f; parameter since it controls the extent to which the weights can differ for
consecutive abstract layers. Overall, we suggest using small positive values to configure f; and y; to preserve the accuracy as
much as possible. Furthermore, we can combine the insights derived from this simulation with available domain knowledge
or data-driven heuristics. For example, we can use the correlation between the problem variables as illustrated in the follow-
ing subsection.

7.3. Methodology and state-of-the-art algorithms

In this subsection, we introduce the traditional models used for comparison and discuss the key hypotheses to be
explored.

The state-of-the-art classifiers selected for comparison can be split into two groups: white boxes and black boxes. The
former ones are deemed interpretable (with varying extents) but less accurate when compared with black boxes. Within
the first group, we have Logistic Regression (LR), Gaussian Naive Bayes (GNB), and Decision Trees (DT). Representatives of
the second group include Support Vector Machines (SVM), Random Forests (RF) and Multilayer Perceptron (MLP) using
two hidden layers.

Similarly to the proposed ELTCN model, the MLP classifier uses the Adam optimization algorithm and the sparse cross-
entropy to measure the error during the training process. The numbers of epochs in Adam was set to 200 in all cases to keep
the simulation time low. Table 2 summarizes the parameter settings of the mentioned classifiers. The remaining parameters
were set to default values as reported in the Scikit-learn package.

In our experiments, f8; = 0.01 in Eq. (18) if the absolute correlation between variables x; and x; is above 0.5, otherwise
B = 0. It should be stated, that this heuristic strategy seeks to reduce the variability of weights that connect highly corre-
lated variables as it would be reasonable to assume that the related neurons are good estimators. Other strategies oriented to
injecting knowledge into the system are also possible, which is considered a strength of our proposal. Likewise, we assume
that ¢; = 0.01 in Eq. (19). Overall, the R, regularizer seeks to minimize the variability of interesting weights while the R,
regularizer attempts to reduce the offset values as much as possible, such that the classification relies on the weights. Finally,
our model performs T = 5 iterations during the recurrent inference process.

Notice that the envisaged simulations do not include a hyperparameter tuning step. This comes with advantages and dis-
advantages. On one hand, optimizing the hyperparameters allows determining the optimal prediction performance of each
model in each dataset. However, this increases the computational difficulty of building the models while also demanding
more data to create the validation sets. On the other hand, using default values allows testing the model’s performance in
different situations without investing time in producing optimal values. The disadvantage of this strategy is that we would
not know the extent to which the model can produce better results. In reality, both approaches provide two different, equally
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Fig. 3. Effect of changing the regularization parameters on a) the average Kappa value computed over the 58 benchmark problems, and b) the average
absolute weight dissimilarity between two consecutive abstract layers. The horizontal axes depict the p and  parameters attached to the R; and R,
regularizers, respectively.
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Table 2
Parameter settings of all classifiers used in the comparisons.

Classifier Parameters

LR Regularization = Ly, solver = Ibfgs, C = 1, max_iterations = 100

GNB No parameter reported

DT Split criterion = Gini impurity

SVM Kernel = RBF, y = 1/number _features x number_cases

RF Number of estimators = 100, max_features = \/number_features

MLP Activation function = ReLu, hidden layers = 2, neurons for each hidden layer = 50, 200 epochs
ELTCN Activation function = tanh,T = 5, f; = 0.01,y; = 0.01, 200 epochs

valuable pieces of information that help assess the performance of machine learning algorithms. In our research, we use
default parameter values since our ultimate goal is not to outperform the state-of-the-art classifiers but rather focus on
the model’s interpretability. Therefore, obtaining competitive prediction rates should be seen as an indicator that the expla-
nations that the ELTCN model produces are trustworthy.

The datasets adopted for simulations and the decision of using fixed hyperparameters lead to the first research hypoth-
esis: “the proposed ELTCN model (together with our backpropagation learning method) attains competitive prediction rates
concerning traditional classifiers when no hyperparameter tuning is performed”. The second research hypothesis is con-
cerned with the interpretability component and reads as follows: “the proposed ELTCN model allows elucidating its decision
process through its knowledge structures”. It should be mentioned that the second hypothesis will be empirically investi-
gated with the aid of a proof of concept (see Section 7.5).

7.4. Statistical analysis

As the first experiment, we compare the performance of the proposed model when using the sigmoid function (ELTCN-S)
and the hyperbolic tangent function (ELTCN-H). Fig. 4 shows the average Kappa values for both variants on the 58 datasets
adopted for simulation, after performing 10-fold cross-validation. The results indicate that the ELTCN-H variant is more
accurate in terms of Kappa values as it reports a bigger performance area. This result is somehow expected since the sigmoid
transfer function often causes the neurons to quickly saturate either toward zero or one, thus limiting their overall prediction
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Fig. 4. Average Kappa values reported by our model for both transfer functions on the 58 datasets. The results indicate that the ELTCN-H variant is more
accurate in terms of Kappa values as it reports a bigger performance area.
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Fig. 5. Average Kappa value achieved by each classifier on the 58 datasets. MLP, RF and ELTCN report the highest prediction rates in this study.

capability. Hereinafter, ELTCN will refer to the proposed model using hyperbolic tangent functions and a softmax output
layer.

Next, we compare the ELTCN algorithm against the state-of-the-art models aimed at solving traditional pattern classifi-
cation problems. Fig. 5 depicts the average Kappa values attained by each classification model, after performing 10-fold
cross-validation. Observe that MLP, RF and ELTCN report the highest prediction rates (expressed in terms of Kappa values)
in this study. This comes with no surprise because both MLP and RF are powerful classifiers. However, they operate as black
boxes, which means that they cannot explain by themselves how their decisions were made.

To determine whether the observed performance differences are statistically significant or not, we run the Friedman [40]
test. This non-parametric test will reject the null hypothesis when at least two classifiers report significant different perfor-
mance differences. The p-value = 0.0 < 0.05 advocates for the rejection of the null hypothesis for a 95% confidence interval.

Next, we conduct pairwise comparisons with ELTCN being the control algorithm. Such pairwise comparisons are con-
ducted using the Wilcoxon [41] signed-rank test. Table 3 shows the p-values reported by this non-parametric test, the neg-
ative (R™) and the positive (R") ranks, the corrected p-values according to Bonferroni-Holm (as suggested by Dems3ar [42] and
Garcia and Herrera [43]). This method is used for multiple comparisons and controls the family-wise error rate. The last col-
umn in Table 3 indicates whether the null hypothesis was rejected or not for a significance level of 0.05.

The statistical analysis suggests that our proposal significantly outperforms all white boxes (which are deemed inter-
pretable to some extent) and the SVM classifier while remaining competitive with RF and MLP. This result advocates for
the acceptance of the first research hypothesis, namely: “the proposed ELTCN model performs comparably to the selected
black boxes when no hyperparameter tuning is conducted”. However, being able to outperform the traditional classifiers
is not the ultimate goal of our research. Instead, we are interested in exploiting ELTCNs’ interpretability.

7.5. Understanding the predictions

In this subsection, we discuss how to interpret the ELTCN-based classifiers and how to produce global explanations. In
order to do that, we adopt the well-known Iris dataset (see Table 1) such that all instances will be used to train our neural
system. In consequence, the cross-validation procedure will not be performed in the following experiments.

The first step toward building the model concerns the construction of an initial weight matrix and the design of con-
straints that regulate which weights should be preserved. This process often involves domain experts, thus enabling the
human-machine interaction. In this paper, the human knowledge is replaced with Pearson’s correlation. Fig. 6 portrays
the Pearson’s correlation between the problem variables, the correlation coefficients and a mask matrix. The latter matrix
indicates which weights should be preserved (to a large extent) during the backpropagation learning process.

The training accuracy (in terms of Kappa) reported by the model is 0.98, which suggests that we can have a reasonable
degree of confidence in the knowledge captured by the network. Fig. 7 depicts the normalized weights that regulate the
interaction between the input neural concepts across T = 5 abstract layers. The symbol * indicates that the weight connects
two correlated variables according to the mask matrix, thus we should expect little variability in these weights. The simu-
lation results show that the R, regularizer in Eq. (17) effectively enforces this behavior.

Fig. 8 shows the weights and bias components through the different abstract layers. It can be confirmed that the patterns
enforced by the R; regularizer match with the mask matrix depicted in Fig. 6.

The weights depicted in Fig. 7 provide insight into the dynamic behavior of our neural system. However, after performing
T iterations, the whole ELTCN model can be expressed by means of N non-linear regression models. Eqs. (23)-(25) show the
raw regression models (i.e., before computing the final values with the transfer function) related to iris-setosa (y,), iris-
virginica (y,) and iris-versicolor (y;), respectively,

31 =09a" —a" —0.55a" + 0.3a" + h{" (23)

¥, = -0.1a{"” +0.13a}” — 0.23a{" + 0.6a}" — h" (24)
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Table 3

Wilcoxon pairwise analysis with Bonferroni-Holm correction for a significance level of 0.05 where the ELTCN classifier is used as the control method.
Algorithm p-value R R* Bonf-Holm Hypothesis
SVM 8.627E-06 13 42 2.588E-05 Reject
GNB 1.240E-07 11 46 7.438E-07 Reject
LR 2.203E-06 13 42 1.101E-05 Reject
RF 6.449E-01 28 27 6.875E-01 Fail to reject
DT 5.120E-06 8 48 2.048E-05 Reject
MLP 3.437E-01 33 22 6.875E-01 Fail to reject

Pearson's matrix Coefficients matrix Mask matrix
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Fig. 6. Pearson’s correlation between variables in the Iris dataset (the color scale moves from red to blue to indicate the transition from negative to positive
values, zero is light gray). Indexes in vertical and horizontal axes denote variables (x; and x, are the length and width of the sepal, while x; and x4 are the
length and width of the petal, respectively). The mask matrix indicates where the absolute value of correlation between the variables is higher than a given
threshold (equal to 0.9 in this example).
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Fig. 7. Behavior of weights in the ELTCN model for the Iris datasets across the abstract layers. The symbol * means that the weight connects two correlated
variables, thus it is not desirable for the weight to change much during two consecutive iterations.
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Fig. 8. Weight and bias values across the different abstract layers in the ELTCN model. The color scale moves from red to blue to indicate transition from
negative to positive values. Indexes in vertical and horizontal axes denote variables (x; and x, are the length and width of the sepal, while x; and x4 are the
length and width of the petal, respectively). The last index of each vertical axis denotes the bias component.

y3 = 0.003a{"” +0.2a) + 0.4a)" — 0.75a" + h’ (25)

where h{" = 3.59E — 5,h{" = 5.49E — 6 and h{” = 1.87E — 5. The reader can observe that the offset values in these equations
are quite small as a result of the R, regularizer in Eq. (17). This implies that the predictions can be primarily explained by the
weights, which have been normalized as explained in Section 6 to facilitate their interpretation.
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Eqgs. (23)-(25) allow characterizing the ELTCNSs’s after having captured the dynamics of the problem. However, we can go
one step further and explain why the model preferred one decision class over another. Let us suppose that our model deter-
mined that iris-versicolor was the most likely decision class for a given instance. We can derive explanations to understand
why the ELTCN model did not classify that instance as iris-virginica. This can be done by looking at the dissimilarity between
the weights attached to the same neural concepts in Eqs. (24) and (25). A closer inspection of these equations reveals that
weights associated with the third and fourth neural concepts play a pivotal role when determining the decision class for a
new instance.

Eq. (26) shows a new measure that allows determining the relevance of each neural concept in the classification using the
dissimilarity of the weights connected to the decision classes as a proxy,

(Wi, — Wi, |
oY) =5

z|w’wi> - Wiy, ‘
120

where 0 < 0y < 1 is the relevance of the k-th neural concept and wy , denotes the value of the k-th weight in the raw regres-

(26)

sion model associated with the i-th decision class. The rationale of this interpretability measure is that, if two weights con-
nected to the same input neuron c, are reasonably similar, then ¢, should not be responsible for the different outcomes.

Fig. 9 portrays the relevance of the neural concepts attached to the Iris dataset. The results confirm that the third and
fourth neurons (the ones denoting the length and width of the petal, respectively) are pivotal when deciding between
iris-versicolor and iris-virginica.
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Fig. 9. Relevance of the neural concepts in the Iris dataset problem. This interpretability measure uses the dissimilarity of the output weights as a proxy.
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Fig. 11. Distribution of instances of the Iris dataset according to the neural concepts.

It seems opportune to make a distinction between the problem variables and the neural concepts mapping these variables.
The former ones are static entities while the latter ones are high-level features that capture the dynamics of the system.
Fig. 10 shows the distribution of instances according to the problem features, while Fig. 11 shows the distribution according
to the high-level features after performing T = 5 iterations.

All in all, the proper way of interpreting the ELTCN model is as follows: “after letting the neural concepts interact with each
other T times, we have found that the concepts denoting the petal length and petal width are very important in classifying the
instance as iris-versicolor instead of iris-virginica”. Being able to naturally provide such explanations is deemed the most
attractive feature of our model. On top of that, the performance of our model proved to be competitive when compared with
traditional classifiers.

Before concluding our paper, it seems relevant to discuss the meaning behind the term “interact”. When modeling prob-
lems where the variables are independent of each other, this term might be confusing since the variables might not interact
in a physical sense. However, it does not change the fact that we can use some of these variables to approximate the values of
others during the reasoning process. Therefore, the term “interact” refers to the predictive power of the variables describing
the problem. In a perfect scenario, the problem should involve dynamic features, the relationships defined by experts should
involve an authentic causal meaning and the iterations should have a clear interpretation for the system being modeled.
Bringing these features together poses interesting theoretical challenges touching upon increasingly neglected research
areas such as knowledge representation and knowledge engineering. Such challenges will be addressed by the authors in
future research efforts.

8. Conclusion

In this paper, we have presented a neural model called Evolving Long-term Cognitive Network for pattern classification.
This network is trained with a backpropagation algorithm that includes two regularization components aimed at increasing
the model’s interpretability. The first regularization component seeks to reduce the variability of weights from one iteration
to another, while the second one is devoted to reducing the impact of the offset parameter on the network’s predictions.
Besides, we proposed a simple normalization strategy to confine the weights to a certain interval.

The numerical simulations using 58 classification problems have shown that our model performs comparably to MLP and
RF while outperforming the other classifiers selected for comparison. These results are in line with our first research hypoth-
esis and confirm that our model is a competitive player in terms of Kappa values, when compared with traditional classifiers
and tested with traditional datasets. However, what is truly remarkable is the ability of ELTCNs to explain why one decision
was preferred over another. This is done by measuring the dissimilarity between the weights that connect the same neural
concepts (high-level features) with different decision classes. In our opinion, the most interesting feature of the explanations
is that they are global since they are based on the knowledge representations learned by the network. When putting it all
together, we end up having a very flexible classifier that can naturally explain its decision process while also reporting com-
petitive prediction rates.



G. Ndpoles et al./Information Sciences 548 (2021) 461-478 477

Of course, our research is far from being complete. The issues related to network construction and the injection of domain
knowledge into the model are important challenges to be investigated. Moreover, producing higher prediction rates is
always desirable in any classifier. Last but not least, it would be interesting to investigate analytically the trade-off between
prediction, stability, and interpretability in the proposed neural system.
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