
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Pseudoinverse learning of Fuzzy Cognitive Maps for multivariate time

series forecasting

Peer-reviewed author version

VANHOENSHOVEN, Frank; NAPOLES RUIZ, Gonzalo; Froelich, Wojciech;

Salmeron, Jose L. & VANHOOF, Koen (2020) Pseudoinverse learning of Fuzzy

Cognitive Maps for multivariate time series forecasting. In: Applied soft computing,

95 (Art N° 106461).

DOI: 10.1016/j.asoc.2020.106461

Handle: http://hdl.handle.net/1942/32441

Pseudoinverse Learning of Fuzzy Cognitive Maps for
Multivariate Time Series Forecasting

Frank Vanhoenshovena,∗, Gonzalo Nápolesa,b, Wojciech Froelichc, Jose L.
Salmerond,e, Koen Vanhoofa

aFaculty of Business Economics, Hasselt University
Agoralaan, 3590 Diepenbeek, Belgium

bDepartment of Cognitive Science & Artificial Intelligence Tilburg University,
Warandelaan 2, 5037 AB, The Netherlands

cInstitute of Computer Science, University of Silesia, Poland
dData Science Lab, Universidad Pablo de Olavide,

Km. 1 Utrera road, 41013 Seville, Spain
eUniversidad Autónoma de Chile, 5 Poniente, 1670 Talca, Chile

Abstract

Forecasting multivariate time series is an important problem considered in many
real-world scenarios. To deal with that problem, several forecasting models have
already been proposed, where Fuzzy Cognitive Maps (FCMs) are proved to be a
suitable alternative. The key limitation of the existing FCM-based forecasting
models is the lack of time-efficient learning algorithms. In this paper, we plug
that gap by proposing a new FCM learning algorithm which is based on Moore-
Penrose inverse. Moreover, we propose an innovative approach that equips
FCM with long-term, multistep prediction capabilities. A huge advantage of our
method is the lack of parameters which in the case of competitive approaches
require laborious adjustment or tuning. The other added value of our method
is the reduction of the processing time required to train FCM. The performed
experiments revealed that FCM trained using our method outperforms the best
FCM-based forecasting model reported in the literature.

Keywords: fuzzy cognitive maps, learning, time series, forecasting

1. Introduction

Forecasting time series is a well-known problem addressed for many years
by numerous researchers. A specific version of this problem is the forecasting
of multivariate time series. In this case, instead of forecasting each time series
individually, a vector of their values is subject to forecasting. It is expected that

∗Corresponding author
Email addresses: frank.vanhoenshoven@uhasselt.be (Frank Vanhoenshoven),

gonzalo.napoles@uhasselt.be (Gonzalo Nápoles), wojciech.froelich@us.edu.pl
(Wojciech Froelich), salmeron@acm.org (Jose L. Salmeron)

Preprint submitted to Applied Soft Computing June 11, 2020

the constituent individual time series are mutually dependent which should, at
least theoretically, help to achieve better forecasting accuracy. On the other
hand, due to its increased complexity, the forecasting of multivariate time series
is substantially less frequently addressed in the literature when compared with
the univariate forecasting scenarios.

Several forecasting models have been proposed to tackle that problem. Most
popular are vector autoregression (VAR) [1] and vector autoregression moving-
average (VARMA) [2]. For further information about the state-of-the-art meth-
ods for multivariate time series forecasting, the reader can refer to [3, 4] which
comprise a comprehensive overview of this topic.

A promising and very competitive forecasting model is based on Fuzzy Cog-
nitive Maps (FCMs) [5]. Roughly speaking, an FCM is a signed weighted di-
graph where the nodes represent neural processing concepts while weighted arcs
reflect positive or negative dependencies between them. The direction of an arc
distinguishes cause concept from its effect concept. FCMs are nonlinear mod-
els because the cumulative impact of causal concepts on the effect concept is
transformed by a nonlinear function [6, 7].

FCMs were applied for the forecasting of time series with considerable suc-
cess. When it comes to the construction of FCM, several approaches are re-
ported in the literature. For example, nodes can be designed to represent in-
formation granules [8, 9, 10, 11] that will subsequently be used to perform the
forecasting process. Another approach relies on mapping each node to a sepa-
rate variable from the multivariate time series, so it equips each FCM iteration
with a well-defining meaning and interpretation [12, 13, 14].

The learning algorithms used to train FCMs can be summarized as follows.
On one hand, we have to do with the fairly effective population-based algorithms
[14, 13, 15] that require however much time for training the model and tuning
the parameters. On the other hand, there are time-efficient adaptive (Hebbian-
based) algorithms that are however ineffective in terms of forecasting accuracy
[16].

In this paper, we overcome the above limitations. In a nutshell, our proposal
comprises two main theoretical contributions.

1. Firstly, we propose a deterministic learning algorithm that uses the Moore-
Penrose inverse to compute the FCM’s weights. In our proposal, the FCM
weights are allowed to change from one time-step to the following one,
which helps to describe the evolution of the modeled system.

2. Secondly, we propose a procedure enabling multistep-ahead forecasts. Our
solution helps FCM to converge to an equilibrium point and thus prevents
to produce fluctuations in the forecasts.

There are many benefits our approach brings. The most important one
is the improved accuracy of the forecasts produced by the FCM trained with
the use of our method. The results of the experiments we performed provide
solid evidence for the superiority of our method. The high effectiveness of FCM
training algorithms reserved until now for the time consuming population-based

2

algorithms has been ultimately outperformed. Our training algorithm is not
only highly efficient in terms of forecasting accuracy but also in terms of the
processing time required to achieve those accuracies. The other huge benefit
demonstrated by the proposed approach is the lack of laborious adjustment of
parameters which is characteristic for all competitive approaches. Especially in
the case of population-based algorithms that from their nature consume much
time, the tuning of parameters is a huge obstacle faced up by the researchers
for years. In our research, we finally overcome that downside.

The rest of this paper is organized as follows. In Section 2 we provide a
literature review of the FCM-based forecasting models. Section 3 specifies the
addressed time series forecasting problem and provides theoretical preliminaries
on fuzzy cognitive maps. Section 4 is devoted to the theoretical contributions
of our research. In Section 5 we evaluate the effectiveness of our proposal by
using 41 time series datasets. Section 6 provides the final remarks.

2. FCM-based forecasting models - related work

It is possible to distinguish diverse approaches to use FCMs for time series
forecasting. Unfortunately, as already mentioned in the introduction, all those
methods suffer from the time-consuming population-based training algorithms
or alternatively, from the time-effective but poor in terms of the forecasting
accuracy, Hebian-like training. Let us present here a brief introduction to the
state-of-the-art of the FCM-based methodology.

A popular approach when designing FCM-based forecasting models is to map
its concepts to time series. Concepts can play the role of regressors, similarly as
in auto-regressive forecasting models [17]. In this case, the accumulated impact
of the cause concepts affect the target concept. When applying standard FCMs
for time series forecasting, most papers [12, 13, 14] assume that the weights
of FCM are adjusted during the training phase and do not change over time
when used for forecasting. The above feature is a shortcoming of the approach
limiting the use of FCM merely as the first-order forecasting model.

FCMs in which the concepts are the information granules rather than plain
variables, turned out to be a very competitive model applied to forecast univari-
ate [18, 19, 20] and multivariate [8, 9, 10, 11] time series. Several contributions
have been reported. Song et al. [21] [22] designed an FCM-based network using
neural networks and fuzzy sets to predict a chaotic time series. Salmeron et
al. [23] proposed an FCM-TOPSIS hybrid methodological support to scenario-
based forecasting. TOPSIS [24] stands for Technique for Order of Preference
by Similarity to Ideal Solution. More recently, in [25] the authors proposed a
procedure to dynamically optimize the length of the learning period and the se-
lection of the transformation function together with its parameters, thus leading
to high prediction rates. Although the above approach overcomes to a certain
extent the issues related to the first-order FCM model, it still does not solves the
problem of the time-consuming training phase. Moreover, the use of a moving
window even elevates that problem.

3

Other examples related to forecasting include the FCM-based prostate can-
cer prediction model [8]; the introduction of a multistep approach to learning
evolutionary FCMs for the prediction of pulmonary infection [10]; or the model
devoted to forecasting industrial drying processes [26]. These researches evi-
dence the broad potential behind FCM-based forecasting models.

As previously mentioned, the existing algorithms applied to learn FCMs
belong to two main groups, population-based and Hebbian-based methods.

It has been experimentally proved that the population-based algorithms out-
perform the adaptive ones in terms of forecasting accuracy [27]. Hence, mostly
population-based algorithms have been applied for learning FCMs as the fore-
casting model. These methods involve: Genetic Algorithm (GA) [28, 29], Parti-
cle Swarm Optimization (PSO) [18, 30, 31], Memetic Algorithms [26], Artificial
Bee Colony (ABC) [32], Modified Asexual Reproduction Optimisation [7] and
Differential Evolution (DE) [33].

The advantage of using population-based algorithms is that the learned
weights reflect the characteristics of the entire time series used for training.
Issues may arise when the training set contains many variables or has a large
number of observations. In that case, global optimization made by population-
based learning algorithms takes much time. The other issue with the population-
based algorithms used for learning FCMs is the high sensitivity to parameters,
e.g., population size, the probability of mutation and other [25]. It means in
practice, that for every time series to be forecasted the process of tuning param-
eters requires multiple, even hundreds of learn-and-test trials. In conjunction
with a long time needed to run each trial, the optimization of the experimental
setup requires considerable effort [25].

Hebbian-based learning algorithms are unsupervised methods based on the
Hebbian law [34, 35]. The main idea of these methods is to modify the weights
incrementally, which results in forgetting of older weights as they are updated
according to the most recent values. To the best of our knowledge, no Hebbian-
based method has been used in the context of time series forecasting, perhaps
due to their very poor generalization capability.

A survey of FCM learning algorithms can be found in [36].

3. Background

Here we specify the time series forecasting problem that we address in this
paper. Later on, we define FCM, the forecasting model we investigate in our
research.

3.1. Multivariate time series forecasting
Let x ∈ R be a real-valued variable observed over a discrete time scale within

the period t ∈ {1, 2, . . . , T}, where T ∈ N denotes its length. Thus, a univariate
time series is defined as a sequence of observations {x(t)} = {x(1), x(2), . . . , x(T)}.
Let us denote by historical time series the one in the period t ∈ {1, 2, . . . , te},
where te ≤ T . The goal of forecasting is to predict the next values of the time

4

series, i.e., x̂(te+1), x̂(te+2), . . . , x̂(te+H), where H is referred to as the prediction
horizon.

To accomplish the forecasting task, a model F is required [16]. Assuming
single-step forecasting, i.e., for H = 1, the model F is used to calculate x̂(te+1) =
F(x(te)). The problem to be addressed is the construction of F , which is usually
not known and has to be discovered using historical records.

For multivariate time series, the vector S = [S(1), . . . , S(t), . . . , S(T)] com-
prises a sequence of observations for multiple real-valued variables, such that
S(t) = [x

(t)
1 , . . . , x

(t)
i , . . . , x

(t)
M]. The single-step forecasting assumes the form:

Ŝ(te+1) = F(S(te)), where F is the forecasting model. In our study, we focus on
the FCM-based forecasting model.

3.2. Fuzzy Cognitive Maps
FCM is defined as a 4-tuple ⟨ C, W, A, f(·)⟩, where C = {C1, C2, . . . , CM}

is a set of M concepts, each concept being a fuzzy set. W : C × C → [−1, 1]
represents the weight matrix. For each pair of concepts (Ci, Cj), the weight
wij ∈ [−1, 1] defines the causal relationship between the concepts. Visually,
wij is represented as an edge between two nodes in the FCMs network. The
value of wij determines the sign and intensity (magnitude) of the relationship
of cause concept Ci on effect concept Cj . The weight wij should be interpreted
as follows:

• wij > 0: If activated, Ci will excite Cj . Higher (lower) activation values
of Ci in the current iteration will lead to higher (lower) activation values
of Cj in the following iteration;

• wij < 0: If activated, Ci will inhibit Cj . Higher (lower) activation values
of Ci in the current iteration will lead to lower (higher) activation values
of Cj in the following iteration.

• wij = 0: Ci will not influence Cj .

The function A : C × N → A
(t)
i is used to calculate the activation values

of concepts at iteration-step t ∈ {1, 2, . . . , T}. An FCM has a recurrent nature
and evolves through different state values in a sequence of iterations. Note
that FCM produces a state value at each iteration, thus conferring a recurrent
behavior to the reasoning model. The activation rule as proposed by Kosko [5]
is depicted in equation (1), with A(t) being the activation vector, A(t)

i denotes
the activation value of the concept Ci at the tth iteration,

A
(t+1)
i = f

 M∑
j=1
i ̸=j

wji ·A(t)
j

 (1)

where f : R→ I is a transfer function [37] that aggregates the impact of multiple
causal effects and restricts the activation value into an activation interval, e.g.:

5

I = [0, 1] or I = [−1, 1]. Possible transformation functions include binary,
ternary and logistic activators. A sigmoid function (eq:sigmoid) is commonly
used as the transfer function.

f(x) =
1

1 + e−λ·x (2)

where λ is the parameter determining the gain of the causal impact the function
introduces.

4. An innovative FCM-based forecasting model

In this section, we introduce a new approach to forecasting multivariate time
series using a novel FCM-based model.

4.1. Dynamic FCM’s weights
The model proposed in this paper is based on an FCM equipped with dy-

namically changing weights. In consequence, the reasoning rule associated with
our model assumes the form given by Equation 3:

A
(t+1)
i = f

 M∑
j=1

w
(t)
ji A

(t)
j

 , (3)

where f(·) is the sigmoid transfer function, t = {1, 2, . . . , T} denotes the current
iteration, while A

(t)
i denotes the activation value for Ci at time t and w

(t)
ji is

the effect of Cj on Ci progressing from iteration t to iteration t+1. Finally, M
denotes the number of concepts in the FCM model.

4.2. Pseudo-inverse learning of the weight matrix
Let us introduce pseudo-inverse learning of the FCM weight matrix. The

peculiarity of this learning method is that it computes a different weight set for
each iteration step. In this way, different time-varying pieces of data influence
the weights, which change from one iteration to the following.

Aiming at deriving our method from A
(t+1)
i = f

(∑M
j=1 w

(t)
ji A

(t)
j

)
(Equation

(3)), we formulate a cascade of two-step inference formulas as follows:

A
(t+1)
i = f

(
M∑
j=1

(
w

(t)
ji f

(M∑
l=1

w
(t−1)
lj A

(t−1)
l

)
︸ ︷︷ ︸

A
(t)
j

))
(4)

and therefore:

A
(t+1)
i =

M∑
j=1

(
w

(t)
ji f

(M∑
l=1

w
(t−1)
lj A

(t−1)
l

)
︸ ︷︷ ︸

A
(t)
j

)
+ ξ, (5)

6

where ξ denotes the error caused by suppressing the outer transformation oper-
ation. This is formulated in matrix format:

A(t+1) = W (t)f
(
W (t−1)A(t−1)

)
+ ξ, (6)

where:

A(t) =
[
A

(t)
1 A

(t)
2 . . . A

(t)
M

]T
and

W (t) =



w
(t)
11 w

(t)
12 . . . w

(t)
1M

w
(t)
21 w

(t)
22 . . . w

(t)
2M

...
...

w
(t)
M1 w

(t)
M2 . . . w

(t)
MM


.

At this point, we can easily derive the learning rule (7) to compute the
target weight matrix W (t), where (·)‡ denotes the Moore-Penrose inverse of a
given matrix.

W (t) ≈ A(t+1)
(
f
(
A(t−1)W (t−1)

))‡
(7)

We adopt the orthogonal projection method to compute the Moore-Penrose
pseudoinverse. If the matrix H has linearly independent columns (H⊤H is non-
singular), then H‡ = (H⊤H)−1H⊤. In contrast, if H has linearly independent
rows (HH⊤ is nonsingular), then H‡ = H⊤(H⊤H)−1. The former constitutes
a left inverse because of H‡H = I, whereas the latter comprises a right inverse
because HH‡ = I.

Equation (7) provides a deterministic approach to compute the weight ma-
trix at the current iteration. Notice however that although the A(t+1) compo-
nent is unknown in a forecasting scenario, it is available as part of the historical
dataset during the training phase.

To complete the derivation of learning, let us assume a time series X(T)×M ,
where T is the time series length and M denotes the number of variables in the
system. Assuming that we take into account the values of X at time t, X(t),
to predict the observed values X(t+1), we can define X̂(t+1) as the predicted
values for time step t.

X =



x
(1)
1 . . . x

(1)
i . . . x

(1)
M

...

x
(t)
1

. . . x
(t)
i

. . . x
(t)
M

...
x
(T−1)
1 . . . x

(T−1)
i . . . x

(T−1)
M


7

We can easily substitute our time series X into Equation (7) by mapping
each X(t) to a vector A(t), as follows:

W (t) ≈X(t+1)
(
f(W (t−1)X(t−1))

)‡
. (8)

It should be mentioned that unlike most heuristic learning algorithms, the
proposed learning formula does not have an iterative nature. This means that
we can compute each weight matrix W (t) in a single step. Nevertheless, this
learning process must be repeated for each iteration in the time series, so that
each iteration is characterized by a specific weight matrix.

4.3. Learning algorithm

Normalize
multivariate time

series

Select the training
set

For each t>1 and t+1 ≤ T

Calculate the
weight matrix W

Apply
transofrmation
function g to W

Store W

Apply each W to
create a fitted

prediction for the
training set

Calculate average
bias by comparing

fitted values to
actual values

Return the set of W
and the vector of

biases

Figure 1: Flow diagram of the high-level method that is followed when learning. More details
can be found in Algorithm 1

Figure 1 and Algorithm 1 portray the learning procedure we propose. As
can be seen in the high-level overview in figure 1, the learning procedure starts
with selecting a training set from a normalized, multivariate time series. During
the actual learning phase, the algorithm will iterate over each time step in the
dataset and calculate a weight matrix W that describes the transition from
step t to step t− 1. A transformation function can be applied to constrain the
individual weights between desired boundaries. Once the set of weight matrices
is collected, they will be used to fit the time series. These fitted values are then
used to calculate a bias. The learning function will return the set of weight

8

matrices as well as the bias. A more detailed view of the algorithm is provided
in Algorithm 1.

In 1, W (t) represents a weight matrix that is fitted between time step t and
t + 1? whereas XT×M represent the observed values in a multivariate time
series. The vector of observations for each variable at time step t is represented
by X(t), whereas X̂(t) represents the vector of predicted values at time step t.

The main input for the learning procedure is a multivariate time series
dataset XT×M , where T denotes its length and M is the number of variables.
Other inputs are the transformation function f(·) defined by formula (2) and
the weight transformation function g(·), which is defined by the tanh(·) func-
tion. It is worth mentioning that, opposite to the standard FCM, our FCM-MP
does not assume that the values of the FCM weights must be within the range
[−1, 1].

Algorithm 1 Learning Procedure
1: function Learn Weight Matrices(XT×M , f , g)
2: for t← 1, T do
3: if t = 1 then
4: W (1) = f

(
X(1)

)‡
X(2)

5: else
6: W (t) = X(t+1)f

(
X(t−1)W (t−1)

)‡
7: end if
8: W (t) = g(W (t))
9: end for

10: for t← 1, T do
11: X̂(t+1) = f

(
X(t)W (t)

)
12: end for
13: ξ =

∑T−1
t=1

(
X̂(t)−X(t)

)
M(T−1)

14: return (WT−1×M2 , ξM×1)
15: end function

Another aspect that deserves attention refers to the simplification of the
learning formula depicted in lines 3-7. If we assume that Ψ(t) = X(t) for t = 1
and Ψ(t) = W (t−1)X(t−1) for t > 1, then Equation (8) can be rewritten as
W (t) ≈

(
f(Ψ(t))

)‡
X(t+0), hence being consistent with the notation and the

derivation of this pseudoinverse learning.
The dimensions of the returned weight matrix WT−1×M2 can be explained

as follows. Each row represents a transitional step in the training set. For a
training set of length T , only T − 1 transitions can be calculated. Each column
represents an individual weight w

(t)
ij . To remodel a full weight matrix WN×N

for each transition t, M2 individual weights need to be reported.
As the method depicted in Equation (8) discards the effects of a transfor-

mation function
f(·)

9

in the tuning process, there will be a bias in the results. This bias is estimated
by the parameter ξ which is calculated as the mean error, mean(X̂−X), in the
training set. Besides the set of weight matrices WT−1×M2 , the trained model
will also return ξM×1. This allows applying the same correction to the test data
during the execution phase. The algorithm returns a weight matrix W1×M2 for
each time step t in the training set X.

4.4. From short-term to long-term forecasts
In this section, we propose two techniques for time series forecasting that is

based on the same learning mechanism. More explicitly, a model that can be
applied for short-term predictions (one-step ahead) is described in section 4.4.1,
while subsection 4.4.2 explains a model that can be used for long-term, multiple
steps ahead, predictions.

4.4.1. Single-step-ahead forecasts
Performing single-step-ahead predictions is straightforward and requires the

reasoning process to be performed for only a single test instance. In this setting,
our FCM-MP uses the weight matrix fitted between time steps T − 1 and T to
make the one-step-ahead prediction for T + 1. Equation (9) displays how to
calculate the next predicted value X̂(T+1) using the reasoning formula in its
matrix form.

X̂(T+1) = f
(
W (T)Ψ(T)

)
, (9)

where: Ψ(T) is initialized with the test instance (i.e., the activation vector
associated with the instance) and W (T) is the weight matrix fitted to calculate
X(T) from X(T−1) during the training phase.

4.4.2. Multistep-ahead forecasts
The continuous (fragmentary) learning proposed in the previous section as-

sumes that the weight matrix W (T) is a better estimate than W (T−1). However,
this approach is not feasible for long-term forecasts. If we would incrementally
apply our forecasting approach for multistep-ahead predictions — using a pre-
dicted set Ŷ (t) to forecast Ŷ (t+1) — the same weight matrix W would be used
to perform each next forecast. This may cause the model to converge to a fixed-
point attractor, thus suppressing its capability to capture variations in the time
series.

When applying our FCM-MP for multistep-ahead forecasting (see Algorithm
2) we attempt to select a weight matrix from the adjusted ones that better fits
the current situation and use that matrix to make each next step prediction.
Figure 2 displays the blueprint of the long-term forecasting procedure. The
process starts with the initial values A(0) = X(0) that are deemed the starting
point for the multistep forecast. Each subsequent prediction will be defined as
A(t) = Ŷ (t−1). Predictions will be made for H steps, resulting in a long-term
forecast output AH×M .

10

Figure 2: Flow diagram of the proposed forecasting approach.

To predict each value Ŷ (t), our model scan the training set to detect a
moment in time that is most similar to Y (t−1). A parameter w ∈ N : w < T
is defined to control whether we want to compare against a single data point
or a moving time windows of size w. This heuristic is similar to applying a k-
NN approach to determine the more suitable weight matrix when making each
prediction in the long-term context.

The algorithm detects the k most resembling periods from the training his-
tory and returns the respective weight sets that have been fitted to calculate
the t + 1 forecast. The average of these k weight matrices is adopted to make
a prediction Ŷ (t+1) from Ŷ (t). This prediction is adjusted by adding the bias
ξ, which is determined during the learning stage. The process is repeated un-
til H time steps have been predicted. Algorithm 2 provides a more technical
description of the proposed procedure.

To detect the most resembling periods from training history, a distance func-
tion is adopted. For w = 1, the Euclidean distance is calculated between each
multivariate time observation. For w > 1, the model calculates a rolling cross-
correlation for each variable and then calculates the average cross-correlation
across all dimensions. The highest value denotes the most resembling time win-
dow. Equation (10) displays the cross-correlation for a dimension n and a time
window w, between the recent series X and any historical series Y having the
same rolling window,

11

Algorithm 2 Multistep-ahead forecasts
1: function Predict(Y1×M , XT×M , WT×M2 , ξ, h, w, k)
2: Ah+1×M = 0h+1×M

3: A(0) = Y
4: for t← 1, h do
5: if w = 1 then
6: for i← 1, T do
7: di = ||A(t−1),X(i)||2
8: end for
9: else

10: d = dtw({A(t−w), . . . ,A(t−1)},X)
11: end if
12: sort(d)
13: select ordered indices b of k most similar periods in X

14: Ŵ
(t)
M×M =

∑k
c=1 W (b)

k

15: A(t) = f
(
A(t−1)Ŵ (t)

)
+ ξ

16: end for
17: return Ŷ = Ah+1×M

18: end function

ρ(n)(X,Y) =
1

w
·

(
w∑
i=1

(x
(n)
i − x̄(n))(y

(n)
i − ȳ(n))

σx(n)σy(n)

)
, (10)

where X and Y are univariate time series of length w, x̄(n) is the median asso-
ciated with the specified dimension (variable) while σx(n) is the standard devia-
tion. The calculations are performed for each rolling window w in the training
dataset, resulting in N − w different average cross-correlation measures. It
should be mentioned that, for long time windows, more elaborate measures to
compare time series (e.g., the Dynamic Time Warping [38, 39]) would lead to
better results. In this paper, however, we adopted a simpler strategy to keep
the training time as low as possible.

5. Experiments

In this section, we provide empirical evidence for the high effectiveness of
the proposed approach.

5.1. Experimental setup
For the experiments, we used 42 time series datasets taken from the web

site: http://faculty.chicagobooth.edu/ruey.tsay/teaching/mtsbk. The reposi-
tory comprises a wide variety of time series with diverse characteristics. The
descriptive summary of all datasets is given in Table 1, where: N denotes the
number of variables, T is the number of observations. The minimum, median

12

and maximum of the absolute values of Pearson correlations are denoted as
min(|ρ|), med(|ρ|), max(|ρ|) respectively.

We selected mean squared error (MSE) as a benchmark for the evaluation
of the performance of each forecasting model. Formula (11) formalizes this
measure, where Y (t)

i denotes the observed value for concept i at time t in the time
series, Ŷ (t)

i is the predicted value of concept i for that time step, M represents
the number of concepts, or variables, in the multivariate time series, whereas T
is the time series length or the number of observations. If the MSE is calculated
for the training set, only the training instances are taken into account and thus
T would represent the number of observations in the training set. Similarly,
when calculating the MSE for validation set and test set, T will represent the
length of those sets only.

MSE =

∑M
i=1

∑T
t=1

(
Y

(t)
i − Ŷ

(t)
i

)2
(TṀ

(11)

To perform learn-and-test experiments, each considered time series was split
into three sets, namely: the training set, the validation set, and the test set.
The training set contained the first 80% of observations and was used to build
the model. The next 10% of the time series represented the validation set which
was used to tune parameters of each given model. Parameters were tuned by
running all different configurations and capturing an MSE for the validation
set. Parameter settings with the lowest MSE for the validation set are used to
evaluate each model. Finally, the test set comprises the last 10% observations
from every time series.

For comparison purposes we use the following models:

• Vector autoregression (VAR) [1]. The order of VAR was tested in range
p ∈ {1, 2, 3, 4}.

• Vector autoregression moving-average (VARMA) [2]. VARMA was tuned
with any combination of p ∈ {0, 1, 2} and q ∈ {0, 1, 2}, where p is the
order of the autoregressive part and q is the order of the moving average
part.

• Multilayer presentations (MLPs). For MLP, the number of hidden nodes
was tuned based on the number of concepts N in each given dataset. Any
number in the range [N, 2N] was tested.

• FCM-GA trained by the genetic algorithm. For the FCM-GA, the car-
dinality of the initial population is equal to T , the number of instances
in the dataset whereas the maximum number of generations is 100. The
Rank wheel is used as a crossover selection method. The probabilities
of mutation [0.01, 0.05, 0.1] and crossover [0.8, 0.9] were tuned on a test-
and-error basis individually for every considered dataset. Given the non-
deterministic nature of GA, multiple runs are required to obtain statisti-
cally significant results. For each configuration, the results of 10 indepen-
dent runs have been aggregated by calculating the average MSE. For both

13

Table 1: Overview of datasets
ID dataset N T min(|ρ|) med(|ρ|) max(|ρ|)

1 a-rgdp-14 14 52 0.9067 0.9905 0.9990
2 a-rgdp-per-4 4 52 0.9659 0.9903 0.9942
3 aa-3rv 3 339 0.4713 0.8783 0.8783
4 d-bhpvale-0206 2 946 0.9894 0.9947 0.9947
5 d-vix-0412 4 2177 0.9878 0.9944 0.9949
6 d-xomspaapl 3 1280 0.4712 0.8194 0.8194
7 flourc 3 99 0.9509 0.9899 0.9899
8 m-3state-un 3 407 0.9204 0.9614 0.9639
9 m-amdur 4 246 0.6468 0.8476 0.9753

10 m-bnd 2 608 0.9956 0.9978 0.9978
11 m-bndpgsp-6211 3 600 0.0189 0.4875 0.4875
12 m-bndpgspabt 6 600 0.0492 0.3108 0.9645
13 m-cpitb3m 2 792 0.0775 0.5388 0.5388
14 m-dec125910-6111 5 609 0.6654 0.9231 0.9673
15 m-dec15678-6111 5 612 0.7808 0.9753 0.9826
16 m-excess-10c-9003 10 168 0.0497 0.2623 0.7357
17 m-gasoil 4 226 0.5299 0.9842 0.9916
18 m-houst-nsa 4 648 0.4676 0.7095 0.8210
19 m-hsmort7112 2 492 0.0419 0.5209 0.5209
20 m-hsoldhst6312 2 595 0.6814 0.8407 0.8407
21 m-hstarts-3divisions 3 198 0.8022 0.8859 0.9004
22 m-ibmko-0111 2 132 0.1477 0.5739 0.5739
23 m-ibmsp-6111 2 612 0.5998 0.7999 0.7999
24 m-ibmspko-6111 3 612 0.2582 0.5998 0.6481
25 m-ip3comp 3 589 0.9431 0.9936 0.9936
26 m-ip4comp 4 792 0.9173 0.9800 0.9897
27 m-napm-8812 4 300 0.3872 0.6576 0.9416
28 m-pgspabt-6211 3 600 0.4287 0.5024 0.6510
29 m-pgspabt 3 600 0.4287 0.5024 0.6510
30 m-tenstocks 10 132 0.0282 0.4168 0.7497
31 m-unemp-states 50 429 0.0342 0.7100 0.9741
32 m-unempstatesAdj 50 416 0.0041 0.6918 0.9744
33 m-unippmitcu-6712 4 552 0.0473 0.3875 0.6889
34 q-4macro 4 214 0.2882 0.6854 0.9686
35 q-fdebt 3 171 0.9352 0.9727 0.9727
36 q-gdp-ukcaus 3 126 0.9960 0.9978 0.9978
37 q-gdpunemp 2 256 0.2665 0.6332 0.6332
38 q-gpsavedi 2 263 0.9478 0.9739 0.9739
39 q-rgdp-brkris 3 62 0.1045 0.4395 0.5292
40 q-ungdp-4812 2 258 0.3413 0.6706 0.6706
41 ushog 5 82 0.0607 0.6753 0.9174

14

FCM-GA and FCM-MP, we tested different configurations for the sigmoid
transfer function (see Equation (2)) by changing the slope parameter in
the set λ ∈ {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}.

• FCM-MP trained by the approach proposed in this paper. FCM-MP was
trained by a deterministic method, therefore only a single execution was
required.

5.2. One-step-ahead forecasting
Table 2 provides a summary of the one-step-ahead predictions. Values in

bold denote the lowest errors (i.e., the highest performance) as defined in Equa-
tion (11). The table shows the best-performing model concerning the parameter
settings, which are estimated by an automated trial-and-error procedure. Note
that occasionally, some of the methods could not be applied due to singularity
constraints, which indicates a high degree of covariance within the dataset.

Using the obtained results we performed Friedman’s rank-sum test which
produced a p-value of 1.493E−12, which is a strong indication that there was a
performance difference between the considered methods.

The superiority of FCM-MP over its direct competitor FCM-GA can be
recognized visually when looking at the error values given in Table 2. The
reader can notice that FCM-GA never turned out to be the best, whereas our
FCM-MP won the competition 17 times.

The paired Wilcoxon signed-rank test, as displayed in Table 3, allows for a
deeper analysis of the differences in performance. According to this test, our
FCM-MP outperformed standard FCM-GA at level p < 0.005. Let us remind
you that the proposed learning rule bears some additional advantages. Firstly, it
is not required to perform multiple runs to obtain a credible solution. Secondly,
our FCM-MP is computationally faster than standard FCM-GA which uses a
population-based metaheuristic for training. These experiments support our
theoretical hypothesis of the superiority of the FCM-MP over FCM-GA for
one-step-ahead forecasting.

When comparing the effectiveness of FCMs with competitive methods, the
results turned out to be less unequivocal. Based on the obtained p-values of
the Wilcoxon test, our FCM-MP was superior to VARMA at significance level
p < 0.0001 and superior to MLP at a significance level p < 0.001. However,
when comparing FCM-MP with VAR, we obtained no significant performance
differences. For this reason, for single-step-ahead forecasting of multivariate
time series we recommend to select alternatively FCM-MP or VAR. The final
decision should be based on testing, separately for every of the considered time
series.

5.3. Multistep-ahead forecasting
Table 4 shows the results related to the multistep-ahead forecasting. Fried-

man’s rank-sum test produced a p-value of 5.053e−07, indicating a significant
difference between the performances of the different methods.

15

Table 2: MSE for one-step-ahead predictions

ID dataset VAR VARMA MLP FCM-GA FCM-MP
1 a-rgdp-14 0.0027 NA 0.0263 0.0055 0.0037
2 a-rgdp-per-4 0.0031 NA 0.0197 0.0043 0.0904
3 aa-3rv 0.0205 0.0201 0.0200 0.0115 0.0028
4 d-bhpvale-0206 0.0004 0.0611 0.045 0.0026 0.0027
5 d-vix-0412 0.0004 0.0060 0.0004 0.0008 0.0004
6 d-xomspaapl 0.0021 0.0020 0.0021 0.0095 0.0013
7 flourc 0.0030 0.0339 0.003 0.0066 0.0401
8 m-3state-un 0.0006 0.0637 0.0036 0.0035 0.0015
9 m-amdur 0.0012 0.8734 0.0165 0.0106 0.0056

10 m-bnd 0.0002 0.0104 0.0008 0.0018 0.0016
11 m-bndpgsp-6211 0.0091 0.0089 0.0089 0.0112 0.0025
12 m-bndpgspabt 0.0067 0.0114 0.0078 0.0125 0.0020
13 m-cpitb3m 0.0002 0.0323 0.0155 0.0058 0.0140
14 m-dec125910-6111 0.0158 0.0164 0.0154 0.0171 0.1354
15 m-dec15678-6111 0.0175 0.0171 0.0167 0.0178 0.1411
16 m-excess-10c-9003 0.0389 0.0321 0.0335 0.0367 0.0052
17 m-gasoil 0.0066 0.1084 0.0503 0.0095 0.0084
18 m-houst-nsa NA NA 0.0086 0.0153 0.0027
19 m-hsmort7112 0.0010 0.1563 0.0105 0.0077 0.0029
20 m-hsoldhst6312 0.0027 0.1787 0.0070 0.0066 0.0086
21 m-hstarts-3divisions 0.0081 0.1573 0.0108 0.0104 0.0026
22 m-ibmko-0111 0.0085 0.0066 0.0063 0.0409 0.0085
23 m-ibmsp-6111 0.0139 0.0143 0.0143 0.0200 0.0035
24 m-ibmspko-6111 0.0122 0.0124 0.0124 0.0193 0.0032
25 m-ip3comp 0.0002 0.0264 0.0052 0.0044 0.0823
26 m-ip4comp 0.0003 0.2580 0.0088 0.0042 0.0023
27 m-napm-8812 0.0085 0.0255 0.0119 0.0096 0.0028
28 m-pgspabt 0.0112 0.0111 0.0111 0.0164 0.0027
29 m-pgspabt-6211 0.0112 0.0111 0.0110 0.0165 0.0033
30 m-tenstocks 0.0243 NA 0.0222 0.0376 0.0036
31 m-unemp-states 0.0119 NA 0.0185 NA 0.0049
32 m-unempstatesAdj 0.0050 NA 0.0141 NA 0.0048
33 m-unippmitcu-6712 0.0011 0.1190 0.0180 0.0222 0.0080
34 q-4macro 0.0010 0.0516 0.0207 0.0099 0.0071
35 q-fdebt 0.0032 0.1289 0.1700 0.0046 0.0039
36 q-gdp-ukcaus 0.0003 0.0292 0.0180 0.0038 0.0040
37 q-gdpunemp 0.0007 0.0459 0.0215 0.0093 0.0046
38 q-gpsavedi 0.0013 0.0428 0.0556 0.0067 0.0786
39 q-rgdp-brkris 0.0072 0.0272 0.0177 0.0255 0.0077
40 q-ungdp-4812 0.0006 0.0413 0.0180 0.0071 0.0045
41 ushog 0.0097 0.1165 0.0184 0.0162 0.0040

16

Table 3: Wilcoxon Rank-Sum Test for one-step-ahead prediction methods. The adjusted
Holm, Hommel, Hochberg and Bonferroni p-values are indicated as well. The p−values indicate
whether the performance of the models to the left is significantly different from our FCM-MP
model. Commonly, a threshold of p < 0.05 is used to declare the difference in prediction
accuracy significant.

FCM-MP
Wilcoxon Bonferroni Hochberg Holm Hommel

VAR 0.5563 1.0000 0.5563 0.5563 0.5563
VARMA 0.0000 0.0000 0.0000 0.0000 0.0000
MLP 0.0001 0.0008 0.0002 0.0005 0.0005
FCM-GA 0.0003 0.0029 0.0004 0.0012 0.0012

It can be noticed that FCM-MP outperforms the FCM-GA variant (our
method was the best alternative for 15 datasets, whereas FCM-GA reported
superior accuracy for a single problem). The adjusted p-values of a paired
Wilcoxon Rank-Sum test (see Table 5) supports the superiority of our approach
with respect to FCM-GA in terms of MSE (p < 0.005) when making long-term
predictions for multivariate time series.

Further calculations of a paired Wilcoxon Rank-Sum test did not provide
sufficient evidence to claim superiority in any other pairwise comparison. How-
ever, you can notice in Table 4 that the VAR model reported the lowest errors
for 15 datasets. Hence, VAR and FCM-MP turned out to be the two most
competitive methods in our study.

0
1

2

0 20 40 60

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

h

v
a
lu

e

Figure 3: Predictions made by FCM-MP for the pgspabt dataset. The x-axis represents the
timeline with the prediction horizon as the maximum value. The graph plots prediction and
actual value for each forecasted step h. The full line represents the predicted values for the
test set; Actual values are plotted as dots. The better the line matches the dots, the better
the fit. The graph demonstrates the ability of FCM-MP to produce a recurring pattern.

For the illustration of the obtained results, we present some plots that vi-

17

Table 4: Testing error for multistep-ahead predictions
ID dataset VAR VARMA MLP FCM-GA FCM-MP

1 a-rgdp-14 0.0080 - 0.0516 0.3289 0.0072
2 a-rgdp-per-4 0.0280 - 0.0414 0.2694 0.0024
3 aa-3rv 0.0200 0.0201 0.0201 0.0832 0.0231
4 d-bhpvale-0206 0.0587 0.0611 0.1040 0.1556 0.0300
5 d-vix-0412 0.0061 0.0060 0.0063 0.0416 0.0081
6 d-xomspaapl 0.0020 0.0020 0.0020 0.0053 0.0023
7 flourc 0.0283 0.0339 0.0797 0.0754 0.0061
8 m-3state-un 0.0637 0.0637 0.0674 0.0563 0.0713
9 m-amdur 0.5776 0.7266 0.0212 0.1553 0.0558

10 m-bnd 0.0329 0.0104 0.0192 0.0301 0.0074
11 m-bndpgsp-6211 0.0089 0.0089 0.0090 0.0129 0.0116
12 m-bndpgspabt 0.0124 0.0114 0.0094 0.0226 0.0124
13 m-cpitb3m 0.0323 0.0323 0.0563 0.1904 0.1825
14 m-dec125910-6111 0.0164 0.0164 0.0164 0.0174 0.0219
15 m-dec15678-6111 0.0171 0.0171 0.0172 0.0193 0.0302
16 m-excess-10c-9003 0.0321 0.0321 0.0325 0.0360 0.0401
17 m-gasoil 0.1084 0.1084 0.0988 0.1303 0.0747
18 m-houst-nsa 0.1028 0.1083 0.1251 0.1072 0.0809
19 m-hsmort7112 0.1487 0.1563 0.2079 0.1521 0.1437
20 m-hsoldhst6312 0.0985 0.1787 0.2553 0.1434 0.2588
21 m-hstarts-3divisions 0.1262 0.0873 0.0264 0.1071 0.1194
22 m-ibmko-0111 0.0067 0.0066 0.0066 0.0091 0.0111
23 m-ibmsp-6111 0.0143 0.0143 0.0144 0.0177 0.0196
24 m-ibmspko-6111 0.0124 0.0124 0.0123 0.0145 0.0144
25 m-ip3comp 0.0263 0.0264 0.0140 0.2012 0.0055
26 m-ip4comp 0.1747 0.2580 0.0204 0.2417 0.0070
27 m-napm-8812 0.0255 0.0244 0.0297 0.0307 0.0269
28 m-pgspabt 0.0111 0.0111 0.0110 0.0137 0.0134
29 m-pgspabt-6211 0.0111 0.0111 0.0111 0.0141 0.0134
30 m-tenstocks 0.0218 - 0.0217 0.0245 0.0222
31 m-unemp-states 0.1560 - 0.1885 - 0.0561
32 m-unempstatesAdj 0.0662 - 0.1056 - 0.1027
33 m-unippmitcu-6712 0.1098 0.1190 0.0668 0.1179 0.0683
34 q-4macro 0.0560 0.0255 0.0515 0.1869 0.1258
35 q-fdebt 0.1391 0.1289 0.2869 0.1483 0.0914
36 q-gdp-ukcaus 0.0292 0.0222 0.0280 0.2510 0.0014
37 q-gdpunemp 0.0421 0.0459 0.1093 0.1955 0.0928
38 q-gpsavedi 0.0428 0.0428 0.0951 0.1885 0.0464
39 q-rgdp-brkris 0.0221 0.0272 0.0251 0.0496 0.0224
40 q-ungdp-4812 0.0672 0.0457 0.1111 0.1568 0.0732
41 ushog 0.0808 0.1165 0.1084 0.1470 0.0385

Table 5: Wilcoxon Rank-Sum Test. Adjusted Holm, Hommel, Hochberg and Bonferroni p-
values indicated as well. The p−values indicate whether the performance of the models to the
left is significantly different from our FCM-MP model. Commonly, a threshold of p < 0.05 is
used to declare the difference in prediction accuracy significant.

FCM-MP
Wilcoxon Bonferroni Hochberg Holm Hommel

VAR 0.2751 1.0000 0.4585 1.0000 0.8253
VARMA 0.1423 1.0000 0.2847 0.8540 0.7280
MLP 0.3662 1.0000 0.5232 1.0000 0.8545
FCM-GA 0.0003 0.0026 0.0026 0.0026 0.0026

18

0

50

100

150

FCM−GA FCM−MP
method

ex
ec

ut
io

n
tim

e
in

 s
ec

on
ds

Figure 4: Speed comparison (in seconds) between FCM-GA and FCM-MP.

sualize the prediction accuracy of our model. The graphs depict the test set
of the given dataset. Model predictions are plotted as a full line; observations
are plotted as points. Despite there being no explicit built-in mechanisms for
recurrent behavior, the reader can notice that the FCM-MP method is able to
produce cyclic behavior as shown in Figure 3.

5.4. Comparison of time-efficiency
Figure 4 compares FCM-GA with FCM-MP in terms of the learning time.

The graph gives a clear visual representation of the superiority of FCM-MP
over FCM-GA. This speed advantage is amplified when taking into account
that the deterministic nature of our learning method only requires a single exe-
cution whereas the stochastic nature attached to the FCM-GA variant demands
multiple runs with the same parameter settings.

5.5. Effect of training ratio on accuracy
We examine the effect that the size of the training dataset has on algorithm

accuracy by comparing the accuracy for training ratios of 70%, 80%, and 90%.
As in the previous simulations, the remaining part is split equally between a
validation set and a test set in which the validation set is used for parameter
tuning.

As can be seen in Figure 5, the algorithm delivers a comparable performance
across training rates. Wilcoxon signed-rank test (Table 6 concludes that there
is indeed no proof that there is a difference between those distributions.

5.6. Transparency of the model
Compared to the single N ×N weight matrix of a classical fuzzy cognitive

map, our model produces a N ×N for each time step in the training set. This

19

Table 6: Pairwise Wilcoxon Signed Rank test.
80% 90%

70% 0.4240 0.7306
80% 1.0000
0.7

0.8
0.9

0.00 0.05 0.10 0.15

0

20

40

60

0

20

40

60

0

20

40

60

mse_test

de
ns

ity

Figure 5: MSE across datasets for different training set sizes.

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●
●
●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●

1 2 3

1
2

3

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

w

Figure 6: Visualized weights for the m-bndpgsp-6211 dataset, where wij is represented in the
i−th row ad the j−th column.

20

reduces the transparency of the model, However, it can be partially recuperated
by depicting the discovered weights as a graph. An example for the bndpgsp
dataset can be seen in Figure 6.

The boxplots in Figure 6 represents each weight <ij in the i−th row and the
j−th column. From the graph, we can derive that w32 is generally higher than
w31, indicating that the influence of C3 is larger on C2 then it is on C1.

Assuming that domain knowledge on the dataset is available, a judgment
from a domain expert could lend additional credit to the predictions of the
model.

By benchmarking the performance of the model on a set of benchmark
datasets, we are able to demonstrate the prediction accuracy of the model. How-
ever, its transparency can only be fully explored in applications where domain
knowledge is available and the dataset contains concepts that have somewhat
understood, and preferably causal, relationships.

6. Concluding remarks

In this research, we have presented an FCM-based solution to forecast mul-
tivariate time series. The main achievement of our proposal is a new approach
to learning FCM models. By using the Moore-Penrose inverse we developed the
FCM learning method which works substantially faster when compared with
the genetic learning approach. Moreover, the simulation results have shown
that our proposal is able to significantly outperform standard FCMs applied to
single-step-ahead and multiple-step-ahead forecasting of multivariate time se-
ries. The forecasting accuracy of the proposed model also turned out to be very
competitive compared to traditional techniques for time series forecasting.

The deterministic nature of the learning method provides added value com-
pared to stochastic methods, who typically need multiple executions of the learn-
ing phase in order to obtain a statistically trustworthy result.

An FCM is characterized by a transparent and understandable topology
in which nodes and edges have a specific interpretation that can be useful to
decision-makers. Our FCM-based model aims at competitive prediction accu-
racy without sacrificing the transparent nature of the FCM. The concepts in our
model map directly to a variable in the dataset and do not represent information
granules or other forms of aggregated or derived information. Interpretation of
a node is a prerequisite for the interpretation of edges.

On the one hand, given the dynamic behavior of weights over time, our model
cannot lay claim to a fully transparent weight matrix. However, the changing
weights provide the opportunity to understand how a system evolves, which is
an added value when an FCM iteration has a semantic interpretation.

We encourage future research to enhance the current proposal towards a
fully competitive and transparent FCM for time series prediction. Any ap-
proach preserving the understandability of a single weight matrix in time series
forecasting would be a useful addition to the field. Other potential improve-
ments include, but are not limited to, the incorporation of a dynamic time lag
in during predictions and dynamic extraction of seasonal effects.

21

References

[1] E. Zivot, J. Wang, Vector Autoregressive Models for Multivariate Time
Series, Springer New York, New York, NY, 2006, pp. 385–429.

[2] P. Aboagye-Sarfo, Q. Mai, F. M. Sanfilippo, D. B. Preen, L. M. Stewart,
D. M. Fatovich, A comparison of multivariate and univariate time series
approaches to modelling and forecasting emergency department demand in
western australia, Journal of Biomedical Informatics 57 (Supplement C)
(2015) 62 – 73.

[3] H. Lütkepohl, New Introduction to Multiple Time Series Analysis,
Springer-Verlag, 2007.

[4] R. S. Tsay, Multivariate Time Series Analysis with R and Financial Appli-
cations, John Wiley, 2014.

[5] B. Kosko, Fuzzy cognitive maps, International Journal of man-machine
studies 24 (1) (1986) 65–75.

[6] E. I. Papageorgiou, Review Study on Fuzzy Cognitive Maps and Their
Applications during the Last Decade, in: M. Glykas (Ed.), Business Process
Management, no. 444 in Studies in Computational Intelligence, Springer
Berlin Heidelberg, 2013, pp. 281–298.

[7] J. L. Salmeron, T. Mansouri, M. R. S. Moghadam, A. Mardani, Learn-
ing fuzzy cognitive maps with modified asexual reproduction optimization
algorithm, Knowledge-Based Systems (163) (2019) 723–735.

[8] W. Froelich, E. I. Papageorgiou, M. Samarinas, K. Skriapas, Application of
evolutionary fuzzy cognitive maps to the long-term prediction of prostate
cancer, Appl. Soft Comput. 12 (12) (2012) 3810–3817.

[9] E. I. Papageorgiou, W. Froelich, Application of evolutionary fuzzy cogni-
tive maps for prediction of pulmonary infections, IEEE Transactions on
Information Technology in Biomedicine 16 (1) (2012) 143–149.

[10] E. I. Papageorgiou, W. Froelich, Multi-step prediction of pulmonary infec-
tion with the use of evolutionary fuzzy cognitive maps, Neurocomputing 92
(2012) 28–35.

[11] W. Stach, L. Kurgan, W. Pedrycz, M. Reformat, Genetic learning of fuzzy
cognitive maps, Fuzzy Sets and Systems 153 (3) (2005) 371–401.

[12] K. Poczeta, A. Yastrebov, Analysis of fuzzy cognitive maps with multi-
step learning algorithms in valuation of owner-occupied homes, in: 2014
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2014, pp.
1029–1035.

22

[13] E. I. Papageorgiou, K. Poczeta, C. Laspidou, Application of Fuzzy Cogni-
tive Maps to water demand prediction, in: 2015 IEEE International Con-
ference on Fuzzy Systems (FUZZ-IEEE), 2015, pp. 1–8.

[14] K. Poczeta, A. Yastrebov, E. I. Papageorgiou, Learning fuzzy cognitive
maps using Structure Optimization Genetic Algorithm, in: 2015 Feder-
ated Conference on Computer Science and Information Systems (FedCSIS),
2015, pp. 547–554.

[15] K. Poczeta, Ł. Kubuś, A. Yastrebov, Structure Optimization and Learning
of Fuzzy Cognitive Map with the Use of Evolutionary Algorithm and Graph
Theory Metrics, in: S. Fidanova (Ed.), Recent Advances in Computational
Optimization: Results of the Workshop on Computational Optimization
WCO 2017, Studies in Computational Intelligence, Springer International
Publishing, Cham, 2019, pp. 131–147.

[16] G. Felix, G. Nápoles, R. Falcon, W. Froelich, K. Vanhoof, R. Bello, A review
on methods and software for fuzzy cognitive maps, Artificial Intelligence
Review (2019) 1707–1737.

[17] R. H. Shumway, D. S. Stoffer, Time Series Analysis and Its Applications,
Springer, 2000.

[18] W. Homenda, A. Jastrzebska, W. Pedrycz, Joining concept’s based fuzzy
cognitive map model with moving window technique for time series model-
ing, in: Computer Information Systems and Industrial Management, 2014,
pp. 397–408.

[19] W. Homenda, A. Jastrzebska, W. Pedrycz, Time series modeling with fuzzy
cognitive maps: Simplification strategies - the case of a posteriori removal
of nodes and weights, in: Computer Information Systems and Industrial
Management, 2014, pp. 409–420.

[20] X. L. Wei Lu, Jianhua Yang, The hybrids algorithm based on fuzzy cog-
nitive map for fuzzy time series prediction, Journal of Information and
Computational Science 11 (2) (2014) 357–366.

[21] H. Song, C. Miao, W. Roel, Z. Shen, F. Catthoor, Implementation of fuzzy
cognitive maps based on fuzzy neural network and application in prediction
of time series, IEEE Transactions on Fuzzy Systems 18 (2) (2010) 233–250.

[22] H. Song, C. Miao, Z. Shen, W. Roel, D. Maja, C. Francky, Design of fuzzy
cognitive maps using neural networks for predicting chaotic time series,
Neural Networks 23 (10) (2010) 1264–1275.

[23] J. L. Salmeron, R. Vidal, A. Mena, Ranking fuzzy cognitive map based
scenarios with topsis, Expert Systems with Applications 39 (3) (2012) 2443–
2450.

23

[24] C.-L. Hwang, K. Yoon, Methods for Multiple Attribute Decision Making,
in: C.-L. Hwang, K. Yoon (Eds.), Multiple Attribute Decision Making:
Methods and Applications A State-of-the-Art Survey, Lecture Notes in
Economics and Mathematical Systems, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1981, pp. 58–191.

[25] J. L. Salmeron, W. Froelich, Dynamic optimization of fuzzy cognitive maps
for time series forecasting, Knowledge-Based Systems 105 (2016) 29 – 37.

[26] J. L. Salmeron, A. Ruiz-Celma, A. Mena, Learning fcms with multi-local
and balanced memetic algorithms for forecasting drying processes, Neuro-
computing 232 (2017) 52–57.

[27] W. Froelich, P. Juszczuk, Predictive Capabilities of Adaptive and Evo-
lutionary Fuzzy Cognitive Maps - A Comparative Study, Springer Berlin
Heidelberg, 2009, pp. 153–174.

[28] W. Stach, L. Kurgan, W. Pedrycz, M. Reformat, Genetic learning of fuzzy
cognitive maps, Fuzzy Sets and Systems 153 (3) (2005) 371–401.

[29] W. Stach, L. Kurgan, W. Pedrycz, M. Reformat, Learning fuzzy cognitive
maps with required precision using genetic algorithm approach, Electronics
Letters 40 (24) (2004) 1519–1520.

[30] W. Homenda, A. Jastrzebska, W. Pedrycz, Modeling time series with fuzzy
cognitive maps, in: Proceedings of the 2014 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), 2014, pp. 2055–2062.

[31] J. L. Salmeron, S. A. Rahimi, A. M. Navali, A. Sadeghpour, Medical
diagnosis of rheumatoid arthritis using data driven pso–fcm with scarce
datasets, Neurocomputing 232 (2017) 104–112.

[32] E. Yesil, C. Öztürk, M. F. Dodurka, A. Sakalli, Fuzzy cognitive maps
learning using artificial bee colony optimization, in: FUZZ-IEEE’13, 2013,
pp. 1–8.

[33] B. A. Angélico, M. Mendonça, L. V. R. de Arruda, T. Abrão, Heuristic
search applied to fuzzy cognitive maps learning, in: T. Abrão (Ed.), Search
Algorithms for Engineering Optimization, InTech, 2013, pp. 221–240.

[34] J. L. Salmeron, P. R. Palos-Sanchez, Uncertainty propagation in fuzzy grey
cognitive maps with hebbian-like learning algorithms, IEEE Transactions
on Cybernetics forthcoming.

[35] J. L. Salmeron, E. I. Papageorgiou, A fuzzy grey cognitive maps-based
decision support system for radiotherapy treatment planning, Knowledge-
Based Systems 30 (1) (2012) 151–160.

[36] E. I. Papageorgiou, Learning algorithms for fuzzy cognitive maps - a re-
view study, IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 42 (2) (2012) 150–163.

24

[37] S. Bueno, J. L. Salmeron, Benchmarking main activation functions in fuzzy
cognitive maps, Expert Systems with Applications 36 (3, Part 1) (2009)
5221–5229.

[38] M. Morel, C. Achard, R. Kulpa, S. Dubuisson, Time-series averaging using
constrained dynamic time warping with tolerance, Pattern Recognition 74
(2018) 77–89.

[39] H. Sakoe, S. Chiba, Dynamic programming algorithm optimization for spo-
ken word recognition, IEEE transactions on acoustics, speech, and signal
processing 26 (1) (1978) 43–49.

25

