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Abstract. In many knowledge discovery applications, finding outliers,
i.e. objects that behave in an unexpected way or have abnormal proper-
ties, is more interesting than finding inliers in a dataset. Outlier detection
is important for many applications, including those related to intrusion
detection, credit card fraud, and criminal activity in e-commerce. Several
methods of outlier detection have been proposed, and even many of them
from the perspective of Rough Set Theory, but at the moment none of
them is specifically intended for multi-label datasets. In this paper, we
propose a method that measures the degree of anomaly of an object in a
multi-label dataset. This score or measure quantifies the degree of irreg-
ularity of an object with respect to the dataset. In addition, a method
for generating anomalies in this type of datasets is proposed. From these
synthetic datasets, the efficacy of the proposed method is proved. The
results show the superiority of our proposal over other methods in the
literature adapted to multi-label problems.
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1 Introduction

The detection of outliers (anomalies or irregularities) is a key task in knowledge
discovery. Roughly speaking, the process consists in detecting small groups of
data objects that are deemed “exceptional” when compared with the rest of
data, in terms of certain sets of properties. While there is no a single, generally
accepted, formal definition of an outlier, Hawkins [11] defined an outlier as an
observation that deviates so much from other observations as to arouse suspicions
that it was generated by a different mechanism.

Initially, the main reason for outlier detection was to remove outliers from
the training data, since some pattern recognition algorithms are quite sensitive
to outliers in the data [1]. However, for many applications [4, 10], such as fraud
detection in e-commerce [23, 24], it is more interesting to detect rare events than
to common ones, from a knowledge discovery standpoint.
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Generally speaking, the existing approaches for outlier detection can be clas-
sified into the following five categories [19]: distribution-based approach [25],
depth-based approach [17], distance-based approach [18], density-based approach
[6], and clustering approach [13]. In addition, some authors [14, 16, 15] have em-
ployed the Rough Set Theory (RST) [21] for detecting outliers. For instance,
Shaari et al. [26] proposed a new method to detect outliers using the concept
of Non-Reduct as defined in RST. Chen et al. [8] proposed an outlier detection
algorithm based on the neighborhood rough set model. In [15] the authors pro-
posed a boundary-based outlier detection method, while in [16] they presented
a rough membership function-based outlier detection method, by virtue of the
notion of rough membership function in rough sets.

Although many of these techniques have proven useful and effective in detect-
ing outlier pattern, none of them are specifically intended to deal with multi-label
datasets at the moment. In a multi-label dataset [12], every object x is described
by a number of input features {f1, f2, . . . , fm}, and is associated with a set of
labels {l1, l2, . . . , lk} instead of a single class label. Hence in this type of problem,
an observation can belong to several classes at the same time.

In this paper, we propose a method to detect outliers in multi-label dataset.
With this goal in mind, we rely on the definition of outlier given by Barnet and
Lewis [3]. They defined an outlier as an observation (or subset of observations)
which appear to be inconsistent with the remainder of the dataset. This idea
could be modeled by using the extended RST approach, in which the consistency
of an object is defined from the relation between its predictive and decision part.
In other words, if the object’s similarity class (i.e., the objects that are similar
to it taking into account its predictive characteristics) and its equivalence class
(i.e., the objects that are identical to it taking into account its labels) are similar,
it could be said that it is consistent with respect to the rest of the objects in the
dataset. Then, the degree to which an object is an outlier could depend on the
extent to which the object satisfies this relation. Therefore, our method provides
an anomaly degree for each object in the dataset instead of using the binary
labeling (i.e., whether the object is an anomaly or not). The degree assigned
to each object will be between [0, 1], where 0 denotes a normal object (inlier),
whereas 1 indicates a strong anomaly (outlier).

The evaluation of our detection method is difficult due to the lack of multi-
label datasets with objects that have already been identified as outliers. Thus,
as a second contribution of our paper, we also propose a method that generates
outliers for datasets reported in the multi-label literature. The idea is to build an
object from those objects that are similar to it, and whose irregularity is caused
by the variation of its behavior, in terms of their labels. This method not just
allows assessing our method but also provides the machine learning community
with a procedure to generate more changeling datasets.

The rest of the paper is organized as follows. In Section 2, we briefly intro-
duce the fundamentals of the Rough Sets Theory. Section 3 presents the outlier
generation method in multi-label datasets, and Section 4 describes the outlier
detection method. Experimental results on benchmark problems are discussed
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in Section 5 while Section 6 concludes the paper.

2 Preliminaries on Rough Sets

RST is a methodology proposed in the early 1980’s for handling uncertainty
that is manifested in the form of inconsistent data [21]. The underlying notion
behind the rough set analysis is the indiscernibility of objects. By modeling the
indiscernibility as an equivalence relation, one can partition a finite universe of
objects into a family of pair-wise disjoint subsets.

Let DS = (U , Ψ∪{d}) denote a decision system where U is a non-empty finite
set of objects called the universe of discourse, Ψ denotes a non-empty finite set
of features describing any object in U , and d /∈ Ψ represents the decision class.
In this mathematical formalism, an equivalence class [x]Φ of x ∈ U comprises
the set of objects in U that are deemed inseparable from x according to the
information contained in the feature subset Φ ⊆ Ψ . Two objects are considered
inseparable if they have identical values for all features.

This definition is adequate for nominal features but is too rigid when dealing
with numerical ones, given that marginal differences between two numerical val-
ues could toss two nearly identical objects into different inseparability classes.
This problems can be alleviated in some extent by extending the concept of insep-
arability relation, and replacing the equivalence relation with a weaker binary re-
lation [27]. Equation (1) shows an indiscernibility relation, where 0 ≤ S(x, y) ≤ 1
is a similarity function. The similarity function could be formulated in a variety
of ways. In this study, we assume that S(x, y) = 1− δ(x, y), where δ(x, y) stands
for the Heterogeneous Euclidean-Overlap Metric [30] between x and y. Hence,
the similarity function can be written as follows:

R : xRy ⇐⇒ S(x, y) ≥ ξ1. (1)

This weaker binary relation states that x and y are deemed inseparable as
long as their similarity degree S(x, y) exceeds a similarity threshold 0 ≤ ξ ≤ 1,
and defines a similarity class where R̄(x) = {y ∈ U |yRx}.

3 Outlier Generation in Multi-label Datasets

A pivotal issue in evaluating outlier detection algorithms is the accessibility of
benchmark datasets. In many cases, synthetic datasets are more suitable than
authentic data [20] since we often know in advance what to expect. However, syn-
thetic data have the disadvantage of not having the realism of authentic data.
The method proposed in this section generates synthetic multi-label datasets
with anomalies. In this paper, we use existing datasets in the multi-label litera-
ture, and introduce some new objects labeled as outlier. Those objects already
existing in the dataset were labeled as inliers.
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The method starts by building two sets C(x) and D(x) for each object x in
the dataset. The former consists of all objects that are similar to x taking into
account the input features, while the latter is the set of identical objects to x
by considering the labels. Our approach pursues the fact that insofar as these
two sets are similar, an outlier could be built. The next step consists in building
an object whose feature values are the result of a process of aggregating the
information of the objects contained in C(x), and its decision values are the set
of labels to which most of the objects in D(x) do not belong to. As a result, we
would have an object in the dataset that would be very similar to a set of objects
in terms of its predictive characteristics, and at the same time, very different in
terms of its labels. Algorithm 1 formalizes this idea.

Algorithm 1 Outlier Generation in Multi-label Datasets

1: UsedSet = {}, OutliersSet = {}
2: For each object ∀xi ∈ U : xi 6∈ Used, compute its similarity class C(xi), and its

equivalence class D(xi)
3: Compute the similarity (δ) as done in [9] between the information granules C(xi)

and D(xi) by using the Equation (2),

δi =
|C(xi) ∩D(xi)|

0.5 |C(xi)|+ 0.5 |D(xi)|
(2)

4: if δi ≥ ξ2 then
5: Build a outlier object Outi = [Outcond, Outdec], where Outcond is derived from

an features aggregation of all objects in C(xi), and Outdec = {l1, l2, . . . , lk} with
lk = 0 if most of the objects in D(xi) are labeled with that label, otherwise, lk = 1

6: UsedSet = UsedSet ∪ xi
7: OutliersSet = OutliersSet ∪Outi
8: end if

A similarity threshold (ξ2) is established in order not to use in the construc-
tion of an outlier those objects that have a certain degree of anomaly. This is
based on the criterion that the vicinity of a non-outlier object taking into account
its condition and decision features must be similar.

It should be mentioned that, if the number of outliers is greater than the
number of inliers, then inliers become noise and is not the purpose of our al-
gorithm. We have to take into consideration that the number of outliers must
always be considerably less than the number of inliers.

4 Outlier Detection in Multi-label Datasets

According to [2], a way to define outliers is to consider as such those points at
which a function learned from the dataset results in an unusually large error.
Since the learning process attempts to generalize the relation between inputs
and outputs, it is expected a large error when processing objects having similar
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inputs but very different outputs. In the same way, if an object is very similar to
a subset of objects according to its predictive features, it is reasonable to assume
that it is labeled in a similar way to the objects in the subset, otherwise, this
inconsistency could be considered an anomaly.

The method proposed in this section is based on the above idea, which relies
on the RST consistency. It first builds a prototype from a subset of objects that
are similar to each other. The prototypes represent the typical characteristics of
the objects of a category instead of necessary or sufficient conditions. Prototypes
can be abstractions (e.g., the result of an aggregation process) of universe objects,
or they can be some observed objects themselves.

For each x ∈ U , a similarity class −all objects that are similar to x taking
into account their predictive features− is built. Next, we derive a prototype
for each similarity class such that each prototype includes both predictive and
decision part. This process is performed by using an aggregation operator, which
aggregates the predictive and decision information of the objects in the similarity
class of x. The average operator can be used as the aggregation operator if the
feature value is numeric, while the mode can be used if the value is nominal. As
a result, the resulting prototype will have as decision values the most common
labels of the objects in the similarity class.

Finally, we compute the degree of anomaly of the x object by using the prox-
imity to its associated prototype regarding the decision part. In other words, this
degree will be determined by computing the distance between the set of labels
associated with the object and its prototype. In our case, we used Hamming set
distance [5]. Algorithm 2 formalizes this idea.

Algorithm 2 Outlier Detection in Multi-label Datasets

1: For each object xi ∈ U , compute its similarity class C(xi) using the similarity
relation defined in Equation 1, xi 6∈ C(xi)

2: Build a prototype Pi = [Pcond, Pdec], where Pcond is derived from an features ag-
gregation of all objects in C(xi), and Pdec = {l1, l2, . . . , lk} with lk = 1 if most of
the objects in C(xi) are labeled with that label, otherwise, lk = 0

3: Compute the anomaly degree of xi from HammingDistance(xidec , Pdec)

The degree of anomaly obtained for each object in the dataset could be
used to discern between weak outliers (noise) and strong outliers. A high degree
indicates a significant difference in the behavior of an object, so that it would
be considered a strong outlier. The advantage of this method is that it does not
depend on the classification method used, which allows us to detect the outliers
before any learning process is performed.

5 Results and Discussion

In this section, we carry some numerical simulations to evaluate the performance
of the method of outlier detection proposed in this work. The first step consists in
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creating a group of datasets with outliers using the method proposed in Section
3. With this goal in mind, we adopt 10 multi-label datasets taken from the well-
known RUMDR repository [7]. In these problems (see Table 1), the number of
objects ranges from 207 to 10,491, the number of features goes from 72 to 635,
and the number of labels from 6 to 400. Also, the last column of the table shows
the number of outliers inserted in each dataset.

Table 1: Characterization of datasets used for simulations.
Name # Objects # Nominal features # Numerical features # Labels # Outliers

birds 708 2 258 19 63
emotions 597 0 72 6 4
genbase 679 1186 0 27 17

GnegativePseAAC 1397 0 441 8 5
GpositivePseAAC 521 0 441 4 2
HumanPseAAC 3131 0 441 14 25
PlantPseAAC 985 0 441 12 7

scene 2410 0 294 6 3
VirusPseAAC 213 0 441 6 6

yeast 2495 0 103 14 78

5.1 Performance of the outlier detection method

According to [2], if an anomaly detection method is able to achieve a signifi-
cant difference between the degree of anomaly of the objects labeled as normal
(inliers), and those labeled as anomaly (outliers), we can confirm the quality of
the method. From this point on, we conducted the experimental analysis. The
results shown in this section were obtained by establishing the values of 0.95 and
0.90 for the ξ1 and ξ2 similarity thresholds, respectively. These values have been
arbitrarily selected, so other alternatives are also possible.

Figure 1 portrays the average anomaly degree achieved for each object la-
beled as inliers, and outliers in each dataset. The results show how the proposed
method for all the study cases is able to distinguish to a great extent between an
inlier and outlier object. Since, the method in most cases assigns a value close
to 0 to inliers, and close to 1 to outliers.

Table 2 shows a comparison of the performance of the proposed method
against two algorithms reported in the literature: Exact k-Nearest Neighbor Score
and Average k-Nearest Neighbor Score [2]. Both were adapted to the multi-label
problem, and were selected because they also provide a score of anomaly for
each object in a dataset. The second and third columns show the average of the
anomaly degrees observed in the inliers and outliers, respectively. In addition, the
last column in Table 2 shows the difference between both average values. The
greater this difference, the better the performance, since it achieves a greater
distinction between inlier and outlier objects.
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Fig. 1: Average anomaly degree observed for object labeled as inliers and outliers
in each dataset adopted for simulation.

Table 2: Comparison against other methods in the literature. Boldface denotes
the largest partition obtained between inliers and outliers.

Inliers Average Outliers Average Difference

AverageKnnScore 0.2876294 0.2956309 0.0080015
ExactKnnScore 0.3055845 0.3285543 0.0229698

Proposal 0.0046806 0.5993862 0.5947056

The results suggest that our method is more effective in detecting outliers
since it obtains a higher difference (i.e. over 0.59) than the other methods when
discerning between an anomaly and a regular pattern. The reason for this is
that these methods do not consider the relationship between the features and
the labels in an object. This relation allows for more accurate results, even where
there are objects that are isolated or in dense regions.

Figure 2 illustrates how the objects are distributed according to the anomaly
degree computed by using the previous outlier detection methods. For each ob-
ject in the dataset, we assign a random value between [0, 1] to identify it on the
x-axis, and then associate it with a degree of anomaly (i.e. the y-axis). In this
way, the two colors in the plot represent whether the object is an outlier or not.
Overall, this plot confirms the superiority of our proposal, since it achieves an
outstanding partition between the objects that are outlier, and those that are
not. In other words, most of the outliers (i.e, those objects labeled as “yes”)
have a high associated anomaly degree, and the opposite occurs in the case of
the inliers (i.e, those objects labeled as “no”).



8 M. Bello et al.

0.0 0.2 0.4 0.6 0.8 1.0
Object

0.0

0.2

0.4

0.6

0.8

1.0

An
om

al
y 

De
gr

ee

no
yes

(a) ExactKnnScore

0.0 0.2 0.4 0.6 0.8 1.0
Object

0.0

0.2

0.4

0.6

0.8

1.0

An
om

al
y 

De
gr

ee

no
yes

(b) AverageKnnScore

0.0 0.2 0.4 0.6 0.8 1.0
Object

0.0

0.2

0.4

0.6

0.8

1.0

An
om

al
y 

De
gr

ee

no
yes

(c) Proposal

Fig. 2: Object distribution obtained for the genbase dataset from the anomaly
degree estimated by each method. In this plot, universe objects labeled as “yes”
are outliers while those labeled as “no” are inliers.

5.2 How do outliers affect multi-label classifiers?

In the literature, it is frequently mentioned that the presence of outliers affects
the performance of a classifier, but there are few studies verifying such claim [1].
As part of this study, we evaluated the effect of outliers on multi-label classifiers.
To do this, we estimated the Hamming Loss (HL) value [12, 22] by using a 10-fold
cross validation scheme. The HL metric is probably the most used performance
metric in multi-label scenarios. We considered three classifiers implemented in
MULAN [28]: ML-kNN[32], RAkEL [29], and BP-MLL [31]. Those are considered
state-of-the-art classifiers for multi-label classification.
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Figure 3 shows the average HL values achieved by each method through the
use of those datasets with outliers. It should be noted that for HL, small values
show better results. The results show an increase of the HL values in those
datasets that have anomalies. This confirms the sensibility of these classifiers to
the presence of this type of objects. Similarly, the results indicate that BP-MLL
seems to be slightly more vulnerable in these cases.

0

0.1

0.2

0.3

0.4

0.5

ML-kNN RAkEL BP-MLL

No-Outliers-Datasets Outliers-Datasets

Fig. 3: Average HL values achieved by each classification model for multi-label
datasets with and without outliers.

6 Conclusions

In this paper, we extended outlier detection to multi-label problems using the
Pawlak’s rough set theory. The method proposed is able to estimate the degree
of anomaly of an object with respect to the others composing the dataset. As
an additional contribution, we proposed a method for generating anomalies in
a multi-label dataset, which allows for the validation of our method and other
techniques to detect outliers in this type of problem.

The experimental study shows the superiority of our method over others
existing in the literature, since it is more effective in distinguishing if an object is
an outlier or not. Furthermore, we confirmed that the presence of these anomalies
causes the performance of existing multi-label classifiers to decrease. The main
advantage of the proposed methods is that they do not depend on any particular
classification model. There are however two main issues to be mentioned. Firstly,
the concept of outlier we used in this paper is based on the inconsistency, that is
just a type of uncertainty. Secondly, one might wonder to what extent our outlier
detection method is biased by the way we generate those outliers. Whichever
the case might be, our research is a necessary step into overcoming of outliers in
problems concerning multi-label pattern classification.
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Moreover, as anomaly detection is of great interest in areas such as the fi-
nancial and security sector, where it is essential not only to be able to detect
anomalies, but also to understand what is considered an outliers, we find it
interesting as future work to include the use of Explainable AI techniques.
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