

Understanding the improved electrochemical performance of Ti substituted Li₂MnO₃ <u>A. Paulus^{a,b}, M. Hendrickx^c, M. Batuk^c, G. Reekmans^d, A. M. Abakumov^{c,e}, P. Adriaensens^d, J. Hadermann^c, M. K. Van Bael^{a,b} and A. Hardy^{a,b}</u>

^aHasselt University, Institute for Materials Research (imo-imomec) and imec, division imomec, DESINe team, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium

^bEnergyVille, Thor Park 8320, 3600 Genk, Belgium

^cUniversity of Antwerp, Electron Microscopy for Materials Science (EMAT), Groenenborgerlaan 171, 2020 Antwerpen, Belgium

^aHasselt University, Institute for Materials Research (imo-imomec) and imec, division imomec, NMR team, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium

eCenter for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 143026, Russia

າຍເ

Outline

- Introduction
 - Voltage fade & anionic redox chemistry in Li₂MnO₃
- On the synthesis of Ti substituted Li₂MnO₃ via a facile solution-gel route
- On the structure of pristine Ti substituted Li₂MnO₃ at atomic scale level
 - Mn(IV) and Ti(IV) cation distribution and ordering?
- On the unique electrochemical properties of Ti substituted Li₂MnO₃
- On the structure of Ti substituted Li₂MnO₃ after extented galvanostatic cycling

imec

▶► UHASSELT

IMO-IMOMEC

Conclusion

Crystal structure of Li₂MnO₃

Honeycomb ordering

Illustration layered structure: Mohanty D, J. Power Sources 229 239-248 (2013) Illustration honeycomb ordering: Sathiya, M., Nature Materials (2013)

IMO-IMOMEC

Structural degradation in Li₂MnO₃ as a cathode material for Li-ion batteries upon extended galvanostatic cycling

Illustrations: EMAT Friday Lecture M. Hendrickx

(Expected) stabilization of the structure of Li₂MnO₃ by cationic substitutions

• Why Ti substitution?

- Substitution of Ti for Mn in NMC results in decrease of O₂ loss
- The ionic radii of Ti(IV) (0.605Å) and Mn(IV) (0.53Å) are quite comparable
- Ti-O bond is stronger than Mn-O bond

Synthesis procedure of Li₂Mn_{1-x}Ti_xO₃

Solution-gel synthesis route

- Step 1:
 - Synthesis of aqueous multimetal (peroxo)citrato precursor starting from aq. Li citrato (+excess), Mn(NO₃)₂ and Ti(IV) (synthesized starting from Ti(IV) isopropoxide precursor) solutions
- Step 2:
 - Gelation (at 60° C) (homogeneous gel) and pre calcination (at 200° C) under atmospheric conditions
- Step 3:
 - Calcination and subsequent anneal in tube furnace
 - Step 1: 500° C (dynamic O₂ atmosphere)
 - Step 2: After cooling down to RT: Grinding by mortar and pestle
 - Step 3: 900° C (dynamic dry air atmosphere during heating step)

ICP-AES: no Li deficiency

PXRD characterization of Li₂Mn_{1-x}Ti_xO₃

- No secondary phases detected
- Increase in unit cell parameters and volume due to ionic radius Ti(IV) (0.60Å) > Mn(IV) (0.53Å) (monoclinic, O_h)

	LMO (x=0)	LMTO-1 (x=0.1)	LMTO-2 (x=0.2)	LMTO-3 (x=0.3)
a (Å)	4.9342(6)	4.9466(6)	4.9554(8)	4.9496(6)
b (Å)	8.5335(3)	8.5533(3)	8.5784(5)	8.5998(1)
c (Å)	5.0226(0)	5.0344(4)	5.0556(0)	5.0542(2)
β (°)	108.879(9)	108.987(8)	109.331(4)	109.113(1)
V(ų)	200.100(0)	201.415(1)	202.794(3)	203.275(5)
	umec			

HAADF-STEM & STEM-EDX characterization of Li₂Mn_{1-x}Ti_xO₃

- Ti & Mn atomic percentages close to expected stoichiometry
- Overall homogeneous TM distribution
- Few enriched Ti (surface) areas
- Few TiO₂ particles for $x \ge 0.2$
- O, C containing particles
 - Post-synthesis contamination

	Expected Mn [%]	Expected Ti [%]	EDX Mn [%]	EDX Ti [%]
LMTO-1	90	10	90.9(8)	9.1(8)
LMTO-2	80	20	82.2(11)	17.8(11)
LMTO-3	70	30	74.3(32)	25.7(32)

SAED & HAADF-STEM characterization of LMO

- Monoclinic C2/m symmetry
- [010]: O3 stacking of close-packed oxygen layers
- [100]/[110]: stacking faults along c direction

SAED & HAADF-STEM characterization of LMTO-2

- Monoclinic C2/m symmetry ٠
- [010]: O3 stacking of close-packed oxygen layers •
- [100]/[110]: stacking faults along c direction •

►► UHASSELT

IMO-IMOMEC

HAADF-STEM line profiles for LMO & LMTO-2

Comparable cation disorder

7Li NMR characterization of LMO

Chemical shifts in agreement with literature

unec

► UHASSELT

Illustration: Serrano-Sevillano, J. et al., Inorg. Chem. 58, 8347-8356 (2019)

7Li NMR characterization of LMTO-2

Absence of peak in 1500-1700 ppm region: intimidate Mn(IV) and Ti(IV) distribution

Raman spectroscopy characterization of LMO & LMTO-1 & LMTO-2

Distortion of MO₆ octahedra

Galvanostatic cycling on LMO & LMTO-2

Higher discharge capacities for LMTO-2 at elevated cycle numbers

dQ/dV vs V for LMO & LMTO-2

- Oxidation peak **3** for LMTO-2 more pronounced
 - Higher contribution of irreversible oxygen release?

Coulombic efficiency & discharge capacity vs cycle number for LMO & LMTO-2

- Lower Coulombic efficiencies for LMTO-2
 - Confirms higher irreversible oxygen release (to be confirmed by DEMS)

SAED & HAADF-STEM of LMO

After 50 charge/discharge cycles at 0.1C

- SAED
 - Inhomogeneous structural degradation
- HAADF-STEM
 - Amorphous surface layer: 0-10 nm

unec

SAED & HAADF-STEM of LMTO-2

After 50 charge/discharge cycles at 0.1C

- SAED
 - Inhomogeneous structural degradation
- HAADF-STEM
 - Amorphous surface layer: few nm entire amorphous particles

unec

Conclusion

- Structure pristine materials
 - C2/m symmetry and honeycomb order maintained upon Ti substitution
 - Homogeneous Mn, Ti atomic scale distribution
- Electrochemical characterization
 - Higher discharge capacities for LMTO-2 due to increased oxygen release
- Structure after galvanostatic cycling
 - Higher amorphization for LMTO-2
 - Mechanism behind unusual electrochemical behaviour of Ti substituted Li₂MnO₃ described in manuscript in preparation

Acknowledgements

M. von Holst (Hasselt University; preliminary Le Bail refinement) Dr. O. M. Karakulina (University of Antwerp; PXRD measurements)

Funding:

Project number G040116N

