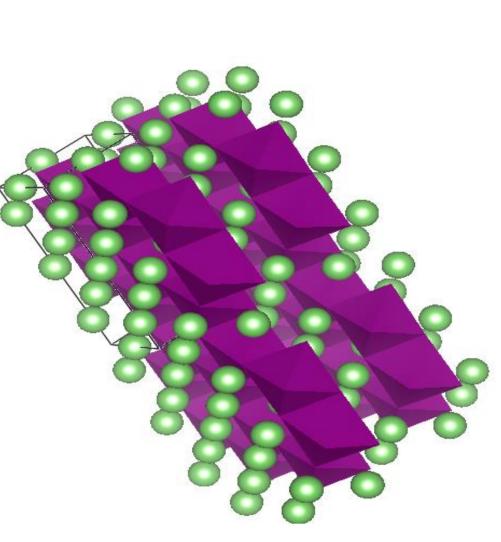
Carbothermal reduction synthesis of Li_xMo_yO_z/C composite material as a cathode material for Li-ion batteries

Andreas Paulus^{a,b} · Miriam von Holst^a · Marlies K. Van Bael^{a,b} · An Hardy^{a,b}

^aHasselt University, Institute for Materials Research (imo-imomec) and imec, division imomec, Partner in EnergyVille, Inorganic and Physical Chemistry, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium ^bEnergyVille, Thor Park 8320, 3600 Genk, Belgium

Keywords: layered metal oxides, inorganic synthesis, Li-ion batteries

Introduction


Li₂MnO₃ is extensively investigated as a cathode material for Li-ion batteries. However, oxygen loss (oxygen will oxidize prior to Mn⁴⁺ to Mn⁵⁺) resulting in irreversible structural changes decreases the electrochemical performance.

The layered disordered NaFeO₂ type structured cathode material Li_2MoO_3 has several advantages over Li_2MnO_3 .

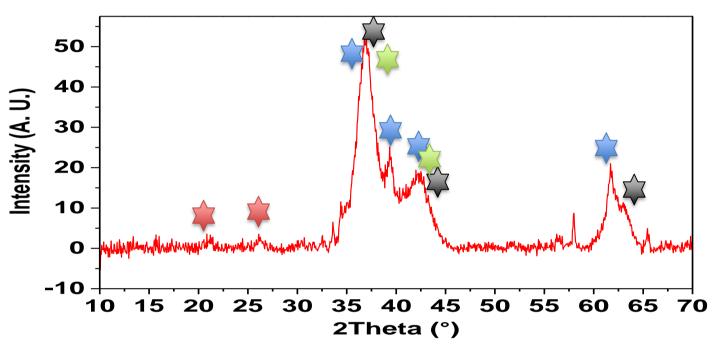
- Accessibility of the Mo⁴⁺/Mo⁶⁺ redox couple
- Improved kinetics due to the higher electronic conductivity
- Lower oxygen evolution from the cathode's active material oxygen sublattice.

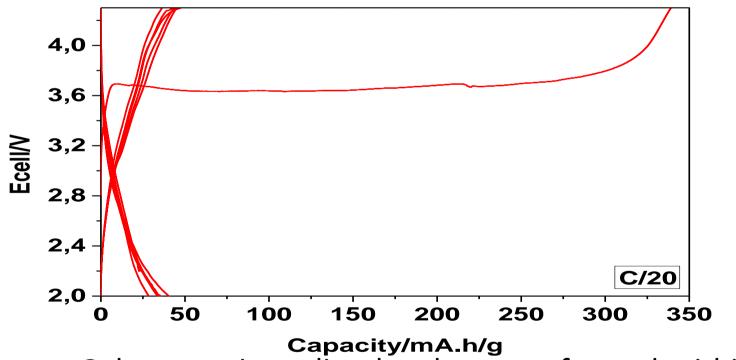
Synthesis of Li₂MoO₃ in literature:

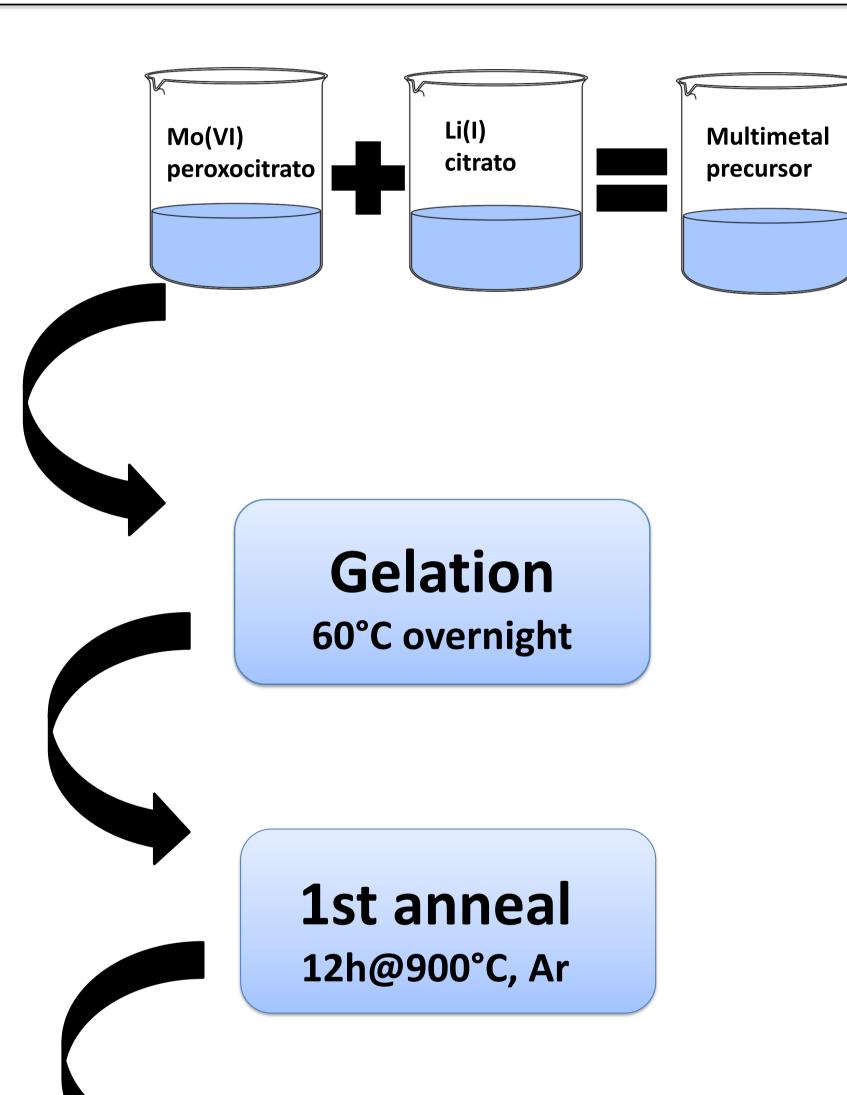
- Reducing Li_2MoO_4 under Ar/H_2 flow¹ or N_2/H_2 flow².
 - (-) The use of H₂ comprises severe safety issues.
- Solid state reaction between Li_2CO_3 and MoO_2 with acetylene black as an additive under inert Argon atmosphere³
 - (+) Excluding the use of H₂.
 - (-) Extended anneal period of 24 hours at 900°C or 1000°C.

Fig. Schematic structure of layered Li-TM oxide drawn with VESTA

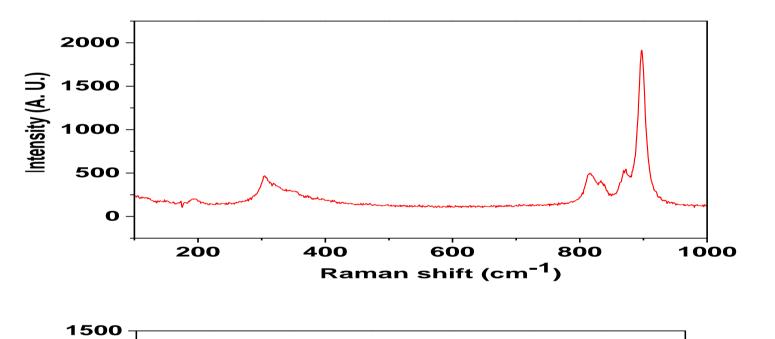
INO-INOMEC

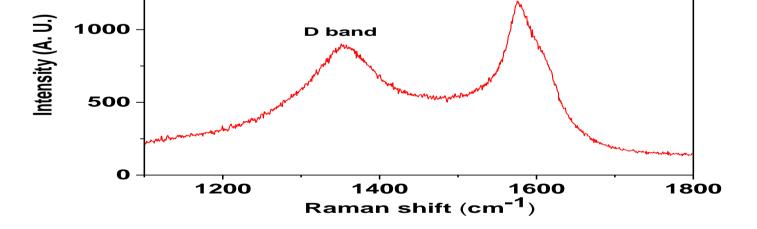

unec


Here, we report the synthesis of $Li_x Mo_y O_z/C$ composite materials via a carbothermal reduction method with organic ligands serving as the carbon source, requiring an anneal period of 12 hours at 900°C under Ar.


Results and discussion

After 1st anneal period


- The PXRD pattern indicates Li₂MoO₃ (indicated with black stars) Li₄Mo₅O₁₂ (indicated with green stars) as major Li-Mo-O phases, hinting the ability to effectively reduce Mo⁶⁺ to Mo⁴⁺ by our synthesis method.
- Li₂MoO₄ present as minor admixture phase (indicated with red stars)
- MoC/Mo₂C (indicated with blue stars) present as admixture phases


After 2nd anneal period

- 10 15 20 25 30 35 40 45 50 55 60 65 70 2Theta (°)
- The PXRD pattern indicates the presence of the same major Li-Mo-O phases as after first anneal (Li₂MoO₃ and Li₄Mo₅O₁₂)
- Indication of higher content of the admixture phases MoC/Mo₂C.

- Galvanostatic cycling has been performed within the 2.0V-4.3V window at C/20.
- The initial galvanostatic charging curve has a similar shape as compared to literature for Li₂MoO₃, including the prominent potential plateau around 3.7V.
- Irreversible capacity during initial charge/discharge cycle probably ascribed to decomposition of MoC/Mo₂C.

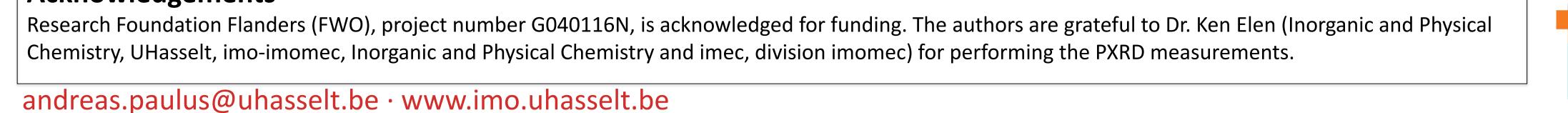
 The top Raman spectrum is characteristic for layered Li-Mo-O.

G band

• The bottom Raman spectrum indicates the presence of amorphous carbon.

• Formation of Li-Mo-O/C composite

Conclusion


- Via carbothermal reduction synthesis a Li-Mo-O/C composite material has been obtained with Li₂MoO₃, Li₄Mo₅O₁₂, MoC, Mo₂C and amorphous carbon as main phases.
 - Ability to effectively reduce Mo^{6+} present in the multimetal precursor to Mo^{4+} under Ar, avoiding the use of H_2 .
- PXRD hints less MoC/Mo₂C as an unwanted admixture phase after the first anneal step as compared to after the second anneal step.
- Further research is required to gain understanding of the origin(s) for the high irreversible capacity in the initial charge/discharge step and to further reduce the content
- of molybdenum carbide.

References

- 1. Self. E.C. et al., Chem. Mater. 30, 5061-5068 (2018)
- 2. Yu, Z. et al., Int. J. Electrochem. Sci. 13, 4504-4511 (2018)
- 3. Kumakura S. et al., Phys. Chem. Chem. Phys. 18, 28556-28563 (2016)

Acknowledgements

