
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Natural language techniques supporting decision modelers

Peer-reviewed author version

Arco, Leticia; NAPOLES RUIZ, Gonzalo; VANHOENSHOVEN, Frank; Lara, Ana

Laura; Casas, Gladys & VANHOOF, Koen (2021) Natural language techniques

supporting decision modelers. In: Data mining and knowledge discovery, 35(1), p. 290-320.

DOI: 10.1007/s10618-020-00718-4

Handle: http://hdl.handle.net/1942/32589

Noname manuscript No.
(will be inserted by the editor)

Natural Language Techniques Supporting Decision
Modelers

Leticia Arco · Gonzalo Nápoles · Frank
Vanhoenshoven · Ana Laura Lara ·
Gladys Casas · Koen Vanhoof

Received: date / Accepted: date

Abstract Decision Model and Notation (DMN) has become a relevant topic
for organizations since it allows users to control their processes and organiza-
tional decisions. The increasing use of DMN decision tables to capture critical
business knowledge raises the need for supporting analysis tasks such as the
extraction of inputs, outputs and their relations from natural language de-
scriptions. In this paper, we create a stepping stone towards implementing
a Natural Language Processing framework to model decisions based on the
DMN standard. Our proposal contributes to the generation of decision rules
and tables from a single sentence analysis. This framework comprises three
phases: (1) discourse and semantic analysis, (2) syntactic analysis and (3) de-
cision table construction. To the best of our knowledge, this is the first attempt
devoted to automatically discovering decision rules according to the DMN ter-
minology from natural language descriptions. Aiming at assessing the quality
of the resultant decision tables, we have conducted a survey involving 16 DMN

L. Arco
AI Lab, Computer Science Department
Vrije Universiteit Brussel
Pleinlaan 9, 1050 Brussels, 3rd floor, Belgium
E-mail: larcogar@vub.be

L. Arco · G. Nápoles · F. Vanhoenshoven · K. Vanhoof
Business Informatics Group, Faculty of Business Economics
Hasselt University
Diepenbeek Kantoor A50, Hasselt, Belgium

A. L. Lara
AI Lab, Computer Science Department
Central University of Las Villas
Carretera a Camajuańı km 5 1/2, Santa Clara, Villa Clara, Cuba

G. Casas
Weast Coast University
Miami Campus, 9250 NW 36th St, Doral, FL 33178, USA

2 Leticia Arco et al.

experts. The results have shown that our framework is able to generate seman-
tically correct tables. It is convenient to mention that our proposal does not
aim to replace analysts but support them in creating better models with less
effort.

Keywords Decision Modeling and Notation · Decision Rules · Decision
Tables · Natural Language Processing

1 Introduction

To facilitate communication on and analysis of process logic and decision logic,
businesses often rely on representations such as process diagrams and decision
tables. The graphical Business Process Model and Notation (BPMN)1 that
has been developed explicitly for process modeling has been recently comple-
mented with the addition of Decision Modelling and Notation (DMN)2, aimed
explicitly at decision modeling. It is the job of a business analyst to create
these processes and decision models based on the knowledge it has gathered
from, for example, observations, interviews, policy documents, regulatory doc-
uments and legacy code (IIBA, 2009).

Gathering the business rules needed to model the decisions has been coined
rule harvesting (Boyer and Mili, 2011) and can be a cumbersome and compli-
cated task (Figl et al., 2018). Contrary to decision modeling, process modeling
has seen the emergence of some techniques that support the analysts. Pro-
cess mining has emerged as a technique to avoid subjective interpretations
and discover process logic in historical data (Van Der Aalst, 2011). In paral-
lel, Natural Language Processing (NLP) has been applied to discover process
flows from written documentation (Riefer et al., 2016).

The task of modelers is challenging since they have to transform ideas, ob-
servations, and discussions into a correct representation. Thus, there are vari-
ous requirements for a person to transition from a novice to a DMN modeler
expert: learning the language and its concepts, developing patterns of captur-
ing recurring problems, and deliberate training over a more extended period
(Figl et al., 2018). Nevertheless, support for modeling decisions has, until now,
received significantly less attention in the academic field. Data mining tech-
niques are indeed applied to discover decision logic. However, their primary
goal is mostly to produce decision outcomes themselves rather than provid-
ing an interpretable representation of the decision logic. To the best of our
knowledge, academics had not yet devoted research to automatically discov-
ering decision rules according to the DMN terminology from natural language
descriptions. It would be convenient to develop a framework that supports
modelers to create DMN decision tables and diagrams. Initializing the deci-
sion discovery phase from natural language descriptions would speed up the
process.

1 http://www.omg.org/spec/BPMN/2.0/
2 http://www.omg.org/spec/DMN/

Natural Language Techniques Supporting Decision Modelers 3

In this paper, we create a stepping stone towards implementing an NLP
framework to model decisions based on the DMN standard. Our proposal con-
tributes to the generation of decision rules and tables from a single sentence
analysis. The framework comprises three phases: (1) discourse and semantic
analysis, (2) syntactic analysis and (3) decision table construction. In phases
1 and 2, we directly apply existing NLP techniques, whereas phase 3 is con-
ceptually novel. The framework is meant as a supporting tool and does not
entirely replace a business analyst in the modeling task but helping them to
create better models in less time. The main contribution of this paper is that
we identify and extract the decision rule components from English sentences,
without the need for the strict supervision of experts during the rule formal-
ization process. To do this, we design novel algorithms that generate decision
rules from the syntax trees and dependency relationships. It is worth men-
tioning that our proposal –beyond DMN as an underlying model– comprises
a suitable starting point to cope with other kinds of problems.

The rest of this paper is organized as follows. Background about DMN and
its purpose within BPM is explained in Sect. 2. The principal approaches for
extracting rules from texts are presented in Sect. 3. Sect. 4 describes the NLP
framework for supporting decision modeling from single sentence analysis. The
third phase of our framework is the most complex one and it can be considered
the cornerstone supporting our study. Sect. 5 provides its detailed description.
Sect. 6 presents the evaluation of our proposal based on the survey results
applied to expert modelers. Towards the end, we provide concluding remarks
and future research directions.

2 Decision Modeling and Notation and its purpose within Business
Process Modeling

Organizations are continuously trying to analyze and improve their business
processes (Corradini et al., 2018; De Smedt et al., 2018; Kuss et al., 2018;
Satyal et al., 2018). The attempts to improve processes can be supported by
representing process knowledge in a structured and standardized format, such
as the BPMN standard. Most processes contain decisions; however, BPMN is
not very suited to model these decisions. Modeling decisions in BPMN can be
made using gateways, which would force decisions to be procedural rather than
declarative. Moreover, by adding decisions as gateways, the diagram grows in
size and can become hard to understand. Lastly, the procedural logic applied
and expressed in BPMN modeling does not trigger the user to think about
decisions in a more declarative way. Therefore, rather than being unable to,
the user is unlikely to decouple decisions and identify sub-decisions. To fill
these gaps, DMN emerged as a recent Object Management Group (OMG)
standard (Calvanese et al., 2018; De Smedt et al., 2017; Taylor et al., 2013).
It complements BPMN, which does not model the decision logic in detail,
with a notation for modeling decision logic and dependencies between deci-
sions and data elements. DMN has incorporated many principles from the

4 Leticia Arco et al.

Decision Model (Goldberg and Halle, 2009) for the construction of its decision
requirement diagram as well as its decision tables. There are, however, many
ways of creating decision tables that are not DMN-compliant. For example,
Semantics of Business Vocabulary and Rules (SBVR)3 and Predictive Model
Markup Language (PMML)4. Both also cover parts of decision modeling, but
neither is considered to be part of DMN (Silver, 2016). Other standards for
expressing rules, such as RuleSpeak5, which are heavily focused on structuring
decision logic in text format, are not part of DMN either.

DMN advocates the decomposition of the subsequent decision logic into
simple, atomic sub-decisions. DMN involves an unequivocal expression lan-
guage oriented to business users rather than technical experts. Furthermore,
it can express links between decisions, knowledge models such as data mining
models and information structures. This standard aims to combine under-
standability with semantic richness (i.e., the ability to model complex situa-
tions). As mentioned, DMN is supported as a global standard and therefore,
software vendors commonly accept it. This is evidenced by the inclusion of
DMN in software tools such as Signavio6 and Trisotech7.

It is crucial to notice the added value of a decision model compared to a
text-based requirement document. A decision model communicates through
structured diagrams and tables, reducing the ambiguity and making the de-
cision more straightforward to implement in an information system. Efforts
have been made to harvest business rules from legacy code (Paknikar et al.,
2014; Wang et al., 2004), including some patented techniques (Garza, 2014).
Whereas legacy code typically adheres to a structural format, the same can
not be said about decisions that are expressed in policy documents. Obtain-
ing DMN-compliant decision models from text documents involves challeng-
ing, knowledge-dependent, time-consuming and labor-intensive tasks, espe-
cially when large volumes of texts need to be transformed into a structured
representation. Such tasks create a significant bottleneck between the seman-
tic content of the source material (expressed in natural language) and the
computer-based, automatic use of that content. To address the bottleneck,
NLP techniques can be applied.

The literature includes several approaches that use NLP and text mining
techniques for supporting business process modeling (Caporale, 2016; Friedrich
et al., 2011; Ghose et al., 2007; Gonçalves et al., 2009; Riefer et al., 2016; Sinha
and Paradkar, 2010). Although some of these models cover the problem of ob-
taining BPMN models from natural language process descriptions, the results
are still insufficient. All these approaches face the challenge related to the
flexible and inherently ambiguous nature of natural languages. Humans have
the ability to exploit and interpret such characteristics (van der Aa et al.,
2017). Nevertheless, the automatic interpretation power mostly depends on

3 https://www.omg.org/spec/SBVR/About-SBVR/
4 http://dmg.org/pmml/v4-3/GeneralStructure.html
5 http://www.rulespeak.com/en
6 https://www.signavio.com/
7 https://www.trisotech.com/

Natural Language Techniques Supporting Decision Modelers 5

the level of linguistic analysis chosen (Liddy, 1998). Most studies apply tech-
niques related to the lexical, syntactic, semantic and discourse levels. However,
graphemic and lexical levels are not enough for supporting modeling from texts
since these levels only use statistical facts about the text. On the other hand,
they cannot entirely capture the meaning of documents because there is only
a weak relationship between term occurrences and document content. In con-
trast, syntactic, semantic and pragmatic levels try to capture internal relations
and more semantic content by exploiting an increasing amount of contextual
information. Thus, this challenge demands go in deep in the syntactic, se-
mantic and discourse analysis. On top of that, when it comes to producing
DMN models from textual descriptions of decisions, the literature becomes
significantly scanter. For this reason, in the next section, we will describe dif-
ferent approaches for extracting rules in diverse textual application domains.
Our goal is to identify which tools, levels of linguistic analysis, resources and
pipelines could be useful for discovering decision rules.

3 Approaches for extracting rules from texts

Extracting patterns, relationships, and rules from textual information is an
issue that has been researched intensely since the 1990s. The first approaches
aimed at extracting relationships between elements from natural language
texts were AutoSlog (Riloff, 1993), PALKA (Parallel Automatic Linguistic
Knowledge Acquisition) (Moldovan, 1995), LIEP (Learning Information Ex-
traction Patterns) (Huffman, 1996), CRYSTAL (Soderland, 1997), WHISK
(Soderland, 1999), RAPIER (Robust Automated Production of Information
Extraction Rules) (Califf and Mooney, 1999) and (LP)2 (Ciravegna, 1999).
Most of these systems perform syntactic analysis, recognizers for domain ob-
jects such as person and company names, and discourse processing that makes
inferences across sentence boundaries. However, a syntactically-informed rep-
resentation structure faces the problem of linguistic variations, the phenomenon
in which similar semantic content may be expressed in different surface forms.
For that reason, other analyses are necessary for some applications. Unfortu-
nately, most of them are domain-specific, need annotated corpus or required
human interaction. Most successful algorithms make scarce use of NLP, thus
tending to avoid any generalization over the flat word sequence. Thus, they do
not identify the relations among words or phrases, because the relations be-
tween different patterns was not investigated yet. Establishing such relations
is desirable for both the efficiency of representation and the flexibility of inter-
pretation. In addition, it was not usual to use other knowledge sources such as
dictionaries or other lexical resources. These systems often rely on approaches
based on basic NLP (e.g., using parsing) and require the manual development
of resources (e.g., grammars and finite-state automates). Other systems use
machine learning techniques, such as inductive and relational learning.

Despite the identified disadvantages, those initial experiences have been
successfully used in more recent systems that attempt to discover patterns

6 Leticia Arco et al.

and their relationships from textual documents. Although the extraction of
patterns from texts arose from the need to enrich information retrieval sys-
tems, there are many real applications where extracting patterns and their
relationships from texts is of great importance. For instance, a system for
extracting protein-protein interactions from scientific texts was proposed in
(Ono et al., 1999).

DIRT (Discovery of Inference Rules from Text) (Lin and Pantel, 2001) is
an unsupervised method based on dependency trees for discovering inference
rules from text. It essentially considers that, if two paths tend to link the same
sets of words, then their meanings are similar. Since a path represents a binary
relationship, it generates an inference rule for each pair of similar paths. DIRT
considers few dependence relations and it uses them for discovering similar
meanings.

A better understanding of the clinical narrative text might be gained by
identifying and extracting meaningful relationships between the identified en-
tities and events (Demner-Fushman et al., 2009). Another kind of rule (cause-
effect relation) is extracted from natural language texts (Sorgente et al., 2013).
This approach first identifies a set of plausible cause-effect pairs through a set
of logical rules based on the Stanford dependencies relations between words
(Marneffe and Manning, 2010). For each lexico-syntactic pattern, a regular
expression is defined to recognize the sentences that contain such a pattern.

A framework for the automatic rule extraction from online texts is pre-
sented in (Hassanpour et al., 2011). This approach starts with existing domain
knowledge in the form of Web Ontology Language (OWL) ontologies and Se-
mantic Web Rule Language (SWRL) rules and applies NLP and text-matching
techniques to deduce classes and properties. The authors apply the Stanford
Parser to each sentence. Then, they use the obtained dependencies to help find
the relationships between terms in the text.

Several works have been developed to extract patterns and relationships
from legal documents and regulations (Dragoni et al., 2015, 2016; Papaniko-
laou, 2012; Wyner and Peters, 2011). In (Wyner and Peters, 2011) the authors
proposed an approach for identifying and extracting conditional and deontic
rules, specifying the antecedents, consequences, agents, themes, actions, and
exceptions. They identify and extract high-level components of rules from reg-
ulations in English, thus applying and extending widely available NLP tools
(General Architecture for Text Engineering (GATE)8 and Stanford Analyser9).
Rules make use of syntactic analyses and lexical-semantic information. To as-
sociate grammatical roles with thematic roles, the authors use grammatical
information from the Stanford Parser (passive annotation and dependency in-
formation) along with information on thematic roles derived from VerbNet10.
This approach identifies and extracts relevant elements; however, it still has
limitations in extracting relationships between identified elements.

8 https://gate.ac.uk/
9 https://nlp.stanford.edu/

10 https://verbs.colorado.edu/verbnet/

Natural Language Techniques Supporting Decision Modelers 7

In (Papanikolaou, 2012), the author proposed an NLP tool to automati-
cally analyze and extract information from legal and regulatory texts. This
approach requires experts to highlight and mark up portions of texts that are
to be translated to machine-readable rules. As evidenced in several approaches,
automatically identifying in a textual corpus the fragments corresponding to
the rules to be described requires a complex discourse analysis. Besides, a
database of concepts and relationships was manually built. In (Dragoni et al.,
2015), a framework for the automated rule extraction from legal texts is pre-
sented. It uses two ontologies, one of them indicates the lexicon and the other
one expresses the structure. The framework combines the linguistic informa-
tion provided by WordNet11 with a syntax-based rule extraction by exploiting
the Stanford Parser, and a logic-based extraction of dependencies between
chunks of such texts by using the Combinatory Categorial Grammar (CCG)
parser tool12. This proposal has the disadvantage that the terms used in the
legal text and those used in the rules are not aligned.

A polyvalent framework for acquiring more complex relationships from
texts while coding them as rules is presented in (Boufrida and Boufaida, 2014).
This approach starts with existing domain knowledge represented as OWL on-
tology and SWRL rules by applying NLP tools and text-matching techniques
to deduce different atoms as classes and properties. This rule extraction sys-
tem requires two inputs: the existing knowledge and free texts. This approach
does not exploit the main benefits of NLP since it only uses the part-of-speech
(POS) tags of the terms and defines elementary patterns to identify the re-
lationships between them by a triple [noun modal verb]. Semantic analysis is
done in order to bridge the semantic gap between the terms and the vocabulary
of the ontology.

In (Liu et al., 2015), the authors proposed a new approach to extract en-
tities and aspects from opinion texts. This work uses dependency relations
between opinion words and aspects. Rules are obtained based on syntactical
dependency relations. The new task, Emotion-Cause Pair Extraction (ECPE),
which aims to extract the potential pairs of emotions and corresponding causes
in a document, is proposed in (Xia and Ding, 2019). A manually annotated
corpus is required for training the model. Another supervised method for ex-
tracting relations from textual data is presented in (Lima et al., 2016). A set
of rules is induced from an annotated learning corpus given as input. The set
of the induced rules is applied to the candidate relation instances from an
unseen document. This process identifies relation instances that are used for
populating the domain ontology. The method currently relies on shallow syn-
tactic parsing of sentences, which does not consider semantic aspects relating
entities to verbs.

The closest proposal to our paper was published in (Bajwa et al., 2011).
The proposal entitled NL2SBVR takes two inputs: the English specification
of a business rule and the Unified Modeling Language (UML) class model,

11 https://wordnet.princeton.edu/
12 http://groups.inf.ed.ac.uk/ccg/software.html

8 Leticia Arco et al.

which provides a business domain. A rule-based parser is used to process the
POS tagged information to extract basic SBVR elements, e.g., noun concept,
fact type, etc. The SBVR vocabulary is mapped to an SBVR rule using a rule-
based approach. Thus, this approach does not need to consider the dependency
relation because it only extracts the basic elements from the natural language
text. Then, it extracts their relations from the UML class model. However, this
approach is not able to obtain business rules only considering the natural lan-
guage text description, while also being domain-dependent. There have been
other efforts to formalize natural language regulations for SBVR (Fortineau
et al., 2013; Lévy and Nazarenko, 2013).

The main disadvantages detected in these previous works are: i) most ap-
proaches do not exploit the main benefits of NLP since they use a limited
number of types of relationships among terms, ii) most of them are domain-
dependent or need additional information such as ontologies, diagrams or mod-
els, and iii) some of them require human interaction. The main conclusion we
can obtain from these related works is that most approaches are based on
dependency trees, and they are mostly based on the Stanford dependencies
representation (Marneffe and Manning, 2010). As a final remark, it should
be noticed that each referenced approach presents a proposal adjusted to the
type of rules to be obtained, the application domain, and the main goals when
extracting the relationships. Therefore, each approach reuses a few methods
from others.

Considering the advantages and disadvantages of the approaches described
above, we should determine which tasks are necessary to extract the desired
patterns from textual decision descriptions. Sentence breaking, POS tagging
and parsing are the most useful syntax subtasks for supporting rule extrac-
tion. Determining the syntax tree of each sentence helps identify patterns and
their connections in decision descriptions. At the same time, Named Entity
Recognition (NER), natural language understanding, and relation extraction
are semantics subtasks also frequently used. The following section explains
how these tasks, subtasks, and the corresponding techniques are amalgamated
to bring our proposal to life.

4 A new framework for supporting decision modeling from texts

In this section, we introduce a new NLP framework that contributes to the
generation of decision rules from a single sentence analysis. Our proposal sup-
ports the construction of decision tables through three phases, namely: (1)
discourse and semantic analysis, (2) syntactic analysis and (3) decision table
construction. In phases 1 and 2, we directly apply existing NLP techniques,
whereas phase 3 is conceptually novel. Several algorithms were designed that
allow generating the decision rules from the outputs of the first two phases.

DMN’s two most prominent features are the Decision Requirements Dia-
gram (DRD) and the decision tables (Silver, 2016). When processing single
sentences, the creation of the DRD is relatively trivial and may seem redun-

Natural Language Techniques Supporting Decision Modelers 9

dant. For that reason, to accomplish our goal, we will focus on decision tables.
In short, a decision table is a tabular representation of a set of related input
and output expressions, organized into rules indicating which output entry
applies to a specific set of input entries. As an illustrative example, Fig. 1
shows the decision table corresponding to the description: “If the keys of the
insured home were stolen, we would also pay the cost of replacing the locks.”.
This example illustrates some challenges of automatic decision modeling since
a certain level of semantic understanding would be required (e.g., the expert
modeler took the liberty of using the word “refund” instead of “pay”.).

Fig. 1 Example of a decision table.

The first challenge is determining the input and output values, and the
decision logic from the natural language descriptions in an automated fashion.
To cope with this issue, it is necessary to consider the main linguistic charac-
teristics of the decision texts. We examine many documents where decisions
were presented; for instance, documents where working procedures contain
business rules, policy documents from insurance companies, rules to grant
research funding, rules of some sports, and codes of conduct of diverse compa-
nies. When analyzing these diverse decisions, we were able to extract the main
linguistic characteristics of these texts, which we summarized in Table 1. The
second column in Table 1 indicates the features supported by our proposal.

Table 1 Main linguistic characteristics of decision texts.

Main characteristics Supported

Have long sentences of several coordinated/subordinate clauses 3
Include sentences that do not contribute to the decision modeling 7
Use list punctuation, including enumerations, colons, etc. 7
Contain a mix of punctuation and alpha-numeric characters 3
Use more than one sentence for expressing one decision 7
Express more than one decision in one sentence 3
Describe the same decision in different parts of the text 7
Use parentheses for describing examples, condition values, etc. 3
Use co-reference (e.g., different terms for the same entity) 3
Express some conditions in a negative way 3
Contain embedded exception clauses 3
Contain active and passive sentences 3

10 Leticia Arco et al.

These characteristics impose challenges when identifying the elements needed
to obtain the decision tables such as the glossary, variable names, output la-
bels, input expressions, input and output values, decision rules and compound
outputs. The proposed solution (see Fig. 2) combines NLP techniques to ana-
lyze decision descriptions in the discourse, semantic and syntactical levels and
procedures which mostly adopt syntactic dependencies between terms for con-
structing the decision tables. This amalgamation results in an unsupervised
proposal that exploits the NLP advantages to obtain decision tables from de-
cision descriptions in natural language automatically.

Obtain POS tags

Determine the syntax tree

Extract dependencies

Identify antecedent-

consequent pairs

Extract variables, input

and output values

Decision table construction

Description

3

Input Output

1

2

Syntactic analysis

Identify sentences

Tokenize sentences

Detect named entities

1
Discourse and semantic analysis

Apply anaphora resolution techniques

2

Fig. 2 A new proposal for supporting decision modeling from texts.

Our proposal requires the use of tools that can provide a grammatical
structure of the text, which can be exploited for inferring the different com-
ponents of descriptions. By analyzing the state-of-the-art, as shown in Sect.
3, we noticed that one of the most prominent libraries is the one provided

Natural Language Techniques Supporting Decision Modelers 11

by Stanford NLP. The Stanford Parser can determine a syntax tree, thus dis-
playing the dependencies between the words of the sentence through the tree
structure (Melkuc, 1988). Additionally, each word and phrase is labeled with
an appropriate POS tag or phrase-tag. The tags that the Stanford Parser uses
are the same that can be found in the Penn Treebank13 (Marcus et al., 1993).
On top of that, the Stanford NLP also produces Stanford Dependencies (De
Marneffe et al., 2006; Marneffe and Manning, 2010), which is the main rea-
son for using it in our proposal. These dependencies reflect the grammatical
relationships between words, thus producing a grammatical representation of
sentences.

4.1 Phase 1. Discourse and semantic analysis

Given a textual description, the first step in Phase 1 refers to the discourse and
semantic analysis. By doing so, it is necessary to apply the sentence breaking
task to detect the sentence boundaries. The second step is devoted to the to-
kenization (i.e., the task of cutting it up into pieces, called tokens). The third
step performs the detection of named entities. NER seeks to locate named en-
tities in texts and classifies them into pre-defined categories such as the names
of persons, organizations, locations, expressions of times, quantities, monetary
values, percentages, etc. The Stanford NLP library is used for recognizing gen-
eral named entities. However, it should be mentioned that it does not have a
tool that fits the linguistic style of process descriptions. To cope with this lim-
itation, we analyze dependencies (e.g., dependency compound14) to recognize
more specific entities as illustrated in Sect. 5. As a final step, it is necessary to
apply anaphora resolution techniques in this phase to deal with co-reference
situations.

As a summary, this phase receives a corpus with the decision description
and returns a list of sentences, where the tokens and named entities have
already been identified, and the co-reference has been resolved.

4.2 Phase 2. Syntactic analysis

The first step in this phase is to determine the part of speech for each word in a
given sentence. Such POS tags were obtained using the Stanford NLP library,
which employs the POS name abbreviations agreeing to the Penn Treebank
tag set15. In our proposal, the syntactic information is derived from the syntax
tree and the grammatical relations between the sentence parts. The foundation
on which the present paper is grounded is that the syntactic information is
valuable when processing lengthy and complex sentences on which particular

13 The Penn Treebank is a corpus of manually parsed newspaper articles
14 The description of each dependency tag appears in the Stanford typed dependencies

manual (Marneffe and Manning, 2010)
15 https://catalog.ldc.upenn.edu/docs/LDC99T42/tagguid1.pdf

12 Leticia Arco et al.

relationships among terms must be discovered. This contributes to the decision
rule generation and supports the construction of decision tables, which is the
underlying goal behind our research.

The second step is devoted to determining the syntax tree of each sentence.
We utilize the factored model instead of the pure probabilistic context-free
grammar in the Stanford Parser. This is motivated by the fact that it provides
better results in determining antecedent and consequent clauses, which are
essential for the decision rule generation (Friedrich et al., 2011). Considering
the Guidelines for Treebank II Style Penn Treebank Project16, it is possible to
recognize the notation used in the syntax tree at three levels: word, phrase and
clause. The notation used at the word level exactly matches the POS labels,
which will help us identify some sentence parts and their links with antecedents
and consequents of the decision rules to be obtained. However, the syntax tree
is not enough to find all the desired rule components and their relations. Each
phrase and clause identified in the syntax tree allows identifying where to
look for dependencies. In a nutshell, the coherent combination between the
syntax tree and the dependency relations allows detecting the decision’s value
expressions, the input variables, and the input and output values.

The third step refers to the extraction of dependencies. A dependency re-
lationship (Hays, 1964) is an asymmetric binary relationship between a word
called head, and another word called modifier. The structure of a sentence
can be represented by a set of dependency relationships that form a tree. A
word in the sentence may have several modifiers, but each word may modify
at most one word. The root of the dependency tree does not modify any word.
It is also called the head of the sentence (Lin and Pantel, 2001). Stanford
Dependencies17 allow extracting the dependency tree. The Stanford typed de-
pendency representation was designed to provide a simple description of the
grammatical relationships in a sentence that can easily be understood and
effectively used by people without linguistic expertise who want to extract
textual relations. In the plain text format, a dependency is written as abbrevi-
ated relation name(governor, dependent) where the governor and the depen-
dent are words in the sentence to which a number indicating the position of
the word in the sentence is appended18.

Five variants of the typed dependency representation are available in the
dependency extraction system provided by Stanford NLP (Marneffe and Man-
ning, 2010). The differences between the five formats are that they range from
a more surface-oriented representation, where each token appears as a de-
pendent in a tree, to a more semantically interpreted representation where
certain word relationships (such as prepositions) are represented as dependen-
cies, and the set of dependencies becomes a possibly cyclic graph (Marneffe
and Manning, 2010). In our proposal, we consider the collapsed representation

16 http://languagelog.ldc.upenn.edu/myl/PennTreebank1995.pdf
17 https://nlp.stanford.edu/software/stanford-dependencies.shtml
18 https://nlp.stanford.edu/software/dependencies manual.pdf

Natural Language Techniques Supporting Decision Modelers 13

since dependencies involving prepositions, conjuncts, and relative clauses are
collapsed to get direct dependencies between content words.

Handling multi-words is useful for detecting the exact terms or expres-
sions corresponding to input and output values and entries from decision de-
scriptions. Stanford NLP identifies some multi-word prepositions, collapsed as
prepositional relations, such as two-word-prepositions (e.g., “depending on”)
and three-word-prepositions (e.g., “in addition to”). Therefore, some depen-
dencies express quantification (e.g., “at least one”, “exactly one”), others al-
low quantifying concepts (e.g., “greater than”), while others express a logical
formulation (e.g., “it is obligatory”). Besides, dependencies involving conjunc-
tions will be collapsed into a single relation. For instance, the basic dependen-
cies cc(valid-5, and-6) and conj (valid-5, signed-7) obtained from the condition
“if official documents are valid and signed” will be collapsed into the single re-
lation conj:and(valid-5, signed-7). This suggests that the collapsed dependency
representation leads to better logic transparency and a smaller gap between
modeling and implementation by considering DMN style (Silver, 2016).

As a summary, this phase receives a list of sentences and returns for each
sentence its POS tags, syntax tree and list of dependencies.

4.3 Phase 3. Decision table construction

The third phase deals with the extraction of the elements that make up the de-
cision rules. Dependencies are a syntactic resource that allows identifying con-
ditions and actions involved in such rules. Depending on how the descriptions
are expressed, we must make use of some or other dependencies. Therefore, the
algorithms proposed in this paper to obtain the decision rule elements have
been designed to analyze certain forms of expressing decisions. Fortunately, the
most common sentences in decision descriptions are expressed in a condition
-> action and condition -> actionable-value forms, and this is a natural way
for representing decision rules in decision tables. We show that it is possible
to find links between this kind of description and the IF-THEN rules to be
included in decision tables. Because the third phase of the framework is the
most complex, we will dedicate a whole section to its description.

As a summary, this phase receives a sentence and its corresponding POS
tags, syntax tree and list of dependencies. Then, it returns the corresponding
set of decision rules formalized in a decision table.

5 Detailed description of the decision table construction

The third phase of our framework is novel and the most complex one. Firstly,
we identify a set of plausible antecedent-consequent pairs based on the infor-
mation provided by the syntax trees and dependencies between words. Then,
two general rules are applied: if the sentence contains the keyword “if”, de-
pendency mark indicates the first antecedent term; if not, dependency root

14 Leticia Arco et al.

indicates the first consequent term. Secondly, we identify each antecedent and
consequent component by extracting the variables, the input and output val-
ues from each sentence. The original terms are not replaced by synonyms,
symbols, or semantically equivalent expressions. Future implementations of
the proposed framework should incorporate a level of semantic understanding
that allows convergence in terms that are shared among tables and decisions,
as described in Sect. 8.

(ROOT

 (S

 (SBAR (IN If)

 (S

 (S

 (NP (NNP Work)

 (NNP Experience)

 (NNP Information))

 (VP (VBZ is)

 (VP (VBN included)

 (PP (IN in)

 (NP (DT the)

 (NNP CV))))))

 (CC or)

 (S

 (NP (DT an) (NN interview))

 (VP (VBD was)

 (VP (VBN conducted))))))

 (, ,)

 (NP (DT the) (NN application))

 (VP (VBZ is)

 (VP (VBN considered)

 (S

 (ADJP (JJ complete)

 (CC and)

 (JJ valid)))))

 (. .)))

mark(included-6, If-1)

compound(Information-4, Work-2)

compound(Information-4, Experience-3)

nsubjpass(included-6, Information-4)

auxpass(included-6, is-5)

advcl(considered-19, included-6)

case(CV-9, in-7)

det(CV-9, the-8)

nmod:in(included-6, CV-9)

cc(included-6, or-10)

det(interview-12, an-11)

nsubjpass(conducted-14, interview-12)

auxpass(conducted-14, was-13)

conj:or(included-6, conducted-14)

det(application-17, the-16)

nsubjpass(considered-19, application-17)

auxpass(considered-19, is-18)

root(ROOT-0, considered-19)

xcomp(considered-19, complete-20)

cc(complete-20, and-21)

conj:and(complete-20, valid-22)

Fig. 3 Syntax tree (left) and collapsed dependency representation (right) corresponding to
the sentence: “If Work Experience Information is included in the CV or an interview was
conducted, the application is considered complete and valid.” .

Identifying the variables, the input and output values and their relations
from the syntax tree and the collapsed dependency representation of each sen-
tence is a non-deterministic problem. We identify the regularities in this type
of sentences, so we can define several rule-based functions for identifying the
rule components and their relationships. The solution we propose allows an-
alyzing a large number of sentences, although some including very complex
grammar, could not be covered. Let us consider the following example: “If
Work Experience Information is included in the CV or an interview was con-
ducted, the application is considered complete and valid”. Fig. 3 shows the
syntax tree and dependencies detected by the Stanford NLP for this sentence.

Natural Language Techniques Supporting Decision Modelers 15

5.1 General procedure for extracting decision rules from isolated sentences

Algorithm 1 displays the general procedure for extracting decision rules from
isolated sentences. It results from a generalization process that allows dis-
covering the connection between syntactic structures and decision rules. This
procedure receives a decision sentence as input, and the collapsed dependencies
and syntax tree corresponding to this input sentence. In short, the algorithm
divides the sentence in antecedent and consequent. Subsequently, it detects
all antecedent and consequent components useful to create the decision rules
corresponding to the input description. Each antecedent component consists
of an input expression and an input entry, while each consequent component
consists of an output name and an output entry. Sentences with the keyword
“if”, like the previous example, are much easier to process. In these cases,
Algorithm 1 identifies the term “if” using the mark dependency; otherwise,
it is helped by the root dependency to process the rest of the sentences. In
a decision table, the input conditions of any decision rule must be logically
ANDed together (i. e., joined by conjunctions expressed, for example, by the
terms “and” or “but”). Combining them with logical OR is not allowed by the
DMN standard because the order of operations is ambiguous without paren-
theses (Silver, 2016). For that reason, in the presence of OR disjunction, more
than one rule will usually be generated from an input sentence.

Algorithm 1 ExtractDecisionRules
Input: A decision sentence, the collapsed dependencies and syntax tree corresponding to
this input sentence
Output: Decision rules corresponding to the input decision sentence

1: if exists dependency mark then
2: FirstAntecTerm← Term related to “if” by dependency mark
3: FirstConseqTerm← Term related to FirstAntecTerm by dependency advcl
4: else
5: FirstConseqTerm← Root term by dependency root
6: FirstAntecTerm← Term related to FirstConseqTerm by dependency nsubj
7: end if
8: ACompList, ARel← CompleteElements(FirstAntecTerm)
9: CCompList, CRel← CompleteElements(FirstConseqTerm)
10: RuleList← CombineAntecConseq(ACompList, ARel, CCompList, CRel)

Algorithm 1 looks for dependency mark, which is considered the word in-
troducing a finite clause subordinate to another clause (line 1). This mark
is dependent on the subordinate clause head. As shown in Fig. 3 (right),
mark(included-6, If-1) allows identifying the term “included” which belongs to
the first antecedent rule component (line 2). Sometimes descriptions appear in
the consequent-antecedent order, for example: “An order may be accepted if
the credit is good.”. Fortunately, mark dependency always indicates the con-
dition when the keyword “if” is explicitly in the sentence. In those sentences
where the keyword “if” is not present, it is necessary to look for the root word
that is always an action in the consequent (line 4). Let us consider the fol-

16 Leticia Arco et al.

lowing example: “Every employee receives at least 22 vacation days.”. Fig. 4
shows the syntax tree and dependencies detected by the Stanford NLP for this
sentence. Note in Fig. 4 (right) that root(ROOT-0, receives-3) allows identify-
ing the term “receives” which belongs to the first consequent rule component
(line 5).

(ROOT

 (S

 (NP (DT Every) (NN employee))

 (VP (VBZ receives)

 (NP

 (QP(IN at)(JJS least)(CD 22))

 (NN vacation) (NNS days)))

 (. .)))

det(employee-2, Every-1)

nsubj(receives-3, employee-2)

root(ROOT-0, receives-3)

case(least-5, at-4)

nmod:npmod(22-6, least-5)

nummod(days-8, 22-6)

compound(days-8, vacation-7)

dobj(receives-3, days-8)

punct(receives-3, .-9)

Fig. 4 Syntax tree (left) and collapsed dependency representation (right) corresponding to
the sentence: “Every employee receives at least 22 vacation days.” .

If an antecedent term is accessed, it is necessary to look for its connec-
tion with a consequent term. Then, we must identify the first consequent term
(FirstConseqTerm). A relevant dependency for detecting the relation between
the antecedent and the consequent of a rule is advcl. An adverbial clause mod-
ifier (advcl) of a VP or S is a clause modifying the verb (temporal clause,
consequence, conditional clause, purpose clause, etc.). As Fig. 3 (right) shows,
advcl(considered-19, included-6) connects the principal word in the antecedent
with the principal word in the consequent. In a nutshell, this dependency allows
moving from the antecedent to the consequent. For that reason, algorithm Ex-
tractDecisionRules searches for dependency advcl in order to extract the first
consequent term (FirstConseqTerm) (line 3). Otherwise, if we have accessed
a consequent term, then the nsubj dependency will help us connect with an
antecedent term (line 6). A nominal subject, indicated by nsubj, is a noun
phrase which is the syntactic subject of a clause. The governor of this rela-
tionship might not always be a verb: when the verb is a copular verb, the root
of the clause is the complement of the copular verb, which can be an adjective
or noun. As Fig. 4 (right) shows, nsubj (receives-3, employee-2) connects the
a word in the consequent with a word in the antecedent. In a nutshell, this
dependency allows moving from the consequent to the antecedent.

5.2 Extracting all antecedent and consequent components

After extracting one antecedent and one consequent term, we need to extract
all antecedent and consequent components. By doing so, we must call the func-
tion CompleteElements (lines 8-9). This function, as shown in Algorithm 2, re-
ceives an antecedent/consequent term and generate all antecedent/consequent
components and their relations. The first step is devoted to identifying the
first antecedent/consequent rule component (FirstRuleComp), corresponding

Natural Language Techniques Supporting Decision Modelers 17

to the first term (FirstTerm) (line 1). The ExtractRuleComp function is called
by the CompleteElements function every time it is necessary to complete an
antecedent or consequent component, as shown in lines 1 and 7 of Algorithm
2.

Algorithm 2 CompleteElements
Input: A decision sentence, an antecedent or a consequent term, the collapsed dependencies
and syntax tree corresponding to this input sentence
Output: A list of all antecedent or consequent components depending on which kind of
term was introduced and the relation among these components

1: FirstRuleComp← ExtractRuleComp(FirstTerm)
2: Rel.update(FirstRuleComp)
3: CompList.add(FirstRuleComp as UNMARKED)
4: while exist a component Comp UNMARKED in the CompList do
5: Mark Comp
6: if exists any term T in Comp related to other by dependencies conj : and or

conj : or then
7: RuleComp← ExtractRuleComp(T)
8: if RuleComp 6∈ CompList then
9: CompList.add(RuleComp as UNMARKED)
10: end if
11: Rel.update(RuleComp)
12: end if
13: end while

The function ExtractRuleComp (shown in Algorithm 3) helps compute
a whole rule component, which consists of the component name, the com-
ponent value and the negation if present. ExtractRuleComp receives a term
(Term), so it uses the decision sentence, the collapsed dependencies and the
syntax tree corresponding to this input sentence for constructing the an-
tecedent/consequent component. When completing an antecedent component,
the component name corresponds to the input entry, and the component value
corresponds to the input expression. On the other hand, when completing a
consequent component, the component name corresponds to the output name,
and the component value corresponds to the output entry.

Dependencies nsubpass and nsubj are used for detecting the link between
component name and value. Algorithm 3 needs to identify whether the term
received as input is part of the input entry/output name or input expres-
sion/output entry, since this depends on the way in which the decision is
presented. Considering the example described in Fig. 3, when the function Ex-
tractRuleComp receives the first antecedent term “included”, it is able to use
dependency nsubjpass(included-6, Information-4) for constructing the corre-
sponding antecedent rule component. Also, dependencies compound, auxpass,
case, det and nmod are necessary for this analysis. Finally, lines 11-12 are
very important in algorithm ExtractRuleComp. Dependency neg, if it appears,
changes completely the meaning of the condition.

For following up the component name and component value expressions,
the CompleteName and CompleteValue functions are useful. These functions

18 Leticia Arco et al.

Algorithm 3 ExtractRuleComp
Input: A term (the collapsed dependencies and syntax tree corresponding to the input
sentence are also used)
Output: The rule component corresponding to the input term

1: RelatedTerm← term related to Term by dependencies nsubpass or nsubj
2: if Term is a name then
3: CompName← Term
4: CompV alue← RelatedTerm
5: else
6: CompV alue← Term
7: CompName← RelatedTerm
8: end if
9: RuleComp.FullName← CompleteName(CompName)
10: RuleComp.FullV alue← CompleteV alue(CompV alue)
11: if exists any term T related to not by the depedency neg then
12: RuleComp.update
13: end if

search for a sequence of compound dependencies (and other auxiliary depen-
dencies 19) between terms that belong to the same noun phrase in the syntax
tree. It should be highlighted that we obtained the multi-word input expres-
sion “Work Experience Information” by using the compound dependency (see
Fig. 3 (right)). Here the following question arises: how to concatenate the
terms expressed in such dependencies to properly name the entries and their
values? The OMG standards normally try to avoid anything that smacks of
“methodology” or “stylistic recommendations”. However, the DMN style (Sil-
ver, 2016) adds constraints to provide a more uniform look and feel, greater
logic transparency and ease to use, and a smaller gap between modeling and
implementation. Hence, we try to follow these constraints in the antecedent
and consequent component construction, such as naming. Naming the entries
and their values in an automated way ensures homogeneity and complies with
the defined styles in an easier way when compared with the inconsistencies
that might be introduced by modelers.

We already know how to complete a specific antecedent or consequent
component, but we have not yet described how to generate all antecedent or
consequent components. To achieve this, we need to return to the Algorithm
2 and describe which dependencies help us find all components. More com-
ponents are identified by searching each conj :and or conj :or dependency and
looking for each simple declarative clause which is connected with the (cc and)
or (cc or) node in the syntax tree. The POS tag related to the words in con-
junctions or disjunctions is quite important since such logical operators can
connect, for instance, two input entries of the same input expression, or two
different input expressions. Although in the line 6 we only refer to conj :and
and conj :or dependencies, these conditional sentences should consider some
exceptions. For example, “if” can be used as a conjunction in the textual de-
scriptions. When looking for more rule components, it is not only important to

19 amod, aux, auxpass, case, compound, cop, dep, det, dobj, mark, mwe, nmod, nummod,
xcomp and or

Natural Language Techniques Supporting Decision Modelers 19

consider the conj :and and conj :or dependencies, but to search other mark de-
pendencies that might connect the antecedent components with term “if” as a
conjunction. In some descriptions, the term “but” also expresses conjunction,
so it is also necessary to search for conj :but. Finally, the syntax tree allows
identifying multiple antecedents or consequent components split by commas
(,) through its clause structure.

Rel is a list of antecedent/consequent components, where their AND/OR
relations are stored. Each time a new antecedent/consequent is discovered,
this list must be updated to derive the sets of antecedents/consequents to be
concatenated with AND conjunctions in each rule. Antecedent components
concatenated with logical OR will imply creating new rules since the input
conditions of any decision rule must be ANDed together. The same happens
when concatenating consequent elements with OR disjunctions. Aside from
that, the component list (CompList) also must be updated to store all the
elements that have been found. Each new antecedent/consequent component
is stored as UNMARKED, since it will be analyzed by the ExtractRuleComp
algorithm to find new components. The example described in Fig. 3 (right)
shows when the “or” disjunction suggests the new rule generation. A second an-
tecedent component is identified starting from dependency conj:or(included-6,
conducted-14). This dependency links two input entries related to two different
input expressions (“Work Experience Information” and “CV”). Besides, the
syntax tree offers good information: the (CC or) node connects two different
simple declarative clauses, as portrayed in Fig. 3 (left).

Starting with the output entry and analyzing the dependencies and the
simple declarative clause in the syntax tree, it is possible to obtain all conse-
quent components, as we illustrated for the antecedent. In our example, see Fig.
3 (right), dependency conj:and(complete-20, valid-22) allows identifying two
consequent components. The syntax tree in Fig. 3 (left) shows that this depen-
dency connects two different output entries (“complete” and “valid”) that are
associated with the same output name (“application”). If we change the deci-
sion by: “the application is considered complete and the registration is valid”,
then the analysis must be different. The dependencies conj:and(complete-20,
valid-22) (from the original example) and conj:and(considered-19, valid-25)
(from the modified example) seem to represent the same kind of conjunctions,
as shown in Fig. 3 and Fig. 5. However, the syntax tree (see Fig. 5 (left)) illus-
trates that dependency conj:and(considered-19, valid-25) links two different
output entry fragments (“considered” and “valid”) that are associated with
two different output names (“application”) and (“registration”).

It is important to highlight that the ExtractRuleComp function, as well as,
line 6 in Algorithm 2, have a relevant role in our proposal. ExtractRuleComp is
able to identify when a conjunction/disjunction involves the same or different
output entries or output names, or input entries or input expressions. Line 6 in
Algorithm 2 search for conj:or or conj:and dependencies, whereas Algorithm
3 search for each simple declarative clause which is connected by (CC or or
CC and) in the syntax tree.

20 Leticia Arco et al.

 (NP (DT the) (NN application))

 (VP (VBZ is)

 (VP (VBN considered)

 (S

 (ADJP (JJ complete))))))

(CC and)

(S

 (NP (DT the) (NN registration))

 (VP (VBZ is)

 (ADJP (JJ valid))))

(. .)))

det(application-17, the-16)

nsubjpass(considered-19, application-17)

auxpass(considered-19, is-18)

root(ROOT-0, considered-19)

xcomp(considered-19, complete-20)

cc(considered-19, and-21)

det(registration-23, the-22)

nsubj(valid-25, registration-23)

cop(valid-25, is-24)

conj:and(considered-19, valid-25)

Fig. 5 Excerpt of the syntax tree (left) and collapsed dependency representation (right)
corresponding to the sentence: “If Work Experience Information is included in the CV or
an interview was conducted, the application is considered complete and the registration is
valid.” .

Likewise, it is necessary to take into account the POS tag assigned to the
words related by conj:or or conj:and, since disjunctions/conjunctions could
connect two entries of the same input expression or the same output name, or
connect two different input expressions or two different output names. Hence,
the POS tags, the syntax tree and the conj dependency are quite useful for
detecting other antecedent and consequent components.

Finally, decision rules are generated in line 10 of Algorithm 1. The Com-
bineAntecConseq function harmonically combines the information contained
in variables AcompList, ARel, CCompList and CRel, and formalizes each
decision rule discovered from the input description. Variables AcompList and
ARel involve the antecedent components and their relations, whereas variables
CCompList and CRel are related to the consequent components. Fig. 6 shows
the decision table obtained by DecisionRuleMiner20 for our toy example, where
two rules were generated by Algorithm 1. This is an any decision table, but
first would work as well. In fact, DecisionRuleMiner usually generates first hit
decision tables everywhere.

 Input Input Output Output

 Work Experience Information interview application application

1 is included in CV is complete is valid

2 was conducted is complete is valid

Fig. 6 Decision table for the description: “If Work Experience Information is included in
the CV or an interview was conducted, the application is considered complete and valid.” .

Our proposal is desirable when modeling real-world situations since it is
domain-independent and unsupervised (i.e., there is no need to learn how to

20 DecisionRuleMiner, the developed prototype tool that implements the main stages of
our framework, will be described in Sect. 6.

Natural Language Techniques Supporting Decision Modelers 21

extract the rules, which builds a massive annotated data set of descriptions as
for supervised machine learning approaches). It extracts decision rules through
algorithms that use dependency relationships and syntax trees for identifying
input entries and expressions, and output names and entries. All this allows
support modelers to create DMN decision tables and diagrams and to initialize
the decision discovery phase from natural language descriptions in less time.

6 Evaluation

Aiming to evaluate our proposal, we applied it over various decision descrip-
tions collected from textbooks, academia, industry and public sectors, with
different characteristics. The overall goal is to assess whether the obtained
decision rules truly represent the decision logic expressed in each description.
To fulfill this goal, we developed the prototype tool DecisionRuleMiner that
implements the main stages of our framework. DecisionRuleMiner returns as
output the decision tables corresponding to the decision rules generated by
Algorithm 1. Our tool creates a decision table with as many rows as rules
were obtained by Algorithm 1, and as many columns as inputs and outputs.
Each cell will be filled with the values corresponding to the inputs and outputs
defined for each rule.

DecisionRuleMiner was written in Java for easy integration with Stan-
ford NLP. Our tool processes sentence-by-sentence while assuming that the
anaphora resolution step was done. The tool also offers tokens, POS tags,
syntax trees, dependencies, and recognized named entities of each processed
sentence.

To the best of our knowledge, there is no metric able to quantify the fitting
between a textual description and its rule-based representation in a decision
table. The lack of a fitting metric implies that we cannot use an error function
to automatically and objectively assess the performance of the tool. Moreover,
it seems unfair to use a binary approach, where the generated decision table
and the actual decision table are either an exact match or no match at all.
Thus, a binary approach would be too harsh in a field that is subject to contex-
tualization and interpretation. After all, there are different ways of expressing
the same logic that all may be equally valid. For these reasons, we decided to
rely on human judgment and presented the results of the DecisionRuleMiner
to a panel of experts.

The rules were evaluated by 16 expert modelers through a survey. For each
combination of rule statements and tables, experts were requested to rate the
decision table that had been generated by the tool. Apart from the generated
table, the panel received the same input provided to DecisionRuleMiner, being
the decision sentence. Afterward, they had to evaluate the semantic as well
as syntactic correctness of the generated decision table. Sect. 6.1 details the
conformation of our collection, while Sect. 6.2 provides more insights into the
survey itself. Finally, Sect. 6.3 presents the main findings of the experiments,
whereas Sect. 6.4 discusses some limitations of our evaluation.

22 Leticia Arco et al.

6.1 Collection of decision descriptions

Aiming at creating the collection, we examine many documents where decisions
were presented; for instance, documents from the Atlanta police department
where working procedures contain business rules 21, policy documents from
insurance companies 22 23 24, rules to grant research funding 25 26 and football
rules 27. Moreover, we included sentences from codes of conduct of diverse
companies, such as: AIRBUS 28, Apple 29, Citi 30, Beiersdorf 31, Walt Dis-
ney 32, IBM 33, Lidl 34, PMI 35, SANDVIK 36, PEPSICO 37 and Google 38.
These documents are publicly available, which facilitates the reproducibility
of results.

In our study, we identified and analyzed nine different types of sentences.
Table 2 portrays the number of sentences included in our collection for each
identified type of sentence. We have inspected the structure of sentences that
use the keyword “if” to indicate the beginning of the conditions. Additionally,
we also inspected various sentences that do not present the keyword “if”. The
first eight types of sentences describe in detail the variants in which simple
and complex antecedents and consequents can be presented. This study in-
cludes both IF-THEN and THEN-IF sentences with varying complexity in the
antecedents and consequents.

The 95 sentences included in the collection express decision logic, however,
some could be classified as decision/process logic while others could be la-
beled as decision/data logic. The selected sentences also cover different ways
of expressing the decision logic (Yarahmadi, 2018): obligation, condition, pro-
hibition and permission. Obligation is the most common category, while Con-
dition is the less frequent one, although this category is regularly embedded

21 http://www.atlantapd.org/Home/ShowDocument?id=810
22 http://docplayer.fr/82860665-Ing-home-family-insurance-general-conditions-

tenant.html
23 https://www.chubb.com/us-en/terms-of-use.aspx
24 https://www.esecutive.com/pdfs/Liability Insurance Conditions.pdf
25 http://www.fwo.be/en/general-regulations/
26 http://eureka-sd-project.eu/general information?lang=en
27 https://www.fifa.com/mm/document/footballdevelopment/refereeing/81/42/36/lawsofthegame 2012 e.pdf
28 https://www.airbus.com/content/dam/corporate-topics/corporate-social-

responsibility/ethics-and-compliance/Airbus-Ethics-Compliance-Code-Conduct-EN.pdf
29 https://www.apple.com/supplier-responsibility/pdf/Apple SR 2018 Progress Report.pdf
30 https://www.citigroup.com/citi/investor/data/codeconduct en.pdf
31 https://www.beiersdorf.com/investors/corporate-governance/code-of-conduct
32 https://ditm-twdc-us.storage.googleapis.com/Manufacturer-Code-of-Conduct-

Translations.pdf
33 https://www.ibm.com/investor/pdf/BCG Feb 2011 English CE.pdf
34 https://www.rspo.org/file/acop/lidl-stiftung-cokg/R-Policies-to-PNC-laborrights.pdf
35 https://www.pmi.org/-/media/pmi/documents/public/pdf/ethics/pmi-code-of-

ethics.pdf
36 https://www.home.sandvik/en/about-us/sustainable-business/code-of-conduct/
37 https://www.pepsico.com/Assets/Download/CodeOfConduct/English GCOC 2014.pdf
38 https://abc.xyz/investor/other/google-code-of-conduct.html

Natural Language Techniques Supporting Decision Modelers 23

Table 2 Number of sentences for each identified type included in the dataset.

Type of sentences Quantity

A) IF-THEN simple antecedent and consequent 14
B) IF-THEN simple antecedent and complex consequent 10
C) IF-THEN simple complex and simple consequent 8
D) IF-THEN complex antecedent and consequent 6
E) THEN-IF simple antecedent and consequent 22
F) THEN-IF simple antecedent and complex consequent 12
G) THEN-IF complex antecedent and simple consequent 6
H) THEN-IF complex antecedent and consequent 6
I) Diverse sentences where keyword “if” is not present 11

in most sentences. On the other hand, we can also categorize rules accord-
ing to various OMG categories39, such as eligibility or approval, calculation,
validation, risk, fraud, and targeting, among others. Rules classified as Eligi-
bility or Approval and Validation predominate in our collection. Our approach
does not currently use these distinctions, nor does it automatically detect one
of these labels. Since we lack a standard, accepted set of benchmark rules,
these labels indicate to the reader that we are using a diverse sample of rule
statements. Besides, sentences that form our collection are heterogeneous in
dimensions, such as size, purpose, complexity, and domain. For instance, they
describe the decision from different perspectives (e.g., “If the customer”, “se-
nior management approval is required”, “If you are”, “A single line indicates”,
“If no funding” and “If there are”) so that they describe the context in differ-
ent ways. Although, in our approach, a variety of patterns is more considered
than a variety in context. All these issues make the collection diverse enough,
which is needed to assess the solutions provided by our framework properly.

6.2 Survey

Once the collection was formed, the 95 decision sentences were processed by
the DecisionRuleMiner prototype tool. Later on, such textual descriptions and
the generated rules, exposed in the obtained decision tables, were shown to
the expert modelers to evaluate the decision tables and their corresponding
rules based on the following scale:

– Good - I can use the decision table as it is (semantically and syntactically
correct)

– Somewhat good - I can use the decision table but it requires minor modi-
fications (semantically correct with syntactic issues)

– Average - I can only use the decision table as a starting point (minor
semantic issues with no/minor syntactic issues)

39 https://www.omg.org/news/whitepapers/An Introduction to Decision Modeling with DMNv51-
15-15

24 Leticia Arco et al.

– Somewhat bad - I can hardly use the decision table (minor semantic issues
with major syntactic issues)

– Bad - I cannot use the decision table (major semantic and syntactic issues)

The scale was defined by taking into account the semantic and syntactic
correctness of decision tables. More specifically, a semantically correct decision
table represents the actual decision logic of the business rule accurately but
may use terms that are slightly odd or uncommon. A syntactically correct
decision table correctly uses the terms but may misrepresent the actual logic.

The panel of 16 experts was formed by business professionals who work with
decision tables when they perform business analysis tasks and academics who
perform research in decision management or teach courses related to decision
tables and similar techniques at the university level.

The survey was conducted in the Qualtrics tool40. Three randomly se-
lected descriptions and their corresponding automatically generated decision
tables for each type of decision sentence were shown to experts, except for
types A, E, and I, where four descriptions and their corresponding decision
tables were presented. Types A and E are the most common types in practice,
whereas type I sentences impose additional processing challenges. The survey
also offers experts the opportunity to express their opinions, suggestions, and
comments on DecisionRuleMiner’s performance. This qualitative evaluation
was also useful to reach certain conclusions and define future work.

To be more precise, we illustrate some examples presented to the experts.
Fig. 8 - 16 show selected sentences per defined type and their corresponding
decision tables obtained by DecisionRuleMiner.

 Input Output

 claimant_history claim

1 fraudulent considered fraudulent

Fig. 7 Generated decision table for the Type A description: “If the claimant has a fraud-
ulent history, a claim must be considered potentially fraudulent.”.

 Input Output

 customer_funds requested amount withdrawal

1 sufficient below 15000e approved

Fig. 8 Generated decision table for the Type B description: “If the customer has sufficient
funds and the requested amount is below 15000e, the withdrawal is approved.”.

40 https://www.uhasselt.be/Qualtrics

Natural Language Techniques Supporting Decision Modelers 25

 Input Output

 published method quotation marks the source

1 directly quoted use cite

Fig. 9 Generated decision table for the Type C description: “If a previously published
method is directly quoted, you must use quotation marks and cite the source.”.

 Input Output

 official documents official documents application student profile

1 are valid signed successful opened

Fig. 10 Generated decision table for the Type D description: “If official documents are
valid and signed, the application is successful and student profile is opened in the Core
University System.”.

 Input Output

 customer order

1 out-of-state credit-checked

Fig. 11 Generated decision table for the Type E description: “An order must be credit-
checked if the customer is out-of-state.”.

 Input Output

 payment credit order

1 received shipped

2 good shipped

Fig. 12 Generated decision table for the Type F description: “An order may be shipped
if payment for the order has been received or the customer’s credit is good.”.

 Input Output

 computers_performance computers_to sellers computers

1 not good sent back rejected

Fig. 13 Generated decision table for the Type G description: “Computers are sent back
to sellers and rejected, if they do not have good performance.”.

6.3 Results

The evaluations carried out by experts were transformed into numerical values
(good - 5, somewhat good - 4, average - 3, somewhat bad - 2 and bad - 1)
to facilitate the application of descriptive statistics. First, we calculate the
variance and the range of evaluations assigned to each decision table to explore

26 Leticia Arco et al.

 Input Output

 solutions Solutions_to students solutions

1 are incorrect sent back deleted

2 incomplete sent back deleted

Fig. 14 Generated decision table for the Type H description: “Solutions are sent back to
students and deleted, if they are incorrect or incomplete.”.

 Input Output

 employee extra days

1 is a veteran 2

Fig. 15 Generated decision table for the Type I description: “An employee is a veteran, 2
extra days can be given.”.

 Input Output

 Employees age days

1 45 or more 2

Fig. 16 Generated decision table for the Type I description: “These 2 days can also be
provided for employees of age 45 or more.”.

the coincidence of evaluations among experts. The maximum variance was
3.50, while 23.17% of the sentences received evaluations with a variance equal
to or higher than 1.5. Likewise, the range of evaluations per sentence was 3 or
4 for the 36.84% of the sentences. To cope with this high dispersion, outlier
evaluations per sentence and sentences with less than two evaluations were
excluded. This resulted in a dataset where only 5.26% of sentences have a
variance higher or equal to 1.5. The 16.84% of the sentences have the range of
evaluations equal to 3 or 4.

Most generated decision tables (68.27%) were evaluated as Good or Some-
what good, which confirms that most of the obtained decision tables are se-
mantically correct, as shown in Fig. 17. Fig. 18 depicts the mean of expert
evaluations for each type of sentence, which indicates that, in most cases, the
obtained decision tables are semantically correct.

The significance value attached to the Kruskal-Wallis test was 0.015. Thus,
we can conclude that there are significant differences among the quality of
decision tables obtained for each sentence type. The best-evaluated decision
tables were obtained from type I descriptions, while the worst ones were those
from type C descriptions, as depicted in Fig. 19.

It seems interesting to analyze possible causes behind the results obtained
for decision tables generated from type C descriptions. Firstly, it is noticeable
that the mean range is 3 for this type of sentence. Besides, some sentences
received all possible scores of the defined scale. Both results allow us to con-

Natural Language Techniques Supporting Decision Modelers 27

35.67 %

33.26 %

18.6 %

8.97 %

3.5 %

Good - 5

Somewhat good - 4

Average - 3

Somewhat bad - 2

Bad - 1

Fig. 17 Distribution of evaluation scores.

A B C D E F G H I

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Fig. 18 Mean of evaluations for each type of sentence.

clude that the experts’ consensus is shallow when evaluating the corresponding
decision tables. Since these types of sentences are not common in real-world
scenarios, few sentences of this type were included in our study. On the other
hand, the complexity of the consequent part leads to different viewpoints when
modeling the process. This means that some experts simplify the rules while

28 Leticia Arco et al.

65.16 65.13

33.59

74.16
80.88

58

74

61.16

91.67

0

10

20

30

40

50

60

70

80

90

100

A B C D E F G H I

Fig. 19 Mean ranks of evaluations assigned to each type of sentences.

others expect more explicit decision rules, as they commented and exemplified
at the end of the survey.

6.4 Discussion

The evaluation shows that our framework is able to generate correct decision
tables from decision-type descriptions. The semantic correctness of the ob-
tained rules is highlighted, evidencing that the antecedent-consequent pairs
and their components were correctly obtained in most cases. However, some
syntactic issues present in the input entries and expressions, and the output
names and entries extraction, were detected by experts.

Despite the positive results, some limitations related to our proposal and
the evaluation method should be discussed. Concerning the former, it is fair to
mention that the Stanford NLP is not entirely accurate. Secondly, the syntax
used by DecisionRuleMiner to express the decision rules does not fully match
the syntax used by expert modelers, in some cases. Being more explicit, some-
times expert modelers reduce the decision rule to a binary statement (e.g.,
“when something is smaller than 500”). In contrast, DecisionRuleMiner keeps
the comparison expression where the input name is the name of the variable,
and the cell value is the expression “smaller than 500”. Sometimes the experts
do not match how DecisionRuleMiner expresses the name and value entries.
For example, given the input expression “Student exam” and the input entry
“passed”, some modelers prefer to transform the expressions as follows: input
expression “Student passed exam” and input entry “True”. The above exam-
ples, expressed by experts at the end of the survey, illustrate subjective and
objective issues that make automatic modeling and its evaluation difficult.

As a result of these limitations, in some cases, our tool extracts the deci-
sion tables following a convention that does not always fit the expectations of
experts. An intermediate language could be added in order to translate the
obtained results into the language desired by the experts or by tools to be

Natural Language Techniques Supporting Decision Modelers 29

used in later stages. Nevertheless, it can be concluded that the essential ele-
ments of the rules were correctly identified, which was the critical challenge
in our study. Besides, there is the agreement that the results are semantically
correct, and therefore the generated tables can support modelers to detect the
antecedent and consequent components quickly. This implies that our proposal
reduces the effort required to model decision rules and tables from texts.

Concerning the limitations of the evaluation, we would like to point out
that the quantitative results are bound to the types of sentences used in our
study. In fact, creating a statistically representative dataset is difficult since
natural language offers a high degree of freedom. However, we tried to create
a dataset as heterogeneous as possible by collecting descriptions from various
external sources. However, more variety would still be desirable. On the other
hand, the experts were not provided with the convention used by Decision-
RuleMiner to specify noun attributes expressions. This could have negatively
affected the evaluations to some extent. Moreover, for the sake of simplicity,
we asked experts to evaluate the quality on a single-dimensional scale, which
was a combination of two dimensions (syntactical correctness and semantic
correctness). Finally, how the survey was presented to the experts produces
a bias in the evaluation, to some extent. Experts are conditioned by what
they see; therefore, the evaluation is not performed independently. Ideally, we
should ask the experts to model the decisions and then automatically compare
the tables generated by the system and those obtained by the experts indepen-
dently. This requires the definition and implementation of criteria that allow
for the comparison of tables and their components.

7 Conclusions

This paper has presented an unsupervised NLP-based framework to support
decision modelers according to the DMN standard. Our solution can identify
and extract the components of decision rules from decision descriptions in En-
glish by defining some phases and functions that harmonically employ several
NLP techniques. To the best of our knowledge, this is the first attempt to
automatically discover decision rules and tables according to the DMN ter-
minology from natural language descriptions. It is worth mentioning that our
framework does not aim to replace the analysts but to support them to create
better models with less effort.

More specifically, we contribute to the decision rule generation and the
automatic decision table construction through three well-defined phases: (1)
discourse and semantic analysis, (2) syntactic analysis and (3) decision table
construction. The proposed algorithms based on dependencies between words,
the syntax tree and the POS tags of each word obtained by the Stanford
NLP allow extracting the variables, the input and output values from single
sentences.

30 Leticia Arco et al.

We have evaluated the feasibility of our proposal through a survey ap-
plied to expert modelers. The results have shown a high satisfaction degree of
experts for the semantic correctness of generated decision tables.

8 Future work

In spite of the promising results, many questions remain open. Here are some
lines of future work:

– The single sentence limits the applicability of the current research. Next-
step research would be the aggregation of these decision tables into larger
ones. Preferably, these decision tables would be linked to a DRD diagram.
On the other hand, using an entire text as input and working its way down
towards decision tables can be a sensible option as well, but would be an
alternative research route focused on discourse analysis.

– We consider the hit policy of a decision table to be primarily a design
choice of the decision modeler or business analyst, rather than a require-
ment imposed by the decision logic. Thus, the current implementation of
DecisionRuleMiner produces first hit decision tables. Other hit policies can
become part of future extensions to make the tool more flexible.

– We work within the current limitations of NLP. The existing discourse anal-
ysis (e.g., anaphora and co-reference resolution) and semantic approaches
still have low effectiveness. The analysis and development of specific NLP
methods to process textual descriptions, as well as the use of the Structured
Business Vocabulary and domain ontologies, should boost DecisionRuleM-
iner as well.

– The identification of the sentences from a given business text was made
manually. There are several solutions available that allow us to delimit a
text in sentences with high effectiveness automatically. However, the main
challenge here is not to delimit the text in sentences but to identify which
sentences contribute to the construction of decision rules, i.e., which sen-
tences express decisions. Determine whether a sentence is a decision is an
interesting research topic that involves semantic analysis, lexical resources,
and the development of specific NLP techniques.

– Since there is no adequate quantitative measure, human evaluation seems
to be a valid alternative. However, a research line could be aimed at auto-
matically comparing the rule-set generated manually by an analyst, and the
set of rules automatically extracted applying DecisionRuleMiner. For this,
certain criteria could be defined that quantify the number of rules, number
of elements in the antecedent and consequent, and terms that match or
not, among others.

– There have been some efforts to formalize natural language regulations for
SBVR (Bajwa et al., 2011; Fortineau et al., 2013; Lévy and Nazarenko,
2013). Rules stipuled in SBVR and to some measure maybe PMML as well
could be used as a basis for the logic upon which the miner discovers rule
patterns.

Natural Language Techniques Supporting Decision Modelers 31

Acknowledgments

This research was supported by the special research fund for incoming mobility
of Hasselt University, Belgium. The authors gratefully acknowledge Veronika
Boyanova and Aziz Yarahmadi for providing useful descriptions in our exper-
iments, as well as the experts who kindly answered the survey.

References

Bajwa, I. S., Lee, M. G., and Bordbar, B. (2011). SBVR business rules genera-
tion from natural language specification. In Proceedings of the AAAI Spring
Symposium - AI for Business Agility, Palo Alto, California, United States,
volume SS-11-03, pages 2–8.

Boufrida, A. and Boufaida, Z. (2014). Automatic rules extraction from medical
texts. In Proceedings of the International Workshop on Advanced Informa-
tion Systems for Enterprises (IWAISE), pages 29–33.

Boyer, J. and Mili, H. (2011). Agile Business Rule Development: Process,
Architecture, and JRules Examples. Springer-Verlag, Berlin Heidelberg.

Califf, E. and Mooney, J. (1999). Relational Learning of Pattern - Match Rules
for Information Extraction. Computational Linguistics, pages 9–15.

Calvanese, D., Dumas, M., Laurson, U., Maggi, F. M., Montali, M., and Teine-
maa, I. (2018). Semantics, analysis and simplification of DMN decision
tables. Information Systems, pages 1–14.

Caporale, T. (2016). A tool for natural language oriented business process
modeling. In Hochreiner, C. and Schulte, S., editors, CEUR 8th ZEUS
Workshop Proceedings, Vienna, Austria, January 27-28, 2016, volume 1562,
pages 49–52.

Ciravegna, F. (1999). Adaptive information extraction from text by rule in-
duction and generalisation. Natural Language Engineering, 10:145–165.

Corradini, F., Ferrari, A., Fornari, F., Gnesi, S., Polini, A., Re, B., and Spag-
nolo, G. O. (2018). A guidelines framework for understandable bpmn mod-
els. Data & Knowledge Engineering, 113:129 – 154.

De Marneffe, M.-C., MacCartney, B., and Manning, C. D. (2006). Generating
typed dependency parses from phrase structure parses. In Proceedings of the
5th International Conference on Language Resources and Evaluation (LREC
2006), Genoa, Italy, May 22-28, 2016, pages 449–454. European Language
Resources Association (ELRA).

De Smedt, J., De Weerdt, J., Serral, E., and Vanthienen, J. (2018). Discover-
ing hidden dependencies in constraint-based declarative process models for
improving understandability. Information Systems, 74:40–52.

De Smedt, J., Hasic, F., vanden Broucke, S. K. L. M., and Vanthienen, J.
(2017). Business Process Management - 15th International Conference
(BPM 2017), Barcelona, Spain, September 10-15, 2017, Proceedings, volume
10445 of Lecture Notes in Computer Science, chapter Towards a Holistic Dis-

32 Leticia Arco et al.

covery of Decisions in Process-Aware Information Systems, pages 183–199.
Springer.

Demner-Fushman, D., Chapman, W. W., and McDonald, C. J. (2009). What
can natural language processing do for clinical decision support? Journal of
Biomedical Informatics, 42(5):760–772.

Dragoni, M., Governatori, G., and Villata, S. (2015). Automated rules gener-
ation from natural language legal texts. In Proceedings of the Workshop on
Automated Detection, Extraction and Analysis of Semantic Information in
Legal Texts (ICAIL 2015), San Diego, USA, pages 1–6.

Dragoni, M., Villata, S., Rizzi, W., and Governatori, G. (2016). Combin-
ing NLP approaches for rule extraction from legal documents. Proceedings
of the 29th International Conference on Legal Knowledge and Information
Systems, pages 1–13.

Figl, K., Mendling, J., Tokdemir, G., and Vanthienen, J. (2018). What we
know and what we do not know about DMN. Enterprise Modelling and
Information Systems Architectures, 13(2):1–16.

Fortineau, V., Paviot, T., Guissé, A., and Lamouri, S. (2013). A transforma-
tion model to express business rules from natural language to formal exe-
cution: an application to nuclear power plant. IFAC Proceedings Volumes,
46(9):1096–1101.

Friedrich, F., Mendling, J., and Puhlmann, F. (2011). Advanced Informa-
tion Systems Engineering, 23rd International Conference on Advanced In-
formation Systems Engineering (CAiSE 2011), London, UK, June 20-24,
2011, Proceedings, volume 6741 of Lecture Notes in Computer Science, chap-
ter Process model generation from natural language text, pages 482–496.
Springer.

Garza, D. (2014). Automated business rule harvesting with abstract syntax
tree transformation.

Ghose, A., Koliadis, G., and Chueng, A. (2007). Conceptual Modeling - ER
2007, 26th International Conference on Conceptual Modeling, Auckland,
New Zealand, November 5-9, 2007, Proceedings, volume 4801 of Lecture
Notes in Computer Science, chapter Rapid Business Process Discovery (R-
BPD), pages 391–406. Springer.

Goldberg, L. and Halle, B. v. (2009). The Decision Model. Taylor & Francis
Group.

Gonçalves, J. C., Santoro, F. M., and Baião, F. A. (2009). Business process
mining from group stories. In Proceedings of the 13th International Confer-
ence on Computer Supported Cooperative Work in Design (CSCWD 2009),
number September, pages 161–166. IEEE.

Hassanpour, S., O’Connor, M. J., and Das, A. K. (2011). Rule-Based Rea-
soning, Programming, and Applications, volume 6826 of Lecture Notes in
Computer Science, chapter A framework for the automatic extraction of
rules from online text, pages 266–280. Springer-Verlag.

Hays, D. G. (1964). Dependency theory: a formalism and some observations.
Technical report, Santa Monica, California.

Natural Language Techniques Supporting Decision Modelers 33

Huffman, S. B. (1996). Connectionist, Statistical and Symbolic Approaches to
Learning for Natural Language Processing, volume 1040 of Lecture Notes in
Computer Science, chapter Learning information extraction patterns from
examples, pages 246–260. Springer.

IIBA (2009). A Guide to the Business Analysis Body of Knowledge (BABOK
Guide), Version 2.0. International Institute of Business Analysis.

Kuss, E., Leopold, H., van der Aa, H., Stuckenschmidt, H., and Reijers, H. A.
(2018). A probabilistic evaluation procedure for process model matching
techniques. Data & Knowledge Engineering.

Lévy, F. and Nazarenko, A. (2013). Theory, Practice, and Applications of
Rules on the Web. RuleML 2013, volume 8035 of Lecture Notes in Computer
Science, chapter Formalization of Natural Language Regulations through
SBVR Structured English, pages 19–33. Springer.

Liddy, E. (1998). Enhanced text retrieval using natural language process-
ing. Bulletin of the Association for Information Science and Technology,
24(4):14–16.

Lima, R., Freitas, F., and Espinasse, B. (2016). Relation extraction from texts
with symbolic rules induced by inductive logic programming. In Proceedings
of the IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), Vietri sul Mare, Italy, pages 194–201. IEEE.

Lin, D. and Pantel, P. (2001). DIRT - Discovery of Inference Rules from
Text. In Proceedings of ACM Conference on Knowledge Discovery and Data
Mining (KDD-01), San Francisco, C.A., pages 323–328. ACM.

Liu, Q., Gao, Z., Liu, B., and Zhang, Y. (2015). Automated rule selection
for aspect extraction in opinion mining. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), volume January, pages
1291–1297.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building
a large annotated corpus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Marneffe, M.-C. D. and Manning, C. D. (2010). Stanford typed dependencies
manual. 20090110 Httpnlp Stanford, 40(September):1–22.

Melkuc, I. A. (1988). Dependency syntax: theory and practice. State University
of New York Press.

Moldovan, D. I. (1995). Acquisition of linguistic patterns for knowledge-based
information extraction. IEEE Transactions on Knowledge and Data Engi-
neering, 7(5):713 – 724.

Ono, T., Hishigaki, H., Tanigami, A., and Takagi, T. (1999). Automatic extrac-
tion of information on protein-protein interaction from scientific literature.
Genome Informatics 1999, pages 296–297.

Paknikar, S., Minds, H., Anand, A., Pandey, K. K., Kotkar, K., and Bhol, D.
(2014). Rules Harvesting from Source Code.

Papanikolaou, N. (2012). On the Move to Meaningful Internet Systems: OTM
2012, volume 7566 of Lecture Notes in Computer Science, chapter Natural
language processing of rules and regulations for compliance in the cloud,
pages 620–627. Springer.

34 Leticia Arco et al.

Riefer, M., Ternis, S. F., and Thaler, T. (2016). Mining process models from
natural language text: a state-of-the-art analysis. In Nissen, V., Stelzer, D.,
Straßburger, S., and Fischer, D., editors, Proceedings of the Multikonferenz
Wirtschaftsinformatik (MKWI 2016), pages 1–12. Springer.

Riloff, E. (1993). Automatically constructing a dictionary for information
extraction tasks. In Proceedings of the 11th National Conference on Artificial
Intelligence, Washington, D.C., pages 811–816.

Satyal, S., Weber, I., Paik, H.-y., Di Ciccio, C., and Mendling, J. (2018). Busi-
ness process improvement with the ab-bpm methodology. Information Sys-
tems, pages 1–15.

Silver, B. (2016). DMN Method & Style The practitioner’s guide to decision
modeling with business rules. Cody-Cassidy Press, Altadena, CA.

Sinha, A. and Paradkar, A. (2010). Use cases to process specifications in
business process modeling notation. In Proceedings of the 8th International
Conference on Web Services (ICWS 2010), pages 473–480. IEEE.

Soderland, S. (1999). Learning information extraction rules for semi-structured
and free text. Machine Learning, 34(1):233–272.

Soderland, S. G. (1997). Learning text analysis rules for domain-specific Nat-
ural Language Processing. PhD thesis, University of Massachusetts.

Sorgente, A., Vettigli, G., and Mele, F. (2013). Automatic extraction of cause-
effect relations in natural language text. In Proceedings of the 7th Inter-
national Workshop on Information Filtering and Retrieval, Turin, Italy,
volume 1109, pages 37–48. CEUR Workshop Proceedings.

Taylor, J., Fish, A., Vanthienen, J., and Vincent, P. (2013). Intelligent BPM
Systems: Impact and Opportunity, chapter Emerging standards in decision
modeling - an introduction to Decision Model & Notation, pages 133–146.
BPM and Workflow Handbook Series. Future Strategies, Incorporated.

van der Aa, H., Leopold, H., del Ŕıo-Ortega, A., Resinas, M., and Reijers,
H. A. (2017). Transforming unstructured natural language descriptions into
measurable process performance indicators using hidden markov models.
Information Systems, 71:27–39.

Van Der Aalst, W. (2011). Process mining: discovery, conformance and en-
hancement of business processes, volume 2. Springer.

Wang, X., Sun, J., Yang, X., He, Z., and Maddineni, S. (2004). Business rules
extraction from large legacy systems. In Eighth European Conference on
Software Maintenance and Reengineering, 2004. CSMR 2004. Proceedings.,
pages 249–258.

Wyner, A. and Peters, W. (2011). Legal Knowledge and Information Systems,
volume 235 of Frontiers in Artificial Intelligence and Applications, chapter
On rule extraction from regulations, pages 113–122. IOS Press.

Xia, R. and Ding, Z. (2019). Emotion-Cause Pair Extraction: a new task to
emotion analysis in texts. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, Florence, Italy, pages 1003–
1012. ACL.

Yarahmadi, A. (2018). Enhanced machine learning approaches in text analysis
for business intelligence: The appealing story of documents. PhD thesis,

Natural Language Techniques Supporting Decision Modelers 35

University of Hasselt.

