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ON THE OBSCURE AXIOM FOR ONE-SIDED EXACT CATEGORIES

RUBEN HENRARD AND ADAM-CHRISTIAAN VAN ROOSMALEN

Abstract. One-sided exact categories are obtained via a weakening of a Quillen exact category. Such
one-sided exact categories are homologically similar to Quillen exact categories: a one-sided exact cate-
gory E can be (essentially uniquely) embedded into its exact hull Eex; this embedding induces a derived

equivalence D
bpEq Ñ D

bpEexq.
Whereas it is well known that Quillen’s obscure axioms are redundant for exact categories, some

one-sided exact categories are known to not satisfy the corresponding obscure axiom. In fact, we show
that the failure of the obscure axiom is controlled by the embedding of E into its exact hull Eex.

In this paper, we introduce three versions of the obscure axiom (these versions coincide when the
category is weakly idempotent complete) and establish equivalent homological properties, such as the
snake lemma and the nine lemma. We show that a one-sided exact category admits a closure under each
of these obscure axioms, each of which preserves the bounded derived category up to triangle equivalence.
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1. Introduction

Quillen introduced the notion of an exact category in [21] as a framework for homological algebra and
algebraic K-theory. An exact category is an additive category together with a chosen class of kernel-
cokernel pairs (called conflations) satisfying 8 axioms. The kernel morphism of a conflation is called an
inflation and the cokernel morphism is called a deflation. The 8 axioms can be partitioned into two dual
sets of axioms, with axioms R0-R3 referring solely to the deflation side and axioms L0-L3 referring
solely to the inflation side (see definition 2.4 for the axioms). It is well known that the axioms of an
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exact category are not minimal; in particular, the obscure axioms (as they were referred to in [31] and
subsequently in [8]) L3 and R3 are superfluous (see [19, 32]).

Requiring only the axioms on the deflation side (axiomsR0-R2) gives the definition of a deflation-exact
category. These axioms imply that the deflations define a Grothendieck pretopology on the category (see
[23] or [18]). Requiring the inflation side of the axioms gives rise to an inflation-exact category. Such
one-sided exact categories are relative versions of one-sided quasi-abelian categories (also called one-sided
almost abelian categories), and have been introduced by [2] and [25] (in [25], the obscure axiom is part
of the definition).

Recently, the theory of one-sided exact categories has gained some interest. One-sided exact categories
appear as an intermediate step in the construction of the maximal exact structure on an additive category
([11, 22, 25, 30]); similarly, they appear as an intermediate step in a recent approach to the K-theory
of the category of locally compact abelian groups ([6], shortening the proof from [5], see also [10]), as a
localization of an exact category ([15, 16]). Furthermore, natural examples of one-sided exact categories
can be found in representation theory ([9, 17]), functional analysis (for example, the category of LB-spaces
or the category of complete Hausdorff locally convex spaces, see [14]). An additive homological category
[3] is an example of a one-sided exact category, as is a so-called one-morphism Grothendieck pretopology
([18, 23]).

In this paper, we consider an additive category A together with a class of conflations D such that the
pair E “ pA,Dq is a one-sided exact category. We will state our results for deflation-exact categories,
leaving the dual statements for inflation-exact categories to the reader. In this introduction, and through-
out most of the paper, we assume that D contains all split kernel-cokernel pairs (this condition has been
referred to in [2] as axiom R0˚, and we will keep this terminology).

At first glace, a one-sided exact category might seem a considerably weaker structure than an exact
category. Closer inspection reveals that a one-sided exact category E admits an exact hull E , meaning
that there exists an exact and full embedding j : E Ñ Eex of E into an exact category Eex, which is 2-
universal among all exact functors from E to an exact category (see [15, 23]). Moreover, the embedding j

lifts to a derived equivalence DbpEq Ñ DbpEexq. Hence, a one-sided exact structure is (homologically and
K-theoretically) close to a Quillen exact structure. However, to translate homological properties from
the exact hull Eex to E , the following property would be useful: a sequence X Ñ Y Ñ Z is a conflation
in E if and only if jpXq Ñ jpY q Ñ jpZq is a conflation in Eex. In this paper, we show that this property
is equivalent to the obscure axiom (see theorem 1.1 or proposition 1.4); this illustrates how the obscure
axiom implies the existence of homological properties close to those of an exact category.

However, some one-sided exact categories of interest do not satisfy the corresponding obscure axiom.
For example, the conflation structure given by all semi-stable cokernels [26] and the quotient of an exact
category by a deflation-percolating subcategory [16] are examples of deflation-exact categories, possibly
not satisfying the obscure axiom.

1.1. Homological consequences of the obscure axiom. Let E “ pA,Dq is a deflation-exact category.
We say that E satisfies the obscure axiom R3 if the following condition holds: for any morphism f : X Ñ
Y , if f has a kernel and there is a morphism g : X 1 Ñ X such that g ˝ f : X 1 Ñ X Ñ Y is a deflation,
then f is a deflation. In addition, we also consider the following two versions of the obscure axiom by
altering the condition “f has a kernel”: if we instead require f to admit all pullbacks, we obtain axiom
R3´; if we remove the condition on the kernel of f altogether, we obtain axiom R3`.

Following [2], we call a deflation-exact category strong if it satisfies the obscure axiom R3. The
following equivalent conditions illustrate that a strongly deflation-exact category is homologically close
to an exact category..

Theorem 1.1. Let E be a deflation-exact category satisfying axiom R0˚. The following are equivalent:

(1) Axiom R3 holds.
(2) The nine lemma holds (see theorem 4.1 for a precise statement of the nine lemma).
(3) Conflations are closed under retracts.
(4) Conflations are closed under direct summands.
(5) If p 0 g q : X ‘ Y ։Z is a deflation and g admits a kernel, then g is a deflation.
(6) A morphism g : Y Ñ Z with kernel f : X Ñ Z is a deflation if and only if there exists a deflation

f 1 : Y 1
։Y such that g ˝ f is a deflation.

(7) A sequence X
f
ÝÑ Y

g
ÝÑ Z is a conflation in E if and only if there is a triangle ipXq

ipfq
ÝÝÑ ipY q

ipgq
ÝÝÑ

ipZq Ñ ΣipXq in D
bpEq.
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(8) A sequence X
f

ÝÑ Y
g
ÝÑ Z is a conflation in E if and only if it is a conflation in the exact hull E

(see theorem 2.15).

(9) The embedding E Ñ pE of E into its weak idempotent completion pE is fully exact.

For a deflation-exact category E , axiom R3` is equivalent to satisfying the obscure axiom R3 and
being weakly idempotent complete (i.e. every retract has a kernel; this property is also called divisive,
see [27]): deflation-exact categories satisfying axiom R3` are closely related to a weakly idempotent
complete exact category. Specifically, we have the following theorem.

Theorem 1.2. Let E be a deflation-exact category satisfying axiom R0˚. The following are equivalent:

(1) Axiom R3` holds.
(2) E is weakly idempotent complete and axiom R3 holds.
(3) If p 0 g q : X ‘ Y ։Z is a deflation, then g is a deflation.
(4) A morphism g : Y Ñ Z is a deflation if and only if there exists a deflation f : X։Y such that

g ˝ f is a deflation.
(5) The ker-coker-sequence property holds (see proposition 5.2).
(6) The (short) snake lemma holds (see corollary 5.3 and theorem 5.5).
(7) Deflations are closed under retracts, i.e. for any commutative diagram

Y
g

// //

��

Z

��

Y 1 g1

// Z 1

where the vertical arrows are retractions, if g is a deflation, then g1 is a deflation.
(8) Deflations are closed under direct summands, i.e. for any two morphisms g : Y Ñ Z and g1 : Y 1 Ñ

Z 1, if the direct sum Y ‘ Y 1
։Z ‘ Z 1 is a deflation, then g and g1 are deflations.

Both theorem 1.1 and theorem 1.2 will be proved in §6.

1.2. The obscure closure of a one-sided exact category. Let E “ pA,Dq be a deflation-exact
category (such that the split kernel-cokernel pairs are conflations). It was shown in [25] that D can be
restricted to a largest strongly deflation-exact substructure. This restriction usually alters the derived
category and might as such be undesirable. In the opposite direction, it need not be possible to extend
D to a strongly deflation-exact structure on A. The obstruction lies with conflations of the form

X ‘A //
p i 0
0 1

q
//Y ‘A

p p 0 q
// //Z ;

even though the pullback P of a morphism f : Z 1 Ñ Z along p p 0 q : Y ‘ A։Z may exist, the pullback
of f along p : Y Ñ Z need not exist in A.

This leaves the following options: add only those conflations for which the required pullbacks exist, or
change the underlying category A. The former approach yields the closure under axiom R3´, while the
latter approach yields the closure under axiom R3 or R3`.

Theorem 1.3. Let E “ pA,Dq be a deflation-exact category such that the split kernel-cokernel pairs are
conflations.

(1) There is a smallest deflation-exact structure DR3- Ě D on A satisfying axiom R3´.
(2) There is an exact functor E Ñ ER3 from E to a deflation-exact category ER3 satisfying axiom R3,

universal among all exact functors to deflation-exact categories satisfying axiom R3.
(3) There is an exact functor E Ñ ER3+ from E to a deflation-exact category ER3+ satisfying axiom

R3`, universal among all exact functors to deflation-exact categories satisfying axiom R3`.

Moreover, the embeddings of E into each of these three closures are derived equivalences.

The deflation structure ER3- “ pA,DR3-q is the largest extension of D such that E Ñ ER3- is a derived
equivalence. The categories ER3 and E

R3+ need not have A as underlying category: the underlying

additive category of E
R3+ is the weak idempotent completion pA of A, and the underlying additive

category of ER3 is a subcategory of pA containing A.
As the obscure axiom yields a slew of interesting homological properties, it is useful to know which

sequences in E become conflations in ER3 (or E
R3+ or Eex). The following proposition addresses this (see

proposition 7.18 in the text).
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Proposition 1.4. Let X
f

ÝÑ Y
g

ÝÑ Z be a sequence in a deflation-exact category E. The following are
equivalent:

(1) the sequence is a conflation in ER3,
(2) the sequence is a conflation in ER3+ ,
(3) the sequence is a conflation in Eex,

(4) there is an A P E such that X ‘A //

´
f 0

0 1

¯

//Y ‘A
p g 0 q

// //Z is a conflation in E .

In §8, we apply these insights to compare the different lattice of one-sided exact structures on an

additive category A and its weak idempotent completion pA. Specifically, we show that there is a Galois
connection between the deflation-exact structures satisfying axiom R3´ on A and the deflation-exact

structures satisfying axiom R3` on pA.

1.3. The exact structure of stable kernel-cokernel pairs. One-sided exact structures have been
used to construct the maximal exact structure on an additive category A: for a weakly idempotent
complete category, the maximal exact structure is given by intersecting the maximal deflation-exact
structure Dmax and maximal inflation-exact structure Imax on A (see [22, 30] for the pre-abelian case
and [11] for the more general weakly idempotent complete case). The conflations in Dmax X Imax are the
stable kernel-cokernels.

When A is not weakly idempotent complete, the stable kernel-cokernels need not form an exact struc-
ture. Here, the maximal exact structure is obtained by intersecting the largest strongly deflation- and
strongly inflation-exact categories, but this set of conflations might be considerably smaller than the set
of stable kernel-cokernels (see [25, 26]).

In §9, we show that, given any additive categoryA, the intersection IXD of an inflation-exact structure
I and a deflation-exact structure D “almost” endows A with the structure of an exact category: even

though pA, I X Dq is not an exact category, the weak idempotent completion p pA,{I X Dq is an exact

category. This suggests that an exact closure of pA, I X Dq can be constructed inside p pA,{I X Dq. The
following theorem is proposition 9.5.

Theorem 1.5. Let D and I be a deflation- and an inflation-exact structure on an additive category A.

There is an exact category pA1,Eq and a conflation-exact functor ϕ : pA,D X Iq Ñ pA1,E1q satisfying the
following 2-universal property: for each exact category pB, Eq, the functor

´ ˝ ϕ : HomexactppA,D X Iq, pB,Fqq Ñ HomexactppA1,E1q, pB,Fqq

is an equivalence.

The additive category A1 in this theorem is found as a full subcategory of the weak idempotent

completion pA, and contains the category A. Put differently, A Ď A1 Ď pA.

Acknowledgments. The second author is currently a postdoctoral researcher at FWO (12.M33.16N).

2. Preliminaries

This section is preliminary in nature. We recall the definition of a one-sided exact category as given in
[2]. Note that our left exact categories are called right exact in [2] and vice-versa. To avoid confusion, we
will refer to one-sided exact categories by either inflation-exact categories or deflation-exact categories
referring directly to the underlying axioms instead.

2.1. Characterization of pullbacks and pushouts. We start with some general statements about
pullbacks and pushouts. The following statement is [20, proposition I.13.2] together with its dual.

Proposition 2.1. Let C be any pointed category.

(1) Consider a diagram

X 1 f 1

// Y 1

h

��

X
f

// Y
g

// Z

where f is the kernel of g. The left-hand side can be completed to a pullback square if and only
if f 1 is the kernel of gh.
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(2) Consider a diagram

X
f

// Y

h
��

g
// Z

Y 1 g1

// Z 1

where g is the cokernel of f . The right-hand side can be completed to a pushout square if and
only if g1 is the cokernel of hf .

The following well-known proposition states that pullbacks preserve kernels and pushouts preserve
cokernels (see [25, lemma 1]).

Proposition 2.2. Let C be any pointed category. Consider the following commutative diagram in C:

A

g

��

f
// B

h

��

C
f 1

// D

(1) Assume that the commutative square is a pullback. The morphism f admits a kernel if and only
if f 1 admits a kernel. In this case, the composition kerpfq Ñ A Ñ C is the kernel of f 1.

(2) Assume that the commutative square is a pushout. The morphism f admits a cokernel if and only
if f 1 admits a cokernel. In this case, the composition B Ñ D Ñ cokerpf 1q is the cokernel of f.

2.2. One-sided exact categories.

Definition 2.3. A conflation structure on an additive category A is a chosen class C of kernel-cokernel
pairs, called conflations, such that this class is closed under isomorphisms. The kernel part of a conflation
is called an inflation and the cokernel part of a conflation is called a deflation. We depict inflations by
the symbol  and deflations by ։.

A conflation category is a pair pA,Cq where C is a conflation structure on the additive category A.

A functor F : pA1,C1q Ñ pA2,C2q between conflation categories is called exact or conflation-exact if it
maps conflations to conflations.

For a conflation category E “ pA,Cq, we often write X P E for X P A.

Definition 2.4. A conflation category E “ pA,Cq is called deflation-exact or right exact if E satisfies
the following axioms:

R0 The identity morphism 10 : 0 Ñ 0 is a deflation.
R1 Deflations are closed under composition.
R2 The pullback of any morphism along a deflation exists. Moreover, deflations are stable under

pullbacks.

Dually, a conflation category E is called inflation-exact or left exact if E satisfies the following axioms:

L0 The identity morphism 10 : 0 Ñ 0 is an inflation.
L1 Inflations are closed under composition.
L2 The pushout of any morphism along an inflation exists. Moreover, inflations are stable under

pushouts.

Definition 2.5. In addition to the axioms listed above, we discuss the following axioms as well.

R0˚ For any A P E , A Ñ 0 is a deflation.
R3 If i : A Ñ B and p : B Ñ C are morphisms in E such that p has a kernel and pi is a deflation,
then p is a deflation.

The following axioms are dual.

L0˚ For any A P E , 0 Ñ A is an inflation.
L3 If i : A Ñ B and p : B Ñ C are morphisms in E such that i has a cokernel and pi is an
inflation, then i is an inflation.

Following [2], a deflation-exact category satisfying axiom R3 is called a strongly deflation-exact category
or a strongly right exact category. Dually, an inflation-exact category satisfying axiom L3 is called a
strongly inflation-exact category or a strongly left exact category.
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Remark 2.6. (1) A Quillen exact category is a conflation category satisfying the axioms in defini-
tions 2.4 and 2.5. Yoneda showed that axioms R3 and L3 are redundant for exact categories
(see [32, p. 525]). In fact, Keller showed that axioms R0,R1, R2 and L2 imply the other axioms
of an exact category (see [19, appendix A]). Dually, an inflation-exact category satisfying axiom
R2 is an exact category.

(2) For a deflation-exact category, axiom R0˚ translates to all split kernel-cokernel pairs being con-
flations. Similarly, for inflation-exact categories, axiom L0˚ yields that all split kernel-cokernel
pairs are conflations (see proposition 2.8 below). In this text, we are solely interested in one-sided
exact categories having all split kernel-cokernel pairs as conflations.

We recall some basic properties of inflations and deflations in a deflation-exact category (see, for
example, [2] or [16]).

Proposition 2.7. Let E be a deflation-exact category. Then:

(1) Every isomorphism is a deflation.
(2) Every inflation is a monomorphism. An inflation which is an epimorphism is an isomorphism.
(3) Every deflation is an epimorphism. A deflation which is a monomorphism is an isomorphism.
(4) The class of conflations is closed under direct sums.

Proposition 2.8. Let E be a deflation-exact category the following are equivalent:

(1) Axiom R0˚ holds.
(2) All split kernel-cokernel pairs are conflations.
(3) Retractions with kernels are deflations.
(4) Coretractions with cokernels are inflations.

2.3. The derived category of a one-sided exact category. The derived category of a one-sided
exact category was introduced in [2]. We recall some relevant definitions and properties from [2, 15].

We write CbpEq for the category of bounded cochain complexes over E and KbpEq for the homotopy

category of E . It is well-known that KbpEq has the structure of a triangulated category induced by the

strict triangles in CbpEq. In order to define the (bounded) derived category of a one-sided exact category,
we need to define acyclic complexes.

Definition 2.9. Let E be a conflation category. A morphism f : X Ñ Y is called admissible or strict if
it admits a deflation-inflation factorization:

X

�� ��
❄❄

❄❄
❄❄

❄❄

f
// Y

I
??

??⑧⑧⑧⑧⑧⑧⑧⑧

We denote an admissible morphism by X ˝
f

// Y .

Remark 2.10. The deflation-inflation factorization X։ I Y above is unique (up to isomorphism),
moreover, coimpfq – I – impfq. Clearly an admissible map has a kernel and cokernel: kerpfq is the
kernel of f։ coimpfq and cokerpfq is the cokernel of the map impfqY .

Definition 2.11. Let E be a conflation category. A sequence

¨ ¨ ¨ // Xi´1

fi´1
// Xi

fi
// Xi`1

fi`1
// Xi`2

fi`2
// ¨ ¨ ¨

is called exact or acyclic if each fj is admissible, i.e. factors as ιj ˝ ρj with deflation ρj : Xj։ impfjq and
inflation ιj : impfjqXi`1 such that ιj “ kerpfj`1q and ρj “ cokerpfj´1q for all j.

The full subcategory of KbpEq consisting of complexes which are homotopic to an acyclic complex is

denoted by AcbpEq.

The following lemma is [2, lemma 7.2].

Lemma 2.12. Let E be a one-sided exact category. The category Ac
bpEq is a triangulated subcategory

of KbpEq.

Hence, we arrive at the following definition.

Definition 2.13. Let E be a one-sided exact category. The bounded derived category DbpEq is the Verdier

localization KbpEq{AcbpEq.
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The following theorem (see [15, theorem 1.1]) summarizes some basic properties of the derived category.

Theorem 2.14. Let E be a deflation-exact category.

(1) The natural embedding i : E ãÑ D
bpEq is fully faithful.

(2) For all X,Y P E and n ą 0, we have HomDbpEqpΣnipXq, ipyqq “ 0.

If E satifies axiom R0˚, then

(3) a conflation XY ։Z lifts to a triangle ipXq Ñ ipY q Ñ ipZq Ñ ΣipXq in D
bpEq.

For a deflation-exact category E , we write Eex for the extension-closure of E in its bounded derived
category DbpEq. We may endow Eex with the structure of an exact category in the following way (see

[15], based on [12]): a sequence X Ñ Y Ñ Z is a conflation in Eex Ď DbpEq if and only if there is a
triangle ipXq Ñ ipY q Ñ ipZq Ñ ΣipXq. We call Eex the exact hull of E . We recall the following theorem.

Theorem 2.15. Let E be a deflation-exact category satisfying axiom R0˚. The embedding j : E Ñ Eex

is an exact embedding which is 2-universal among exact functors to exact categories. Moreover,

(1) the embedding Eex Ñ D
bpEq lifts to a triangle equivalence D

bpEexq » D
bpEq, and

(2) the embedding E Ñ Eex lifts to a triangle equivalence D
bpEq » D

bpEexq.

2.4. Weakly idempotent complete categories. Let A be any category. A morphism f : X Ñ Y is
called a retraction (or a coretraction) if there is a morphism g : Y Ñ X such that f ˝g “ 1Y (or g˝f “ 1X ,
respectively). The following proposition is [8, lemma 7.1].

Proposition 2.16. In an additive category A, the following are equivalent.

(1) Every retraction has a kernel.
(2) Every coretraction has a cokernel.

A category satisfying the conditions of the previous proposition is called weakly idempotent complete.
The following is an immediate corollary to proposition 2.8.

Corollary 2.17. Let E be a weakly idempotent complete deflation-exact category. If E satisfies axiom
R0˚, then retractions are deflations and coretractions are inflations.

Every additive category A has a weak idempotent closure pA. Explicitly, the weak idempotent comple-

tion of A can be realized as the full additive subcategory of the idempotent completion qA containing A

and all kernels of retractions in A (see [8, remark 7.8] or [15, proposition A.11]).

Remark 2.18. Let X be an object of the idempotent completion qA. By the construction of the weak

idempotent completion pA, we have that X P pA if and only if there exists an object Xc P ObpAq such that
X ‘Xc P ObpAq.

The following observation will be useful.

Lemma 2.19. Let A be an additive category. The embedding i : A Ñ pA commutes with limits and
colimits.

Proof. Let D : J Ñ A be a diagram in A and let L “ limD. For any object A P pA, we write CA : J Ñ pA
for the constant functor J Ñ A mapping every object to A and every morphism to 1A.

For every X P pA, there is a split kernel-cokernel pair X Ñ Y Ñ Z with Y, Z P A. Hence, there
is a (split) exact sequence 0 Ñ HompX,´q Ñ HompY,´q Ñ HompZ,´q Ñ 0 in the functor category

Homp pA,Abq. As the natural morphisms HompY, Lq Ñ HompCY , Dq and HompZ,Lq Ñ HompCZ , Dq are
isomorphisms (as L is the limit of D in A), we find that the is a natural morphism HompX,Lq Ñ

HompCX , Dq is an isomorphism as well. This shows that L is also the limit of D in pA, as required.

That i : A Ñ pA commutes with colimits is dual. �

3. Variants of the obscure axiom

We introduce several variants of the obscure axiom. The variants gain significance throughout this
text.

Definition 3.1. Let E be a conflation category. We introduce the following axioms.

R3´ If the composition Y 1 f 1

ÝÑ Y
g

ÝÑ Z is a deflation and all pullbacks along g : Y Ñ Z exist, then
g : Y Ñ Z is a deflation.

R3` If the composition Y 1 f 1

ÝÑ Y
g

ÝÑ Z is a deflation then g : Y Ñ Z is a deflation.
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The following axioms are dual.

L3´ If a composition X
f

ÝÑ Y
g1

ÝÑ Y 1 is an inflation and all pushouts along f : X Ñ Y exist, then
f : X Ñ Y is an inflation.

L3` If a composition X
f

ÝÑ Y
g1

ÝÑ Y 1 is an inflation then f : X Ñ Y is an inflation.

Remark 3.2. For a deflation-exact category, we have

R3` ñ R3 ñ R3´ ñ R0˚,

meaning that axiom R3` is the strongest and axiom R0˚ is the weakest. A similar sequence exists for
inflation-exact categories, changing the axioms to their inflation counterparts.

The following proposition is a small extension of [2, proposition 6.4]. It states that, for weakly idempo-
tent complete one-sided exact categories, all aforementioned variants of the obscure axiom are equivalent.

Proposition 3.3. Let E be a deflation-exact category. The following are equivalent:

(1) E satisfies axiom R3`,
(2) E is weakly idempotent complete and satisfies axiom R3,
(3) E is weakly idempotent complete and satisfies axiom R3´.

Proof. If (1) holds, then (2) holds (and hence also (3)), see [2, proposition 6.4]. For the other direction,
assume that (3) holds. Let g : Y Ñ Z be a morphism such that g ˝f 1 is a deflation (for some f 1 : Y 1 Ñ Y )
as in the statement of axiom R3`. We need to show that g is a deflation. For this, it suffices to
show that g admits all pullbacks. Equivalently, we can show that, for any h : H Ñ Z, the morphism
p g h q : Y ‘H Ñ Z has a kernel. We consider the following pullback diagram:

P

����

p
// Y 1

g˝f 1

����

Y ‘H
p g h q

// Z

which exists by axiom R2. As g ˝ f 1 “ p g h q
`
f 1

0

˘
, the universal property of the pullback shows that

P Ñ Y 1 is a retraction and thus a deflation by corollary 2.17. Proposition 2.2 shows that the composition
ker p Ñ P Ñ Y ‘H is the kernel of p g h q : Y ‘H Ñ Z. This completes the proof. �

The following observation leads to useful equivalent characterizations of the obscure axioms.

Proposition 3.4. Let E be a deflation-exact category satisfying axiom R0˚ and let g : Y Ñ Z be a
morphism. The following statements are equivalent:

(1) there is a morphism f 1 : Y 1 Ñ Y such that the composition g ˝ f 1 is a deflation,
(2) there is an E P E for which p 0 g q : E ‘ Y ։Z is a deflation.

Proof. Assume that (1) holds. Choose E “ Y 1. The map p 0 g q is obtained as the following composition:

Y 1 ‘ Y

´
1 0

´f 1
1

¯

ÝÝÝÝÝÑ Y 1 ‘ Y

´
gf 1

0

0 1

¯

ÝÝÝÝÝÑ Z ‘ Y

´
1 g
0 1

¯

ÝÝÝÝÑ Z ‘ Y
p 1 0 q

ÝÝÝÑ Z.

Note that each of the above maps is a deflation by proposition 2.7 and axiom R0˚. Axiom R1 yields the
result.

For the converse, it suffices to observe that the deflation p 0 g q : E ‘ Y ։Z factors as E ‘ Y Ñ Y Ñ
Z. �

Proposition 3.5. Let E be a deflation-exact category satisfying axiom R0˚.

(1) The category E satisfies axiom R3´ if and only if for every morphism g : Y Ñ Z admitting all
pullbacks, p 0 g q : Y 1 ‘ Y Ñ Z being a deflation (for any Y 1 P E) implies that g is a deflation.

(2) The category E satisfies axiom R3 if and only if for every morphism g : Y Ñ Z admitting a
kernel, p 0 g q : Y 1 ‘ Y Ñ Z being a deflation (for any Y 1 P E) implies that g is a deflation.

(3) The category E satisfies axiom R3` if and only if for every morphism g : Y Ñ Z, if p 0 g q : Y 1 ‘
Y Ñ Z is a deflation (for any Y 1 P E), then g is a deflation.

Proof. We show the first equivalence, the other two are similar.
Assume that E satisfies axiom R3´ and let g : Y Ñ Z be a map admitting all pullbacks such that

p 0 g q : Y 1 ‘ Y ։Z is a deflation. As the composition Y 1 ‘ Y
p 0 1 q

ÝÝÝÑ Y
g
ÝÑ Z is a deflation, axiom R3´

implies that g is a deflation.
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Conversely, assume that for every morphism g : Y Ñ Z admitting all pullbacks, p 0 g q being a deflation
implies that g is a deflation. Let g : Y Ñ Z be a morphism admitting all pullbacks such that there is
a map f 1 : Y 1 Ñ Y such that g ˝ f 1 is a deflation. By proposition 3.4, the map p 0 g q is a deflation. By
assumption, g is a deflation as well, this shows axiom R3´. �

The following proposition is based upon [2, proposition 6.1] and [28, lemma A.2]. It states that any
deflation-exact category satisfies the dual of theorem 1.1.(5).

Proposition 3.6. Let E be a deflation-exact category and let f : X Ñ Y be a morphism admitting a
cokernel. A map

`
f
0

˘
: X Ñ Y ‘ Y 1 is an inflation if and only if f is an inflation.

If E is weakly idempotent complete, one need not require f to have a cokernel.

Proof. Denote by g : Y Ñ Z the cokernel of f and assume that
`
f
0

˘
: XY ‘ Y 1 is an inflation. One

readily verifies that X //

´
f
0

¯

// Y ‘ Y 1

´
g 0

0 1

¯

// // Z ‘ Y 1 is a conflation. By axiom R2 we obtain the following
commutative diagram

X //

´
f
0

¯

// Y ‘ Y 1

´
g 0

0 1

¯

// // Z ‘ Y 1

X //
f

// Y
g

// //

p 1
0

q

OO

Z

p 1
0

q

OO

where the lower row is a conflation. In particular, f is an inflation.
The converse direction follows from proposition 2.7. The last part is [2, proposition 6.1]. �

Proposition 3.7. Let E be a deflation-exact category satisfying axiom R3´. Let f : Y Ñ Z and g : Y 1 Ñ

Z 1 be morphisms such that
´
f 0

0 g

¯
: Y ‘ Y 1

։Z ‘ Z 1 is a deflation. If f admits all pullbacks, then f is a

deflation.

Proof. Axiom R2 yields a pullback diagram:

P

h
����

p
// Y ‘ Y 1

´
f 0

0 g

¯

����

Z
p 1
0

q
// Z ‘ Z 1.

As p f 0 q ˝ p : P Ñ Z is equal to h, axiom R3´ shows that f is a deflation. �

4. The nine lemma

Throughout this section, E “ pA,Dq is a strongly deflation-exact category, i.e. axiom R3 holds. The
goal of this section is to show that the nine lemma (see theorem 4.1) holds in E . The proof follows [3, 4]
closely.

Theorem 4.1 (The nine lemma). Let E be a strongly deflation-exact category. Consider a commutative
diagram

X
f

//
��

��

Y
g

//
��

��

Z��

��

X 1 f 1

//

����

Y 1 g1

//

����

Z 1

����

X2 f2

// Y 2 g2

// Z2

where the columns are conflations and g1 ˝ f 1 “ 0. If two of the rows are conflations, so is the third.

Before coming to the proof of the nine lemma, we will establish several preliminary results. The first
two lemmas are akin to [3, lemmas 4.2.5 and 4.2.6].

Lemma 4.2. Consider the following commutative diagram in a strongly deflation-exact category E

X // //

u

��

Y // //

v

��

Z

w

��

X 1 // // Y 1 // // Z 1
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where the rows are conflations.

(1) If w is an isomorphism, then u is a deflation if and only if v is a deflation.
(2) If u and w are deflations then is v.

Proof. (1) Assume that w is an isomorphism. If u is a deflation, then [2, lemma 5.10] shows that v
is a deflation as well.

Conversely, assume that v is a deflation. It follows from proposition 2.1 that the left square is
a pullback square. Axiom R2 implies that u is a deflation.

(2) Assume that u and w are deflations. Taking the pullback of Y 1
։Z 1 along w, which exists by

axiom R2, we obtain the following commutative diagram:

X // //

u
����

Y // //

v1

��

Z

X 1 // // P // //

v2

����

Z

w
����

X 1 // // Y 1 // // Z 1

where v2 is a deflation and v1 is obtained by the universal property of the pullback (thus v “
v2 ˝ v1). By the first part of the lemma we find that v1 is a deflation. Axiom R1 now implies that
v is a deflation. �

Lemma 4.3. Consider the following commutative diagram in deflation-exact category E

X //
f

//

u

��

Y
g

// //

v
����

Z

X 1 �
� f 1

// Y 1 g1

// Z

where the top row is a conflation and f 1 is a monomorphism. If g1 ˝ f 1 “ 0, then f 1 “ kerpg1q.

Proof. As we have assumed that f 1 is a monomorphism, we only need to show that f 1 is a weak kernel
of g1. To that end, let t : T Ñ Y 1 be a map such that g1 ˝ t “ 0. By axiom R2, we can take the pullback
of t along v, obtaining the following commutative solid diagram:

K K

X Y Z

P

X 1 Y 1 Z

T

k1

f

u

g

v

t1

v1

h

f 1 g1

t

l

Note that g ˝ t1 “ pg1 ˝ tq ˝ v1 “ 0 and thus there exists a unique map h : P Ñ X such that f ˝ h “ t1. By
commutativity of the diagram, we find that

t ˝ v1 “ v ˝ t1 “ v ˝ f ˝ h “ f 1 ˝ u ˝ h.

Since f 1 is monic and since f 1 ˝ pu ˝ h ˝ k1q “ v ˝ t1 ˝ k1 “ 0, we find that u ˝ h ˝ k1 “ 0. As v1 “ cokerpk1q,
there exists a unique map l : T Ñ X 1 such that l ˝ v1 “ u ˝ h. Thus

f 1 ˝ l ˝ v1 “ f 1 ˝ u ˝ h “ v ˝ f ˝ h “ v ˝ t1 “ t ˝ v1.

As v1 is an epimorphism, we find that t “ f 1 ˝ l. This shows that f 1 is a weak kernel of g1. �

The following proposition is a straightforward adaptation of [29, proposition 1.1.4] (see also [24, corol-
lary 1]).

Proposition 4.4. Let f : X Ñ Y be a morphism in a deflation-exact category E. The following are
equivalent:
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(1) f “ m ˝ e where e is a deflation and m is a monomorphism,
(2) f admits a kernel which is an inflation.

In this case, the deflation is given by e : X։X{ kerpfq.

Proof. Assume first that f “ m ˝ e where e is a deflation and m is a monomorphism. As m is a
monomorphism, we know that kerpfq “ kerpeq. As e is a deflation, kerpfq Ñ X is an inflation.

For the other direction, assume that i : kerpfqX is an inflation. Let C “ coimpfq “ X{ kerpfq.
This gives the commutative diagram

kerpfq //
i // X

f
//

e
�� ��
❄❄

❄❄
❄❄

❄❄
Y

C

m

??⑧⑧⑧⑧⑧⑧⑧⑧

We only need to show that m : C Ñ Y is a monomorphism. To this end, let t : T Ñ C be any morphism
such that m ˝ t “ 0. We need to show that t “ 0. Using axiom R2, we consider the pullback diagram

P
t1

//

e1

����

X

e
����

T
t // C

where the downward arrows are deflations. As f ˝ t1 “ m ˝ e ˝ t1 “ m ˝ t ˝ e1 “ 0, we know that t1 : P Ñ X

factors as t1 “ i ˝ j for some j : P Ñ kerpfq. As e1 is a deflation (and hence an epimorphism), it now
follows from

t ˝ e1 “ e ˝ t1 “ e ˝ i ˝ j “ 0

that t “ 0. This shows that m is a monomorphism. �

We are now in a position the prove the nine lemma.

proof of theorem 4.1. (1) It the lower two rows are conflations, so is the third (see [2, proposi-
tion 5.11]).

(2) Assume that the upper two rows are conflations. It follows from proposition 2.1 that the top-
left square is a pullback. Again using proposition 2.1, we find that XX 1 is the kernel of

X 1
։X2 f2

ÝÑ Y 2. Proposition 4.4 yields that f2 : X2 Ñ Y 2 is a monomorphism.
Taking the pullback of g2 along the deflation Z 1

։Z2, we obtain the following commutative
diagram:

Y Z Z

Y 1 P Z 1

Y 2 Y 2 Z2

g

g2

Here, the dotted arrow, obtained using the pullback property of P , factors the map g1 : Y 1 Ñ Z 1.
Applying lemma 4.2.(1) to the first two columns of the previous commutative diagram, we find
that the dotted map Y 1 Ñ P is a deflation.

Note that g2 ˝ f2 “ 0. Indeed, the composition X 1 f 1

ÝÑ Y 1 g1

ÝÑ Z 1
։Z2 equals the composition

X 1
։X2 f2

ÝÑ Y 2 g2

ÝÑ Z2 and is zero as g1 ˝ f 1 “ 0, since X 1
։X2 is an epimorphism, we find that

g2 ˝ f2 “ 0.
Using g2 ˝ f2 “ 0 and the pullback property of P , we obtain the following commutative

diagram:

X 1 Y 1 Z 1

X2 P Z 1

X2 Y 2 Z2

f 1 g1

f2 g2
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The dotted map X2 Ñ P is a monomorphism as f2 is a monomorphism. By lemma 4.3, the map
X2 Ñ P is the kernel of the map P Ñ Z 1. As the lower-right square is a pullback, we find that
f2 “ kerpg2q by proposition 2.2. Axiom R3 now implies that g2 is a deflation and thus the lower
row is a conflation as well.

(3) Assume that the upper and lower rows are conflations. Lemma 4.2.(2) implies yields that g1 is a
deflation. Applying part (1) of this proof to the right columns yields the commutative diagram

X X Y Z

X 1 K Y 1 Z 1

X2 X2 Y 2 Z2

f g

g1

f2 g2

Here, the dotted arrow is obtained by using that K “ kerpg1q and that g ˝ f 1 “ 0. The short five
lemma (the lemma holds for one-sided exact categories, see [2, lemma 5.3]) implies that X 1 Ñ K

is an isomorphism. This concludes the proof. �

Remark 4.5. In [3, 4], it was shown that the nine lemma holds for homological categories. Although
our proof follows these references closely, we do not assume that the category E is finitely complete, nor
do we assume that every cokernel is a deflation.

5. The snake lemma

In this section we show the snake lemma (see theorem 5.5) holds in a deflation-exact category E “
pA,Dq satisfying axiom R3`, i.e. E is weakly idempotent complete and satisfies axiom R3. Our proof
follows [8] closely, and we obtain the snake lemma as a consequence of the ker-coker sequence (see
proposition 5.2 below).

We start with the observation that, in this setting, admissible morphisms are stable under pullbacks
along deflations and, when those exist, pushouts along inflations.

Proposition 5.1. Let E be a deflation-exact category satisfying axiom R3`.

(1) Given a commutative diagram of the form:

A1
// // A2

f2

��

// // A3

f3

��

A1
// // B2

// // B3

(1)

The map f2 is admissible if and only if f3 is admissible.
(2) Given a commutative diagram of the form:

A1
// //

f1

��

A2

f2

��

// // A3

B1
// // B2

// // A3

(2)

The map f1 is admissible if and only if f2 is admissible.

Proof. (1) Note that the right square of diagram 1 is both a pullback square and a pushout square.
Indeed this follows from [16, proposition 3.7]).

Now assume that f2 is admissible. It follows from proposition 2.2 that cokerpf2q – cokerpf3q.
Axiom R3` implies that the induced map B3 Ñ cokerpf2q is a deflation. Hence we obtain the
following commutative diagram:

A1
// impf2q

��

��

// K��

��

A1
// //

����

B2
// //

����

B3

����

0 // // cokerpf2q cokerpf2q
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By the nine lemma, the upper row is a conflation as well. Using that K is a kernel, we find
that f3 factors through KB3. The induced map A3 Ñ K is a deflation by axiom R3` and
by commutativity of the square A2A3K impf2q. Indeed, one can verify the commutativity of the
square A2A3K impf2q by using that KB3 is a monomorphism and that the square A2A3B3B2

commutes. This shows that f3 is admissible and that K – impf3q.
Conversely, assume that f3 is admissible. It follows from [16, proposition 3.10] and axiom R3

that admissible maps are stable under pullbacks along deflations. Note that this does not require
E to be weakly idempotent complete.

(2) The left square of diagram 2 is both a pullback square and a pushout square by [16, proposi-
tion 3.7]).

Assume that f1 admissible. As the left square is a pushout, proposition 2.2 shows that
cokerpf1q – cokerpf2q. Axiom R3` implies that the map B2 Ñ cokerpf1q is a deflation. Hence,
we obtain the following commutative diagram:

impf1q //
��

��

K //
��

��

A3

B1
// //

����

B2
// //

����

A3

����

cokerpf1q cokerpf1q // // 0

By the nine lemma, the upper row is a conflation. Note that f2 factors throughKB2, moreover,
we obtain the following commutative diagram:

kerpf1q
��

��

kerpf1q // //

��

0��

��

A1
// //

����

A2
// //

��

A3

impf1q // // K // // A3

Applying the nine lemma once more, we find that the middle column is a conflation. It follows
that f2 is admissible and that K – impf2q.

Conversely, assume that f2 is admissible. It is straightforward to see that A2 ։A3 factors
through A2 ։ impf2q. By axiom R3`, the induced map impf2q Ñ A3 is a deflation. Using that
the left square is a pullback, we obtain the following commutative diagram:

kerpf1q

��

kerpf1q // //
��

��

0��

��

A1
// //

��

A2
// //

����

A3

K // // impf2q // // A3

By the nine lemma, the left column is a conflation. Clearly, f1 factors through A1 ։K. It
remains to show that the induced map K Ñ B1 is an inflation. Applying the nine lemma once
more to the commutative diagram

K

��

// // impf2q // //
��

��

A3

B1
// //

��

B2
// //

����

A3

����

cokerpf2q cokerpf2q // // 0
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we find that the left column is a conflation. It follows that f1 is admissible and that K –
impf1q. �

The next proposition shows that the ker-coker-sequence property holds for weakly idempotent complete
deflation-exact categories. We generalize the proof given in [8, proposition 8.11].

Proposition 5.2 (Ker-coker-sequence). Let E be a deflation-exact category satisfying axiom R3`. Let

A ˝
f

// B and B ˝
g

// C be admissible morphisms such that h “ g ˝ f is admissible as well. There is
a natural exact sequence

0 Ñ kerpfq Ñ kerphq Ñ kerpgq Ñ cokerpfq Ñ cokerphq Ñ cokerpgq Ñ 0.

Proof. Clearly g induces a map impfq Ñ imphq, moreover, by axiom R3`, this map is a deflation. Hence,
we obtain a conflation X impfq։ imphq. Consider the following commutative diagram:

kerpfq // kerphq //
��

��

X��

��

kerpfq // //

����

A // //

����

impfq

����

0 // // imphq imphq

By the nine lemma, the upper row of this diagram is a conflation.
Similarly, f induces a map cokerphq Ñ cokerpgq which is a deflation by axiom R3`. Hence, we obtain

a conflation Z cokerphq։ cokerpgq. Consider the following commutative diagram:

imphq // impgq //
��

��

Z��

��

imphq // //

����

C // //

����

cokerphq

����

0 // // cokerpgq cokerpgq

Again, the nine lemma yields that the top row is a conflation.
By axiom R1, the composition B։ impgq։Z is a deflation. Axiom R3` implies that the induced

map cokerpfq Ñ Z such that the square B cokerpfqZ impgq is commutative, is a deflation. Hence we
obtain a conflation Y  cokerpfq։Z. Consider the following natural commutative diagram:

X //
��

��

kerpgq //
��

��

Y��

��

impfq // //

����

B // //

����

cokerpfq

����

imphq // // impgq // // Z

Again, the nine lemma implies that the top row of this diagram is a conflation. The result follows by
gluing the edges of the previous three diagrams together. �

As a corollary, we find obtain the short snake lemma.

Corollary 5.3 (Short snake lemma). Let E be a deflation-exact category satisfying axiom R3`. Consider
a commutative diagram

A1
//
φ1

//

˝f1

��

A2

φ2
// //

˝f2

��

A3

˝f3

��

B1
//

φ1

1

// B2
φ1

2

// // B3
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such that the rows are conflations and the fi’s are admissible morphisms. Write Ki “ kerpfiq and
Ci “ cokerpfiq. There exists a natural connecting morphism δ such that the sequence

0 // K1
//
ψ1

// K2

ψ2
// K3

δ // C1

ψ1

1 // C2

ψ1

2 // // C3
// 0

is an exact sequence. Here the maps ψi and ψ
1
i are the natural maps induced by the above diagram.

Proof. By [2, proposition 5.2], the given map between conflations factors as

A1
//
φ1

//

˝f1

��

A2

φ2
// //

˝f 1

2

��

A3

B1
// // P // //

˝f2

2

��

A3

˝f3

��

B1
//

φ1

1

// B2
φ1

2

// // B3

such that f2 “ f2
2 ˝ f 1

2, the upper-left and lower-right squares are bicartesian squares, i.e. both pullbacks
and pushouts. By proposition 5.1, both f 1

2 and f2
2 are admissible.

Applying proposition 5.2 to the composition f2 “ f2
2 ˝ f 1

2, yields the exact sequence

0 Ñ kerpf 1
2q Ñ kerpf2q Ñ kerpf2

2 q Ñ cokerpf 1
2q Ñ cokerpf2q Ñ cokerpf2

2 q Ñ 0.

Using that pullbacks preserve kernels, pushouts preserve cokernels (proposition 2.2), yields the required
sequence. �

Remark 5.4. (1) The short snake lemma holds for a strongly one-sided exact category E only if E
is weakly idempotent complete. The proof is similar to [8, remark 8.14].

(2) The proof of proposition 5.2 is similar to the proof given in [8, proposition 8.11]. However,
we avoid using axiom L3 by combining axiom R3 and the nine lemma to obtain the desired
inflations.

We now come to the full version of the snake lemma.

Theorem 5.5 (Snake lemma). Let E be a deflation-exact category satisfying axiom R3`. Consider a
commutative diagram

A1 ˝
φ1

//

˝f1

��

A2 ˝
φ2

//

˝f2

��

A3
// //

˝f3

��

0

0 // // B1 ˝
φ1

1

// B2 ˝
φ1

2

// B3

(3)

with exact rows. There is an induced exact sequence

kerpφ1q // // K1
// K2

// K3
// C1

// C2
// C3

// // cokerpφ1
2q

where Ki “ kerpfiq and Ci “ cokerpfiq.

Proof. Note that φ2 is a deflation, φ1
1 is an inflation, and that the composition kerpφ1qA1 ։ impf1q is

zero. By axiom R3`, the induced map impφ1q Ñ impf1q is a deflation. By the nine lemma, the top row
of the following commutative diagram is a conflation:

kerpφ1q // kerpf1q //
��

��

K��

��

kerpφ1q // //

����

A1
// //

����

impφ1q

����

0 // // impf1q impf1q

By axiom R1, the composition A2 ։A3 ։ impf3q is a deflation and thus an epimorphism. It follows
that the composition impf3qB3 ։ cokerpφ1

2q is zero if and only if the natural map A2 Ñ cokerpφ1
2q is

zero. The latter follows from the commutativity of diagram (3). Using axiom R3`, we find that the
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induced map cokerpf3q Ñ cokerpφ1
2q is a deflation. The nine lemma yields that the left column of the

following commutative diagram is a conflation:

impf3q

��

impf3q // //
��

��

0��

��

impφ1
2q // //

��

B3
// //

����

cokerpφ1
2q

L // // cokerpf3q // // cokerpφ1
2q

Applying corollary 5.3 to the commutative diagram

impφ1q // //

����

A2
// //

����

A3

����

impf1q
��

��

impf2q
��

��

impf3q
��

��

B1
// // B2

// // impφ1
2q

together with the above yields the desired result. �

6. Equivalent formulations of the obscure axiom

In this section, we expand upon the previous results and provide several equivalent formulations of
the obscure axiom for a deflation- or inflation-exact category E (theorems 1.1 and 1.2). In particular,
we show some converses of the previous sections, i.e. we show that the obscure axiom holds in E if and
only if the nine lemma holds, and that axiom R3` holds if and only if the snake lemma or the ker-coker
sequence property holds.

6.1. Equivalent formulations of axiom R3. We now come to the proof of theorem 1.1. For clarity,
the proof has been split in several parts.

Proof of equivalences (1) ô (2). Theorem 4.1 shows the implication (1) ñ (2). For the implication (2) ñ
(1), consider the commutative diagram

(4)

L

A

K B C

i

k p

where k “ kerppq. We need to show that p is a deflation. By axiom R2, we can consider the pullback P
of p along the deflation p ˝ i. It follows from the universal property of the pullback that the morphism
P Ñ A is a retraction, moreover, by proposition 2.2 it has a kernel and thus proposition 2.8 yields that
it is a deflation and that P – K ‘A. We obtain the following commutative diagram:

0 // //
��

��

L��

��

L��

��

K // // K ‘A // //

p k i q
����

A

����
i

{{
K

k
// B

p
// C

(5)

By the nine lemma, the lower row is a conflation and thus p is a deflation. We conclude that (1) ô (2),
as required. �
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Proof of equivalences (1) ô (3) ô (4) ô (5). The equivalence (1) ô (5) is shown in proposition 3.5. The
implication (1) ñ (3) is shown in [15, proposition 2.6]. The implication (3) ñ (4) is trivial. To show the
implication (4) ñ (1), we consider the setup given in the commutative diagram (4), with k “ kerppq. As
in the proof following diagram (4), we consider the pullback P of p along the deflation p ˝ i and obtain
the lower-right square of (5) as the pullback diagram. Using [2, proposition 5.7], we find the conflation

K ‘A //

´
k i
0 ´1

¯

// B ‘A
p p pi q

// // C

We can now find K Ñ B Ñ C as a direct summand of this conflation. Hence, it follows from (4) that
K Ñ B Ñ C is a conflation. This shows the implication (4) ñ (1). �

Proof of equivalences (1) ô (6). The implication (1) ñ (6) is trivial. Conversely, assume (6) and let
g : Y Ñ Z, f : X Ñ Y and f 1 : Y 1 Ñ Y be maps such that g ˝ f 1 is a deflation and f “ kerpgq. By axiom
R2, we obtain the commutative diagram

X
i // P

p
//

h
����

Y 1

gf 1

����

X
f

// Y
g

// Z

where the right square is a pullback. By the pullback property, there is a unique map u : Y 1 Ñ P such
that gf 1 “ hu and pu “ 1Y 1 . It follows that p is a retraction with kernel i. By proposition 2.8 and axiom
R1, the composition gh “ gf 1p is a deflation. By (6), g is a deflation as required. �

Proof of equivalences (1) ô (7) ô (8). The equivalence of (1) ô (7) is shown in [15, proposition 6.2].
The equivalence of (7) ô (8) follows from [15, theorem 1.2 and proposition 6.2]. �

Proof of equivalences (1) ô (9). Assume that (1) holds, we need to show that E lies extension closed in

its weak idempotent completion. Let X
i
 Y

p
։ Z be a conflation in pE such that X,Z P E . By definition,

there exists a conflation X 1 i1

 Y 1
p1

։ Z 1 in pE such that the direct sum X ‘ X 1
 Y ‘ Y 1

։Z ‘ Z 1 is a
conflation in E . Without loss of generality, we may assume that X 1

Y 1
։Z 1 is a conflation in E . By

remark 2.18, there exists an object Yc P E such that Y ‘ Yc P E . It follows that the following natural
commutative diagram lies in E :

X ‘X 1 //

ˆ
i 0

0 i1

0 0

˙

// Y ‘ Y 1 ‘ Yc

˜
p 0 0

0 p1
0

0 0 1

¸

// //

˜
1 0 0

0 p1
0

0 0 1

¸

��

Z ‘ Z 1 ‘ Yc

X ˆ
i
0
0

˙ // Y ‘ Z 1 ‘ Ycˆ
p 0 0

0 1 0
0 0 1

˙// Z ‘ Z 1 ‘ Yc

Note that the lower row of the above diagram is a kernel-cokernel pair in E . By axiom R3, the lower row
is a conflation in E . By axiom R2, pullbacks along Y ‘ Z 1 ‘ Yc Ñ Z ‘ Z 1 ‘ YC exist in E :

Y ‘ Z 1 ‘ Yc // // Z ‘ Z 1 ‘ Yc

P // //

ˆ
1
0
0

˙ OO

Z

ˆ
1
0
0

˙ OO

It now follows from lemma 2.19 that P – Y . Hence, Y P E . This shows that E is extension-closed in pE .
Conversely, assume that (9) holds. Let X

f
ÝÑ Y

g
ÝÑ Z be a kernel-cokernel pair in E and let h : A Ñ Y

be map such that g ˝ h is a deflation in E . Since g ˝ h is also a deflation in pE and pE satisfies axiom R3`,

the map g is a deflation in pE . Since E ãÑ pE is fully exact, Y
g

ÝÑ Z is a deflation in E as well. �

Remark 6.1. The Gabriel-Quillen embedding of an exact category in an abelian category allows one to
reduce homological statements in an exact category to homological statements in an abelian category.
The equivalence (1) ô (8) in theorem 1.1 gives a similar reduction: here, one can establish statements
about conflations in a strongly deflation-exact category by reducing it to a similar statement in its exact
hull. In particular, using the equivalence (1) ô (8) in theorem 1.1, one can deduce the nine lemma in a
strong deflation-exact category E from the nine lemma in the exact hull E of E .
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6.2. Equivalent formulations of axiom R3`. We now come to the proof of theorem 1.2. We will
again present the proof in several parts.

Proof of equivalences (1) ô (2) ô (3). This is shown in proposition 3.3 and proposition 3.5. �

Proof of equivalences (1) ô (4). The implication (1) ñ (4) is trivial. For the implication (4) ñ (1),
consider morphisms f : X Ñ Y and g : Y Ñ Z such that g ˝ f is a deflation. We find the following
pullback square

P
p

//

h
����

X

gf
����f

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦

Y
g

// Z

where h : P ։Y is a deflation by axiomR2. Note that p : P Ñ X is a retraction by the pullback property.
Write s : X Ñ P for the corresponding section. By axiom R0˚, the maps p p 1 q and p 1 s q are deflations.
The following commutative diagram

P ‘X
p 1 s q

// //

p p 1 q
## ##●

●●
●●

●●
●●

P

p

��

X

and (4) yields that p : P Ñ X is a deflation. It now follows from axiom R1 that the composition g ˝ h is
a deflation. Hence (4) implies that g is a deflation. This shows that (1) holds, as required. �

Proof of equivalences (5) ô (1) ô (6). The implications (1) ñ (5) and (1) ñ (6) follow from proposition
5.2, corollary 5.3 and theorem 5.5.

We now show that (5) ñ (4). As (4) ñ (1), this is sufficient. Let g : Y Ñ Z be a morphism and
f : X։Y be a deflation such that g ˝ f : X։Z is a deflation, as in the statement of (4). We need to

show that g is a deflation. Applying the ker-coker sequence to the composition ker fX
gf
։ Z gives an

acyclic sequence

0 //X // //kerpgfq ˝ //Y // //Z //0.

In particular, g : Y ։Z is a deflation. The implication (6) ñ (4) can be shown in a similar fashion. �

Proof of implications (4) ñ (7) ñ (8) ñ (4). Only the last implication is nontrivial, so let f : X Ñ Y be
any map and let g : Y Ñ Z be a deflation such that g ˝ f is a deflation. It follows from [16] (or the dual
of [2, proposition 5.7]) that p gf f q : X ‘ Y ։Z is a deflation (this uses axiom R0˚). As invertible maps
are deflations, axiom R2 gives a deflation p gf f q

`
1 0

´h 1

˘
“ p 0 f q : X ‘ Y ։Z. It now follows from (8)

that f is a deflation, as required. �

7. Obscure closures of one-sided exact categories

Let E “ pA,Dq be a deflation-exact category satisfying axiom R0˚. In this section, we examine
closures of E under the obscure axiom R3 (as well as the closures under axioms R3´ and R3`). As a
first observation, proposition 3.3 shows that E needs to be weakly idempotent complete in order to admit
axiom R3`. This indicates that it is not sufficient to just refine the conflation structure on E (thus,
enlarge the set D) and that we need to additionally adjust the underlying additive category A. A similar
remark holds for axiom R3 (see example 7.6) below.

Definition 7.1. Let E “ pA,Dq be a deflation-exact category. The R3-closure of E is a deflation-
exact category ER3 “ pAR3,DR3q satisfying axiom R3 together with an exact functor φ : E ãÑ ER3

satisfying the following 2-universal property: for any strongly deflation-exact category F , the functor
´ ˝ φ : HompER3,Fq Ñ HompE ,Fq is an equivalence.

Similarly, one defines the R3`-closure.

The aim of this section is to show the following theorem.

Theorem 7.2. Let E “ pA,Dq be a deflation-exact category satisfying axiom R0˚.

(1) The category E has an R3-closure ER3.
(2) The category E has an R3`-closure ER3` .
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Moreover, the natural maps E ãÑ ER3 ãÑ ER3` lift to triangle equivalences on the bounded derived cate-
gories.

Additionally, there exists deflation-exact structure on E, denoted by ER3´ “ pA,DR3´ q extending the

conflation-structure D and satisfying axiom R3´. Moreover, DbpEq » D
bpER3´ q are triangle equivalent

and ER3´ is the largest conflation structure on E that does not change the bounded derived category up to
triangle equivalence.

7.1. The R3`-closure. By proposition 3.3, a deflation-exact category E “ pA,Dq satisfying axiom
R3` must be weakly idempotent complete. Given a deflation-exact category E satisfying axiom R0˚,

one endows the weak idempotent completion pA with the following conflation structure pD: a sequence

XY ։Z is a conflation in pA if and only if it is a direct summand in pA of a conflation in D. We simply

write pE “ p pA, pDq for the weak idempotent completion of E with the above conflation structure. By [15,
appendix B], the following theorem holds:

Theorem 7.3. Let E be a deflation-exact category satisfying axiom R0˚. The weak idempotent com-

pletion pE satisfies axiom R3` and the exact embedding E Ñ pE is 2-universal among exact functors to
deflation-exact categories satisfying axiom R3`.

Moreover, the natural embedding E Ñ pE lifts to a triangle equivalence D
bpEq Ñ D

bp pEq.

It follows that the R3`-closure ER3` of a deflation-exact category E is simply the weak idempotent

completion pE endowed with the natural conflation structure.
The following corollary states that for a deflation-exact category E , axiom R3 implies the dual of

theorem 1.1.(6) and axiom R3` implies the dual of theorem 1.2.(4).

Corollary 7.4. Let E be a deflation-exact category.

(1) If E satisfies axiom R3, then for any morphism f : X Ñ Y having a cokernel g : Y Ñ Z such
that there is an inflation h : Y U such that h ˝ f is an inflation, f is an inflation.

(2) If E satisfies axiom R3`, then for any morphism f : X Ñ Y such that there is an inflation
h : Y U such that h ˝ f is an inflation, f is an inflation.

Proof. We show the first statement, the second is similar. One naturally obtains the following commu-
tative diagram:

X
f

// Y
g

//
��

h

��

Z

k

��

X // //

����

U
m // //

����

V

l

��

0 // // W W

By theorem 7.3, the right column is a conflation in pE and thus a kernel-cokernel pair in E . Axiom R3

implies that the right column is a conflation in E . Proposition 2.1 implies that the upper-right square is
a pullback square. By axiom R2, the upper row is a conflation. �

The following proposition shows that to any conflation in ER3` , one can add split conflations in E such
that the direct sum is a conflation in E .

Proposition 7.5. Let E be a deflation-exact category satisfying axiom R0˚. For any conflation C in
ER3` , there exists a split conflation C 1 in E such that C ‘ C 1 is a conflation in E.

Proof. Let XY ։Z be a conflation in ER3` . We claim that there exists a conflation XY ։Z in
E such that the direct sum X ‘XY ‘ Y ։Z ‘ Z is a conflation in E .

Indeed, by definition, there is a conflationX 1
Y 1

։Z 1 in ER3` such that X‘X 1
Y ‘Y 1

։Z‘Z 1 is
a conflation in E . By remark 2.18, there are objects X 1

c, Y
1
c , Z

1
c P E such that X 1 ‘X 1

c, Y
1 ‘Y 1

c , Z
1 ‘Z 1

c P E .
Thus adding the split conflations X 1

c “ X 1
c։ 0, Y 1

c “ Y 1
c ։ 0, 0Z 1

c “ Z 1
c to the conflation X 1

Y 1
։Z 1

shows the claim.

By axiom R2, taking the pullback of Z ‘ Z
p 1 0
0 0

q
ÝÝÝÝÑ Z ‘ Z along Y ‘ Y ։Z ‘ Z yields the following

commutative diagram in E :

X ‘X // // Y ‘ Y // // Z ‘ Z

X ‘X // // Y ‘X ‘ Z // //

OO

Z ‘ Z

p 1 0
0 0

q

OO
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The lower row is simply the direct sum (in ER3`) of the conflation XY ։Z and the split conflations
X “ X։ 0 and 0Z “ Z. This concludes the proof. �

7.2. The R3-closure. We now turn our attention to the R3-closure. The next example shows that, as
is the case for the R3`-closure, enlarging the conflation structure alone is, in general, not sufficient.

Example 7.6. Let Q be an equioriented quiver of type A3 and let D “ repk Q be the category of k-linear
representations, where k is a field. The Auslander-Reiten quiver of D is given by

W
&&▼▼

▼

V
88qqq

&&▼
▼▼ Y

&&▼
▼▼

U

88qqq
X

88qqq
Z

Let F be the full additive subcategory of D of all objects not isomorphic to V . We endow F with
the structure of a deflation-exact category by taking all conflations AB։C in D where A is not
isomorphic to U. It can be explicitly verified that this is indeed a deflation-exact structure (see also
remark 7.9 for a less direct approach).

The category F does not satisfy axiom R3. Indeed, there is a conflation U‘2
W‘2

։Y ‘2, and
U Ñ W Ñ Y is a direct summand. Note, however, that the pullback of W Ñ Y along X Ñ Y does not
exist in F , so that W Ñ Y cannot be a deflation in any deflation-exact structure on F . By theorem 1.1,
we see that F cannot be refined to a deflation-exact structure satisfying axiom R3.

Theorem 1.1.(9) allows a straightforward construction of the R3-closure.

Proposition 7.7. Let AR3 Ď pA be the extension closure of A in pE “ p pA, pDq. The induced deflation-exact
structure DR3 on AR3 satisfies axiom R3 and is the R3-closure ER3 “ pAR3,DR3q of E.

Moreover, the inclusion E ãÑ ER3 lifts to a triangle equivalence D
bpEq Ñ D

bpER3q.

Proof. By theorem 1.1.(9), ER3 satisfies axiom R3. Let F : E Ñ F be an exact functor to a deflation-

exact category F satisfying axiom R3. The functor F lifts to an exact functor pF : pE Ñ pF . It suffices

to show that the restriction of pF to ER3 maps to F Ď pF . By theorem theorem 1.1.(9), F lies extension

closed in pF , the result follows.
To see that E ãÑ ER3 lifts to a derived equivalence, it suffices to note that E and ER3 have the same

weak idempotent completion. Indeed, the result then follows from theorem 7.3. �

It is easy to see that the largest deflation-exact structure Dmax on A is given by all semi-stable cokernels
(see definition 9.1), the next corollary is straightforward.

Corollary 7.8. For a deflation-exact category E “ pA,Dq, we have DR3- “ pD X Dmax.

Remark 7.9. The deflation-exact category F from example 7.6 can be obtained as follows. Let Q be
the quiver

1 2
αoo 3

β
oo 4

γ
oo

with relation αβ “ 0. The category repk Q of finite-dimensional k-representations can be visualized via
its Auslander-Reiten quiver:

P p4q “ Ip2q

%%❑
❑❑

❑❑
❑❑

❑❑
❑

P p2q “ Ip1q

%%▲
▲▲

▲▲
▲▲

▲▲
▲

P p3q

99rrrrrrrrrr

%%▲
▲▲

▲▲
▲▲

▲▲
▲

Ip3q

""❊
❊❊

❊❊
❊❊

❊

Sp1q

99ssssssssss

Sp2q

<<②②②②②②②②

Sp3q

99ssssssssss

Sp4q

Let E be the full additive subcategory of repk Q of all objects not isomorphic to Sp1q‘n ‘ Sp2q, nor
to Sp1q‘n ‘ P p3q (for any n ě 0). As E is an extension-closed subcategory of C, it inherits an exact
structure. Let A be the full additive subcategory of E generated by Sp1q, and let SA Ă MorE be the
set of admissible morphisms with kernel and cokernel in A. It is straightforward to check that A Ď E

is an admissibly deflation-percolation subcategory in the sense of [16], so that the localization ErS´1

A
s,

equipped with the coarsest conflation structure for which Q : E Ñ ErS´1

A
s is exact, is a deflation-exact

category.
Note that in ErS´1

A
s, we have that Sp1q – 0 and P p2q ‘ E – Sp2q ‘ E, for all nonzero E R A. The

category F is equivalent to ErS´1

A
s and hence a deflation-exact category.
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7.3. The conflation structure ER3´ . Let E be a deflation-exact category satisfying axiom R0˚. In
contrast to the R3`-closure and the R3-closure, for the R3´-conflation structure, we do not change the
underlying category, but only the conflation structure. We start with the following definition.

Definition 7.10. Let E be a deflation-exact category satysifying axiom R0˚. A morphism f : X Ñ Y

in E is called a P-deflation if it satisfies the following two properties:

P1 All pullbacks along f exist.
P2 There exists a map h such that f ˝ h is a deflation in E .

Remark 7.11. (1) Any deflation is a P-deflation.
(2) If E satisfies axiom R3, any P-deflation is also a deflation.

Lemma 7.12. P-deflations are stable under pullbacks.

Proof. This is a straightforward application of the pullback lemma. �

Proposition 7.13. Let E be a deflation-exact category satisfying axiom R0˚. The collection of P-
deflations in E defines a deflation-exact structure on E satisfying axiom R3´.

Proof. Let f : X Ñ Y be a P-deflation. By property P1, the pullback of 0 Ñ Y along f exists and thus

f admits a kernel K. We first show that K Ñ X
f

Ñ Y is a kernel-cokernel pair. By property P2, there is
a map h : A Ñ X such that the composition f ˝ h is a deflation. Write K 1 for the kernel of f ˝ h. Taking
the pullback of f along f ˝ h it is straightforward to show that we obtain the following commutative
diagram:

K��

��

K

��

K 1 // // K ‘A // //

����

X

f

��

K 1 // // A
f˝h

// //

h

;;

Y

Proposition 2.1 yields that the lower right square is a pushout as well. It follows that f is the cokernel
of K Ñ X as required.

We now show that the P-deflations define a deflation-exact structure satisfying axiom R3´. Clearly
X Ñ 0 is a P-deflation as X Ñ 0 is already a deflation by axiom R0˚ in E . Let f : X Ñ Y and g : Y Ñ Z

be two P-deflations. By the pullback lemma, the composition gf satisfies P1. By P2, there exists a map
h : B Ñ Y such that gh is a deflation. By P1, the pullback P of h along f exists. Hence we obtain the
following commutative diagram:

P
f 1

//

h1

��

B // //

h

��

Z

X
f

// Y
g

// Z

By lemma 7.12, the map f 1 is a P-deflation. Hence there exists a map h2 : A Ñ P such that f 1h2 is a
deflation. It follows that pgfqph1h2q is a deflation by axiom R1. Hence gf is a P-deflation. It follows
that the P-deflations satisfy axiom R1. Lemma 7.12 shows that the P-deflations satisfy axiom R2 as
well. By construction, axiom R3´ is satisfied. �

Corollary 7.14. Let E “ pA,Dq be a deflation-exact category. There is a smallest deflation-exact
structure DR3-pĚ Dq on A such that ER3- “ pA,DR3-q satisfies axiom R3´.

Proof. This follows from proposition 7.13 where DR3- consists of all conflations whose deflations are
P-deflations. �

The following proposition characterizes the conflation structure ER3´ in a universal way.

Proposition 7.15. The conflation structure on ER3´ is the largest deflation-exact structure on E such

that the identity E Ñ ER3´ is a conflation-exact functor lifting to a triangle equivalence D
bpEq Ñ

D
bpER3´ q.
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Proof. Let E 1 “ pA,D1q be a deflation-exact structure on A such that 1A : E Ñ E 1 is an exact functor

that lifts to a triangle equivalence DbpEq Ñ DbpE 1q. It suffices to show that 1E : E
1 Ñ ER3´ is exact.

Combining theorem 7.3 with the fact that 1A lifts to a triangle equivalence DbpEq Ñ DbpE 1q, we see

that the embedding 1A : pE ãÑ pE 1 lifts to a triangle equivalence DbpEq
„
Ñ Dbp pE 1q. Using the universal

property of the weak idempotent completion, we obtain the following commutative diagram:

E
� � //
� _

1E

��

pE � � //
� _

��

DbpEq

»

��

E 1 �
�

// pE 1 �
�

// Dbp pE 1q

By [15, proposition 6.2], the categories pE and pE 1 have the same conflation structures as conflations
correspond to triangles.

Let X Ñ Y Ñ Z be a conflation in E 1. As pE “ pE 1, the conflation X Ñ Y Ñ Z is a retract (in pE) of a
conflation XY ։Z in E . We obtain the following commutative diagram

X // Y // Z

X // //

OO

Y // //

OO

Z

OO

X // // P // //

OO

Z

OO

X //

OO

Y

OO

// Z

where the vertical arrows compose to the identities. Note that we factored the section from X Ñ Y Ñ Z

to XY ։Z via the conflation XP ։Y obtained by taking the pullback of Z Ñ Z along Y ։Z.
Note that the composition P Ñ Y Ñ Y Ñ Z is a deflation in E and thus Y Ñ Z is a P-deflation. It
follows that 1A : E 1 Ñ ER3´ is exact. �

The following example shows that ER3´ does not satisfy a 2-universal property as in definition 7.1.

Example 7.16. Let F be the deflation-exact category constructed in example 7.6. Let E be the deflation-
exact subcategory of F generated by U,W and Y . Note that W Ñ Y is not a deflation in E but it
is a deflation in ER3´ . It follows that the exact embedding E ãÑ F does not lift to an exact map
ER3´ ãÑ FR3´ .

Remark 7.17. (1) The R3´-closure of a (possibly non-additive) deflation-exact category has been
introduced in [23, §1.4] as the closure of the category E .

(2) Proposition 7.15 extends the fact that the R3´-closure of a deflation-exact category preserves
projectives (see [23, proposition 1.4.4]).

7.4. About the conflations in the obscure closures. We now have a closer look at which sequences
X Ñ Y Ñ Z in a deflation-exact category E become conflations in the closures considered in this section.
The following proposition is the main result.

Proposition 7.18. Let X
f
ÝÑ Y

g
ÝÑ Z be a sequence in a deflation-exact category E. The following are

equivalent:

(1) the sequence is a conflation in ER3,
(2) the sequence is a conflation in ER3+ ,
(3) the sequence is a conflation in Eex,

(4) there is an A P E such that X ‘A //

´
f 0

0 1

¯

//Y ‘A
p g 0 q

// //Z is a conflation in E .

If g : Y Ñ Z admits all pullbacks, then the previous are furthermore equivalent to

(5) the sequence is a conflation in ER3- .

Proof. If (4) holds, then (2) holds, as X Ñ Y Ñ Z is a direct summand of a conflation in E . If (2) holds,
then there is a sequence A Ñ B Ñ C such that X‘A Ñ Y ‘B Ñ Z‘C is a conflation in E . The pullback
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of this conflation along the embedding Z Ñ Z ‘ C yields the required conflation X ‘ AY ‘ A։Z,

and hence (4) holds.
The equivalence (1) ô (2) holds as ER3 lies extension-closed in E

R3+ . The equivalence (1) ô (3) is
established in theorem 1.1.

Finally, assume that g : Y Ñ Z is a semi-stable cokernel. If (4) holds, then it follows from proposition
3.5 that (5) holds. The other direction follows since conflations are closed under direct sums. �

As a corollary, we obtain the following description of the closure ER3- .

Corollary 7.19. For a deflation-exact category E “ pA,Dq, we have DR3- “ Dmax X DR3+ .

Proposition 7.20. Let A be an additive category with two deflation-exact structures D and D1. The
following are equivalent:

(1) pA,DqR3- “ pA,D1qR3- ,
(2) pA,DqR3 “ pA,D1qR3,
(3) pA,DqR3+ “ pA,D1qR3+ .

Proof. The implication (3) ñ (2) holds as ER3 is the extension-closure of E in E
R3+ . For the implication

(2) ñ (1), it follows from proposition 7.18 that a sequence X Ñ Y
g
ÝÑ Z in A lies in pA,DqR3- if and

only if it lies in pA,DqR3 and g is a semi-stable cokernel. Finally, for the implication (1) ñ (3), it suffices
to notice that pER3-q

R3+ “ E
R3+ . �

We end this section with a variant of proposition 7.18.

Proposition 7.21. Let E be a deflation-exact category. A sequence X Ñ Y Ñ Z in ER3+ is a conflation
if and only if there is a split conflation A Ñ B Ñ C in E such that A ‘ XB ‘ Y ։C ‘ Z is a
conflation in E .

Proof. Let XY ։Z be a conflation in E
R3+ . By the definition of the weak idempotent completion,

there is an object X 1 P E such that X ‘ X 1 P E . Similar complements Y 1, Z 1 P E exist for Y, Z P E . We
find that the conflation

pX 1 ‘ Y 1q ‘XpX 1 ‘ Y 1 ‘ Z 1q ‘ Y ։Z 1 ‘ Z

in E
R3+ of which all terms lie in E . The existence of the split sequence A Ñ B Ñ C as in the statement

of the proposition now follows from proposition 7.18.
The converse follows from the definition of the the conflation structure of E

R3+ . �

8. The lattice of strongly one-sided exact structures

Let A be an additive category. It is known that the set of exact structures on an additive category A

forms a complete lattice (see for example [7, 13]), and it is easy to see that the same observation holds
for one-sided exact structures (see [23]). These observations have been generalized in [1] to the setting of
weakly (inflation- or deflation-)exact structures.

In this section, we have a closer look at the posets of deflation-exact structures satisfying the various
versions of the obscure axiom from definition 3.1. We show that the lattices of deflation-exact structures
satisfying axiom R3 or R3´ are ideals in the strong deflation-exact structures on the weak idempotent

completion pA.
We start by recalling the notion of a lower and an upper adjoint of a morphism between posets.

Definition 8.1. Let pA,ďq and pB,ďq be two partially ordered sets. A (monotone) Galois connection
between pA,ďq and pB,ďq consists of two monotone functions F : A Ñ B and G : B Ñ A such that for
all a P A and b P B, we have

F paq ď b ô a ď Gpbq.

The map F is called the lower adjoint and the map G is called the upper adjoint. We write F “ G5 and
G “ F 7.

The following lattices will be considered in this section.

Notation 8.2. Let A be a (small) additive category. We write DpAq for set of deflation-exact structures
on A. The set of strongly deflation-exact structures on A is denoted by sDpAq. We write D

´pAq and
D

`pAq for the sets of deflation-exact structures satisfying axiom R3´ or R3`, respectively.
Likewise, the set of inflation-exact structures on A is denoted by IpAq and the set of strongly inflation-

exact structures on A is denoted by sIA.
The partially ordered set of (two-sided) exact structures on A is denoted by EpAq.
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Proposition 8.3. Let A be an additive category. The posets DpAq, sDpAq, and D
´pAq (ordered by

inclusion) are complete lattices. If A is weakly idempotent complete (so that D`pAq is nonempty), then
D

`Aq is a complete lattice.

Proof. The meet operation is given by the intersection. The least element is given by the split conflation
structure (this satisfies axiom R3` if and only if A is weakly idempotent complete). The greatest element
of D is given by [25, proposition 1] (this is also the greatest element of D´ by corollary 7.14), and the
greatest element of sD is given by [25, corollary 1]. When A is weakly idempotent complete, a greatest
element of D`pAq is given by [11]. �

Proposition 8.4. Let D Ď D1 be two deflation-exact structures on an additive category A. Assume that
D satisfies axiom R3´.

(1) If D1 satisfies axiom R3 or R3`, then so does D.

(2) If D1 is exact, then so is D.

Proof. The first statement is straightforward to verify. For the second statement, note that D satisfies
R3 as D1 does. It then follows from [25, theorem 1] that D “ D X D1 is an exact structure on A. �

Remark 8.5. The previous proposition can be reformulated as follows: the posets sDpAq and EpAq are
ideals in D

´pAq.

Notation 8.6. Let C be any conflation structure on an additive categoryA. We write pC for the conflation

structure on the weak idempotent completion pA given by: a sequence X Ñ Y Ñ Z in pA lies in pC if and
only if it is a direct summand of a conflation in C.

We write {D´pAq for the image of D´pAq under C ÞÑ pC. The sets {sDpAq and zEpAq are defined in a
similar fashion.

Remark 8.7. For a deflation-exact category E “ pA,Cq satisfying axiom R0˚, we have E
R3+ “ p pA, pCq.

Corollary 8.8. Let A be an additive category. The map D
´pAq Ñ D

`p pAq : D ÞÑ pD is an injection. In

particular, the sets {D´pAq, {sDpAq, and zEpAq are ideals in D
`p pAq. Each of the embeddings of the ideals

into D
`p pAq has an upper adjoint.

Proof. The map D
´pAq Ñ D

`p pAq : D ÞÑ pD is an injection by corollary 7.19. This implies that both

sDpAq and EpAq embed in D
`p pAq as well. Each of the embeddings into D

`p pAq has an upper adjoint,
given by intersecting with the appropriate maximal structure on A (this follows from proposition 8.4). �

Remark 8.9. It is shown in [25] that the embedding α : sDpAq Ñ DpAq has an upper adjoint, given
by the operator PQ (explicitly, every deflation-exact structure D on A admits a largest deflation-exact
substructure satisfying axiom R3). The embedding does not need to have a lower adjoint, for example,
the maximal exact structure from example 8.10 need not be embedded into a strong deflation-exact
structure.

It follows from corollary 7.14 that the embedding β : D´pAq Ñ DpAq admits a lower adjoint, mapping
pA,Dq to pA,DqR3- . Moreover, α admits a lower adjoint (so every deflation-exact structure D on A has
an obscure closure in A) if and only if the maximal deflation-exact structure Dmax satisfies axiom R3,
thus when D

´pAq “ sDpAq.

The following example shows that, for an additive category A with the maximal deflation-exact struc-

ture Dmax, the deflation-exact structure zDmax need not be the maximal exact structure on the weak

idempotent completion pA.
Example 8.10. Let R “ Crrtss be the formal power series ring in one variable and let A be the additive
subcategory of modR generated by the indecomposables R and R{ptnq‘m, for each m ě n ě 1. Here,
pA » modR, so the maximal deflation-exact structure on pA is given by all kernel-cokernel pairs.

We claim that R
t

ÝÑ R Ñ R{ptq is not a conflation in zDmax so that zDmax is not the maximal deflation-

exact structure on pA. Indeed, for R t
ÝÑ R Ñ R{ptq to be a conflation in zDmax, there needs to be a (split)

sequence A Ñ B Ñ C such that R ‘ AR ‘ B։R{ptq ‘ C is a conflation in Dmax, see proposition
7.21. Let p : R{ptnq Ñ R{ptq be a nonzero morphism and consider the following commutative diagram

R ‘A // // R ‘A ‘R{ptn´1q ‘R{ptnqn´1 // //

��

R{ptnq ‘R{ptnqn´1

´
p 0

0 0

¯

��

R ‘A // // R ‘B // // R{ptq ‘ C
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where the rows are conflations and the right square is a pullback. Note that R‘A‘R{ptn´1q‘R{ptnqn´1

can only lie in A if R{ptnq is a direct summand of A. As this can only be the case for finitely many choices

of n, this shows that not all pullbacks lie in A. Consequently, R
t

ÝÑ R Ñ R{ptq is not a conflation in zDmax

and hence zDmax is not the maximal exact structure on pA » modR.

9. The exact structure of stable kernel-cokernel pairs

Let A be an additive category. The set C of stable kernel-cokernel pairs in A is given by the intersection
of the maximal inflation-exact and deflation-exact structures on A. It is shown in [26] that C need not
be an exact structure on A. Indeed, the maximal exact structure on A can be considerably smaller (see
[26]). In this subsection, rather than restricting C to an exact structure on A, as is done in [25], we
enlarge the category A so that C generates an exact structure, that is, we construct an exact category
pA1,Eq which is, in some way, the smallest exact category containing the conflation category pA,Cq. We
refer to proposition 9.5 below for a precise statement.

We proceed in slightly more generality. Instead of the starting from the intersection of the maximal
inflation-exact and deflation-exact structures, we allow to begin with the intersection of any inflation-
exact structure I and any deflation-exact structure D. The category A1 we construct is a subcategory of

the weak idempotent completion pA and is dependent on the choices of I and D.

Definition 9.1. Let A be an additive category. We say that a cokernel g : Y Ñ Z is semi-stable if for
every morphism s : Y 1 Ñ Z, the pullback

P
p

//

��

Y 1

s

��

X
g

// Z

exists and p : P Ñ Y 1 is itself a cokernel. A semi-stable kernel is defined dually.

A kernel-cokernel pair X
f

ÝÑ Y
g

ÝÑ Z is called stable if f is a semi-stable kernel and g is a semi-stable
cokernel.

The following is shown in [23] and [25].

Proposition 9.2. Let A be an additive category. The conflation structure C consisting of all kernel-

cokernel pairs X
f

ÝÑ Y
g

ÝÑ Z where g is a semi-stable cokernel is a deflation-exact structure on A and is
maximal with that property.

We continue by having a closer look at pD X pI.

Lemma 9.3. Let D and I be a deflation- and an inflation-exact structure on an additive category A,
respectively. We have

pD X pI “ {D X I.

Proof. The inclusion {D X I Ď pD X pI is clear. For the other inclusion, let X Y ։Z be a conflation in
pD X pI. It follows from proposition 7.21 that there is a split kernel-cokernel pair AB։C in A such

that X ‘ AY ‘ B։Z ‘ C is a conflation in D, as well as in pI. The dual of proposition 7.21 yields
the existence of a split kernel-cokernel pair A1

B1
։C 1 such that the conflation X ‘ pA ‘ A1q Y ‘

pB ‘B1q։Z ‘ pC ‘ C 1q is a conflation in D X I. �

Proposition 9.4. Let D and I be a deflation- and an inflation-exact structure on an additive category

A. The conflation structure pD X pI “ {D X I on the weak idempotent completion pA is an exact structure.

Proof. By theorem 1.2, the deflation-structure pD satisfies axiom R3`, and dually pI satisfies axiom L3`.

As pD X pI “ {D X I, it follows from [25, theorem 1] that pD X pI is an exact structure on pA. �

Proposition 9.5. Let D and I be a deflation- and an inflation-exact structure on an additive category
A. There is an exact category pA1,Eq and a conflation-exact functor ϕ : pA,D X Iq Ñ pA1,Eq satisfying
the following 2-universal property: for each exact category pB, Eq, the functor

´ ˝ ϕ : HomexactppA,D X Iq, pB,Fqq Ñ HomexactppA1,Eq, pB,Fqq

is an equivalence.
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Proof. The 2-universal property of the weak idempotent completion gives an equivalence HompA, pBq Ñ

Homp pA, pBq. Let A1 be the extension-closure of A in pA with respect to the conflation structure {D X I.

It follows from proposition 9.4 that pD X pI is an exact structure on pA. As A1 Ď pA is extension-closed,

A1 inherits an exact structure E from p pA, pD X pIq. To verify that the universal property is satisfied, we
consider the following (essentially) commutative diagram

pA,D X Iq //

��

pB,Fq

��

p pA, pD X pIq // p pB, pFq

We only need to verify that the functor A1 Ñ pA Ñ pB factors through B. However, the essential image of

this functor is B Ď pB (this uses that pB,Fq lies extension-closed in p pB, pFq, see theorem 1.1). The required
property follows from this. �

Remark 9.6. In the proof of proposition 9.5, we construct the exact category pA1,Eq as the extension-
closure of A in the intersection of the categories pA, Iq

L3+ and pA,Dq
R3+ . Similarly, one can obtain the

exact category pA1,Eq as the intersection of pA, IqL3 and pA,DqR3, seen as subcategories of pA.

Remark 9.7. As pA,D X Iq is just a conflation category, its derived category is not defined. Therefore,
we cannot express that the closure in proposition 9.5 gives a derived equivalence. However, it is easy to
see that DbpA1,Eq “ KbpAq{rAcbpA,Dq X AcbpA, Iqs.

Example 9.8. We return to the setting of example 8.10. It follows from proposition 7.21 that, for
every n ě 2, the sequence R{ptq Ñ R{ptnq Ñ R{ptn´1q is a conflation in E

R3+ (with A “ R{ptnq‘n and

C “ R{ptn´1q‘pn´1q). Likewise, considering the maximal inflation-exact structure on A we find that the

sequence R{ptq Ñ R{ptnq Ñ R{ptn´1q is a conflation in zImax. This implies that A1 “ pA. As the sequence

R
t

ÝÑ R Ñ R{ptq is not a conflation in zDmax, we see that pA1,E1q is not the maximal exact structure on
pA “ modR.
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[32] Nobuo Yoneda, On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 507–576 (1960).

Ruben Henrard, Universiteit Hasselt, Campus Diepenbeek, Departement WNI, 3590 Diepenbeek, Belgium

Email address: ruben.henrard@uhasselt.be

Adam-Christiaan van Roosmalen, Universiteit Hasselt, Campus Diepenbeek, Departement WNI, 3590 Diepen-

beek, Belgium

Email address: adamchristiaan.vanroosmalen@uhasselt.be


