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1 INTRODUCTION1

Freezing of gait (FOG) is a devastating gait disorder manifesting itself frequently2

in Parkinson’s disease (PD). FOG is defined by Nieuwboer and Giladi as “an3

episodic inability to generate effective stepping in the absence of any known4

cause other than Parkinsonism or high-level gait disorder” [1]. Patients de-5

scribe a FOG episode as “the feeling that their feet are glued to the ground”6

[2]. FOG occurs most reliably during complex gait tasks, such as turning with7

fast speed or walking while performing a dual task [3]. To study FOG and the8

highly abnormal steps leading up to it, gait analysis has been adopted, using9

instrumented gait analysis systems based on 3D motion capturing techniques10

[4, 5]. The gait data generated from these systems are typically normalized to11

a gait cycle. This normalization requires accurate timing of initial contact (IC)12

and end contact (EC) of the foot. The detection of these gait events is based13

on visual inspection by a clinical expert [4, 5]. Due to the small and shuffling14

steps, reduced heel strike and inadequate swing phase prior to FOG [6], and15

altered steps between FOG episodes [7], this process is imprecise. In addition,16

visual detection of gait events are more time consuming, during more complex17

gait tasks such as 360 degree turning [8].18

To find a solution for this problem, this paper aimed to investigate the validity19

of an automated approach for gait cycle detection. Heuristic based methods20

are most commonly used to automatically detect the defined gait events. These21

methods utilize domain knowledge to extract kinematic features that correlate22

with the timing of gait events. However, owing to the variable gait patterns23

apparent in PD patients with FOG, these features do not necessarily generalize24

to this pathology. Furthermore, heuristic methods typically lack validation in25

challenging movement sequences, such as turning and dual tasking, commonly26

used to trigger FOG [3].27
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Powered by large datasets, data-driven approaches, such as recurrent neural28

networks (RNN), have shown great success in many problems that contain tem-29

poral information. These approaches can infer relevant features directly from30

the raw input data, a technique called end-to-end learning [9]. The success31

of these approaches for gait event detection was recently demonstrated [10],32

utilizing a long short-term memory (LSTM) network to classify gait events in33

children. The focus of this paper was to provide a robust tool to automatically34

annotate gait events for PD patients with FOG during straight-line gait and35

turning, which can be trained end-to-end with minimal data pre-processing.36

2 MATERIAL AND METHODS37

2.1 Sequence to Sequence Learning38

In this study, gait event detection is cast as a sequence to sequence classification39

problem [11]. Each input sample x is associated with a ground-truth label yobs.40

A model is trained to learn a function f : x→ y that transforms a given input41

sequence X = x0, . . . , xt into an output sequence Y = y0, . . . , yt that closely42

resembles the manual annotations Yobs. Separate datasets are generated for43

each gait event by encoding each sample as a binary vector yobs ∈ {0, 1}. The44

input sequence Xin ∈ Rs×t is comprised of a spatial dimension s and time45

dimension t.46

2.2 Dataset47

An existing dataset [12] including fifteen PD patients with freezing of gait (FOG)48

was used. Patients were diagnosed by a Movement disorders specialist as having49

PD and were classified as freezers based on the first question of the New Freezing50

of Gait Questionnaire (NFOG-Q): “Did you experience “freezing episodes” over51
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the past month?” [13]. The study was approved by the local ethics committee of52

the University Hospital Leuven and all subjects gave written informed consent.53

2.3 Procedure54

Gait analysis was performed using an eight camera Vicon 3D motion analysis55

system recording at a sample frequency of 100hz. Thirty-four retro-reflective56

markers were placed on anatomical landmarks according to the full body plug-in-57

gait model. All experiments were done during the off-state of the subjects med-58

ication cycle, except for clinical testing which was conducted ON-medication.59

The subjects were instructed to complete three straight-line and six 360 degree60

turning trials, according to the standardized protocol described in a previous61

paper [12]. Two researchers, blinded for NFOG-Q score, visually detected all62

FOG episodes. The onset of FOG, defined as the start of delayed knee flex-63

ion, was detected by visual inspection of the knee-angle data (flexion-extension)64

in combination with the 3D images. Termination of FOG was determined at65

the time point when at least two consecutive movement cycles were regained.66

These two gait cycles were not included in the FOG episode [14]. The dataset67

was partitioned into two groups. Trials that contained a freezing episode were68

indicated as freezing trials (FOG) and trials without a freezing episode were69

termed as functional gait trials (FG). For both groups, the left-sided gait events70

were manually annotated based on visual inspection of the 3D marker coordi-71

nates. Furthermore, the highly varied gait data between onset and termination72

of a FOG episode was excluded during evaluation.73
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2.4 Deep Learning Models74

2.4.1 Recurrent Neural Network75

Recurrent neural networks (RNN) are commonly associated with the modelling76

of sequential data. Recurrent architectures solve the sequence to sequence learn-77

ing by iterating over the following equation [11]:78

ht = σ(xtW
xh + ht−1W

hh),

79

yt = htW
hy.

The weight matrices are represented by W , with superscripts representing from-80

to relationships. The terms xt and yt are the input and output at time t,81

respectively. However, computing the complete gradient by unrolling over long82

temporal sequences can lead to vanishing or exploding of the gradient [15]. Long83

Short Term Memory (LSTM) networks [16] extend RNNs with memory cells,84

instead of recurrent units, to store and output information. An LSTM cell is85

comprised out of four gates, formally defined as:86

it = σ(xtW
xi + ht−1W

hi + Ct−1W
ci),

87

ft = σ(xtW
xf + ht−1W

hf + Ct−1W
cf ),

88

ot = σ(xtW
xo + ht−1W

ho + Ct−1W
co),

89

c̃t = tanh(xtW
xc + ht−1W

hc),

90

ct = σ(ft ∗ ct−1 + it ∗ c̃t),
91

ht = tanh(ct) ∗ ot.
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The weight matrices are represented by W , with superscripts representing from-92

to relationships. The term xt is the input to the memory cell at time t. The93

terms σ and tanh are the sigmoid and hyperbolic tangent activation functions.94

The terms i, f , o, and c are the input gate, forget gate, output gate, and95

cell activation vectors, respectively. The multiplicative gates allow the LSTM96

cells to store and access information over long periods of time, thereby avoiding97

the aforementioned vanishing and exploding gradient problem. Our recurrent98

model consists out of one to three LSTM layers mapping the input xt to a p-99

dimensional time series, where p ∈ {2, 4, 8, 16, 32}. Our model is based on the100

architecture of [10], who successfully exploited LSTMs for gait event detection101

in children.102

2.4.2 Convolutional Neural Network103

Results from a systematic evaluation of convolutional neural networks (CNN)104

and recurrent neural networks (RNN) suggests that the common association105

between RNNs and sequence modelling should be reconsidered, and that CNNs106

should be regarded as the natural starting point for sequence modelling [17].107

The authors show that a simple temporal convolutional neural network (TCN)108

outperforms RNNs, such as LSTMs. The nature of our sequence to sequence109

learning framework is based upon two constraints: (1) given an input sequence110

x0, . . . , xt ∈ X the network produces an output y0, . . . , yt ∈ Y of the same111

length, and (2) that the mapping satisfies the causal constraint, such that yt112

only depends on the observations x0, . . . , xt and not on xt+1, i.e. there is no113

leakage of information from future observations. To satisfy the first constraint,114

the TCN network utilises 1D fully convolutional layers (FCN) [18]. FCN layers115

preserve the time dimension throughout the network by omitting local pooling116

layers, thereby ensuring that each hidden layer is the same length as the input117

sequence. To satisfy the second constraint, the TCN network utilises causal118
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convolutions, i.e. convolutions that ensure that an output at time t is only119

convolved with elements from time t and earlier. Our model consists of one120

to three repeating blocks of causal convolutions mapping the input to a p-121

dimensional time series with a kernel size of five, where p ∈ {2, 4, 8, 16, 32}.122

The convolutions are followed by batch normalization [19], ReLU activation,123

1x convolution (bottleneck) [17], and dropout [20]. The repeating blocks are124

concatenated to form a residual temporal convolutional neural network, based125

on the architecture of [17].126

2.4.3 Hyperparameter Optimization and Model Training127

The gait trials were partitioned into equal length time windows of 128 samples.128

Each input sample xt is comprised out of the sagittal plane kinematics of the hip,129

knee, and ankle of both legs. Additionally, angular velocities were extracted by130

using first order finite difference equations. The input sequence is thus a matrix131

of Xin ∈ R12×128. All signals were low-pass filtered with a cut-off frequency of132

7 Hz [21] using a zero phase fourth order butter-worth filter. Separate models133

were trained for EC and IC by encoding the manual annotations as a binary134

vector yobs ∈ {0, 1}.135

The convolutional and LSTM layers are followed by a fully connected layer which136

learns the non-linear function f : x → y from the proposed feature space that137

best separates the two classes yobs ∈ {0, 1} by minimizing a certain loss func-138

tion. Since gait events occur sparsely compared to non-events, class imbalance139

is accounted for by using a weighted binary cross entropy loss function [10]. The140

number of residual blocks and filters (CNN) or layers and units (LSTM) were141

optimized using the tree-structured Parzen estimator (TPE) [22], a Bayesian142

optimization approach which was proven to have an overall better test perfor-143

mance than grid and random search [23]. The models were trained for 150144

epochs and are visualized in Figure 1. To ensure generalization to new subjects,145
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a leave one subject out cross validation approach was utilized, as visualized in146

Figure 2. The optimization algorithm was run for 10 iterations and the cross147

validated loss was the objective function to be minimized.148

2.5 Heuristic Method149

The deep learning models were quantitatively compared to a commonly used150

heuristic method [21]. This method was chosen due to excellent performance,151

when compared to other heuristic methods, for different gait pathologies [24]152

and for 360-degree turning [25]. This method uses the maximum anterior posi-153

tion of the posterior calcaneus marker relative to the sacrum marker to detect154

IC. EC is detected by the maximum posterior position of the metatarsal head155

marker relative to the sacrum marker. During straight-line gait, the anterior156

posterior axis is collinear to the walking axis of the gait laboratory. However,157

during a 360 degree turn, the anterior posterior axis continuously varies over158

time. Inspired by [25], this method was generalized to 360 degree turning by159

defining a rotation matrix Rz around the coronal plane to map the position of160

the calcaneus, metatarsal, and sacrum marker back to the transverse plane.161

Rz =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


The angle θ was defined as the pelvis angle, corresponding to the turning162

radius.163
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2.6 Peak Detection164

The predicted output sequence Y returns the likelihood of a gait event for165

each sample. The peaks within an output sequence thus corresponded to a166

gait event. A peak detection algorithm [26] was employed to detect the local167

maxima in the likelihood vector and in the characteristic kinematic shapes of the168

heuristic methods. A constraint was imposed on the minimum distance between169

two consecutive gait events. The threshold for this constraint was empirically170

defined at 15 frames or 150ms.171

2.7 Statistical Analysis172

The model predictions were validated in terms of accuracy and timing agreement173

with respect to the manual annotations which were considered as the golden174

standard [27]. The accuracy was assessed using the true positive (TP), false175

positive (FP), false negative (FN), and summarized with the F1-score. Bland-176

Altman plots were created to assess the timing agreement between the methods.177

The agreement was quantified in terms of mean values, 95% confidence intervals,178

and limits of agreement (mean ± 1.96 standard deviation).179

F1 =
2TP

2TP + FP + FN
(1)

3 RESULTS180

For the freezing trials (FOG), a total of 506 IC and 491 EC events were ac-181

quired. The TCN model shows F1-scores of 0.995 and 0.992 for IC and EC,182

respectively. The LSTM model shows F1-scores of 0.989 and 0.976 for IC and183

EC, respectively. The heuristic method shows F1-scores of 0.976 and 0.956 for184

IC and EC, respectively. For the functional gait trials (FG), a total of 741 IC185
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and 669 EC events were acquired. The TCN model shows F1-scores of 0.997 and186

0.999 for IC and EC, respectively. The LSTM model shows F1-scores of 0.997187

and 0.990 for IC and EC, respectively. The heuristic method shows F1-scores of188

0.997 and 1 for IC and EC, respectively. The results are summarized in Table 1,189

reporting the total number of steps and the accuracy of the algorithms in terms190

of TP, FP, FN, and F1-score.191

Error analysis showed that a large amount of the missed detections by the192

heuristic method were caused by a festination pattern of walking, which is the193

tendency to move forward with increasingly rapid, but ever smaller steps, as-194

sociated with the centre of gravity falling forward over the stepping feet [28].195

This phenomenon was especially evident in one patient, who accounted for 83%196

of all false detections for the heuristic method. Exclusion of this patient results197

in comparable levels of accuracy between the heuristic method and the TCN198

model, which shows the highest overall accuracy.199

Bland-Altman plots were obtained, assessing the timing agreement of the deep200

learning models and the heuristic method, to the manual annotations. The201

differences between the proposed annotations and the manual annotations (ver-202

tical axis) are plotted against their average (horizontal axis). A positive time203

difference represents a delay in the annotations with respect to the manual anno-204

tations, while the limits of agreement (LoA) estimate the interval within which205

a proportion of the differences between the methods lie. All results are given in206

terms of frames.207

Firstly, A Bland-Altman plot was obtained for both the FOG and FG trials, as-208

sessing the timing agreement of the TCN model versus the manual annotations,209

visualized in Figure 3 (a). For FOG-trials, the mean time differences [lower210

LoA, upper LoA] were 0.55 [-5.0, 6.1] for IC and -1.7 [-7.4, 4.1] for EC. For211

FG-trials, the mean time differences [lower LoA, upper LoA] were -0.93 [-6.5,212
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4.7] for IC and -0.01 [-4.7, 4.5] for EC. Secondly, A Bland-Altman plot was ob-213

tained for both the FOG and FG trials, assessing the timing agreement of the214

LSTM model versus the manual annotations, visualized in Figure 3 (b). For215

FOG-trials, the mean time differences [lower LoA, upper LoA] were 1.0 [-4.3,216

6.3] for IC and -2.1 [-8.0, 3.8] for EC. For FG-trials, the mean time differences217

[lower LoA, upper LoA] were -0.4 [-5.5, 4.7] for IC and 1.2 [-5.0, 7.5] for EC.218

Lastly, A Bland-Altman plot was obtained for both the FOG and FG trials,219

assessing the timing agreement of the heuristic method versus the manual an-220

notations, visualized in Figure 3 (c). For FOG-trials, the mean time differences221

[lower LoA, upper LoA] were -4.4 [-13, 4.2] for IC and -3.3 [-13, 6.2] for EC. For222

FG-trials, the mean time differences [lower LoA, upper LoA] were -3.5 [-8.1, 1.1]223

for IC and 1.7 [-3.7, 7.1] for EC.224

For the FG trials, all three algorithms performed excellently with low variability.225

The deep learning algorithms additionally show minimal mean time differences226

with the manual annotations. For the FOG trials, several early detections that227

were still within the fifteen frame limit resulted in large mean time differences228

and variability for the heuristic method. For the deep learning models, a few229

hastened EC detections can be observed. These hastened detections were the230

result of delayed swing-phase during gait re-initiation after a FOG episode.231

Overall, the TCN model shows the most consistent results for both gait events.232

4 DISCUSSION233

We evaluated two data-driven approaches for the detection of gait events that234

were trained end-to-end on a small dataset of straight-line gait and 360 degree235

turning of PD patients with FOG. A total of 2407 events have been manually236

annotated and these events were used to quantitatively validate the algorithms237

in terms of accuracy and timing agreement. A commonly used heuristic method238

10



proposed in [21] was reproduced to allow a quantitative comparison with the239

deep learning models on the same dataset. The heuristic method showed a240

large mean time difference with the manual annotations. For the functional241

gait trials, the mean time difference could be associated with a systematic er-242

ror on the manual annotations. For the freezing trials, the line between false243

and hastened detections blurred, resulting in large variability and an indication244

that this method is ill-suited for detecting gait events in PD patients with FOG245

when OFF-medication. In contrast, the Bland-Altman plots indicate that both246

deep learning models share a similar small mean time difference with the man-247

ual annotations. While these results suggest that both models focus on similar248

patterns in the data, the TCN model detects gait events with fewer false detec-249

tions. Overall, the TCN model showed excellent levels of accuracy and timing250

agreement, with on average 39% and 47% of the detections occurring within251

10ms from the manual annotations for FOG and FG, respectively. However, de-252

layed swing-phase during gait re-initiation after a freezing episode, resulted in a253

few hastened EC detections. Additionally, research shows that strides directly254

preceding FOG were reduced by 35% in comparison with normal (functional)255

strides [5], which impacts the acceptable limits of agreement. Therefore, we256

suggest to visually verify the timing of the gait events that directly precede and257

proceed a FOG episode.258

When repeating the analysis on a different cohort of non-freezing patients with259

PD through random selection of five gait trials we found very similar results260

confirming the robustness of the present findings (see supplm 1).261

In conclusion, we were able to establish that the TCN model was able to ac-262

curately demarcate gait cycles based on kinematic data obtained with a 3D263

motion capturing system. The most remarkable finding was that this method-264

ology proved robust for people experiencing severe gait disorders such as FOG265
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when OFF-medication. Hence, our results suggest that the TCN model allows266

analyzing stepping behavior even during 360 degree turning tasks, when FOG267

episodes are provoked most consistently. Furthermore, future work is now pos-268

sible in which automated step annotations based on kinematic data acquired269

from wearable devices, could be compared with automated step annotations270

based on kinematic data from 3D gait analysis systems. Such work is important271

to increase the understanding of FOG and to assess the effects of interventions272

during everyday life to alleviate this debilitating symptom.273

5 Data Availability274

The input set was imported and labelled using Python version 2.7.12 with275

Biomechanical Toolkit (btk) version 0.3 [29]. Peak detection was done with276

Scipy [26]. Deep learning models were trained on an NVIDIA Tesla K80 GPU277

using Python version 3.6.8 and Tensorflow version 1.14 [30]. Hyperparameters278

were optimized using the Hyperopt python library [31], with cross validation279

splits created with scikit-learn version 0.21.3 [32]. Utility functions for process-280

ing c3d files were adopted from [10]. All code, including a deployable model, is281

made available at https://github.com/BenjaminFiltjens/gait_event. Sta-282

tistical analysis was conducted using R statistical software version 3.5.3 [33].283
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