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1  | INTRODUC TION

Natural light cycles, such as day-and-night transitions and the lunar 
cycle, have been consistent over geological timescales, providing a 
reliable set of environmental cues that have organized ecological 

systems and shaped evolutionary processes (Kronfeld-Schor et al., 
2013, Gaston & Bennie, 2014; Swaddle et al., 2015). For instance, 
circadian and circannual rhythms of nearly all taxa are synchronized 
with natural light (“Zeitgeber” sensu Gwinner & Brandstätter, 2001). 
Variation in nocturnal light, associated with the lunar cycle influences 
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Abstract
Biological rhythms of nearly all animals on earth are synchronized with natural light 
and are aligned to day-and-night transitions. Here, we test the hypothesis that the 
lunar cycle affects the nocturnal flight activity of European Nightjars (Caprimulgus 
europaeus). We describe daily activity patterns of individuals from three different 
countries across a wide geographic area, during two discrete periods in the annual 
cycle. Although the sample size for two of our study sites is small, the results are clear 
in that on average individual flight activity was strongly correlated with both local 
variation in day length and with the lunar cycle. We highlight the species’ sensitivity 
to changes in ambient light and its flexibility to respond to such changes in different 
parts of the world.
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both nocturnal and diurnal species (Miller,  2006, Kronfeld-Schor 
et al., 2013, Owens & Lewis,  2018), with a wide range of effects 
on sleep patterns (Van Hasselt et  al.,  2020), reproduction (Foster, 
Heyward, & Gilmour, 2018; Gaston & Bennie, 2014; Jackson, 1985; 
York, Young, & Radford,  2014), predation risk (Griffin, Griffin, 
Waroquiers, & Mills, 2005; Haddock, Threlfall, Law, & Hochuli, 2019; 
Mougeot & Bretagnolle, 2000; Palmer, Fieberg, Swanson, Kosmala, 
& Packer, 2017), and foraging behavior (Kotler, Brown, Mukherjee, 
Berger-Tal, & Bouskila, 2010; Ravache et al., 2020; Roeleke, Teige, 
Hoffmeister, Klingler, & Voigt, 2018; San-jose et al., 2019; Da Silva, 
Valcu, & Kempenaers, 2015). Previous work has shown that artifi-
cial night light can disrupt these predictable lunar cues in insects 
(Altermatt & Ebert, 2016), amphibians (Baker & Richardson, 2006), 
reptiles (Brei, Pérez-Barahona, & Strobl, 2016), mammals (Spoelstra 
et al., 2015), and birds (Rodríguez et al., 2017). This means that the 
behavioral responses of nocturnal animals might have become mal-
adaptive, which may give cause for concern (Owens & Lewis, 2018). 
To assess the impact of light pollution on animal behavior, it is es-
sential to first understand the behavioral responses of animals to 
periodic changes in natural light conditions (Parker & Smith, 1990; 
Stephens & Krebs, 1985).

In this study, we present an analysis of the lunar-associated 
behavior of European Nightjars (Caprimulgus europaeus; hereaf-
ter referred to as nightjar; Figure  1) by testing the hypotheses 
that the lunar cycle affects their nocturnal flight activity. Within 
the order Caprimulgiformes (Nightjars and their allies), many spe-
cies are aerial insectivores adapted to a crepuscular/nocturnal life-
style (Mayr,  2010; White, Barrowclough, Groth, & Braun,  2016). 
All members of the Caprimulgidae are visual hunters and predomi-
nantly detect flying prey against the sky (Cramp et al., 1985, Evens 
et al., 2018). Optimal foraging conditions for this hunting method are 
restricted to periods of twilight, unless nocturnal light allows pro-
longed foraging activities (Jetz, Steffen, & Linsenmair, 2003). Earlier 
observation-based studies already suggested that several species of 
Caprimulgiformes synchronize their activities with the lunar cycle, 
showing low activity during periods of nocturnal darkness (Brigham, 

Gutsell, Wiacek, & Geiser,  1999) and high singing, reproductive 
and foraging activity around full moon (Brigham & Barclay,  1992; 
Holyoak, 2001; Jackson, 1985; Mills, 1986; Perrins & Crick, 1996). 
Despite these indications of population-level responses to the lunar 
cycle, variation in activity patterns at the individual level in relation 
to nocturnal light conditions have not yet been quantified, except 
in the context of thermoregulation (e.g., Smit, Boyles, Brigham, & 
McKechnie,  2011) and migration (Norevik, Akesson, Andersson, 
Backman, & Hedenstrom,  2019). Individual nightjars became in-
creasingly heterothermic in response to lower foraging opportu-
nities associated with new moon periods, irrespective of relatively 
constant food resources (Smit et al., 2011). Similarly, better foraging 
opportunities during full moon periods most likely drive light-depen-
dent fuelling opportunities and influence the departure timing at 
stopover sites of migrating nightjars (Norevik et al., 2019). From the 
above, we expected that moonlight allows nightjars to be active lon-
ger and outside the period around dusk and dawn. As such, our study 
aims at testing the hypothesis that the probability that an individual 
is active depends on local variation in light levels. We investigated 
this by analyzing daily activity patterns of individuals from three dis-
tinct parts of the species’ breeding range (Mongolia, Belgium and 
Sweden; Figure 2a), during two discrete periods of the annual cycle 
(the breeding and the nonbreeding season) in relation to the lunar 
cycle, while controlling for variation in local day length.

2  | METHODS

2.1 | Field methods

We conducted fieldwork in Mongolia (48.57°N, 110.83°E), Belgium 
(51.06°N, 5.49°E) in 2018–2019 and Sweden (57.01°N, 15.93°E) in 
2015–2017. These sites were selected because of latitudinal variation 
in daylength (i.e., short nights in Sweden compared to longer nights 
in Belgium and Mongolia) and variation in ambient light (i.e., higher 
nocturnal sky brightness in Belgium [20.34 mag./arcsec2] compared to 
Sweden [21.87 mag./arcsec2] and Mongolia [22 mag./arcsec2]; https://
www.light​pollu​tionm​ap.info). We captured nightjars in breeding areas 
using ultra-fine mist nets (Ecotone, 12  ×  3m) and tape lures (Evens, 
Beenaerts, Witters, & Artois, 2017). We marked each individual with a 
unique alphanumeric ring and fitted a data logger dorsally between the 
wings (Evens, Conway, et al., 2017; Norevik, Akesson, & Hedenström, 
2017). In total, we tagged 90 adult individuals, 20 in Mongolia, 10 in 
Belgium, and 60 in Sweden with a 1.2 g SOI-GDL3pam data logger 
(Mongolia and Belgium (Liechti et al., 2018) or a 2.1g Multidata logger 
(MDL; Sweden (Norevik et al., 2019). Each logger contained sensors 
that recorded air pressure, ambient light intensity, and acceleration in 
5-min intervals. The SOI-GDL3pam data loggers contained additional 
sensors to record air temperature in 5-min intervals and magnetic field 
in 4-hr intervals. Activity is measured as the sum of the absolute differ-
ences in acceleration on the z-axis (SOI-GDL3pam: a summary variable 
stored for each 5-min interval (Liechti et al., 2013); MDL: a summary 
variable stored for each one-hour interval (Norevik et  al.,  2019). In 

F I G U R E  1   The European Nightjar (Caprimulgus europaeus) is 
a crepuscular insectivore that mainly breeds in semi-natural, dry 
landscapes

https://www.lightpollutionmap.info
https://www.lightpollutionmap.info
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total, we recovered eleven loggers (two in Mongolia, one in Belgium 
and eight in Sweden; all from males; Appendix S1: Supplementary 
Materials T1). These low recovery rates did not allow a formal compari-
son of flight activity between study sites.

2.2 | Migration data

Because nightjars use flapping flight during migration (Bruderer, 
Peter, Boldt, & Liechti,  2010) and remain stationary at their 

over-wintering site (Evens, Conway, et  al.,  2017; Norevik 
et  al.,  2017), we can use the information on light intensity and 
acceleration to estimate nonbreeding destinations (Lisovski 
et  al.,  2019). Data from MDL loggers were preprocessed by 
Norevik et al. (2019). From SOI-GDL3pam loggers, we analyzed 
light measurements to provide daily position estimates (Hill, 1994; 
Lisovski et al., 2019) using the R-package PAMLr. Simultaneously, 
an automated algorithm used activity recordings to identify mi-
gratory flight bouts (minimal 60  min of high activity; for details 
see Liechti et al. (Liechti et al., 2018). Based on activity data and 

F I G U R E  2   Activity patterns of three nightjars in 5-min intervals. (a) Map of the breeding and nonbreeding areas (each color shows an 
individual, except green which shows the Swedish study site). Breeding sites are located in Sweden (Se), Mongolia (M), and Belgium (Be). 
Nonbreeding sites are located in Angola (An), Zimbabwe (Z), and South-Africa (S). (b, c) Actograms showing daily activity (white = inactive, 
color = activity, height of colored bar = activity level, i.e., measured activity per 5-min period) covering one lunar cycle during the breeding 
season (b; 2018) and multiple lunar cycles during the nonbreeding season (c; 2018–2019). Each horizontal bar shows one day with time 
on the X-axis. Time is plotted in three-hour intervals and centered around local midnight. Colored triangles show the timing of sunset (1 
January) at the estimated wintering site of each individual. Open circles indicate days (nights) with full moon, closed circles show days with 
new moon. In C, the constant high activity at night around 31 December suggests a migratory flight
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location estimates, we defined the breeding season as the period 
between the end of spring and the onset of autumn migration and 
the nonbreeding season as the period between the end of autumn 
migration and the onset of spring migration. We identified winter-
ing areas for eight birds: one of the two Mongolian birds resided 
in South-Africa (approximate flight distance 13,000  km) and the 
other in Zimbabwe (±12,000 km); the Belgian bird resided in the 
border region of Angola, Zambia, and the Democratic Republic of 
Congo (DRC; ±7,500 km); two Swedish birds wintered in Zambia 
(±9,500 km), another two in Botswana (±10,000 km) and one in the 
Democratic Republic of Congo (±8,000 km).

2.3 | Activity data

Activity data from SOI-GDL3pam data loggers were transformed to 
hourly estimates to fit the data of the MDL loggers. We subdivided 
daily activity data from the breeding and the nonbreeding season 
into three groups: daytime (from sunrise until sunset), twilight (from 
sunset until evening nautical twilight; from morning nautical twilight 
until sunrise), and night (from evening nautical twilight until morn-
ing nautical twilight). We categorized activity data into two classes: 
active (e.g., flight and foraging) and inactive (e.g., resting and roost-
ing). We distinguished between these categories based on an activ-
ity threshold computed as the 97.5th percentile of daytime activity 
using a Linear Quantile Mixed Model (Geraci, 2014) with individual 
identity as random intercept, and period (winter versus. summer), 
time of the day and date as covariates. This threshold was chosen 
because nightjars remain inactive during daytime, with resting and 
preening as their main activities. During twilight they spent much 
of their time flying to forage and to commute between local sites 
(Evens et  al.,  2018; Evens, Beenaerts, et  al.,  2017; Mills,  1986; 
Wynne-Edwards,  1930), and at night additional foraging activities 
can occasionally take place (Brigham et al., 1999; Evens et al., 2018).

Data on the timing of day, night, and twilight (i.e., sunset and 
sunrise) and the lunar cycle (i.e., altitude of the moon above the hori-
zon and fraction of illuminated moon) were extracted for the known 
breeding sites and estimated nonbreeding sites and for each interval 
using the R-package “suncalc.” We did not take into account varia-
tion in local weather conditions which may lead to additional noise, 
and hence may weaken our results rather than create systematic bi-
ases (Penteriani et al., 2013).

Of all hourly intervals, 7,434 (32%) were categorized as active, 
while the remaining 15,358 intervals were categorized as inactive.

We modeled nocturnal and twilight activity using Generalized 
Linear Mixed Models (GLMMs) with maximum likelihood using the R 
package glmmTMB version 0.2.3 (Brooks et al., 2017; Geraci, 2014; 
Team, 2019). To asses patterns of nocturnal activity, we constructed 
two models: 1) a model for the conditional mean containing the frac-
tion of illuminated, visible moon (i.e., fraction of illuminated moon 
when above the horizon, continuous variable: percentages) and al-
titude of the moon above the horizon (continuous variable: radians) 
as the main predictors (Table 1) and 2) a zero-inflated model which 

allows modeling the probability of excess zeros in the conditional 
part of the model. To assess patterns of crepuscular activity, we con-
structed a model with twilight period (categorical variable: dusk or 
dawn) as the main predictor (Table 1).

The conditional model (nocturnal activity model) and the crepus-
cular activity model use a negative binomial distribution with log-link 
function, whose variance was set to increase linearly with its mean. 
The conditional model included the following additional fixed ef-
fects: season (categorical variable: breeding or nonbreeding season) 
and the activity of the previous time step. The crepuscular activity 
model included moon phase (continuous variable: fraction of illu-
minated moon during twilight) and season. We included activity of 
the previous time step in the nocturnal activity model to control for 
temporal autocorrelation. We did not include time and date in our 
models, because they correlate with the altitude of the moon and 
the fraction of visible moon above the horizon. In an alternative ver-
sion of the nocturnal activity model, we replaced illuminated, visible 
moon, and moon altitude by time (continuous variable: standardized 
hour per individual per night) and date (continuous variable: stan-
dardized date per season) (Appendix S1: Supplementary Materials 
T2). We further included individual identity as random intercept 
and fraction of visible moon per individual as random slope (Table 1, 
Appendix S1: Supplementary Material T2). The zero-inflated model 
contained no predictors other than the overall mean, but contained 
individual identity as random intercept.

Ethical statement.
The Mongolian and Belgian research protocols were approved 

by the Mongolian (Ministry of Environment and Tourism, license 
numbers: 06/2564 and 06/2862) and Belgian (Agency for Nature 
and Forest, license numbers: ANB/BL-FF/V18-00086 and ANB/
BL-FF/19-00087-VB) authorities. The Swedish protocols follow the 
Swedish legislation for animal research (SJVFS 2019:9) and received 
the approval of the Malmö/Lund ethical committee for animal re-
search (M33-13). All captured individuals showed no evidence of 
detrimental effects of banding. The tags weighed less than 3% of 
the birds’ body mass, which is well below the recommended limits. 
Although we cannot exclude that some individuals were affected 
by the devices, direct observations in the field and assessment of 
the recaptured individuals showed no signs of negative effects. 
The recovery rate (11%) is lower than expected (Evens, Conway, 
et al., 2017; Norevik et al., 2019) and is probably caused by i) the late 
deployment of loggers on nonresident individuals with no fidelity to 
the study site in Belgium (late August 2018) and ii) a low recovery 
success due to bad weather conditions during a two-week trapping 
session in Mongolia (July 2019).

3  | RESULTS

The nightjars’ sensitivity to changing light conditions can be seen 
in the actograms (Figures 2 and 3), which show the most detailed 
activity data (5-min sampling intervals), collected for the Belgian and 
Mongolian birds. These three individuals were selected for visual 
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purposes only. Actograms for all birds with hourly intervals are pre-
sented in the online depository.

All individuals showed clear peaks of activity around dusk and 
dawn, confirming the crepuscular behavior of the species (Figure 2, 
Appendix S1: Supplementary Materials 2). The timing of the night-
jars’ crepuscular behavior matches shortening day lengths over 
the season in temperate zones (Figure  2b, M and S, Appendix S1: 
Supplementary Materials 2) and constant day length, but with lat-
itudinal variation in the timing of dusk and dawn, in tropical zones 
(Figure 2a and Z, Appendix S1: Supplementary Materials 2).

During each lunar cycle, nightjars showed a clear diagonal 
band of nocturnal activity with peak activities around full moon 
(Figure  3c, Appendix S1: Supplementary Materials 2). Nightjars 
were active from about the first to the last quarter of the lunar 
cycle (Figure 3b-c). Formal analysis shows that the probability of 
nocturnal activity strongly depended on the daily (nightly) fraction 
of illuminated, visible moon, and the altitude of the moon above 
the horizon, both in the breeding and nonbreeding season (Table 1; 
Figure 3f). Nightjars increased their activity with increasing light 
(fraction of illuminated, visible moon), but the exact relationship 
differed between individuals (Figure 4a). Nightjars also increased 
their activity with increasing altitude of the moon above the hori-
zon (Figure 4b). Furthermore, nocturnal activity was significantly 

higher during the breeding season and generally decreased during 
the night (Figure 4c).

During twilight, activity was higher at dusk than at dawn, and 
higher during the breeding season than during the nonbreeding sea-
son (Table 1; Figure 3g). Twilight activity was independent of the 
moon phase (Table 1).

4  | DISCUSSION

Although the sample size for two of our study sites is small, the re-
sults are clear: on average, individual flight activity was strongly cor-
related with both local variation in day length and with the lunar 
cycle (Figure 2, Appendix S1: Supplementary Materials 2). This con-
firms our hypothesis and clearly suggests that nightjars from dif-
ferent populations across the breeding range are able to accurately 
adjust their activity (a) to seasonal changes in the timing of local dusk 
and dawn, in accordance with their crepuscular lifestyle, and (b) in 
response to local variation in available light at night. Our findings 
further support recent observations from a Scandinavian breed-
ing site, where nightjars adjusted foraging flight activity at stopo-
vers and subsequent migration activities to the lunar cycle (Norevik 
et al., 2019).

TA B L E  1   Results of generalized mixed-effect models showing effects of available moonlight or twilight on nocturnal and crepuscular 
activity of 11 European nightjars from Belgium, Mongolia, and Sweden at their breeding and nonbreeding sites. See Section 2 for model details

Nocturnal activity Crepuscular activity

Conditional model Conditional model

Predictors Estimate SE z p Predictors Estimate SE z p

Intercept −1.073 0.216 −4.97 <.0001 Intercept 1.233 0.345 3.58 <.001

Fraction visible moona  1.268 0.255 4.96 <.0001 Twilighte  2.198 0.203 10.813 <.0001

Altitude moonb  1.144 0.140 8.17 <.0001 Seasonc  −0.807 0.241 −3.35 <.001

Seasonc  −0.927 0.119 −7.80 <.0001 Phase moonf  0.059 0.31 0.190 .849

Previous activityd  0.027 0.003 8.44 <.0001

Random effect Variance SD Corr Random effect Variance SD Corr

Individual ID (random 
intercept)

0.289 0.537 Individual ID 0.527 0.726

Moon within IDg  (random 
slope)

0.446 0.668 −0.66

Zero-inflation model

Predictors Estimate SE z p

Intercept −2.929 1.084 −2.70 .007

Random effect Variance SD Corr

Individual ID 2.721 1.65

aFraction of illuminated, visible moon. 
bAltitude of the moon above the horizon. 
cEstimates for nonbreeding compared to breeding. 
dActivity during the previous 60-min period (to control for temporal autocorrelation). 
eEstimate for dusk compared to dawn. 
fMoon phase during twilight. 
gFraction of illuminated, visible moon per individual. 
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F I G U R E  3   Nightjar activity in relation to light conditions. (a–e) Schematic overview of moonrise and moonset times of the Belgian bird 
during one lunar cycle in Angola (February 2019; full moon on the 19th; local azimuth not taken into account). (a) New moon: no moonlight 
available at night, (b) first quarter: moonlight available before but not after midnight, (c) full moon: moonlight available all night, and (d) last 
quarter: moonlight available after but not before midnight. (e) The corresponding actogram showing daily nocturnal activity (height of black 
bar = activity level, i.e., measured activity per 5-min period) in relation to time. Each horizontal bar shows one day with time of day, plotted 
in 3-hr intervals and centered around midnight on the X-axis. Open circles indicate days with full moon, closed circles show days with new 
moon and half circles indicate days with first- or last quarter moon. (f) Relationship between the probability of nightjar activity at night in 
relation to the fraction of illuminated, visible moon. Shown are estimates and 95% confidence intervals based on the model in Table 1. (g) 
Differences in the probability of activity between dusk and dawn during the breeding season (green) and during the nonbreeding season 
(orange). Shown are model estimates and their 95% confidence intervals based on the model in Table 1
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Nocturnal activity data display a noticeable diagonal band 
(Figure 2) indicating a progressive shift in the nightjars’ daily activity 
throughout subsequent moon phases (see also Norevik et al., 2019). 
This general pattern is consistent between all individuals in our study, 
even though they resided in different parts of the world. Flight activity 
of the tracked individuals corresponds to daily changes of the moon's 
trajectory (i.e., the moon's altitude above the horizon) and the frac-
tion of illuminated moon (Figure 3a-f, Appendix S1: Supplementary 
Materials 2). Around new moon, nightjars were largely inactive 
during the night (Figure 3a), whereas around full moon they seemed 
to fully exploit the increased ambient light by being active all night 
(Figure  3c). The close relationship between nocturnal activity and 
night light is also suggested by relatively high before-midnight activ-
ity during a first-quarter moon and high after-midnight activity during 
a last quarter moon phase (Figure 3b and d).

The flight activity of nightjars is presumably organized by en-
dogenous rhythms, but lunar-associated effects are probably linked 
to sensing mechanisms (e.g., vision influencing nocturnal behavior) 
and other factors such as lunar-associated behavior of prey and 
predators. Endogenous rhythms are finetuned using environmental 
information (Helm et al. 2017), and moonlight is an important envi-
ronmental cue and Zeitgeber (Kronfeld-Schor et al., 2013). Moonlight 
influences general activity patterns (Bachleitner, Kempinger, 
Wülbeck, Rieger, & Helfrich-Förster, 2007; Youthed & Moran, 1969) 
and reproduction (Zantke et al., 2013), yet knowledge about endog-
enous circalunar rhythms in animals is limited (Kronfeld-Schor et al., 
2013, Payton & Tran, 2019). Our study confirms earlier observations 
of lunar-associated behavior in nightjars (see below), but it remains 
to be shown whether circadian and circalunar rhythms play a role.

Variation in moonlight (affected by the moon's altitude and 
phase) is known to influence predation risk, foraging behavior, 

habitat use and reproduction of many terrestrial taxa (Kronfeld-
Schor et al., 2013). Predator avoidance is typically observed in 
prey species around full moon (Griffin et  al.,  2005; Harmsen, 
Foster, Silver, Ostro, & Doncaster,  2011; Navarro-Castilla & 
Barja,  2014; Palmer et  al.,  2017; Smith, Tulp, Schekkerman, 
Gilchrist, & Forbes,  2012), whereas other taxa exploit better 
foraging conditions during moonlit nights (Phalan et  al.,  2007, 
Mackley et  al.,  2011, Pinet et al., 2011, Penteriani et  al.,  2014, 
Rubolini et al., 2014, Dias et al., 2016, Roeleke et al., 2018; but see 
Cruz et al., 2013). Our study shows that the nocturnal flight activ-
ity of European nightjars correlates with both the altitude of the 
moon and the fraction of illuminated moon. In line with previous 
findings (Mills, 1986), this suggests that low ambient light levels, 
that is, less than the light intensity of a quarter moon (0.01–0.03 
lux (Kyba, Mohar, & Posch, 2017)), limit movement and/or forag-
ing opportunities. Flying in a local area (Brigham & Barclay, 1992, 
Zwart et al., 2014) or commuting between breeding and foraging 
sites might be safer during lighter conditions, because of a reduced 
risk of colliding with dark objects (Cresswelll & Alexander, 1992; 
Evens et al., 2018). Moonlight may also increase prey visibility and 
hence foraging success, which is probably why nightjars invest 
most energy in territorial display and reproduction during periods 
with the greatest moonlight levels (Jackson,  1985; Mills,  1986; 
Perrins & Crick, 1996). Our study shows that nightjars are usually 
inactive during moonless parts of the night. Similarly, low light lev-
els during moonless nights affected thermoregulation in several 
species of nightjars, whereby the birds entered torpor following 
reduced foraging opportunities (Brigham et  al.,  1999; Doucette, 
Brigham, Pavey, & Geiser,  2012; Smit et  al.,  2011). However, 
moonlit nights do not necessarily imply high foraging activity. For 
example, Afrotropical nightjars reduced their nocturnal activity 

F I G U R E  4   Nightjar activity in relation to light, moon altitude, and time. (a) Individual activity in relation to the fraction of visible moon. 
Activity data were collected at 5-min intervals. Shown is the probability that a nightjar was active at night in relation to the fraction of 
illuminated moon. Each color corresponds to one individual (same color as in Figure 2: black = Belgian, blue and red = Mongolian). (b) The 
probability of nightjar activity at night in relation to the altitude of the moon above the horizon (expressed in radians). Shown is the estimate 
and 95% confidence intervals based on the model in Table 1. (c) Nightjar activity in relation to time. Time is standardized per individual per 
night. Shown is the probability of activity before and after midnight (estimate and 95% confidence intervals based on the model in Appendix 
S1: Supplementary Materials T2)
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during full moon, presumably in response to high predation risk 
(Brigham et al., 1999; Jetz et al., 2003).

Foraging success may be higher during moonlit nights if prey ac-
tivity is higher than during dark nights (Jetz et al., 2003). Nightjars 
typically perch at the edge of open fields while foraging (Evens, 
Beenaerts, et  al.,  2017). The likelihood to detect and hawk fly-
ing insects silhouetted against the sky (Camacho, Palacios, Sáez, 
Sánchez, & Potti, 2014; Evens et al., 2018; Jackson, 2003) should be 
higher when the sky is illuminated (Ashdown & McKechnie, 2008; 
Jetz et  al.,  2003; Mills,  1986). Alternatively, prey might be harder 
to catch in moonlight, either because insects can better detect the 
predator (Penteriani, Kuparinen, del Delgado, & M., Lourenço, R. and 
Campioni, L., 2011) and make evasive manoeuvres or because in-
sects fly higher and therefore nightjars would have to work harder 
to achieve the same net energy intake. Although the emergence of 
insects peaks around sunset and sunrise (Malmqvist et al., 2018), 
it has also been suggested that nocturnal insect activity is associ-
ated with near full moon (Jetz et al., 2003; Nowinszky, Petrányi, & 
Puskás, 2010). One study suggested that the nightly flight activity 
of Lepidopterans—the nightjars’ main food source—decreases during 
full moon nights (Raimondo, Strazanac, & Butler,  2004), whereas 
another study showed that the activity of species associated with 
open habitats increased during moonlit nights (Nowinszky, Kiss, 
Szentkirályi, Puskás, & Ladányi, 2012).

If nightjars are sensitive to relatively subtle changes in ambient 
light conditions, as our study suggests, we predict that artificial 
night lighting, especially skyglow during overcast nights (Jechow 
et  al.,  2017), will influence their behavior. Artificial night light 
can be perceived far from its source, even in uninhabited areas 
(Falchi et  al.,  2016), and is known to alter the behavior of many 
taxa, including insects (Altermatt & Ebert,  2016), reptiles (Brei 
et  al.,  2016), and birds (Cabrera-cruz, Smolinsky, & Buler,  2018; 
Van Doren et  al.,  2017; Kempenaers, Borgström, Loës, Schlicht, 
& Valcu,  2010; Raap, Pinxten, & Eens,  2015; Silva, Samplonius, 
Schlicht, Valcu, & Kempenaers, 2014; Da Silva et al., 2015). Thus, 
in contrast to earlier suggestions (Sierro & Erhardt, 2019), artificial 
light at night potentially mimics conditions during moonlit nights, 
thereby potentially improving foraging conditions. Further studies 
can be designed to test whether and how environmental varia-
tion (e.g., cloud cover and temperature) and artificial light at night 
influence patterns of food availability (van Langevelde, Ettema, 
Donners, WallisDeVries, & Groenendijk, 2011) and individual be-
havior (Dominoni et al., 2013, Da Silva et al., 2015), and how this in 
turn affects population dynamics.
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