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Abstract
We present counterexamples to a 30-year-old conjecture of Las Vergnas [J. Combin.

Theory Ser. B, 1988] regarding the Tutte polynomial of binary matroids.

Based on an evaluation established for the Tutte polynomial of plane graphs on (3, 3), Michel
Las Vergnas made three conjectures in [LV88], in increasing strength, regarding the Tutte poly-
nomial of binary matroids. The first and weakest of these [LV88, Conjecture 4.1] was proved in
[Jae89] and in a more general setting in [Bou91].

Theorem 1 ([Jae89, Bou91]). For every binary matroid M , the value TM (3, 3)/TM (−1,−1) is
an odd integer.

We remark that, for a binary matroid M , TM (−1,−1) = (−1)|E(M)|(−2)b(M), where b(M)
is the dimension of the bicycle space of M [RR78, Theorem 9.1]. The other two conjectures
remained open for a long time (and were recalled again in 2004 in [ELV04]). It was shown by
Gordon Royle [Roy13] that M(K8) is a counterexample to the third and strongest of the three
conjectures [LV88, Conjecture 4.3]. In fact, an exhaustive search using the dataset of binary
matroids with at most 15 elements of [FW11] reveals several more counterexamples.

We now state the second conjecture [LV88, Conjecture 4.2], which is stronger than the first
and weaker than the third conjecture.

Conjecture 2 ([LV88]). For every binary matroid M and every integer z, the value TM (−1 +
4z,−1 + 4z)/TM (−1,−1) is an odd integer.

Thus Theorem 1 corresponds to the value z = 1 in Conjecture 2. It turns out that M(K8) is
not a counterexample to this conjecture. Also, an exhaustive search using the above-mentioned
dataset of [FW11] reveals no counterexample to this conjecture. Consequently, any counterex-
ample has at least 16 elements. In fact, for each binary matroid M with less than 16 elements,
QM (z) := TN (−1 + 4z,−1 + 4z)/TN (−1,−1) turns out to have only integer coefficients. This,
together with the fact that both QM (0) = 1 and QM (1) are odd (the latter by Theorem 1),
implies that QM (z) is an odd integer for all integers z.

Using SageMath [Sage] we found that the binary matroid G with 24 elements corresponding
to the extended binary Golay code (see, e.g., the appendix of [Oxl11] for a definition) is a
counterexample to Conjecture 2. Moreover, the rank-6 minor N of G with 18 elements having
the following reduced representation over GF(2)

1 1 0 0 1 0 0 0 1 1 1 1
1 0 1 1 0 0 0 1 1 0 1 1
0 1 0 0 1 1 1 1 1 1 0 0
1 0 1 0 1 1 1 0 1 0 1 0
0 1 1 1 0 0 1 0 1 1 1 0
0 1 1 0 1 0 1 1 0 0 1 1
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is another counterexample. Indeed, N has the following Tutte polynomial TN (x, y)

y12 + 6y11 + 21y10 + 56y9 + 126y8 + 252y7 + x6 + 45xy5 + 462y6 + 12x5 + 6x4y + 225xy4+

747y5 + 72x4 + 111x3y + 240x2y2 + 675xy3 + 1017y4 + 247x3 + 591x2y + 1095xy2 + 1057y3+

417x2 + 909xy + 723y2 + 231x+ 231y.

We have TN (−1,−1) = 26 and QN (z) = TN (−1 + 4z,−1 + 4z)/TN (−1,−1) is equal to

262144z12 − 393216z11 + 344064z10 − 180224z9 + 73728z8 − 18432z7 + 8320z6 − 1248z5+

2616z4 − 1012z3 +
195

2
z2 − 15

2
z + 1.

Consequently, QN (z) is even for z ∈ {−2,−1, 2}, contradicting Conjecture 2.
Finally, the self-dual (but not identically self-dual) rank-9 minor N ′ of G having the following

reduced representation over GF(2)

0 0 0 1 1 1 1 1 1
0 1 1 1 0 0 1 1 1
0 0 1 0 0 1 0 1 1
1 1 0 0 1 0 0 1 1
1 1 1 0 0 1 1 1 0
1 1 0 1 0 1 0 1 1
1 0 1 0 1 0 1 1 1
0 1 0 0 1 1 1 1 0
1 0 1 1 1 1 0 1 0


is yet another counterexample with 18 elements.
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