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Abstract

Every year, 435,000 people worldwide die from Malaria, mainly in Africa and Asia. However,

malaria is a curable and preventable disease. Most countries are developing malaria elimi-

nation plans to meet sustainable development goal three, target 3.3, which includes ending

the epidemic of malaria by 2030. Rwanda, through the malaria strategic plan 2012-2018 set

a target to reduce malaria incidence by 42% from 2012 to 2018. Assessing the health policy

and taking a decision using the incidence rate approach is becoming more challenging. We

are proposing suitable statistical methods that handle spatial structure and uncertainty on

the relative risk that is relevant to National Malaria Control Program. We used a spatio-tem-

poral model to estimate the excess probability for decision making at a small area on evalu-

ating reduction of incidence. SIR and BYM models were developed using routine data from

Health facilities for the period from 2012 to 2018 in Rwanda. The fitted model was used to

generate relative risk (RR) estimates comparing the risk with the malaria risk in 2012, and to

assess the probability of attaining the set target goal per area. The results showed an overall

increase in malaria in 2013 to 2018 as compared to 2012. Ofall sectors in Rwanda, 47.36%

failed to meet targeted reduction in incidence from 2012 to 2018. Our approach of using

excess probability method to evaluate attainment of target or identifying threshold is a rele-

vant statistical method, which will enable the Rwandan Government to sustain malaria con-

trol and monitor the effectiveness of targeted interventions.

1 Introduction

Malaria remains a public health threat in developing countries, even though it is a preventable

and curable disease. Every two minutes, the life of a child under age five is lost due to the dis-

ease [1]. There are a total of 435,000 deaths per year because of malaria, mainly in Africa and

Asia [2]. Though some countries have successfully eliminated malaria, those with a high bur-

den of disease have recorded an increase in malaria cases for the last decade. Sub-Saharan

Africa and India contributed eight percent to the global burden [2].

The World Health Organization (WHO) Global Technical Strategy for malaria (GTS) aims

to eliminate malaria worldwide by 2030. WHO classified countries and communities based on
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progress towards elimination of malaria (Control or Elimination). Malaria elimination is

defined as the interruption of local transmission by reducing the rate of malaria cases to zero

for a specific malaria parasite in a defined geographic area over particular time period. Malaria

control is defined as a reduction of disease incidence, prevalence, morbidity or mortality to a

locally acceptable level as a result of deliberate efforts. Most countries have placed malaria

elimination by 2020 on their health agenda, though fewer than 30 countries worldwide were

certified malaria-free by WHO in the last 60 years [3, 4].

The Malaria elimination feasibility studies proved that it can be eliminated. Elimination of

malaira requires a strong health system that where communities have to access quality services,

strong health information systems for tracking progress, effective surveillance, and system for

public health response [3].

The Malaria Strategic Plan (MSP) 2012-2018 contained ambitious goals aimed at eliminat-

ing malaria death and reducing malaria morbidity by 2018, with a testing yield less than 5%

test positivity rate by 2018 [5]. Contrary to expectation, the number of malaria cases increased

in Rwanda, with 10 times more cases in 2017 as compared to 2011. The increase in malaria

cases is often associated with the direct and indirect influence of climate change [6]. The 2016

Mid-Term Review Report (MTR) of MSP concluded that it is unlikely that Rwanda will meet

the pre-elimination objectives and recommended not to review applicability and implementa-

tion of pre-elimination in line with WHO Guidelines. The MTR acknowledged the perfor-

mance level of health management information system (HMIS) [5, 7].

The Rwanda health sector strategic plan (HSSP III) presented five key strategies for the pre-

elimination phases and five indicators to be tracked that including (1) reducing malaria preva-

lence among women and children under-five, (2) the reduction of malaria incidence from 26

per 1000 in 2011 to 20 per 1000 in 2015 and to 15 per 1000 in 2018 (with a positivity rate less

than 5%), (3) increasing the number children under five sleeping in Long-Lasting Insecticidal

Nets(LLIN) to 82% in 2018 from 15% in 2011, (4)reducing malaria proportional morbidity

from 4 to 3 in 2018; (5) and increasing the percentage of households with at least 1 LLIN

installed from 82% to above 85% in 2018 [8].

The elimination of malaria requires a strong surveillance system to detect malaria infec-

tions early and enable a rapid and effective response. The World Health Organization and

Global Fund promote the use of a health information system. Most developing countries

adopted District Health Information Software (DHIS) [9]. The DHIS is a free and open

source platform for the management of routine health information with a primary focus

on producing health statistics [10]. Rwanda’s health system uses DHIS for data recording,

reporting, and analysis. The statistical analyses offered by DHIS include basic descriptive sta-

tistics and data visualizations. For the epidemiological surveillance of malaria, HMIS enables

aggregation of data in one platform from all health facilities in Rwanda. Those data are used

for further statistical analysis to inform evidence-based strategies to control malaria. The

Rwanda Malaria control program uses WHO recommended operational methods to detect

the epidemic threshold. The method is to compare the constant case count with mean ± 2 SD

(standard deviation) or median + the upper third quintile of the previous year’s series data

[11]. The incidence maps used for decision making rely on a fixed cut off to determine a

high or low incidence rate. However, none of those estimation methods take into consider-

ation the spatial uncertainty or account for the population at risk. Nevertheless, those meth-

ods are sensitive to outliers and unlikely to detect malaria patterns in low transmission areas

[12]. These approaches can help to visualize the overall dispersion around prevalence or inci-

dence estimates but do not provide any information linked to the uncertainty of exceeding

probability or incidence threshold [13].
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Currently, there is an increase in the use of model-based approaches with data from surveys

as suggested by authors of the feasibility of the malaria elimination phase [14]. The surveys are

often inadequately powered to detect very low levels of heterogeneous transmission and those

surveys are performed periodically, most often every five years. In contrast, routinely collected

clinical data are timely and local. Few studies have combined model-based approaches, rou-

tinely collected clinical data, and population census data to inform national malaria elimina-

tion efforts.

A model-based approach of studying geospatial malaria trends is useful in identifying risk

factors in the general population and informing evidence based-decisions. The statistical mod-

els allow the inclusion of a variety of features that capture the variation of disease risk [15]. In

this paper, spatio-temporal methods will be used to investigate the geographical variation of

malaria risk. We use routinely collected malaria data from health facilities in each sector of

Rwanda to illustrate a formal assessment of pre-specified target goals, which can be used to

evaluate reduction of incidence and progress towards targets. Understanding geographic dis-

parities at a broad level is useful to a certain extent, but is unlikely to accurately reflect the het-

erogeneity in outcomes at the local level [16]. Malaria elimination efforts can benefit greatly by

quantifying the variation across population groups and small geographical areas. An under-

standing of the geographic patterns of malaria can inform decision making by the government,

and non-governmental organizations for policy development, targeted interventions and the

adequate allocation resources at the area with the most acute need.

2 Materials and methods

2.1 Data source

We used data on malaria cases from the Rwanda health information system (HMIS) for the

period from January 1, 2012 through December 31,2018. Over 95% of malaria cases reported

through HMIS in Rwanda are laboratory confirmed [17]. Data on the number of malaria cases

are available at the level of the health centre and are disaggregated by sex and age. Rwanda’s

health system is organized into hierarchy of five levels: (1) referral hospitals provide the highest

levels of specialty care, followed by (2) district hospitals and (3) health centers at the sector

level. Below health centres are community-based health services including (4) health posts and

(5) community health workers. Rwanda has 416 administration sectors and each has at least

one health centre. For this analysis, we analyzed malaria cases at the sector level. For the chil-

dren under five, which constituted 12% of cases, data is not disaggregated by sex. Therefore,

these cases were excluded from the analysis.

Population data for 2012 were taken directly from the 2012 census. For population esti-

mates in the period from 2013 to 2018. We used projections based on the 2012 census. Popula-

tion data were downloaded from the following link www.statistics.gov.rw/datasource/42.

2.2 SIR

We adapted the traditional approach of calculating the Standardized Incidence Ratio (SIR) in

each area i (i = 1, . . ., n) and year t (t = 2012, 2013, . . ., 2018), correcting for the age, and gen-

der- demographic structure in an area. We will use the SIR as a tool to investigate the change

in malaria risk at time t as compared to a certain reference year, in our case, the year 2012. As

result, we define the SIR as the ratio of the number of observed cases yit to the number of

expected cases Eit in the ith area at time t:

SIRit ¼
yit
Eit
; ð1Þ
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with the expected number of cases calculated as

Eit ¼
XJ

j¼1

Nijtrj ð2Þ

the rj is the reference rates in age and gender-group j and Nijt is the population in the area i,
age-gender group j and time t:

rj ¼
y2012
j

N2012
j

ð3Þ

where y2012
j are the cases observed in age/gender group j in Rwanda in 2012, and N2012

j is the

census population for 2012 in Rwanda in the corresponding age/gender group.

To evaluate progress towards the targeted reduction of malaria incidence in the Malaria

strategic plan 2012-2018, the reference rate is based on the malaria incidence in year 2012.

This will enable comparison of malaria rates with subsequent years. The expected counts

therefore represent the total number of malaria cases that one would expect if the population

in area i contracted the disease at the same rate as in 2012.

2.3 Model specification

As SIR uses information only from within an area, it might produce uncertain estimates for

small areas. Classical methods do not take into account the spatial dependence among the

areas. Therefore, we used Bayesian disease mapping approaches that take into account the spa-

tial dependence among neighboring areas.

A Bayesian disease mapping model consists of three components: the data model (i.e. the

distribution of the data given the parameters), the process model (i.e. a description of underly-

ing spatial trend) and the parameter model (i.e. the prior distribution of the parameters to be

estimated) [18]. The data model is given by

Yit � PoissonðEityitÞ; ð4Þ

where a Poisson distribution is appropriate since disease data are counts (number of cases and

are non-negative). It is assumed that the mean is a product of the expected count Eit and the

relative risk θit.
The process model describes the underlying structure of the relative risks. We used the spa-

tio-temporal extension of the spatial Besag-York-Mollie (BYM) model, which is the CAR con-

volution model with two random effects, one spatially-structured area-specific random effect

and one unstructured area-specific random effect [19, 20]

logðyiÞ ¼ aþ ui þ ui þ gt þ ct þ dit ð5Þ

where, ui is the spatially-structured area-specific random effect which allows for smoothing

amongst adjacent areas, namely [19]

uijuj � N �mdi ;
s2

u

ndi

 !

with δi and ndi respectively, the set of neighbours and number of neighbours for a specific area

i. The unstructured component υi is modeled using as a Gaussian process

ui � Nð0; s2
u
Þ;
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and allows for extra heterogeneity in the counts due to unobserved (and spatially unstruc-

tured) risk factors. The γt term represents the temporally structured effect, modeled dynami-

cally using random walk of order 2 (RW of order 2) and defined as

gtjgt� 1; gt� 2 � Nð2gt� 1 þ gt� 2; s
2Þ:

The term ψt is specified by means of Gaussian exchangeable prior, defined as ct � Nð0; 1

tc
Þ.

In order to allow for interaction between space and time, which explain differences in the

time trend of malaria risk for different areas, the parameter δit follow a Gaussian Distribution

with a precision matrix given by τδRδ, where τδ is unknown scalar, while Rδ is the structure

matrix, identifying the type of temporal and/ or spatial dependence between the elements of

δ. Rδ can be factorized as the Kronecker product of the structure matrix of corresponding

main effects which interact. There are four ways to define the structure matrix as presented

in literature [21] and reported in Table 1. We fitted models that consider three different

types of interactions.

The best model was chosen basing on deviance information criterion (DIC) [18], sensitivity

analysis and condition predictive ordinate (CPO) [22]. The DIC is a popular choice for model

selection, although it has been demonstrated that DIC might be problematic in practice [23].

It is based on the productive accuracy of the estimated model, connecting for the number of

parameters to be estimated after incorporating the prio information. The CPO is defined as

CPOi ¼ pðyobsi jy � iÞ; y − i denotes the observations y with the i-th component omitted. There-

fore, it is leave one out cross-validation scare. it expresses the posterior probability of observing

value yi, when the model is fitted to all data except yi. Based on the CPO-values a logarthmic

score is defined as −∑logCPOI. Smaller values of this scare indicates a better predictive quality

of the model. The CPO are computed after description of models in R-INLA routenely via

importance sampling without rerunning the model [24].

The type I interaction corresponds to a combination of an independent spatial and tempo-

ral random effect. As the spatial effect, temporal effect are assumed to be independent, an

interaction of those have the correlation matrix Rδ = Rυ� Rψ = I� I = I,. Thus, we assume no

spatial and /or temporal structure on the interaction either and therefore dit � Normalð0; 1

td
Þ.

The Type II interaction combines a structured temporal effect with an unstructured spatial

effect. The structure matrix therefore is defined as Rδ = Rυ� Rγ, where Rυ = I and Rδ is the

neighborhood structure specified for instance through a first or second order random walk.

This leads to an interaction term which is temporally correlated whith each spatial unit, while

the time trends in the defferent areas are independent. The Type III interaction combines an

unstructured temporal effect with a spatially structured effect. The structure matrix is defined

as Rδ = Rψ� Ru, where Rψ = I and Ru is a neighboring defined through the CAR specification.

This leads to the assumption that the parameters t0 6¼ t at time point t {δt, . . ., δnt}, have a spa-

tial structure independent from the other time points.

We assigned a gamma distribution with shape equal 0.5 and rate equal to 0.00149 following

the approach of Fong et al.(2010) [25] and it was not sensitive to arbitrary choices after sensi-

tivity analysis. For the remaining parameters, we assigned prior distributions to scaled

Table 1. Interaction types: Parameter interacting and rank of Rδ.

Type of interaction structure matrix Rank

Type I interaction Rδ = Rυ� Rψ = I � I = I nT

Type II interaction Rδ = Rυ� Rγ n(T − 2) for RW2

Type III interaction Rδ = Rψ� Ru (n − 1)T

https://doi.org/10.1371/journal.pone.0238504.t001
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precision matrix parameters based on their marginal standard deviations on its diagonal fol-

lowing methods proposed by Sorby and Rue (2013) [26].

In order to investigate whether or not a reduction of malaria was observed compared to the

overall incidence rate in 2012, we make use of excess probability. The probability that the

malaria risk has decreased by c% is calculated as the posterior probability P(θit< (100 − c)%).

If |P| is large, the set goal is likely reached in that area, while if |P| small, it is very likely that is

has not been reached.

2.4 Estimation methods

We used Integrated Nested Laplace approximation (INLA) for estimation. The INLA is a

deterministic algorithm for Bayesian inference and is designed for latent Gaussian models and

spatial models. Bayesian estimation using the INLA methodology takes much less time as com-

pared to estimation using Markov Chain Monte Carlo Methods (MCMC) [27].

We performed a sensitivity analysis on a variety of model formulations for the latent level

due to the inherent issues that come with each formulation. It is well known from literature

that in the BYM model, the spatially structured component cannot be seen independently

from the unstructured component. BYM2 model is an alternative to improve parameter con-

trol by allowing the parameter to be seen independently from each other [26]. We fitted both

models (BYM and BYM2) using the same priors. Results from both models were similar.

3 Results

The results are presented into two parts. The first part provides summary descriptive statistics

of malaria cases and estimates from the fitted spatio-temporal model. The second part presents

an evaluation of Rwanda’s malaria policy on the reduction of incidence using the excess proba-

bility approach. We introduced formal friendly interpretation and classification based on the

excess probability approach for decision making during the malaria pre-elimination phase.

3.1 Malaria cases in Rwanda 2012-2018

Rwanda experienced an increase in malaria cases from 2012 to 2016, with 398,287 cases during

2012 to 2,956,337 cases in 2016. However, during 2017 and 2018, the total number of cases

decreased to 1,978,450 and 1,725,522 respectively. Fig 1 shows the overall trend as well as the

trend by age groups and sex from 2012 to 2018. The highest number of cases were reported in

all age and sex groups in 2015 and 2016.

3.2 Malaria relative risk in Rwanda 2012-2018: BYM

We have fitted spatio-temporal models for the period from 2012-2018, taking into account

both structured and unstructured random effects (BYM and BYM2 models) as it provides a

compromise between spatial correlation and extra heterogeneity over time. Since the results of

those models are similar, we present the BYM model fitted with type II interaction based on

Deviance Information Criterion (DIC) and Watanabe Akaike Information Criterion (WAIC)

2. The DIC is a tool for model selection in Bayesian context [28]; we computed a Bayesian

measure of complexity (pD) and Bayesian deviance (D), DICc adjusted and WAIC that is also

used for Bayesian model selection [29]. Both DIC and WAIC appraoch suggested mod.intII as

the best model compared to others models fitted as Table 2 shows. In addition, we used predic-

tive ordinate (CPO) for cross-validation of model.

Those models provide the estimates at the smallest available geographical scale, that might

be an added value to drive oriented and targeted interventions to control malaria in Rwanda.
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Estimates of variances due to random effects are presented in Table 3, the contribution of

variance can be summarized, as follows: approximately 50% is explained by a spatial compo-

nent, and 50% by an unstructured component. This is also visible in Fig 2, which presents esti-

mated relative risks for each year, compared with the overall incidence rate year in 2012.

Fig 3 shows an increasing trend effect for malaria relative risk in Rwanda with 95% Credible

Interval over years.

In general, the spatio-temporal contribution to geographic variability is important, as

there is a tendency to see low relative risks in the North-West of Rwanda, and high relative

risk in the East and in the South of Rwanda. We also observe a large amount of heterogeneity

amongst areas, as some of the areas with high relative risk for malaria are surrounded by areas

with low risk (and vice versa). Table 4 shows the number of sectors with RR’s within specific

intervals.

In 2012, 73.8% (307) of all sectors (416) had a RR< 1,(a lower than average disease rate),

while 18.03% (75) of the sectors had a RR above one but below 4, and 5.53% (23) had a RR

above 4 but below 10. In 11 sectors, the RR was above ten, including four sectors with a RR

Fig 1. Malaria cases over time by sex.

https://doi.org/10.1371/journal.pone.0238504.g001

Table 2. Comparison of models basing on DIC and WIAC.

Model D pD DIC DICc WAIC

model.ST1 2848807 284.9672 2849092 2849422 2300753

mod.intI 640735.1 5251.247 645986.3 657421.2 941846.9

mod.intII 40046.5 14499.43 54545.93 91864.38 70889.18

mod.intIII 41886.02 16217.6 58103.63 97675.84 76402.72

https://doi.org/10.1371/journal.pone.0238504.t002
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greater than 15. Those four sectors were in the City of Kigali, with the highest RR observed in

Gasabo District Gikomero sector (RR = 19.6, 95% CI = 19.13, 20.05). The two other sectors

were in the Southern province Kigoma sector in Nyanza District (RR = 19.7, 95% CI = 19.23,

20.25) and Gikonko sector in Gisagara District with a RR 16.8, 95% CI = 16.42, 17.20). In the

Eastern province in, Nyagatare District, was Nyagatare sector with a RR = of 15.75, (95%

CI = 15.51, 16.01). This indicates that the malaria cases are concentrated in a few areas, while

the disease rate is low in most sectors.

In 2013, there was an increase in the number of sectors with RR ranging between one and

four, an increase of 22.12% as compared to 2012. In 2014, 36 (8.65%) sectors had RR> 4. For

the year 2015, 39.9% sectors had a RR> 1, and 5.3% of sectors had a RR> 4. In 2016, 40.87%

of all the sectors had RR>1 and 6.97% of sectors had RR> 4. In 2017, 37.98% of sectors had a

RR> 1 and 9.13 of sectors had a RR> 4. Similar to the previous year, in 2018 37.74% of sec-

tors had RR> 1 and 7.69% of sectors had RR> 4. In conclusion, compared to the overall risk

in the year 2012, the risk has increased in later years. In addition, the number of sectors with

lower than average risk in the year 2012 decreased over time.

3.3 Assessment of Malaria policy to reduce incidence in Rwanda

Rwanda Malaria’s strategic plan 2012-2018 [5] aimed to reduce malaria incidence by 20% in

2015 and 42% in 2018. These results show the probability taking into account spatial

Table 3. Posterior mean and 95% Credibility interval for fixed effect of α.

Year Parameter Estimate SD LL UL

2012 s2
u 0.2703 0.0877 0.1414 0.4822

s2
v 0.2407 0.0278 0.19 0.2991

Fracspatial Varu=ðVaru þ s2
vÞ 52%

2013 s2
u 0.2696 0.0822 0.1454 0.4657

s2
v 0.2668 0.0309 0.2107 0.332

Fracspatial Varu=ðVaru þ s2
vÞ 49%

2014 s2
u 0.2942 0.0889 0.159 0.5059

s2
v 0.2775 0.0307 0.2216 0.3421

Fracspatial Varu=ðVaru þ s2
vÞ 50.5%

2015 s2
u 0.3981 0.1455 0.1925 0.7558

s2
v 0.2928 0.0318 0.2342 0.3594

Fracspatial Varu=ðVaru þ s2
vÞ 56%

2016 s2
u 0.6749 0.2602 0.3131 1.3203

s2
v 0.3877 0.0392 0.3153 0.4691

Fracspatial Varu=ðVaru þ s2
vÞ 62%

2017 s2
u 0.4947 0.1602 0.2576 0.8805

s2
v 0.4135 0.0442 0.3326 0.5059

Fracspatial Varu=ðVaru þ s2
vÞ 53%

2018 s2
u 0.3466 0.1016 0.192 0.5879

s2
v 0.4846 0.0615 0.3735 0.6147

Fracspatial Varu=ðVaru þ s2
vÞ 41%

2012-2018 Fracspatial
Varu=ðVaru þ s2

vÞ 52%

SD:Standard Deviation, LL: Lower Level, UL: Upper Level

https://doi.org/10.1371/journal.pone.0238504.t003
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uncertainty as it provides local details of the spatial variation of the risk. Figs 4 and 5 present

the area-specific probabilities of failing to reach the target goals. Areas colored red have a high

probability (above 80%) having failed to reach the target goal, while areas in yellow have high

probability (above 80%) of having successfully reached the target goal. For areas in orange, we

are uncertain about whether or not the sectors succeeded in achieving the target goals.

At the baseline year 2012, 29.33% (122) and 33.65% (140) of sectors had a high probability

(> 0.80) of having a smaller than average risk (< 0.58 and< 0.80, respectively). The number

of sectors that failed to reach the target of 20% reduction increased over the years. Similarly,

the number of sectors that failed to reach the target of 42% also increased over the years.

Fig 2. Malaria relative risk from year 2012 to 2018.

https://doi.org/10.1371/journal.pone.0238504.g002
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This is due to increased malaria incidence across all the sectors from 2012 to 2016. In 2017

and 2018, the incidence decreased, but did not reach levels lower than the incidence 2012.

While there was an improvement in progress towards reaching the target in some years for

certain areas, the improvement did not persist over the entire follow-up period. After insecti-

cide residual spry (IRS) intervention in 2015, 2016 and, 2017 the sectors of Nyagatare (North-

East) and Kirehe (South-East) showed a reduction in incidence. At the same time, we see that

in the South-West, while targets were reached in the earlier years, these areas failed to sustain

progress. Table 5 shows a summary of the number of sectors that did not achieve the targets

set out by Rwanda’s malaria strategic plan with a certain probability.

4 Discussion

Spatial data has increased substantially due to the advances in computational tools that allow

collection and integration of diverse real-time data sources. This goes in hand with the devel-

opment of less or complex innovative statistical models to deal with the spatial structure of

data in hand [21]. Model-based statistical methods are useful in low resource settings for

Table 4. Malaria RR per year as compared to the year 2012.

Year [0,1) [1,4) [4,10) [10,15) [15,24)

2012 307(73.80%) 75(18.03%) 23(5.53%) 7(1.68%) 4(0.96%)

2013 290(69.71%) 92(22.12%) 25(6.01%) 7(1.68%) 2(0.48%)

2014 278(66.83%) 102(24.52%) 30(7.21%) 3(0.72%) 3(0.72%)

2015 250(60.10%) 144(34.62%) 18(4.33%) 3(0.72%) 1(0.24%)

2016 246(59.13%) 141(33.89%) 27(6.49%) 2(0.48%) 0(0%)

2017 258(62.02%) 120(28.85%) 36 (8.65%) 2(0.48%) 0(0%)

2018 259(62.26%) 125(30.05%) 26(6.25%) 5(1.20%) 1(0.24%)

https://doi.org/10.1371/journal.pone.0238504.t004

Fig 3. Posterior temporal trend effect for malaria relative risk in Rwanda: Exp(ϕt + γt) with 95% credible interval.

https://doi.org/10.1371/journal.pone.0238504.g003
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estimating disease risk by health decision-making units as well as in the analysis of uncertainty

for survey data [30]. In this paper, the utility of model based statistical methods in estimating

the probability of reaching specific targets is presented.

In the past, data quality concerns restricted the use of health facility data as a source of pop-

ulation based statistics. Introduction of web-based information systems for health facility data

and the implementation of universal health policy contributed the completeness and accuracy

of data at local level and population-based statistics based on those data. This success was

prompted by the intensive monitoring of sustainable development goals [31, 32]. Data from

Fig 4. The area-specific probabilities of not reaching the target goal of 2015 (reduction of 20% as compared to

2012).

https://doi.org/10.1371/journal.pone.0238504.g004
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health facilities in Rwanda are generally of high quality, though successfully integrating these

data into health policy and decision-making throughout the health system is an ongoing chal-

lenge. [33].

The spatial modeling analysis for malaria data in Rwanda suggested an overall increase in

relative risk (RR) in almost all sectors of Rwanda from 2012 to 2016, with a slight decrease

from 2017 and 2018. The number of sectors with RR> 1 increased tremendously. In some sec-

tors, the RR was above 10. This implies that malaria incidence increased considerably over

time in all sectors of Rwanda but the increase was not consistent over the years.

Fig 5. The area-specific probability of not reaching the target goal of 2018 (reduction of 42% as compared to

2012).

https://doi.org/10.1371/journal.pone.0238504.g005
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The estimated probability of achieving the target for reduction of malaria incidence showed

that, almost half (47.36%) of all sectors failed to meet the target of reducing 42% of malaria

incidence by 2018, with 80% or 90% certainty. Contrary to expectations from the Malaria Stra-

tegic plan [5], malaria incidence increased in East, South, Central, and South-West of Rwanda.

Those areas of Rwanda are known as high malaria risk zones [5]. This means that the malaria

control program should concentrate efforts on reducing transmission through preventive

interventions such as indoor residual spraying (IRS) and bed-net distribution. As Figs 4 and 5

demonstrate in 2013, 2015, 2016 and, 2017 in the North East (Nyagatare) and South East (Kir-

ehe); the reduction may be due to the IRS intervention that occurred in the same period

in those Districts. With 90% probability, 51.92% of sectors reduced malaria incidence as

planned; however, those sectors belong in Northern provinces and North-West of Rwanda

where malaria cases are often lower than other parts of Rwanda. Despite this encouraging suc-

cess, much work remains to reduce the incidence of malaria across the country. Implementing

pre-elimination strategies in those sectors should be premature, instead the focus should be

implementing malaria control strategies.

The results presented here are based of malaria cases from health facilities and the popula-

tion distribution, and the database had limited variables that could have been included in the

analysis to explain increased relative risk and the reasons for failing to achieve the target of

reducing incidence as planned. We limited our scope on statistical method to evaluate reduc-

tion of malaria incidence using an excess probability approach. This approach is a relevant

tool to guide decision makers and develop health policy. This model and results can contribute

to improvement of malaria surveillance to ensure implementation of interventions in the right

place and at the right time.

A disease like malaria requires a strong surveillance system that can enable a quick response

to any changes in behaviors related to malaria. Efficient algorithms that can be deployed in

response to real-time data collection and make inferences would contribute to a fast response

to potential public health threats. [15]

Table 5. The sectors that did not achieve reducing the targets.

Year Target of reducing 20%

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1)

2012 289(69.47%) 1(0.24%) 4(0.96%) 0(0%) 122(29.33%)

2013 271(65.14%) 4(0.96%) 4(0.96%) 0(0%) 137(32.93%)

2014 258(62.02%) 1(0.24%) 1(0.24%) 4(0.96%) 152(36.54%)

2015 222(53.37%) 4 (0.96%) 0(0%) 5(1.20%) 185(44.47%)

2016 218(52.40%) 3(0.72%) 0(0%) 2(0.48%) 193(46.39%)

2017 236(56.73%) 2 (0.48%) 2(0.48%) 3(0.72%) 175(41.59%)

2018 241(57.93%) 2(0.48%) 2(0.48%) 2(0.48%) 169(40.62%)

Target of reducing 42% by 2018

2012 273(65.62%) 1(0.24%) 1(0.24%) 1(0.24%) 140(33.65%)

2013 250(60.10%) 3 (0.72%) 2(0.48%) 2 (0.48%) 159(38.22%)

2014 235(56.49%) 3(0.72%) 6(1.44%) 4(0.96%) 168(40.38%)

2015 200(48.08%) 2 (0.48%) 0(0%) 0(0%) 214(51.44%)

2016 187(44.59%) 1(0.24%) 2(0.48%) 0(0%) 226(54.33%)

2017 203(48.80%) 6(1.44%) 4(0.96%) 3(0.72%) 200(48.08%)

2018 216(51.92%) 0(0%) 3(0.72%) 4(0.96%) 193(46.39%)

https://doi.org/10.1371/journal.pone.0238504.t005
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5 Conclusion

In summary, we recommend the approach of using spatio-temporal models and routinely col-

lected facility-based data to assess achievement of targets related to malaria incidence and esti-

mate malaria relative risk at the local level. This approach enables us to generate maps that

provide information about the probability and uncertainty of reaching the targets, as well as

providing information on the spatial contribution to malaria burden in the country. The pro-

posed approach is not only limited to malaria data, but can also be applied in other areas of

health care delivery. Spatio-temporal specifications with interactions of both time and space

were considered but were not successful.

This era of sustainable development goals (SDGs), especially SDG 3 and its target 3.3 of

ending malaria by 2030, requires a tool like the one presented here for planning, monitoring,

and evaluation. The excess probability can be applied to survey or routine data from health

facilities. It uses routine data efficiently to permanently monitor the changes in malaria trans-

mission and evaluate progress towards national targets. Though survey data are important,

provided that data quality are high, routinely collected data are collected more frequently and

thus provide more timely assessments of health burden. Many surveys only publish new evi-

dence every five years (such as Demographic and Health survey) and often do not provide esti-

mates at a local level.

Supporting information

S1 Data.

(R)

S2 Data.

(R)

S3 Data.

(R)

Acknowledgments

The authors are grateful to Rwanda Biomedical Center, Malaria and other Parasitic Diseases

division, for collaboration and discussion on Rwanda’s Malaria’s strategic plan evaluation

approaches. We are grateful for Rwanda malaria resource materials shared by Dr. Aimable

Mbituyumuremyi, Malaria Division manager and technical support provided by Mr. Hamza

Ndabateze, HMIS officer, to extract data from Rwanda health information system (HMIS).

Author Contributions

Conceptualization: Muhammed Semakula, Christel Faes.

Data curation: Muhammed Semakula.

Formal analysis: Muhammed Semakula, Christel Faes.

Funding acquisition: Muhammed Semakula.

Investigation: Muhammed Semakula.

Methodology: Muhammed Semakula, Christel Faes.

Project administration: Muhammed Semakula.

Resources: Muhammed Semakula, Christel Faes.

PLOS ONE Bayesian spatio-temporal modeling of malaria risk in Rwanda

PLOS ONE | https://doi.org/10.1371/journal.pone.0238504 September 10, 2020 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238504.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238504.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238504.s003
https://doi.org/10.1371/journal.pone.0238504


Software: Muhammed Semakula, Christel Faes.

Supervision: Franco̧is Niragire, Christel Faes.

Validation: Muhammed Semakula, Franco̧is Niragire, Christel Faes.

Visualization: Muhammed Semakula, Christel Faes.

Writing – original draft: Muhammed Semakula.

Writing – review & editing: Muhammed Semakula, Franco̧is Niragire, Christel Faes.

References
1. WHO. World Malaria report 2015[Internet]. Geneva; 2015. Available from: https://www.who.int/malaria/

publications/world-malaria-report-2015/report/en/.

2. WHO. World Malaria report 2018 [Internet]. Geneva; 2018. Available from: https://www.who.int/malaria/

publications/world-malaria-report-2018/en/.

3. World Health Organization, Global Malaria Programme. A framework for malaria elimination [Internet].

WHO Press, World Health Organization. 2017. 100p. Available from: http://apps.who.int/iris/bitstream/

handle/10665/254761/9789241511988-eng.pdf?sequence=1.

4. Hemingway J. et al. Tools and Strategies for Malaria Control and Elimination: What Do We Need to

Achieve a Grand Convergence in Malaria? PLoS Biology, 2016. 14(3), pp.1–14. https://doi.org/10.

1371/journal.pbio.1002380

5. Rwanda Biomedical Center(RBC). Rwanda Malaria Strategic Plan 2012-2018. RBC: Kigali, Rwanda.

2012.

6. Tesi M. Africa initiative Discussion Papers Global Warming and Health: The Issue of Malaria in Eastern

African’s Highlands. Global health. 2011; (2).

7. Ministry of Health (Rwanda). Rwanda Malaria Strategic Plan (2013-2018) Mid Term Review. Rwanda

Biomedical Centre. 2016. Available from: http://www.moh.gov.rw/index.php?id=511.

8. Ministry of Health (Rwanda). Rwanda third health sector strategic plan (2012-2018). Ministry of Health.

2016. Available from: http://www.moh.gov.rw/index.php?id=511.

9. Dehnavieh R., Haghdoost A., Khosravi A., Hoseinabadi F., Rahimi H., Poursheikhali A., et al. The Dis-

trict Health Information System (DHIS2): A literature review and meta-synthesis of its strengths and

operational challenges based on the experiences of 11 countries. Health Information Management

Journal, 2019. 48(2), 62–75. https://doi.org/10.1177/1833358318777713 PMID: 29898604

10. Sahay S., Sæbø J. & Braa J. Scaling of HIS in a global context: Same, same, but different. Information

and Organization journal, 2013. 23(4), pp.294–323. Available at: http://dx.doi.org/10.1016/j.infoandorg.

2013.08.002.

11. WHO,2018, Malaria surveillance, monitoring and evaluation: A reference manual.

12. World Health Organization. Epidemiological approach for Malaria control. World Health Organization,

2015. 2nd edition Available at: https://apps.who.int/iris/handle/10665/96351.

13. Emmanuel Giorgiet al. Using non-exceedance probabilities of policy-relavant malaria prevalence

thresholds to identify areas of low transmission in Somalia Malaria Journal, 2018. 17, Article number:

88.

14. Tatem Andrew J, Smith David L, Gething Peter W, Kabaria Caroline W, Snow Robert W, Hay Simon I.

Ranking of elimination feasibility between malaria-endemic countries. Lancet 2010; 376: 1579–91.

https://doi.org/10.1016/S0140-6736(10)61301-3 PMID: 21035838

15. Lawson A. & Lee D. Bayesian Disease Mapping for Public Health. Handbook of statistics, 2017. volume

36, Pages 443–481. Available at: http://dx.doi.org/10.1016/bs.host.2017.05.001.

16. Kang Su Yun, Cramb Susanna M., White Nicole M., Ball Stephen J., Mengersen Kerrie L., 2016. Making

the most spatial information in health: A tutorial in Bayesian Disease Mapping for areal Data Geospatial

health Journal. 2016. 31; 11(2):428 available at: https://doi.org/10.4081/gh.2016.428

17. USAID. President’s Malaria initiative Rwanda operational plan financial year 2019. Available: https://

www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy19/fy-2019-

rwanda-malaria-operational-plan.pdf?sfvrsn=3. Accessed 2019 September 27.

18. Lesaffre E. and Lawson A. B. Bayesian Biostatistics. Statistics in practice. UK: John Wiley & Sons.

2012 Available at: https://doi.org/10.1002/9781119942412

PLOS ONE Bayesian spatio-temporal modeling of malaria risk in Rwanda

PLOS ONE | https://doi.org/10.1371/journal.pone.0238504 September 10, 2020 15 / 16

https://www.who.int/malaria/publications/world-malaria-report-2015/report/en/
https://www.who.int/malaria/publications/world-malaria-report-2015/report/en/
https://www.who.int/malaria/publications/world-malaria-report-2018/en/
https://www.who.int/malaria/publications/world-malaria-report-2018/en/
http://apps.who.int/iris/bitstream/handle/10665/254761/9789241511988-eng.pdf?sequence=1
http://apps.who.int/iris/bitstream/handle/10665/254761/9789241511988-eng.pdf?sequence=1
http://doi.org/10.1371/journal.pbio.1002380
http://doi.org/10.1371/journal.pbio.1002380
http://www.moh.gov.rw/index.php?id=511
http://www.moh.gov.rw/index.php?id=511
https://doi.org/10.1177/1833358318777713
http://www.ncbi.nlm.nih.gov/pubmed/29898604
http://dx.doi.org/10.1016/j.infoandorg.2013.08.002
http://dx.doi.org/10.1016/j.infoandorg.2013.08.002
https://apps.who.int/iris/handle/10665/96351
https://doi.org/10.1016/S0140-6736(10)61301-3
http://www.ncbi.nlm.nih.gov/pubmed/21035838
http://dx.doi.org/10.1016/bs.host.2017.05.001
https://doi.org/10.4081/gh.2016.428
https://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy19/fy-2019-rwanda-malaria-operational-plan.pdf?sfvrsn=3
https://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy19/fy-2019-rwanda-malaria-operational-plan.pdf?sfvrsn=3
https://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy19/fy-2019-rwanda-malaria-operational-plan.pdf?sfvrsn=3
https://doi.org/10.1002/9781119942412
https://doi.org/10.1371/journal.pone.0238504


19. Besag J., York J., & Mollie (1991) Baysian image restoration with two applications in spatial statistics.

Ann. Inst. Statist. Math. 1991 43: 1. available at: https://doi.org/10.1007/BF00116466.

20. Besag J., & Green P. Spatial Statistics and Bayesian Computation. Journal of the Royal Statistical

Society. Series B (Methodological), 1993. 55(1), 25–37. https://doi.org/10.1111/j.2517-6161.1993.

tb01467.x

21. Blangiordo Marta, & Cameletti Michela. Spatial and Spatio temporal Bayesian models with R-INLA.

UK: John Wiley & Sons. 2015 available at: https://doi.org/10.1002/9781118950203

22. Pettit. The Conditional Predictive Ordinate for the Normal Distribution. Journal of the Royal Statistical

Society: Series B (Methodological) 1990 Available at: https://doi.org/10.1111/j.2517-6161.1990.

tb01780.x.

23. spiegelhalter D. J., Best Nicola G., Carlin Bradley P., & van der Linde A. The deviance information crite-

rion: 12 years on Journal of Royal Statistical Society:Series B. 2014.

24. Kneib Thomas, Tutz Gerhard. Statistical Modelling and Regression Structures. Berlin: Springer-Verlag

Berlin Heidelberg 2010 Available at: https://doi.org/10.1007/978-3-7908-2413-1

25. Fong Youyi and Rue Håvard and Wakefield Jon. Bayesian inference for generalized linear mixed mod-

els. Biostatistics. 2010 11, 3, 397–412 Available at. https://doi.org/10.1093/biostatistics/kxp053 PMID:

19966070

26. Riebler Andrea and Sørbye Sigrunn H and Simpson Daniel and Rue Håvard. An intuitive Bayesian spa-

tial model for disease mapping that accounts for scaling. Statistical Methods in Medical Research,

2016. 25, 4, pp. 1145–1165 available at: https://doi.org/10.1177/0962280216660421 PMID: 27566770

27. Carroll R. et al. Comparing INLA and OpenBUGS for hierarchical Poisson modeling in disease map-

ping. Spatial and Spatio-temporal Epidemiology, 2015. 14-15, pp.45–54 available at: https://doi.org/10.

1016/j.sste.2015.08.001 PMID: 26530822

28. spiegelhalter D. J.Best N. G., Carlin B.P., & van der Linde A. Bayesian measures of model complexity

and fit. Journal of Royal Statistical Society:Series B. 2002. https://doi.org/10.1111/1467-9868.00353

29. Watanabe S. Algebraic Geometry and statistical learning Theory. Combridge University Press, Cam-

bridge, UK, 2009.

30. Robert Yankson, Evelyn Arthur Anto & Michael Give Chipeta. Geostatistical analysis and mapping of

malaria risk in children under 5 using point-referenced prevalence data in Ghana. Malaria Journal.

2019. 18:67 available at: https://doi.org/10.1186/s12936-019-2709-y.

31. Maina Sabella, Wanjala Pepela, David Soti,Kipruto Hillary, Drotid Benson & Boermae Ties. Using

health-facility data to assess subnational coverage of maternal and child health indicators, Kenya. Bull

World Health organ. 2017.1; 95:683:694 available at:95(10):683-694. https://doi.org/10.2471/BLT.17.

194399 PMID: 29147041

32. Nisingizwe Marie Paul, Iyer Hari S., Gashayija Modeste, Hirschhorn Lisa R., Amoroso Cheryl, Wilson

Randy, Rubyutsa Eric, Gaju Eric, Basinga Paulin, Muhire Andrew, Binagwaho Agne’s, Hedt-Gauthier

Bethany. Toward utilization of data for program management and evaluation: Quality assessment of

five years of health management information system data in Rwanda. Global Health Action. 2014. 7

available at: ISSN:1654-9716. https://doi.org/10.3402/gha.v7.25829 PMID: 25413722

33. Karengera Innocent, Anguyo Robert DDM Onzima, Simon-Peter, Govule Philip. Quality and Use of

Routine Healthcare Data in Selected Districts of Eastern Province of Rwanda. international journal for

public health research 2016.(2):5:13 available at: ISSN:2381-4837.

PLOS ONE Bayesian spatio-temporal modeling of malaria risk in Rwanda

PLOS ONE | https://doi.org/10.1371/journal.pone.0238504 September 10, 2020 16 / 16

https://doi.org/10.1007/BF00116466
http://doi.org/10.1111/j.2517-6161.1993.tb01467.x
http://doi.org/10.1111/j.2517-6161.1993.tb01467.x
https://doi.org/10.1002/9781118950203
https://doi.org/10.1111/j.2517-6161.1990.tb01780.x
https://doi.org/10.1111/j.2517-6161.1990.tb01780.x
https://doi.org/10.1007/978-3-7908-2413-1
https://doi.org/10.1093/biostatistics/kxp053
http://www.ncbi.nlm.nih.gov/pubmed/19966070
http://doi.org/10.1177/0962280216660421
http://www.ncbi.nlm.nih.gov/pubmed/27566770
https://doi.org/10.1016/j.sste.2015.08.001
https://doi.org/10.1016/j.sste.2015.08.001
http://www.ncbi.nlm.nih.gov/pubmed/26530822
http://doi.org/10.1111/1467-9868.00353
https://doi.org/10.1186/s12936-019-2709-y
https://doi.org/10.2471/BLT.17.194399
https://doi.org/10.2471/BLT.17.194399
http://www.ncbi.nlm.nih.gov/pubmed/29147041
https://doi.org/10.3402/gha.v7.25829
http://www.ncbi.nlm.nih.gov/pubmed/25413722
https://doi.org/10.1371/journal.pone.0238504

