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Abstract

We consider a family of skew tent maps fa on the unit interval, determined
by the parameter a, with 0 < a < 1. We give a decision procedure, that on
input a and a point x0 in the unit interval, determines whether or not the
sequence x0, fa(x0), f

2
a (x0), ... of iterates of fa on x0 reaches one of the two

fixed points of fa after a finite number of iterations.
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1. Introduction

We consider a family of skew tent maps fa on the unit interval, determined
by the parameter a (0 < a < 1) and defined as fa(x) = x

a
for 0 ≤ x ≤ a and

fa(x) = 1−x
1−a for a < x ≤ 1 (illustrated, further on, in Figure 1). The maps in

this family have two fixed points (that is, points for which fa(x) = x). One
question about the dynamics of such maps concerns the decidability of the
so-called point-to-fixed-point problem. This question asks for an algorithm to
determine, on input a and a point x0 in the unit interval, whether or not the
sequence x0, fa(x0), f

2
a (x0), ... of iterates of fa on x0 reaches one of the two

fixed points of fa after a finite number of iterations. The main contribution
of this paper is a decision algorithm for this problem for rational input values
a and x0.

This decision problem originates from dynamical system theory (Blon-
del et al. (2001a,b); Koiran et al. (1994)) but is also relevant to database
theory (Geerts and Kuijpers (2005)). In this context, iterates of functions
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f : Rn → Rn (by R we denote the real numbers) are studied and the de-
cidability of properties such as “mortality”, “nilpotency”, “termination” and
“point-to-fixed-point” is investigated.

A function f : Rn → Rn is called mortal if f(0) = 0 and if for each
x ∈ Rn there exists a natural number k ≥ 1 such that fk(x) = 0 (here 0
denotes the origin of Rn) and a function f : Rn → Rn is called nilpotent if
f(0) = 0 and if there exists a natural number k ≥ 1 such that for all x ∈ Rn,
fk(x) = 0 (Blondel et al. (2001b)). Mortality and nilpotency are known to
be undecidable for piecewise affine functions from R2 to R2 and for functions
from R to R the (un)decidability of these properties is open (Blondel et al.
(2001b)).

The transitive closure of the graph of a function f : Rn → Rn, viewed as a
binary relation over Rn, can be computed by determining iteratively the 2n-
ary relations TC1(f), TC2(f), TC3(f), . . . , where TC1(f) = graph(f) and
TCi+1(f) := TCi(f) ∪ {(x,y) ∈ R2n | (∃z) ((x, z) ∈ TCi(f) ∧ f(z) = y)}.
We call a function f terminating if there exists a k ≥ 1 such that TCk+1(f) =
TCk(f). Termination of functions from R2 to R2 is undecidable but termina-
tion of continuous semi-algebraic functions from R to R is decidable (Geerts
and Kuijpers (2005)). The decidability of this problem has implications in
the area of database theory, where it is used to obtain extensions of first-
order logics with recursion, based on a transitive-closure operator (Geerts
and Kuijpers (2005)) for constraint databases (Kuper et al. (2000)).

The point-to-fixed-point problem is another decision problem in this con-
text, which asks whether for a given algebraic point x and a given piece-
wise affine function f : Rn → Rn, the sequence x, f(x), f 2(x), f 3(x), . . .
reaches a fixed point, i.e., whether there exists a k ≥ 1 such that fk(x) =
fk+1(x) (Blondel et al. (2001a); Koiran et al. (1994)). As in the case of
mortality and nilpotency, the point-to-fixed-point problem is undecidable for
piecewise affine functions from R2 to R2. The decidability of the point-
to-fixed-point problem is open for in dimension 1, even for piecewise linear
functions with only two non-constant pieces (Blondel et al. (2001a); Koiran
et al. (1994)). The problem we address in this paper should be seen in this
context and we propose a solution for a particular subclass of this problem in
dimension 1. We study this problem in the more convenient setting of func-
tions on an interval. A general solution for arbitrary linear functions with
two pieces remains open. This is also the case for functions with three or
more linear pieces. The decidability of the point-to-fixed-point problem has
also implications in database theory. The termination of query evaluation
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in certain extensions of first-order logic with transitive closure operations
depends on this problem (Geerts and Kuijpers (2005)).

This paper is organised as follows. In Section 2, we give the necessary
definitions and state the main result. Preliminary considerations and proper-
ties are given in Section 3. A decision procedure for the point-to-fixed-point
problem for skew tent maps is described in Section 4. In Section 5, we end
this paper with a discussion of possible extensions of the proposed methods.

2. Definitions, notations, and main result

Let a be a number, with 0 < a < 1, and let the function fa : [0, 1]→ [0, 1]
be defined as

fa(x) :=

{
x
a

if 0 ≤ x ≤ a,
1−x
1−a if a < x ≤ 1.

The function fa is a skew tent map (where the adjective “skew” can be
dropped only when a = 1

2
) with top at (a, 1). We use the abbreviations

`a(x) := x
a

and ra(x) := 1−x
1−a for the left and right part of the function fa.

If fa(x) = x for some x ∈ [0, 1], we call x a fixed point of the function fa.
The function fa has two fixed points, namely ϕa1 = 0 and ϕa2 = 1

2−a . Figure 1
gives an illustration of the graph of the function fa along with its two fixed
points.

We denote the set of the natural numbers by N and the set of the real
numbers by R. We use the notation f 0

a (x) := x, and f i+1
a (x) := fa(f

i
a(x)),

for i ∈ N, to denote the iterates of fa on x ∈ [0, 1]. We also use the notions
of forward and backward orbit, as follows: for x, y ∈ [0, 1], the forward orbit
of x (under fa), denoted Orb+(fa, x), is the set {fna (x) | n ∈ N} and the
backward orbit of y (under fa), denoted Orb−(fa, y), is the set {x ∈ [0, 1] |
there is an n ∈ N such that fna (x) = y}. If x ∈ Orb−(fa, y), we say “x
reaches y (under fa)” or “f reaches y from x”. For an overview of such
concepts, we refer to (Alsedà et al. (1993); Preston (1983, 1988)).

For example, the point x0, shown in Figure 1, reaches the fixed point ϕa2
after two iterations of fa, that is, f 2

a (x0) = ϕa2.
In this paper, we are interested in algorithmically deciding whether a

point x0 ∈ [0, 1] reaches a fixed point of fa after a finite number of iterations
of fa on x0. This decision problem can be viewed as deciding the language
PtoFP (abbreviating “point-to-fixed-point”), with

PtoFP = {〈a, x0〉 | 0 ≤ x0 ≤ 1 and 0 < a < 1 and
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x0 ∈ Orb−(fa, ϕ
a
1) ∪Orb−(fa, ϕ

a
2)},

where 〈a, x0〉 represents a finite encoding of the numbers a and x0. For
reasons of finite representability, we assume a and x0 to be rational numbers.
We agree that a rational number A is encoded as pair (p, q), with p, q ∈ N
(given in binary), q 6= 0, p and q relatively prime and A = p

q
. Obviously,

other encodings may be considered.
The main result of this paper is summarised in the following theorem.

Theorem 1. There is a decision procedure that, on input two rational num-
bers a and x0 (encoded as described before), decides whether 〈a, x0〉 ∈ PtoFP.

ut

,

`a(x) = x
a

ra(x) = 1�x
1�ax

'2
a = 1

2�a'1
a = 0 a x0

Figure 1: The graph of the skew tent map fa, with the graph of `a in red and the graph
of ra in blue. The two fixed points of fa, ϕa

1 or ϕa
2 , are indicated and x0 is an example of

a number for which f2
a (x0) = ϕa

2 .

3. Preliminary considerations and properties

Our decision procedure is called PtoFP(a, x0) and it is described in Sec-
tion 4. Obviously, the order conditions 0 ≤ x0 ≤ 1 and 0 < a < 1 are easily
checked by comparing the natural numbers that encode these two rational
numbers. So, we focus on the non-trivial part, namely, deciding the existence
of a n ∈ N0 such that fna (x0) is a fixed point of fa.
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Our approach is, given an input 〈a, x0〉, to establish an upper bound M for
the values of n for which fna (x0) can be a fixed point of fa. Once this upper
bound M is determined, it remains to be checked whether one of the numbers
f 1(x0), f

2(x0), ..., f
M(x0) actually is a fixed point of f . The determination

of the upper bound M depends on the uniqueness of a particular form in
which a rational number can be written. This form is derived by observing
that, when fa is repeatedly applied to x0, this repetition involves alternating
applications of powers of `a and ra and our results rely on the general form
that such an alternation of applications of `a and ra can produce. An iteration
fna (x) of fa on some x ∈ [0, 1] is therefore of the form

rjka `
ik
a r

jk−1
a `ik−1

a · · · rj1a `i1a (x),

for some k ∈ N0, where i1 > 0 if 0 ≤ x ≤ a and i1 = 0 if a < x ≤ 1, jk ≥ 0,
j1, i2, j2, ..., ik−1, jk−1 > 0 and i1 + j1 + · · ·+ ik + jk = n.

In this section, we give an explicit formula for such an alternating appli-
cation of two affine functions on some real point. Throughout this paper,
we use the notation [A]i, to abbreviate the sum 1 +A+A2 + · · ·+Ai−1, for
A ∈ R and i ∈ N. This means that

[A]i =

{
i if A = 1 and
1−Ai
1−A if A 6= 1,

for i ∈ N.
Now, we introduce some abbreviations for sums of exponents, that are

used throughout this paper.

Notation 1. Let i0, i1, i2, ... and j0, j1, j2, ... be two sequences of natural
numbers. and let n,m ∈ N. For n ≤ m, we define Imn := in + in+1 + · · ·+ im
and Jmn := jn + jn+1 + · · ·+ jm. For m < n, we define Imn := 0 and Jmn := 0.

ut

The following property gives the general form of an alternated applica-
tion of powers of two linear functions F and G on some real point x. Its
straightforward induction proof is given, for completeness, in the Appendix.

Property 1. Let A,B,C,D ∈ R. Let F : R → R : x 7→ Ax + B and G :
R→ R : x 7→ Cx+D be affine functions. If k ∈ N0 and i1, ..., ik, j1, ..., jk ∈
N, then
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GjkF ikGjk−1F ik−1 · · ·Gj1F i1(x) =

AI
k
1CJk1 x+

k∑
ν=1

{
AI

k
ν+1CJkν+1

(
B[A]iνCjν +D[C]jν

)}
. (†1)

ut
We remark that, for jk = 0, the equality (†1) becomes

F ikGjk−1F ik−1 · · ·Gj1F i1(x) =

AI
k
1CJk−1

1 x+
k−1∑
ν=1

{
AI

k
ν+1CJk−1

ν+1
(
B[A]iνCjν +D[C]jν

)}
+B[A]ik . (†2)

4. A decision procedure for the point-to-fixed-point problem

In this section, we describe the decision procedure PtoFP(a, x0), which
accepts the input (a, x0), when fa reaches ϕa1 from x0 or fa reaches ϕa2 from
x0. The first test is described in Section 4.1 and the second is described in
Section 4.2.

4.1. The points that reach the fixed point ϕa1 = 0

The backward orbit of ϕa1 = 0 contains infinitely many points besides
0 and 1 since fa(a) = 1 and f(a2) = a, f(1 − a + a2) = a, etc. In fact,
Orb−(fa, ϕ

a
1) certainly contains a, a2, a3, ..., which reach a under `a, besides

infinitely many points (like 1− a+ a2) from the domain of ra.
The following theorem implies a decision procedure to establish whether

a point x0 ∈ [0, 1] is in Orb−(f, ϕa1), as we explain following its proof.

Theorem 2. Let fa be a skew tent map, as before. Let a = p
q
, with p, q ∈

N0, gcd (p, q) = 1 and 0 < p < q. Then fa reaches its fixed point ϕa1 = 0
from x0 ∈ [0, 1] if and only if x0 = 0 or if there exists an n ∈ N0 such that
2q−p
q
x0 is of the form N

qn
, with N ∈ N0 and gcd (q,N) = 1 and fna (x0) = 0.

Proof. Let a = p
q
, with p, q ∈ N0, gcd (p, q) = 1 and 0 < p < q. Let fa be a

skew tent map with left part `a and right part ra, as explained in Section 2.
Therefore, we have

fa(x) =

{
qx
p

if 0 ≤ x ≤ a,
q(1−x)
q−p if a < x ≤ 1.
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We first prove the only-if direction. Since fa(0) = `a(0) = 0, we do not
have to consider x0 = 0 any further. We remark that also for x0 = 1, 2q−p

q
x0 is

of the requested form N
qk

with N = 2q−p and k = 1, since gcd (2q − p, q) = 1

follows from the assumption gcd (p, q) = 1. The same holds for x0 = a, in

which case 2q−p
q
x0 = (2q−p)p

q2
and we have N = (2q − p)p and k = 2. Also

here, gcd (p, q) = 1 implies gcd ((2q − p)p, q) = 1.
Assume that x0 ∈ Orb−(fa, 0) and x0 6∈ {0, 1, a}. Then there exists an

n ∈ N0, with n > 2, such that fna (x0) = 0. This implies that there exists a
k ∈ N0 and i1, j1, . . . , ik, jk ∈ N such that

rjka `
ik
a r

jk−1
a `ik−1

a · · · rj1a `i1a (x0) = 0,

where i1 > 0 if 0 ≤ x ≤ a and i1 = 0 if a < x ≤ 1 and i1+j1+· · ·+ik+jk = n
and j1, i2, .., ik, jk > 0. Since 0 can only be reached via a and 1 (that is,
ra(`a(a)) = ra(1) = 0), we also know that jk = 1 and ik ≥ 1.

If then we apply (†1) from Property 1, with A = 1
a
, B = 0, C = 1

a−1 and

D = −1
a−1 , we obtain

(
1

a
)I
k
1 (

1

a− 1
)J

k
1 x0 +

k∑
ν=1

{
(
1

a
)I
k
ν+1(

1

a− 1
)J

k
ν+1

(
−1

a− 1
[

1

a− 1
]jν
)}

= 0.

When we substitute p
q

for a, the above equation becomes

(
q

p
)I
k
1 (

q

p− q
)J

k
1 x0 +

k∑
ν=1

{
(
q

p
)I
k
ν+1(

q

p− q
)J

k
ν+1

(
−q
p− q

[
q

p− q
]jν
)}

= 0.

We remark that q
p−q 6= 1. Indeed, if we assume q

p−q = 1, we get 2q =

p, which is impossible, since p < q (or a < 1). Therefore, −q
p−q [

q
p−q ]

jν =
−q

2q−p
qjν−(p−q)jν

(p−q)jν . If we use this fact, then the above equality, after dividing

both sides by ( q
p
)I
k
1 ( q

p−q )
Jk1 , becomes

2q − p
q

x0 =
1

qI
k
1+J

k
1

k∑
ν=1

{
qI

k
ν+1+J

k
ν+1pI

ν
1 (p− q)J

ν−1
1
(
qjν − (p− q)jν

)}
or 2q−p

q
x0 = N

qI
k
1+Jk1

with

N =
k∑
ν=1

{
qI

k
ν+1+J

k
ν+1pI

ν
1 (p− q)J

ν−1
1
(
qjν − (p− q)jν

)}
.
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Since, jk = 1 and ik ≥ 1, we have, for ν < k, that Ikν+1+Jkν+1 ≥ ik+jk ≥ 2

and thus q | qIkν+1+J
k
ν+1 (and even q2 | qIkν+1+J

k
ν+1). From this observation

follows that gcd (q,N) = 1. Indeed, let d ∈ N be a common divisor of q and

N (that is, d | q and d | N), then d | pIk1 (p− q)Jk−1
1 (qjk − (p− q)jk) and thus

d | pIk1+Jk1 . From gcd (p, q) = 1, d | q and d | pIk1+Jk1 , d | 1 follows. So, we can
conclude that gcd (q,N) = 1.

We see that from the assumption fna (x0) = 0, it follows that 2q−p
q
x0 =

N

qI
k
1+Jk1

= N
qn

, with N ∈ N and gcd (q,N) = 1.

The if-direction is clear. ut

To see that this theorem implies a decision procedure to test whether 0
can be reached from a given point x0 ∈ (0, 1], we need the following property
on the unique expression of some rational numbers.

Property 2. Let q ∈ N with q > 1. If α is a rational number, then there
exists at most one k ∈ N such that α = N

qk
with N ∈ N0 and gcd (q,N) = 1.

Proof. Let α be a rational number. If α cannot be expressed in the form N
qk

(for instance, when α is 0 or negative), then the statement is true. Suppose,
for the sake of contradiction that α = N

qk
and α = N ′

qk′
, with gcd (q,N) = 1,

gcd (q,N ′) = 1. In the case k = k′, we have N = N ′ which gives uniqueness.
For k < k′, we obtain qk

′−kN = N ′ from these two equalities. Since k′−k ≥ 1,
this implies that q | N ′. But then gcd (q,N ′) = q > 1, contradicting the
assumption gcd (q,N ′) = 1. So, in all cases α can be expressed in at most
one way as a fraction of the form N

qk
. ut

Equivalently, the Theorem 2 says that if 2q−p
q
x0 cannot be written in the

from N
qn

for some n ∈ N and N ∈ N0, with gcd (q,N) = 1, then x0 does not
reach the fixed point 0 of fa.

On the other hand, if, for x0 6= 0, 2q−p
q
x0 can be written in the from N

qn

for some n,N ∈ N with gcd (q,N) = 1, then by Property 2, this n is unique
and it suffices to check whether fna (x0) equals 0. Indeed, we know that if
fn
′
(x0) = 0 for an n′ > n, then 2q−p

q
x0 can also be written as N ′

qn′
for some

n′ ∈ N, N ′ ∈ N0 with gcd (q,N ′) = 1, contradicting Property 2.
This concludes the description of the part of PtoFP(a, x0) that tests

whether x0 reaches ϕa1 under fa.
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4.2. The points that reach the fixed point ϕa2 = 1
2−a

The following theorem implies a decision procedure to establish whether
a point x0 ∈ (0, a) reaches ϕa2 under fa, as we explain following its proof.
There, we also explain, how this procedure can be extended to x0 ∈ [0, 1].

Theorem 3. Let fa be a skew tent map, as before. Let a = p
q
, with p, q ∈

N0, gcd (p, q) = 1 and 0 < p < q. Then fa reaches its fixed point ϕa2 = 1
2−a

from x0 ∈ (0, a) if and only if there exists an n ∈ N0 such that 2q−p
q
x0 is of

the form N
qn

, with N ∈ N0 and gcd (q,N) = 1 and fna (x0) = ϕa2.

Proof. Let a = p
q
, with p, q ∈ N0, gcd (p, q) = 1 and 0 < p < q. Let fa be a

skew tent map with left part `a and right part ra, as explained in Section 2.
Let x0 ∈ (0, a).

We first prove the only-if direction. We assume that x0 ∈ Orb−(fa, ϕ
a
2).

Then there exists an n ∈ N0, such that fna (x0) = ϕa2. This implies that there
exists a k ∈ N0 and i1, j1, . . . , ik ∈ N0 such that

`ika r
jk−1
a `ik−1

a · · · rj1a `i1a (x0) = ϕa2,

where i1 + j1 + · · ·+ ik = n. We remark that i1 > 0 because x0 ∈ (0, a) and
that ik > 0 because ϕa2 can only be reached via `a.

If then we apply (†2) from Property 1, with A = 1
a
, B = 0, C = 1

a−1 and

D = −1
a−1 , we obtain

(
1

a
)I
k
1 (

1

a− 1
)J

k−1
1 x0 +

k−1∑
ν=1

{
(
1

a
)I
k
ν+1(

1

a− 1
)J

k−1
ν+1

(
−1

a− 1
[

1

a− 1
]jν
)}

= ϕa2.

Since a 6= 2, −1
a−1 [ 1

a−1 ]jν = −ϕa2(( 1
a−1)jν − 1) and thus the above equality,

using a = p
q
, becomes

(
q

p
)I
k
1 (

q

p− q
)J

k−1
1 x0 = ϕa2(1 +

k−1∑
ν=1

{
(
q

p
)I
k
ν+1(

q

p− q
)J

k−1
ν+1

(
qjν − (p− q)jν

(p− q)jν

)}
.

After dividing both sides by ( q
p
)I
k
1 ( q

p−q )
Jk−1
1 and by ϕa2 = q

2q−p , we obtain

2q − p
q

x0 =
N

qI
k
1+J

k−1
1

9



with

N = pI
k
1 (p− q)J

k−1
1 +

k−1∑
ν=1

{
qI

k
ν+1+J

k−1
ν+1 pI

ν
1 (p− q)J

ν−1
1
(
qjν − (p− q)jν

)}
.

Since, Ikν+1 + Jk−1ν+1 ≥ ik > 0 for all ν ≤ k − 1, we see that q | qIkν+1+J
k−1
ν+1 .

From this observation follows that gcd (q,N) = 1. Indeed, let d ∈ N be a

common divisor of q and N , then d | pIk1 (p − q)Jk−1
1 and thus d | pIk1+Jk−1

1 .

From gcd (p, q) = 1, d | q and d | pIk1+Jk−1
1 , d | 1 follows. So, we can conclude

that gcd (q,N) = 1.
We see that from the assumption fna (x0) = ϕa2, it follows that 2q−p

q
x0 =

N

qI
k
1+Jk1

= N
qn

, with N ∈ N0 and gcd (q,N) = 1.

The if-direction is clear. ut
Theorem 3 implies a decision procedure to test whether ϕa2 can be reached

from a goven point x0 ∈ (0, a). Indeed, equivalently, this theorem says
that if 2q−p

q
x0 cannot be written in the from N

qn
for some n,N ∈ N, with

gcd (q,N) = 1, then x0 does not reach ϕa2.
On the other hand, if, for x0 ∈ (0, a), 2q−p

q
x0 can be written in the from

N
qn

for some n,N ∈ N with gcd (q,N) = 1, then by Property 2, this n is

unique and it suffices to check whether fna (x0) is ϕa2. Indeed, we know that
if fn

′
a (x0) = ϕ1 for an n′ > n, then 2q−p

q
x0 can also be written as N ′

qn′
for some

n′ ∈ N and N ′ ∈ N0, with gcd (q,N ′) = 1, contradicting Property 2.
We already know that 0, a and 1 reach 0 (and thus do not reach ϕa2)

and that ϕa2 reaches itself. Therefore, what remains is to give a procedure to
determine whether x0 ∈ (a, 1) \ {ϕa2} reaches ϕa2.

Hereto, we define the sequence αi := r−ia (a), for i ∈ N. The following
property gives an expression for αi.

Property 3. For i ∈ N, we have αi = (a− 1)i(a− ϕa2) + ϕa2.

Proof. Clearly, we have r−1a (x) = (a−1)x+ 1. By Lemma 2, we obtain that
r−ia (x) = (a−1)ix+[a−1]i. Since ϕa2 = 1

2−a we have [a−1]i = −ϕa2((a−1)i−1).

So, we get r−ia (x) = (a− 1)ix−ϕa2((a− 1)i− 1) = (a− 1)i(x−ϕa2) +ϕa2. This
implies that αi = r−i(a) = (a− 1)i(a− ϕa2) + ϕa2. ut

Since a < ϕa2, we derive α2i < ϕa2 and ϕa2 < α2i+1, for i ∈ N0, from this
property. Also from this property and the observation that 0 < (a− 1)2 < 1

10



for 0 < a < 1, a straightforward calculation gives the following ordering of
the αi:

a < α2 < α4 < α6 < · · · < ϕa2 < · · · < α5 < α3 < α1 < 1.

We observe that all αi eventually reach a and thus 0 under fa and will
never reach ϕa2. For the other x0 ∈ (a, 1), we first determine between which
values in the above ordering x0 is situated to test whether x0 reaches ϕa2. If
x0 ∈ (α1, 1), then fa(x0) = ra(x0) ∈ (0, a). Therefore, x0 ∈ (α1, 1) reaches
ϕa2 if and only if fa(x0) reaches ϕa2. If x0 ∈ (a, α2), then fa(x0) = ra(x0) ∈
(α1, 1) and this case reduces to the previous one. If x0 ∈ (α2n, α2n+2), then
f 2n
a (x0) = r2n(x0) ∈ (a, α2) and if x0 ∈ (α2n+3, α2n+1), then f 2n+2

a (x0) =
r2n+2(x0) ∈ (α1, 1) and these cases also reduce to the previous ones.

These observations complete the description of the part of PtoFP(a, x0)
that tests whether x0 reaches ϕa2 under fa.

5. Discussion

We discuss some possible extensions of the proposed methods. Another
class of tent maps that can be considered is the family of skew tent maps
fa,b defined by fa,b(x) = bx

a
for 0 ≤ x ≤ a and fa(x) = b(1−x)

1−a for a < x ≤ 1,
with an extra parameter b. In this paper, we discuss the case b = 1. On the
unit interval, the interesting case occurs when a < b ≤ 1. The techniques
of this paper can also be used in this setting, when a = p

q
, b = u

v
, with

gcd (p, q) = 1, gcd (u, v) = 1 and the denominators q and v have not too
many factors in common. When gcd (q, v) < q our techniques still work
(using an extension of Property 2), but when (a power of) q divides v, this is
no longer clear. A decision procedure for point-to-fixed-point problem for the
family of skew tent maps fa,b would bring us closed to a solution for arbitrary
linear functions with two pieces, since many cases can be reduced to this case
via topological conjugacy (Alsedà et al. (1993); Preston (1983, 1988)). The
one-dimensional case for functions with three or more linear pieces remains
open.

In this paper, we describe a decision procedure for the case where a and x0
are rational. The restriction to rational takes care of the finite representabil-
ity of the input. Obviously a wider class of real numbers in the unit interval
can be encoded in a finite way. We can think of the Turing-computable real
numbers or the more restricted class of the algebraic real numbers. It is not
obvious how the techniques of this paper can be extended to these settings.
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Appendix

In this appendix, we give the proof of Property 1. We start with two
straightforward lemmas. The first lemma follows directly from the definition.

Lemma 1. We have [A]0 = 0 and [A]i+1 = A[A]i + 1, for A ∈ R and i ∈ N.
ut

The following lemma gives an expression for the result of iterating a linear
function F i times on a point x.
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Lemma 2. Let F : R → R : x 7→ Ax + B , with A,B ∈ R, be an affine
function. For i ∈ N and x ∈ R, we have F i(x) = Aix+B[A]i. ut

Proof. We prove this by induction on i. For i = 0, we have F 0(x) = x
and A0x+ B[A]0 = x. For the induction step, we have F i+1(x) = F (F i(x)),
which equals A(Aix + B[A]i) + B by the induction hypothesis. This equals
Ai+1x+B(A[A]i+1) and this is Ai+1x+B[A]i+1 by Lemma 1. This concludes
the induction proof. ut

We are now ready for the proof of Property 1.

Proof of Property 1. We prove this lemma by induction on k. For k = 1
and j1 = 0, clearly, F i1(x) = Ai1x+B[A]i1 by Lemma 2 and this is the desired
expression, since the empty sum in (†2) equals zero. For k = 1 and j1 > 0,
we get Gj1F i1(x) = Gj1(F i1(x)) = Cj1(Ai1x+B[A]i1) +D[C]j1 = Ai1Cj1x+
B[A]i1Cj1 + D[C]j1 , again using Lemma 2. Since AI

1
2CJ1

2 = A0C0 = 1, this
is the desired expression.

For the induction step, we assume that the property holds for k ≥ 1
and we have, for jk+1 = 0, F ik+1GjkF ik · · ·Gj1F i1(x) = F ik+1(GjkF ik

· · ·Gj1F i1(x)) which, using Lemma 2 and the induction hypothesis (†1),
is Aik+1

(
AI

k
1CJk1 x+

∑k
ν=1

{
AI

k
ν+1CJkν+1 (B[A]iνCjν +D[C]jν )

})
+ B[A]ik+1 .

This expression equalsAI
k+1
1 CJk1 x+

∑k
ν=1

{
AI

k+1
ν+1CJkν+1 (B[A]iνCjν +D[C]jν )

}
+

B[A]ik+1 , which is (†2) for the value k + 1.
For jk+1 > 0, we have, using the previous expression and Lemma 2,

that Gjk+1F ik+1GjkF ik · · ·Gj1F i1(x), which equals Gjk+1(F ik+1GjkF ik · · ·Gj1

F i1(x)) is equal to

Cjk+1

(
AI

k+1
1 CJk1 x+

k∑
ν=1

{
AI

k+1
ν+1CJkν+1

(
B[A]iνCjν +D[C]jν

)}
+B[A]ik+1

)
+D[C]jk+1 .

This expression equals

AI
k+1
1 CJk+1

1 x+
k∑
ν=1

{
AI

k+1
ν+1CJk+1

ν+1
(
B[A]iνCjν +D[C]jν

)}
+

B[A]ik+1Cjk+1 +D[C]jk+1 .

Since AI
k+1
k+2CJk+1

k+2 = 1, we get (†1) for the value k + 1. This is the desired
result and the induction proof is finished. ut
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