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4. Section on motifs and the negative binomial fit. section

5. Section on how the use of PIDAS and filters curb the amount and score of random

matches.

6. Section on additional future work and possible heuristics. section

7. Supplementary figures.section

8. List of additional files. section

The chargeSep filter

From the main text: ”The chargeSep filter tries to infer the peaks’ charge by recognizing

the charge state of its isotopic envelopen. If successful, the mono-isotopic peaks are only

taken into consideration when comparing with the mass pattern representation of that

particular charge state, and the others are removed altogether.”

The recognition of an isotopic envelope of charge Z is done by running the very same

CPC algorithm to compare the spectrum with mock spectrum [0, 1/Z]. Whenever two

observed spectrum peaks match this pattern, they are considered possible isotopes from

an envelope with charge Z. The processing of the scores of all the alignments is done

in such a way that any peak is only used in a comparison of charge Z, if it appears as

the mono-isotopic peak in an isotopic envelope (i.e., the first of its kind in a sequence of
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isotopes) or if it never appears in any isotopic envelope of any charge (because then its

charge cannot be determined).

Filters and blind spots

Two of the filters we use (multiDetections, chargeSep) are not entirely harmless. In fact,

they may both reduce the sensitivity through the presence of a noise peak (which, in case

of a mixed spectrum, may even correspond to a signal peak from a co-eluting peptide).

The multiDetections filter may accidently use such noise peaks to unjustly shift nearby

signal peaks outside of their match window. The chargeSep filter may use such noise

peaks to wrongly classifying a nearby mono-isotopic fragment as non-mono-isotopic, thus

removing it from the match window.

So strictly speaking, these filters are actually heuristics – which we intend to avoid – that

negatively affect sensitivity locally (by unjustly reducing a small amount of CPC alignment

scores), but their net effect on global sensitivity (by justly reducing a large amount of CPC

scores) and runtime is so overwhelmingly positive that we decided to keep them in a first

approximation. Moreover, both of these errors can only cause a decrease in the amount

of matching fragments, so there is no risk of introducing false positives, though of course

there is a risk of introducing blind spots. This risk should be evaluated in a future version

of PRiSM where the burden of statistical power can be shifted away from these filters

towards improvements in other components.

Actual CPC implementation

The actual CPC implementation is different from the one lined out in the main text, but

equivalent: first, a matrix of pairwise distances between the fragment peaks (primary

index) and the mass pattern (secondary index) is constructed. Immediately after, the
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∆m/z-values are sorted into an array, but the intermediate matrix structure allows to trace

back the identity of the peaks that generated a specific mass shift. Then, a dedicated

in-house 1D-clustering algorithm is used on the array to identify clusters with a maximum

width equal to twice the fragment tolerance. Different clusters may overlap but can never

be a strict subcluster of another cluster. Each cluster with S elements then corresponds to

a distinct alignment where S peaks are matching within a margin equal to the fragment tol-

erance. The final ∆m/z value associated with a cluster is chosen as the middle between

the largest and smallest value in that cluster, which ensures that all values in the cluster

deviate no further from this final value than the fragment mass tolerance.

Motifs and the negative binomial fit

To the best of our knowledge, the empirical null distributions are quite well characterized

by negative binomial distributions, except for spectra containing motifs or polymers or AA

repeats in general. Polymers create a mixture of fragment ladders, each with a different

fixed mass difference, which together may be interpreted as repeats of some amino acid

which by chance happens to match the mass difference between two fragments of any two

ladders. AA repeats on the other hand are genuinely present in the spectrum, but both be-

have just like motifs. The issue with spectra containing motifs is that they will - by definition

- match with a disproportionate amount of (protein) sequences in the database. Hence,

their empirical distribution of PIDAS will be disproportionately heavy-tailed and thus devi-

ate from the corresponding negative binomial distribution NB which will underestimate the

amount of high-scoring alignments, as shown in Figure S1.

However, this need not deter us from using PRiSM since this is a known issue which

state-of-the-art search engines also suffer from andmoreover we developed an automated

method to detect such cases and discard them from the results. To prevent this phe-

nomenon from causing too many false hits, we developed a method to flag such spectra
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by measuring how much NB underestimates the empirical distribution.

First, we measure the SPFVU (sign-preserved fraction of variance unexplained) and

UFVU (underestimating fraction of variance unexplained) of an empirical null distributions

d as

SPFVUd =
∑
P

ε2d,P
λd

sign(εi) (1)

UFVUd =
∑
P

ε2d,P
λd

H(εd,P ) (2)

where the εP are the differences between the observed and theoretical number of occur-

rences of PIDAS valuesP on the log scale, λd is the variance of the empirical occurrences(P )

(also log scale), and H is the Heaviside step function. Note that only those PIDAS values

P where occurrences(P ) > 0∀i < P may contribute to SPFVU, UFVU and λd in order

to avoid capturing the contributions of outliers which do not originate from the true null

distribution. Note also that the theoretical number of occurrences on log scale is set to

0 whenever the actual value on the regular scale is smaller than 0.5, in order not to dis-

proportionately penalize such cases where the theoretical number of occurrences on log

scale would run off to −∞.

Secondly, we determine a threshold UFVU∗ by looking at the distribution of all UFVU

values that do not correspond to cases of an strictly over-estimating NB, meaning we look

only at cases where SPFVU > 0 OR UFVU > median(UFVU). The second member of

the OR-clause is necessary because we want to take cases into account where there is

both under- and overestimation by the NB fit which causes SPFVU < 0 while the UFVU

is still of considerable magnitude. The resulting distribution of UFVU values is used to

determine outliers by means of boxplot whiskers (excluding 0.35% on either side in case

of normally distributed data). However, since the distribution is very right-skewed – most

values lie close to zero, indicating the NB fits well – we do not use regular boxplot whiskers

but rather the ones based on the medcouple statisticMC for skewed distributionsS1. Thus,
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we obtain

UFVU∗ = 1.5 · IQR · e3MC (3)

where IQR is the inter-quartile range.

Any null distribution d with UFVUd > UFVU∗ is flagged and subsequently discarded,

though the corresponding spectrum need not be unidentifiable if another one of its distri-

butions corresponding to another ion type was not flagged. If the proportion of spectra

representing motifs or polymers becomes large (more than, say, 1%) they run a risk of

not being discarded by this procedure, resulting in an increase in false discoveries. At

present, therefore, this is an additional hidden requirement for reliably using PRiSM . In

the future, we will further develop PRiSM to prevent this possibility as well as rigorously

remedy flagged cases and try to identify them correctly.

PIDAS and filters curb random matches

This section is quite complex and intricately takes multiple subtle observations to paint a

detailed, consistent picture of the scoring of a CID tandem-MS experiment using PIDAS,

as opposed to using regular peak counting.

Figure S3 displays the highest PIDAS score observed in each combination, aggregated

across all proteins and spectra from the Closed data set, but split according to charge (Fig-

ure S3a) or orientation (Figure S3b) of the pseudo-ion series. It shows that mass pattern

representations with lower charge states are more prone to generating ’best alignments’

with high scores, and also the same can be said for the C-terminal ones as opposed to

their N-terminal counterparts. Note that the latter happens despite the fact that the means

of the boxplots in Figure S3b are approximately equal.

These phenomena seem to replicate two ‘commonly known facts’ in mass spectrom-

etry. Namely, they affirm that C-terminal ions in CID experiments – mostly y-ions – are

more abundant than their N-terminal counterparts (mostly b-ions), and that ions with lower
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charges are more abundant than highly charged ions. These two affirmations follow from

the fact that the extent of the (upper) tail of each distribution of maxPIDAS values acts as

a proxy for the abundance of non-trivial scores: the more observations in your distribution,

the further its tail extends. The fact that the means of the boxplots in Figure S3b are equal

also affirms the idea that the driving process behind such score distributions is a random

process – which does not distinguish between N-terminal and C-terminal ions.

Interestingly, however, Figure S2 (made without using filters) suggests that pseudo-ion

series with a higher charge state increase the average number of matching peaks in an

alignment, but decrease the number of matching peaks in the very best alignments. A

plausible explanation is that the density of peaks in a pseudo-ion series – and therefore

also the chance of randommatching peaks – is directly proportional to its charge state. The

protein mass patterns are much ‘longer’ than our observed spectra, so when its charge

state is increased a bigger portion gets ‘squeezed’ into the m/z range of an observed

spectrum, thus increasing the mean alignment score. The highest observed score on the

other hand is usually not determined by the random matching procedure, but rather by

whether the AA of the spectrum actually originates from the protein it is being compared

to. The higest scores tend to decrease with charge, consistent with the fact that in most

spectra low fragment charge states are more abundant than high charge states.

As such, the introduction of filters (only partly confounded with the use of PIDAS) signif-

icantly reduced the occurrence of random matches, as Figure S3a shows a monotonically

decreasing trend instead. Moreover, Figure S3b also shows a larger discrepancy in the

most extreme scores between b- and y-ions. Since in this type of experiment C-terminal

ions (y-ions) are slightly more abundant (the COOH group is more likely to retain electrical

charge during CID) this seems to confirm that fragment peak matching is now dominant

over random peak matching, especially for the best alignments. Still, however, the mean

maxPIDAS values are equal because the driving process behind most combinations is

random matching, since only one or at most a handful of mass patterns in the database
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is expected to truly be represented by the observed spectrum.

More future work

Some (but not all) additional future improvements which are less prominent are listed

below.

• During protein assignment, score ties – which maybe frequent for homologous pro-

teins or mixed spectra – should (and can) be investigated automatically without re-

quiring manual curation.

• We greatly reduce the output size of each comparison by rounding the scores to get

a histogram to which we fit the null distribution, but we can instead use a density

estimation technique.

• Remove the additional hidden requirement that no substantial proportion (say, more

than 1%) of observed spectra in a PRiSM search representsmotifs. This can be done

by using a data-independent goodness-of-fit statistic when fitting the null distribution.

• Benchmark PRiSM on data with very reliable identifications e.g.S2’s synthetic peptide

data set, in order to confirm that we have no blind spots and are covering the entire

search space, and in order to test the PTM detection mechanism.

• Evaluate some heuristics commonly used by state-of-the-art search engines to eval-

uate and report on their performance usefulness.

Possible heuristics

We expect some heuristics listed below to be very effective, i.e., sacrifice very little or no

sensitivity and specificity at all in exchange for an increase in computation time. Not that

they may distort the null distribution, so first additional research in that area is necessary.
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• Tag-based filtering to reduce candidates proteins in the database (and even restrict

matches to specific protein regions). They have a natural advantageS3 over mass-

based approaches.

• Use a small portion of spectra to iteratively calibrate an intensity filter for the observed

spectra.

• Use a multi-stage scoring system, f.i. by limiting ∆m/z to regions where most

matches occur and gradually relax the constraint until significant matches are found.
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Figures

Figure S1: The fitted negative binomial (orange curve) clearly underestimates the be-

haviour of the empirical null distribution (blue dots), which is heavy-tailed because the

associated spectrum contains a repeating sequence of 11 Alanines.

(a) Highest maxScore decreases with the

charge of the mass pattern, regardless of ter-

minal orientation. The highest maxScore of pat-

terns with charge 3 is anomalously high.

(b) Mean maxScore increases with the charge

of the mass pattern, regardless of terminal ori-

entation. The mean maxScore of patterns with

charges 4 and 5 is anomalously high.

Figure S2: Highest (left) and mean (right) maxScores highlight systematic trends when

split out per mass pattern types. Note that here, maxScore refers not to the highest PIDAS

but rather the highest number of matching peaks for a particular combination, and that

these are results aggregated for all protein mass patterns and osberved spectra from a

PRiSM run on the Closed data, where input filters were disabled.
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(a) (b)

Figure S3: When using filters and PIDAS, the influence of random matching observed in

Figure S2 is reduced. In (a) the mean maxPIDAS decreases monotonically with charge.

In (b) the mean PIDAS is still identical for both terminal orientations, but matching an

extremely high amount of y-ions is more probable than for b-ions.

(a) Suspicious alignment of spectrum

9247_43733 with mass pattern (P09651,
N1).

(b) Suspicious alignment of spectrum

9260_44559 with mass pattern (P56696,
C4).

Figure S4: Two significantly identified spectra from the Unidentified data appear to be

false positives by visual inspection. Many matched peaks have a very low intensity, they

do not span the lower end of the spectrum’s m/z range, and from experience with the

Closed results we know that N-terminal as well as highly charged patterns usually do not

produce the best (non-random) alignments.
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Additional files

1. Closed data information on spectra where PRiSM and SEQUEST disagree on the

protein identification: Closed_disagreement_information.txt

2. Unidentified data spectral alignment plots: Unidentified_results_annotated_spectra.pdf
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