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Highlights 7 

Bacteria facilitate plant growth under stressful environmental conditions. 8 

Direct and indirect mechanisms are involved in improvement of plant growth and development. 9 

Plant-growth promoting rhizobacteria and host-plant interaction under stress. 10 

Agriculture and phytoremediation efficiency may be significantly improved by using plant-growth promoting bacteria. 11 

 12 

Abstract 13 

New eco-friendly approaches are required to improve plant biomass production. Beneficial plant growth-promoting (PGP) 14 

bacteria may be exploited as excellent and efficient biotechnological tools to improve plant growth in various – including 15 

stressful – environments. We present an overview of bacterial mechanisms which contribute to plant health, growth, and 16 

development. Plant growth promoting rhizobacteria (PGPR) can interact with plants directly by increasing the availability 17 

of essential nutrients (e.g. nitrogen, phosphorus, iron), production and regulation of compounds involved in plant growth 18 

(e.g. phytohormones), and stress hormonal status (e.g. ethylene levels by ACC-deaminase). They can also indirectly affect 19 

plants by protecting them against diseases via competition with pathogens for highly limited nutrients, biocontrol of 20 

pathogens through production of aseptic-activity compounds, synthesis of fungal cell wall lysing enzymes, and induction 21 

of systemic responses in host plants. The potential of PGPR to facilitate plant growth is of fundamental importance, 22 

especially in case of abiotic stress, where bacteria can support plant fitness, stress tolerance, and/or even assist in 23 

remediation of pollutants. Providing additional evidence and better understanding of bacterial traits underlaying plant 24 

growth-promotion can inspire and stir up the development of innovative solutions exploiting PGPR in times of highly 25 

variable environmental and climatological conditions. 26 
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1. Introduction 31 

The supply of appropriate quantity and quality of food, as well as feed for animals, biomass as a feedstock for biofuel 32 

production and other industrial processes encounter various challenges of abiotic, biotic, and anthropogenic (e.g., 33 

pollution and climate change) origin. The limited resources and non-renewable nature of soil services, makes soils the 34 

most vulnerable ecosystems that are under great pressure, especially in tropical, semiarid, and arid regions of our planet, 35 

resulting in extreme poverty and hunger in many developing countries. The Food and Agriculture Organization of the 36 

United Nations (FAO) reported that the number of undernourished people in the world is still growing; in 2017 it reached 37 

21% of the African population (256 millions people) and 11.4% in Asia (515 millions people) (FAO, IFAD – International 38 

Fund for Agricultural Development, UNICEF – United Nations Children’s Fund, WFP – World Food Programme, WHO 39 

– World Health Organization, 2018). Moreover, it was estimated that approximately 34% of the population in Ethiopia 40 

has to survive with less than US$1.90 per person per day (World Bank, 2017; Silva et al., 2019). 41 

The main consequences of intensive anthropogenic activities and climate change are degraded soils and loss of ecosystem 42 

services (Dewulf et al., 2015). Drought, combined with enhanced water and air erosion, results in a systematical reduction 43 

of soil fertility and plant biomass production, and has become a highly substantial and urgent global problem (Karmakar 44 

et al., 2016). According to the European Environment Agency (EEA, 2003; 2009), about 16% of European Union 45 
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agricultural lands are threatened by water erosion, while another 4% is susceptible to wind erosion, which may intensify 46 

the dispersion of xenobiotics and potential eutrophying pollutants (Timmusk et al., 2017). Furthermore, long-lasting use 47 

of pesticides, artificial fertilizers, and growth stimulators as soil supplements lead to adverse effects on soil ecosystems. 48 

Thus high plant biomass production, reduction of the use of chemical fertilizers and chemical plant protection products, 49 

and reduction of pollution with xenobiotics are currently important objectives. 50 

In order to mitigate these harmful factors and also enhance the plant biomass production, many different innovative and 51 

smart farming technologies, such as smart irrigation systems (e.g. controlled-release drip-irrigation), integrated 52 

fertilization, biocontrol techniques for plant diseases, and environmentally friendly microbial biotechnologies have been 53 

developed (Bargaz et al., 2018). In addition, different microbial-based approaches, in the form of biofertilizers, 54 

biostimulants, and/or biopesticides are currently proposed as alternatives for improving crop yield. A particular group of 55 

microorganisms, termed plant growth-promoting rhizobacteria (PGPR), positively influence plant growth, and represent 56 

promising sustainable solutions to increase plant biomass production (Thijs and Vangronsveld, 2015; Lindemann et al., 57 

2016; Umesha et al., 2018; Liu et al., 2020). PGPR also have the ability to counteract most of the aforementioned problems 58 

and disadvantages of modern agriculture. 59 

Bacteria are a dominant group in the soil microorganism community; approximately one gram of soil contains 108-109 60 

bacteria, 106-108 archaea, 107-108 actinomycetes, 105-106 fungi, 103-106 algae, 103-105 protozoa, and 10 nematodes 61 

(Rughöft et al., 2016). Their diverse metabolism and capacity to use a wide range of different substances as nutrient and 62 

energy sources, makes bacteria important partners in interaction with plants. Bacteria that positively affect plant growth 63 

are categorized as plant growth-promoting bacteria (PGPB), often interchangeably called plant health-promoting bacteria 64 

(PHPB). They are represented by both (i) endophytes localized inside plant cells (iPGP – intracellular PGP), vascular 65 

tissues (Weyens et al., 2009a), or seeds (Truyens et al., 2015; Sánchez-López et al., 2018), and (ii) bacteria localized 66 

outside cells (ePGP – extracellular PGP), including endophytes living between cells of plant tissues (Mastretta et al., 67 

2009; Truyens et al., 2015), rhizoplane (on the root surface), rhizosphere soil (thin soil layer around the roots) (Backer et 68 

al., 2018), or phyllosphere (leaves and stems) (Weyens et al., 2009b). 69 

The bacterial mechanisms of plant growth promotion and communication are still being studied (Bharti et al., 2016). 70 

There is a diverse number of PGPR-induced changes in plants, and the promotion of growth is most likely a result of a 71 

complex combination of a plethora of pathways, which affect both plant development and nutrition (Bharti et al., 2016). 72 

PGPB exert positive effects on plant growth both in direct and indirect ways (Weyens et al., 2009b; Asad et al., 2019). 73 

Plant growth under the rhizobacteria influence is a multigene process, which is specific to the individually participating 74 

bacteria and plants. This “additive hypothesis” is a complex phenomenon that involves a cumulative effect of changes in 75 

expression of various genes, which ultimately influences the global plant multifactor metabolic system (Bharti et al., 76 
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2016; Meena et al., 2017). Direct mechanisms of plant growth stimulation by bacteria rely on facilitating the uptake of 77 

nutrients, and synthesizing or regulating the hormonal status of plants (Kong and Glick, 2017; Backer et al., 2018). 78 

Indirect mechanisms of PGPB influence plant growth and comprise a whole range of mechanisms that prevent or suppress 79 

plant diseases (Goswami et al., 2016; Asad et al., 2019). As an example, the phosphorus solubilizing, nitrogen fixing and 80 

auxins producing PGP Providencia rettgeri strain P2, Advenella incenata strain P4, Acinetobacter calcoaceticus strain 81 

P19, and Serratia plymuthica strain P35 as inoculants significantly increased (i) growth parameters, e.g. dry weight, plant 82 

height, root length, root average diameter, root surface area, root volume, and chlorophyll content of oat (Avena sativa), 83 

alfalfa (Medicago sativa), and cucumber (Cucumis sativus), and (ii) the activity of antioxidative enzymes, e.g. peroxidase, 84 

catalase, superoxide dismutase, as well as (iii) soil conditions, e.g. soil urease, invertase, alkaline phosphatase, catalase 85 

activity, available nitrogen, phosphorus, potassium, and organic carbon (Li, H. et al., 2020). 86 

The above mentioned positive PGPB pathways occur as the bacterial reply to plant carbon-rich exudates, constituting the 87 

investment of almost 20% of the photosynthetically fixed carbon-sources in the maintenance of the rhizosphere microbiota 88 

(Philippot et al., 2013; Stringlis et al., 2018a). Using Arabidopsis thaliana – PGP Pseudomonas fluorescens strain 89 

WCS417 as a model system, it was revealed that the WCS417-induced early root response ISR is not an effect of plant 90 

defense costs, but is a defense priming phenomenon that does not rule out the WCS417 by local root immune responses 91 

(Martinez-Medina et al., 2016; Moreau et al., 2019; Zhang, S. et al., 2019). PGPB are recognized by plants because of 92 

molecules with a specific and conserved chemical structure/pattern termed microbe-associated molecular patterns 93 

(MAMPs), which are detected by members of a large family of plant pattern recognition receptors (PRRs). These PRRs 94 

activate the signaling cascades to induce the first line of plant defense, called MAMP-triggered immunity (MTI) (Choi 95 

and Klessing, 2016; Offor et al., 2020). Among the best characterized MAMPs are flagellin (flg22), a bacterial flagella 96 

component recognized by the PRR flagellin-sensitive2 receptor FLS2, and chitin, a fungal carbohydrate cell wall 97 

component that is recognized by the PRR chitin elicitor receptor kinase1 (CERK1) (Jelenska et al., 2017; Lawrence II et 98 

al., 2020). It is worth to mention that flagellins, specifically flg22417 isolated from PGP P. fluorescens WCS417, flg22Pa 99 

from the pathogen P. aeruginosa, and the living WCS417 strain reflected similar patterns of gene expression in 100 

Arabidopsis upon their influence (Stringlis et al., 2018a). Upon MAMPs the genes involved in immunity, such as those 101 

responding to bacteria, fungi, chitin, wounding, hypoxia, salicylic acid, ethylene, or abscisic acid were found to be 102 

upregulated. Genes related to growth and development, like those having to do with amino acid export, ion transport, 103 

glucosinolate biosynthetic process, metabolism of terpenoids, and secondary metabolic processes were downregulated. It 104 

is notable that MAMP-repressed genes which were not affected by the elicitors have a strong auxin signature. In this 105 

system, the auxins were found as trade-off involved molecules, playing a dual role in the balance of promoting root growth 106 

while simultaneously leading the systemic immunity-eliciting defense response to PGPR (Stringlis et al., 2018a). Mwita 107 
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et al. (2016) reported that the expression of plant growth promoting bacteria genes, which are involved in root colonization 108 

is under the host-plant root exudates control. Upon Bacillus atrophaeus strain UCMB-5137 the maize (Zea mays) 109 

colonization is under control of the repressors, e.g. CcpA (mediated carbon catabolite repressor), CodY (pleiotropic 110 

repressor), AbrB (transition to stationary phase), and probably a DegU transcription factor regulation. It was also reported 111 

that the non-coding RNA is involved in regulation of genes involved in early stages of rhizosphere colonization. The gene 112 

expression regulation during maize rhizosphere UCMB-5137 colonization was positively correlated with some ncRNAs 113 

like ncr628, ncr818, ncr2198, ncr3198, ncr3519, and ncr3877 (Mwita et al., 2016). Moreover, Morcillo et al. (2020a) 114 

found that an exposure of Arabidopsis thaliana to Bacillus amyloliquefaciens strain GB03 can exert either beneficial or 115 

deleterious effects to plants. The shift from beneficial to deleterious effect depends on the P-availability to plants and is 116 

mediated by diacetyl, a bacterial volatile organic compound (VOC). Under phosphate-defcient conditions, diacetyl 117 

suppresses plant production of reactive oxygen species (ROS) and enhances symbiont colonization without compromising 118 

disease resistance via enhancing phytohormone-mediated immunity followed by plant hyper-sensitivity to phosphate 119 

deficiency (Morcillo et al., 2020a). 120 

Millions of years of evolution in variable, selective environmental conditions brought about adaptations of all organisms 121 

in response to a wide range of stresses. Bacteria, as well plants, have evolved a plethora of ways to deal with both abiotic 122 

and biotic stressors, namely by enhancing the action of specific plant growth promoting traits or/and resistance 123 

mechanisms (Oleńska and Małek, 2013; Singh, S. et al., 2015; Numan et al., 2018; Chen et al., 2019) as well as preventing 124 

diseases (Ilangumaran and Smith, 2017; Leinweber et al., 2018; Pereira, 2019). In this review, we focus on rhizobacteria 125 

(from rhizosphere, rhizoplane, and root endosphere) and their involvement in plant health and development (Fig. 1). 126 

 127 

2. Alleviation of plant abiotic stress by plant growth promoting rhizobacteria 128 

2.1. PGPR that enhance the availability of nutrients essential to plant growth 129 

Drought, extreme temperature events, salinity, flooding, ultraviolet irradiation, and heavy metal pollution are abiotic 130 

stress factors of high concern mainly because of their unfavorable effects on plant growth, which ultimately lead to serious 131 

reductions in yield. Bacterial involvement in increasing abiotic stress tolerance and enhancing defense responses in plants 132 

exposed to different stressors has been widely studied (Table 1) (Rajkumar et al., 2012; Salomon et al., 2014; Zhao and 133 

Zhang, 2015; Ma et al., 2016; Hashem et al., 2016; Egamberdieva et al., 2017; Kudoyarova et al., 2019; Jatan et al., 2019; 134 

Safdarian et al., 2019; Bruno et al., 2020; Shreya et al., 2020; Ramirez et al., 2020; Javed et al., 2020). Numerous studies 135 

have investigated plant-microbe interactions under heavy metal stress conditions (Glick, 2014; Wu et al., 2016; Ma et al., 136 

2016; Kong and Glick, 2017; Paredes-Páliz et al., 2018; Sánchez-López et al., 2018; Raklami et al., 2019; Bellabarba et 137 

al., 2019; Bruno et al., 2020; Manoj et al., 2020). Heavy metals exert noxious effects on all biota, including 138 
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microorganisms by blocking essential functional groups of organic molecules and modifying their active conformations 139 

(Li et al., 2017), hence disturbing metabolism and inducing oxidative damage or genotoxicity (Epelde et al., 2015). These 140 

disruptions lead to a decrease in the total amount of soil microbial biomass (Ayangbenro and Babalola, 2017) and a 141 

reduction in genetic polymorphism in populations (Oleńska and Małek, 2015; Zhang et al., 2018; Oleńska and Małek, 142 

2019). For example, under severe metal exposure where toxic ions compete with essential nutrients like iron, magnesium, 143 

phosphorus, calcium, or zinc during root uptake, plant associated bacteria can improve nutrient acquisition by enhancing 144 

the nutrient’s availability, and as a result increase plant biomass. 145 

2.1.1. Nitrogen 146 

Feeding plants under challenging conditions is of crucial importance, especially in soils deficient in biogenic nutrients 147 

like nitrogen (N). Nitrogen is an essential constituent of many biomolecules, namely enzymes, structural proteins, nucleic 148 

acids, porphyrins, alkaloids, and N-glycosides, and it plays a crucial role in various physiological processes in plants 149 

(Leghari et al., 2016). Estimations show that the total amount of nitrogen in the geosphere reaches about 1.6×1017 t. Most 150 

of it is found in the atmosphere (3.86×1015 t), the lithosphere (1.64×1015 t), and the biosphere (2.8×1011 t) (Stevens, 2019). 151 

Despite such high abundance, most of the nitrogen in the geosphere is not available to organisms, and it is the main 152 

nutrient limiting plant growth in terrestrial ecosystems. It is assumed that only approximately 2% of the total pool of 153 

nitrogen in the geosphere may be assimilated by plants, typically after biotransformation by soil microorganisms. 154 

Different forms of nitrogen are present in the atmosphere (N2, N2O, NO, NO2), soil (NO3
-, NO2

-, NH4
+, humic acids) 155 

(circa 3 ×1011 t), and detritus (1011 t). Plants mainly use nitrate (NO3
-) and ammonium (NH4

+) and, to a lesser extent a few 156 

organic forms, including amino acids, oligopeptides, nucleotides, or urea, as sources of nitrogen. Normally, the non-plant-157 

available or hardly available forms may be converted into more available forms by microbial activities through 158 

mineralization, nitrification, and fixation (Subba et al., 2017; Moreau et al., 2019; Zhang, S. et al., 2019; Mahmud et al., 159 

2020). 160 

Mineralization involves a cascade of microbial and enzymatic activities which leads to conversion of soil organic N to 161 

inorganic forms (Zhang et al., 2019). The soil organic matter decomposition is accomplished through aminization (from 162 

macromolecules of organic N compounds to simple organic N compounds such as amino acids, amino sugars, and nucleic 163 

acids) and further through ammonification (from simple organic N compounds to ammonium) (Kemmit et al. 2008). The 164 

resulting NH4
+ can be readily taken up by plants. 165 

The ammonia pool in soils may undergo a nitrification process. Nitrification consists of the oxidation of ammonia to 166 

nitrite (NO2
-) and subsequently to nitrate (NO3

-). Nitrification is a dominant pathway of nitrogen input in agricultural 167 

systems, since nitrates account for more than 95% of the total nitrogen uptake by plants (Subba et al., 2017). The two-168 

step reaction is performed by consortia of aerobic chemoautotrophic bacteria catabolizing ammonia to nitrite (e.g. 169 
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Nitrosomonas spp., Nitrosococcus spp., Nitrosospira spp., Nitrosolobus spp., and Nitrosovibrio spp.), and then 170 

transforming nitrite into nitrate (e.g. Nitrobacter spp., Nitrococcus spp., Nitrospira spp., and Nitrospina spp.) (Hagopian 171 

and Riley, 1998). 172 

Atmospheric nitrogen (N2), comprising almost 78% of the atmosphere, can be transformed into ammonia due to natural 173 

events (e.g. lightning, fires) but most of what is transferred to the biota is biologically fixed by diazotrophs (Mus et al., 174 

2016; Smercina et al., 2019). Diazotrophic microorganisms transform the diatomic trivalent N2 molecule into ammonia 175 

(NH3), that is useful and available to most organisms, using a nitrogenase enzyme complex consisting of two components, 176 

nitrogenase and nitrogenase reductase (Mahmud et al., 2020). 177 

Biological nitrogen fixation (BNF) is accomplished by free-living microorganisms, e.g. Acetobacter spp., Arthrobacter 178 

spp., Azospirillum spp., Azotobacter spp., Bacillus spp., Burkholderia spp., Citrobacter spp., Clostridium spp., 179 

Enterobacter spp., Erwinia spp., Klebsiella spp., Kluyvera spp., Phyllobacterium spp., Pseudomonas spp., Serratia spp., 180 

Streptomyces spp., and symbiotic microorganisms, e.g. Frankia spp. associated with certain dicotyledonous species 181 

(acrinorhizal plants); certain species of Azospirillum spp., Azoarcus spp., and Herbaspirillum spp. associated with cereal 182 

grasses, or rhizobia associated with leguminous plants (Mahmud et al., 2020). 183 

Rhizobia are Gram-negative bacteria of the family Rhizobiaceae (class α- and β-Proteobacteria, order Rhizobiales), 184 

which mainly colonize roots of legumes (Andrews and Andrews, 2017) and improve the growth of their host plant in 185 

nitrogen limited conditions. Rhizobia are taxonomically highly diverse; they include about 98 species belonging to 13 186 

different genera and can be subdivided into two groups: (1) common “true” rhizobia covering Azorhizobium spp., 187 

Bradyrhizobium spp., Ensifer spp. (syn. Sinorhizobium), Mesorhizobium spp., and Rhizobium spp. (Hayat et al., 2010), 188 

and (2) “new rhizobia” represented by Burkholderia spp. (B. caribensis, B. cepacia, B. mimosarum, B. nodosa, B. 189 

phymatum, B. sabiae, B. tuberum), Cupriavidus spp. (C. taiwanensis), Devosia spp. (D. neptuniae), Methylobacterium 190 

spp. (M. nodulans), Microvirga spp. (M. lupini, M. lotononidis, M. zambiensis), Ochrobactrum spp. (O. cytisi, O. lupini), 191 

Phyllobacterium spp. (P. trifolii, P. leguminum, P. ifriqiyense), and Shinella spp. (S. kummerowiae), which achieved 192 

legume nodulation capabilities as a result of horizontal gene transfer (Gnat et al., 2015; Andrews and Andrews, 2017). 193 

The rhizobia-plant cooperation is one of the best known examples of symbiosis in nature. Whereas rhizobia provide plants 194 

with nitrogen by fixing N2 solely in a symbiotic association with leguminous host plants, visible as nodules, the host plant 195 

supplies the microorganisms with nutrients and offers favorable conditions for their development. In fact, almost 70% of 196 

biologically fixed N2 derives from symbiosis of rhizobia with leguminous plants, and rhizobia provide up to 90% of the 197 

nitrogen required by these plants (Mus et al., 2016). 198 

PGPR enhance nitrogen bioavailability indirectly by increasing the root surface area and root morphology to effectuate a 199 

higher nitrogen uptake. Other PGPR types affect nitrogen bioavailability directly, i.e. converting nitrogen forms to easily 200 
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available ones or affecting the root nutrient transport systems (Calvo et al., 2019). It was documented that PGP Bacillus 201 

spp. mixtures, composed of different Bacilli species, trigger the expression of genes determining nitrate (NO3
-) and 202 

ammonium (NH4
+) uptake and transport and enhance host-plant growth and development in Arabidopsis thaliana. Bacilli-203 

inoculated A. thaliana showed significantly higher transcript levels of nitrate transporters NRT1 (AtNRT1), NRT2 204 

(AtNRT2), and ammonium transporter AMT1 (AtAMT1), which were accompanied with enhanced nutrient uptake and 205 

plant growth. Liu et al. (2017) received similar results in Arabidopsis when inoculating B. subtilis strain GB03. Jang et 206 

al. (2018) suggested that improved growth of plants induced by associated PGPR may be partially achieved by improved 207 

accessibility and acquisition of nitrogen. Improved nitrogen accessibility, P-solubilization and auxins synthesis were 208 

documented in peanut Arachis hypogaea inoculated with a consortium of diazotrophic root-origin bacteria isolated from 209 

the halophyte Arthrocnemum indicum. Inoculation of Klebsiella spp., Pseudomonas spp., Agrobacterium spp., and 210 

Ochrobacterium spp., lead to enhanced salt-tolerance in peanut plants, which was accompanied with low level of reactive 211 

oxygen species (ROS) that are considered beneficial under stress conditions (Sharma et al., 2016). 212 

Typically, heavy metals adversely affect legume growth, nodulation, dinitrogenase activity, and N fixation effectiveness 213 

(Haddad et al., 2015; Fagorzi et al., 2018), and can act as agents that select the heavy metal tolerant genotypes. For 214 

example, under a gradient of pH and metals Cr(II), Cd(II), Zn(II), Cu(II), Ni(II), Rhizobium spp. strain UFSM-B74, 215 

Bradyrhizobium spp. strains UFSM-B53 and UFSM-B54, and Burkholderia spp. strain UFSM-B33/UFSM-B34 isolated 216 

from Macroptilium atropurpureum and Vicia sativa were tolerant to alkaline (pH=9.0), acidic (pH=4.0), and extremely 217 

acidic pH levels (3.0) (Bradyrhizobium sp. strain UFSM-B21, Burkholderia spp. strain UFSM-B33/UFSM-B34), as well 218 

as to high metal concentrations in the following order of tolerance Cr > Cd > Zn > Ni > Cu (Ferreira et al., 2018). M. 219 

atropurpureum strains significantly influenced the growth of their host-plant, the nodule number, and the efficiency of 220 

the nitrogen fixation. The combined inoculation of Phaseolus vulgaris grown under Cd(II) stress with PGP rhizobia, i.e. 221 

Rhizobium tropici strain CIAT899 and Rhizobium etli strain ISP42 together with Azospirillum brasiliense promoted 222 

seedlings root branching and proper legume-rhizobia molecular dialogue resulting in effective nodule organogenesis 223 

(Dardanelli et al., 2008). Moreover, the nitrogen-fixing Bacillus subtilis strain OSU-142 as well as the P-solubilizing 224 

Bacillus megaterium together with Rhizobium leguminosarum bv. phaseoli used as co-inoculants of Phaseolus vulgaris 225 

L. cv.‘elkoca-05’ increased N and P solubilization, nodulation, and improved plant growth (Elkoca et al., 2010). Co-226 

inoculation of Lens culinaris with PGPR Pseudomonas spp. and Rhizobium leguminosarum increased the total N content 227 

in the plant (Mishra et al., 2011; Gómez-Sagasti and Marino, 2015). It was found that excessive amounts of heavy metals 228 

like Cu(II) and Zn(II) decreased dinitrogenase activity and nodule formation in Medicago lupulina, while co-inoculation 229 

of host-plant with Ensifer meliloti and PGPR Rhizobium radiobacter (formerly Agrobacterium tumefaciens) alleviated 230 

heavy metal stress and significantly enhanced dinitrogenase activity and plant biomass (Jian et al., 2019). 231 
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An alleviation of heavy metal and heat stress was reported for Medicago sativa inoculated with a consortium of PGPRs, 232 

composed of Proteus spp. strain DSP1, Pseudomonas spp. strain DSP17, Ensifer melilotistrain strain RhOL6, and E. 233 

meliloti strain RhOL8 (Raklami et al., 2019). These strains possessed several plant growth promoting traits, more 234 

specifically nitrogen fixation, phosphorus solubilization, and IAA production. PGPR-inoculated host plants showed an 235 

increases growth and reductions of the levels of glutathione reductase and phytochelatin synthase (PCS) that are involved 236 

in celluar defense against metal toxicity. Raklami et al. (2019) also suggested an important role for the metal transporter 237 

NRAMP1 (natural resistance-associated macrophage protein) in the management of M. sativa inoculated with PGPR the 238 

metal stress. 239 

The novel non-coding RNA (ncRNA), which plays a role at the post-transcriptional level by regulating a number of 240 

physiological processes such as stress responses (Fan et al., 2015), was identified in Pseudomonas stutzeri strain A1501 241 

and may shed a light on the regulation pathways of the dinitrogenase enzyme in conditions of environmental stress and 242 

nutrient deficiency (Zhan et al., 2016). The P. stutzeri ncRNA present in the core genome, called NfiS, is involved in 243 

oxidative and osmotic stress responses and regulates the expression of genes located in the genomic island containing 244 

nitrogen-fixing genes (nif). NfiS optimizes nitrogen fixation by posttranscriptional regulation of dinitrogenase nifK 245 

mRNA and through the induction of the RpoN/NtrC/NifA (transcriptional activator of all nif operons) regulatory cascade 246 

via unidentified mechanisms (Zhan et al., 2016). NfiS upregulates regulators, e.g. RpoN (global nitrogen activator), NtrC 247 

(nif-specific activator), GlnK (PII family protein), RpoS (RNA polymerase sigma factor of the general stress response) 248 

are involved in stress response control and nitrogen fixation. Yet, under drought stress in Medicago truncatula dehydrin 249 

MtCAS31 (Medicago truncatula cold-acclimation-specific 31) was found as a leghemoglobin MtLb120-1 protector from 250 

denaturation under thermal stress in vivo. Its gene MtCAS31 is expressed in nodules, and a cas31 mutant demonstrates a 251 

lower dinitrogenase activity, a lower ATP/ADP ratio, as well as a higher expression of nodule senescence genes in 252 

comparison to wilde type M. truncatula (Li et al., 2018). It should be pointed out that the rhizobial stress response genes 253 

otsA (trehalose-6-phosphate synthase), groEL (heat shock protein), clpB (chaperone), and rpoH (transcriptional regulator) 254 

play a substantial role in tolerance of saprophytic rhizobia to different environmental conditions, and some of these genes 255 

are involved in symbiosis (da Silva et al., 2017), e.g. mainly genes encoding heat shock proteins such as ClpB and GroESL 256 

which were detected in Bradyrhizobium japonicum and Sinorhizobium meliloti nodules in accordance to their 257 

transcriptomic up-regulation. 258 

2.1.2. Phosphorus 259 

Phosphorus (P) is an important element of many macromolecules in the cell such as DNA, RNA, ATP, or phospholipids. 260 

It is essential for normal plant growth and development, and positively influences flowering, and the formation and 261 

ripening of seeds. Moreover, it improves disease resistance, increases shoot stiffness, and stimulates root system 262 
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development (Razaq et al., 2017). However, at the same time, the concentration of P in the soil solution, which is available 263 

for plant uptake is very limited. The mean total concentration of phosphorus in the Earth’s crust is about 1200 mg P kg-1 264 

(0.01-0.2% P2O5) (Tiessen, 2008; Tang et al., 2018). Over 99% of the naturally occurring phosphorus exists in an 265 

inorganic form (Pi), deposited as insoluble phosphate rocks such as sedimentary rocks (about 39% P2O5), igneous rocks 266 

(about 2.0% P2O5), and metamorphic rocks (about 1.3% P2O5). The remainder of naturally occurring phosphorus exists 267 

in its organic form (Po). However, only about 4% of the total phosphorus in soil is available to plants in its orthophosphate 268 

form (Alori et al., 2017). Inorganic forms of phosphorus account for 35-70% of total phosphorus in soil (Guignard et al., 269 

2017), and the solubilization of phosphates, e.g. dicalcium phosphate, tricalcium phosphate, or hydroxyl apatite, is 270 

performed mainly by bacterial strains belonging to the genera Achromobacter spp., Aerobacter spp., Agrobacterium spp., 271 

Azotobacter spp., Bacillus spp., Burkholderia spp., Cladosporium spp., Enterobacter spp., Erwinia spp., Flavobacterium 272 

spp., Micrococcus spp., Pseudomonas spp., Bradyrhizobium spp., Rhizobium spp. (De Boer et al., 2019). Inorganic 273 

phosphate solubilizing bacteria (iPSB) are of great interest due to their promising effect as bio-fertilizers on plant growth 274 

and yield, as well as soil fertility (Suleman et al., 2018; Emami et al., 2020). Peix et al. (2015) reported the significant 275 

influence of Mesorhizobium mediterraneum bacteria present in soil on the growth and phosphorus content in chickpea 276 

and barley plants. Likewise, Rhizobium spp. and Bradyrhizobium spp. promote the growth of legumes, even when rhizobia 277 

remain in non-symbiotic conditions. 278 

An increase in biomass production and phosphorus uptake was reported, among others, in Triticum aestivum inoculated 279 

with Pseudomonas spp., Arachis hypogaea inoculated with Pantoea spp. strain J49, or Ricinus communis and Helianthus 280 

annuus inoculated with Psychrobacter spp. strain SRS8 (Ma et al., 2011), as a consequence of dissolving phosphorus 281 

from inorganic forms by decreasing the pH in the rhizosphere. Zheng et al. (2019) demonstrated the major role of soil pH 282 

in shaping the phosphorus solubilization communities; the abundance of the iPSB bacteria increased with pH. The 283 

phosphate solubilizing activity as well as the production of pyruvic acid by the PSB Burkholderia multivorans strain WS-284 

FJ9 lowered with increasing concentrations of soluble phosphate. Transcriptome profiling of PSB Burkholderia 285 

multivorans strain WS-FJ9 at three levels of exogenous phosphate revealed 446 differentially expressed genes involved 286 

in cell growth and P-solubilization; when the soluble phosphate concentration was increased; 44 genes were continuously 287 

up-regulated while 81 genes were downregulated (Zeng et al., 2017). Phosphate deficiency may increase the expression 288 

of some genes, like e.g. genes encoding for glycerate kinase and 2-oxoglutarate dehydrogenase, both involved in glucose 289 

metabolism and the production of organic acids were upregulated, as well as a gene encoding histidine protein kinase 290 

PhoR, whose expression product acts as a sensor in a signaling process responding to soluble phosphate deficiency (Zeng 291 

et al., 2017). 292 
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Bacteria can solubilize inorganic phosphates in several ways (Alori et al., 2017). The phosphate solubilization may be 293 

achieved by an acid-independent mechanism through the release of H+ to the outer surface of bacteria cells in exchange 294 

for cation uptake (Rodríguez and Fraga, 1999), but phosphates are predominantly released as a result of soil acidification 295 

from organic acid discharge. Organic acids of bacterial origin are the product of the direct oxidation in the periplasmic 296 

space (Zhao et al., 2015). The carboxyl and hydroxyl residues of organic acid chelate cations bind to phosphate, resulting 297 

in a reduction of pH and release of phosphate anions after H+ substitution. Among many diverse organic acid excretes, 298 

e.g., lactic, isovaleric, isobutyric, acetic (Bacillus amyloliquefaciens, B. licheniformis), glycolic, oxalic, malonic, succinic, 299 

citric, and propionic acids, the most frequently synthesized by PSB is gluconic acid, followed by 2-ketogluconic acid 300 

(Bacillus firmus, Burkholderia cepacia, Erwinia herbicola, Pseudomonas cepacia, Rhizobium leguminosarum, R. 301 

meliloti) (Naraian and Kumari, 2017). Gluconic acid is a product of the direct oxidation pathway of glucose (DOPG, non-302 

phosphorylating oxidation). In the periplasmic space glucose dehydrogenase (GCD/GDH) and gluconate dehydrogenase 303 

(GAD) enzymes oxidize the substrate, which leads to organic acids that diffuse freely outside the cell, releasing high 304 

quantities of soluble phosphate from mineral phosphates, by supplying both protons and metal complexing organic acid 305 

anions (Chhabra et al., 2013). Gluconic acid is a product of a reaction catalyzed by glucose dehydrogenase, which requires 306 

a pyrroloquinoline quinone (PQQ) cofactor (Ge et al., 2015; Chen et al., 2016). PQQ is a small, redox active molecule 307 

encoded by the pqq operon, which involves six core genes pqqABCDEF, of which pqqA, pqqC, pqqD, and pqqE are 308 

essential for the phosphate solubilizing capacity of many iPSB strains. The mutation of any gene of the pqq cluster may 309 

lead to a decrease in phosphate release (Li et al., 2014; Oteino et al., 2015; An and Moe, 2016; Suleman et al., 2018). The 310 

PqqA, a 22-24 amino acid long peptide serves as the substrate for PqqE, which is a functional radical S-adenosyl-L-311 

methionine (SAM) enzyme that transforms SAM into methionine and 5’-deoxyadenosyl radical. The role of PqqD is not 312 

fully recognized, but it is known that this peptide interacts with PqqE. PqqC is an oxygen-activating enzyme, which 313 

catalyzes the final step of PQQ synthesis (Oteino et al., 2015).  314 

In salt-affected soils, inoculation with phosphate solubilizing halotolerant bacteria, improves plant growth, and suppresses 315 

the adverse effects of salt (Etesami and Beattie, 2018). Avicennia marina, a halotolerant mangrove, and rhizosphere-316 

associated bacteria such as Arthrobacter spp., Bacillus spp., Azospirillum spp., Vibrio spp., Phyllobacterium spp., 317 

Oceanobacillus picturae, were shown to solubilize Ca3(PO4)2, AlPO4, and FePO4. Thant et al. (2018) revealed that the 318 

growth and phosphate solubilizing abilities of Bacillus megaterium were substantially higher due to their adaptation to 319 

sodium chloride stress, while B. aquimaris inoculated wheat showed a higher P content under salinity stress in the field 320 

(Upadhyay and Singh, 2015). Srivastava and Srivastava (2020) showed good growth of Arabidopsis thaliana inoculated 321 

with the PSB Pseudomonas putida strain MTCC 5279 under salt stress and P-deficiency conditions. Besides the 322 

significantly higher biomass of A. thaliana inoculated with P. putida MTCC 5279 higher acidic and alkaline phosphatases 323 



12 
 

activity, high IAA and ABA levels as well as upregulation or/and over-expression of several genes were detected like for 324 

inststance: At5g39610 encoding NAC-domain transcription factor that positively regulates ageing-induced apoptosis and 325 

senescence in leaves, the gene encoding for calcium-dependent protein kinase (CPK32, At3g57530) which is of high 326 

importance in the signal transduction Ca2+ dependent pathway and in regulating the expression of ABA responsive genes 327 

potentially helping in stress adaptation, the jasmonate responsive gene (JAR1, At2g46370), the putative DNA repair 328 

protein gene (AT3g32920), and the gene expression of different P transporters (PT1, PT2, PHO2) playing a role under 329 

stress conditions. Barra et al. (2018) showed that phosphobacteria, i.e. Klebsiella spp. strains RC3 and RCJ4, 330 

Stenotrophomonas spp. strain RC5, Serratia spp. RCJ6, and Enterobacter spp. RJAL6 exhibited high acid and alkaline 331 

phosphatase activity under P-deficiency and aluminum toxicity. Moreover, under heavy metal stress conditions, Ensifer 332 

adhaerens strain OS3 was proven to be an effective phosphate solubilizer and chromium reducer (Oves et al., 2017). 333 

About 30-65% of the total phosphorus in soil is present in organic form (Po), which is released from organophosphates 334 

by bacteria due to mineralization processes (Alori et al., 2017). For example, strains Arthrobacter spp., Bacillus spp., 335 

Citrobacter spp., Delftia spp., Enterobacter spp., Klebsiella spp., Phyllobacterium spp., Proteus spp., Pseudomonas spp., 336 

Rhizobium spp., Rhodococcus spp., Serratia spp. are able to enzymatically hydrolyze the P-organic substrates into 337 

inorganic forms. Three types of enzymes are involved in this process, (i) non-specific acid phosphatases (NSAPs), 338 

represented predominantly by acid and alkaline phosphomonoesterases (phosphatases), which dephosphorylate 339 

phosphoester and phosphoanhydride bonds of organic matter, (ii) phytases able to degrade phytate, and (iii) 340 

phosphonatases and C-P lyases, that cleave C-P bond of organophosphonates (Sharma et al., 2013; Jain et al., 2016; Alori 341 

et al., 2017). Phytases (myo-inositol hexakisphosphate phosphohydrolases) catalyze the conversion of organic phosphorus 342 

from phytate (inositol hexakisphosphate) to inorganic phosphorus, which can be easily taken up by plants (Azeem et al., 343 

2014). It was found that phytases are produced by Enterobacter spp., Serratia spp., Citrobacter brakii, Rhizobium spp., 344 

Pseudomonas spp., Proteus spp., and Klebsiella spp. (Kumar et al., 2016). The activity of bacterial phytases is pH-345 

dependent. Specifically for Bacillus spp. the optimum activity of phytase is at a pH between 6.0 and 8.0. Functional 346 

metagenomics of red rice crop residues led to the identification of the PhyRC001 sodium phytate hydrolyzing enzyme, 347 

which has an optimal activity at pH 7.0 and 35°C (Farias et al., 2018). An Arabidopsis thaliana mutant over-expressing 348 

bacterial phytase PHY-US417 showed a significantly higher osmotolerance to sodium chloride in comparison to the 349 

reference and knock out mutant (Belgaroui et al., 2018; Valeeva et al., 2018). A significant reduction of the phytase 350 

activity of Enterobacter sakazakii, Enterococcus hirae, or Bacillus subtilis strain B.S.46 was detected due to exposure to 351 

metal ions (Mn2+, Zn2+, Fe2+, Co2+, Cu2+, Hg2+, Cd2+) (Kumar et al., 2016; Rocky-Salimi et al., 2016). 352 

Triticum aestivum inoculated with P-solubilizing PGP Arthrobacter nitroguajacolicus exposed to a salt stress gradient 353 

showed an increase in biomass. Using comparative transcriptome analysis revealed, the significant influence of bacteria 354 
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on plant genes expression; 152 genes were up-regulated, and down-regulation was found for five genes (Safdarian et al., 355 

2019). It concerned the genes involved in phenylpropanoid biosynthesis, porphyrin metabolism, cysteine and methionine 356 

metabolism, flavonoids biosynthesis, and pathways of biosynthesis of secondary metabolites. A. nitroguajacolicus 357 

increases the tolerance of wheat to sodium chloride stress due to up-regulation of antioxidative enzymes genes cytochrome 358 

P450, ascorbate peroxidase (APX), and also genes encoding for nicotianamine (NAS), and ABC transporters (Safdarian 359 

et al., 2019). 360 

2.1.3. Iron 361 

Under stress conditions, siderophores synthesis is one of the major bacterial mechanisms of supplying plants with 362 

available forms of iron (Fe) (Jian et al., 2019). Iron plays a role in chlorophyll synthesis and in the maintenance of 363 

chloroplast structure and function, it has key roles in DNA synthesis and respiration, and acts as a prosthetic group 364 

constituent of many enzymes, including those involved in redox reactions (Rout and Sahoo, 2015). Despite its huge 365 

abundance in the lithosphere (it is the fourth most common element in Earth’s crust by weight), the plant availability of 366 

Fe is very limited due to its low solubility (Hider and Kong, 2010; Zhang, X. et al., 2019). In aerobic conditions, iron 367 

exists as ferric Fe(III) ions which accumulate in mineral phases as highly stable hydroxide [Fe(OH)3] and oxyhydroxide 368 

[FeO(OH)] complexes, leading to free Fe(III) concentrations in soils of 10-9-10-18 M, which are not sufficient to meet the 369 

needs of plants (Rout and Sahoo, 2015).  370 

To cope with this situation, plants have evolved two different strategies for iron acquisition from the soil (Tripathi et al., 371 

2018; Zhang, X. et al., 2019). In the first strategy (reduction-based strategy), which is characteristic for non-graminaceous 372 

plants, protons and phenolic compounds are released by plant roots into the rhizosphere to increase its acidification and 373 

promote Fe(III) solubility. Subsequently, Fe(III) ions are reduced to the more soluble Fe(II) ions by ferric reduction 374 

oxidases (FRO) at the apoplast and in this form the iron is imported into root cells by the iron-regulated transporter (IRT1). 375 

The second strategy (chelation-based strategy) is used by graminaceous plants only. In response to Fe deficiency, these 376 

plants release into the rhizosphere phytosiderophores (PS) with a high affinity for binding Fe(III). The resulting Fe(III)-377 

PS complexes are readily transported into the root epidermis through the yellow stripe (YS) or yellow stripe-like (YSL) 378 

transporters. The most common phytosiderophores are synthesized from three S-adenosyl-methionine molecules and 379 

belong to the family of mugineic acid (MAs), with the best known member mugineic acid (MA), 2’-deoxymugineic acid 380 

(DMA), 3-epihydroxymugineic acid (epi-HMA), and 3-epihydroxy 2’-deoxymugineic acid (epi-HDMA) (Masuda et al., 381 

2019). The production of siderophores to increase the availability of iron in the soil is also a common mechanism adopted 382 

by bacteria and resulting Fe(III)-siderophores can be an excellent source of iron for plants too (Kramer et al., 2020). 383 

Phytosiderophores consist of carboxyl, amine, and hydroxyl groups as the ligand functional groups, while most microbial 384 

siderophores have hydroxamate or phenolate groups as Fe(III)-coordination donors (Ahmed and Holmström, 2014). There 385 
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are three possible mechanisms of iron uptake by plant roots using the siderophore-metal complexes: (i) chelate 386 

degradation and iron release, (ii) uptake of the siderophore-Fe(III) complexes, or (iii) a ligand exchange reaction (Zhang, 387 

X et al., 2019). 388 

Siderophores, formerly mycobactins, are low molecular mass (400-1500 Da) chelators of a high affinity for ferric Fe(III) 389 

(formation constant Kf>1030), synthesized under iron-limited conditions, which can form stable complexes with other 390 

metals, such as aluminum, cadmium, copper, gallium, indium, lead and zinc (Yu et al., 2017). Siderophores are generally 391 

synthesized by non-ribosomal peptide synthetases (NRPSs) or polyketide synthase (PKS) that cooperates with NRPS 392 

modules (Carrol and Moore, 2018). The secretion of siderophores is an energy-dependent process, mediated by efflux-393 

pumps (Lamb, 2015). Siderophores are a group of 500 different compounds, diverse in their structure, with about 270 394 

structurally characterized so far (Kramer et al., 2020). According to the chemical character of the metal binding site, three 395 

main categories of siderophores are distinguished: catecholates, hydroxamates, and (α-hydroxy)-carboxylates (Hider and 396 

Kong, 2010). The biochemical structures of chosen important members of these compounds are shown in Fig. 2. 397 

Within the catecholates, the catecholate [C6H4(OH)2 – 1,2-dihydroxybenzene] or phenolate [C6H5OH – hydroxybenzene] 398 

groups are connected with a backbone of polyamine, peptide, or macrocyclic lactone. Each catecholate group provides 399 

two oxygen atoms for chelation with Fe(III), forming a hexadentate octahedral complex. The main catecholate members 400 

are enterobactin (produced by Escherichia coli), pyoverdine (Pseudomonas aeruginosa), salmochelin (Salmonella 401 

enterica), bacillibactin (Bacillus anthracis, B. subtilis, B. thuringiensis), agrobactin (Agrobacterium tumefaciens), 402 

parabactin (Paracoccus denitrificans), and azotobactin (Azotobacter vinelandii) (Pahari et al., 2017). Siderophores of 403 

hydroxamate nature contain C(=O)N(-OH) groups connected to the backbone of the amino acid or its derivatives. Each 404 

of the hydroxamate groups, serving as chelating agents, provide two molecules of oxygen and form a bidentate ligand 405 

with iron. As a result, the complex hydroxamate with Fe(III) possesses a hexadentate octahedral structure. Among the 406 

hydroxamates, ferribactin is synthesized by Pseudomonas fluorescens, whereas desferrioxamine is produced by 407 

Streptomyces coelicolor (Ali and Vidhale, 2013; Pahari et al., 2017). Siderophores classified as (α-hydroxy)-carboxylates 408 

(complexones) are produced mainly by Rhizobium spp. and Staphylococcus spp., as well as fungi (Mucorales), and bind 409 

to Fe(III) through hydroxy- and carboxylate groups. For example, rhizobactin synthesized by Rhizobium meliloti strain 410 

DM4 is an amino polycarboxylic acid with ethylenediaminedicarboxyl and hydroxycarboxyl moieties as Fe(III) chelating 411 

groups, while staphylloferrin A, produced by Staphylococcus hyicus and S. auricus, consists of one D-ornithine and two 412 

citric acid residues linked by two amide bonds (Ali and Vidhale, 2013; Pahari et al., 2017). 413 

Siderophores of bacterial origin influence host-plant iron homeostasis, immune function, and growth (Yu et al., 2017; 414 

Hesse et al., 2018). For example, the Pseudomonas fluorescens strain C7R12 siderophore pyoverdine analog (apo-415 

pyoverdine) modulates the expression of approximately 2,000 genes in Arabidopsis thaliana, including up-regulation of 416 



15 
 

the expression of genes related to development and iron acquisition, and down-regulation of the expression of defense-417 

related genes such as transcription factors ERF, WRKY, MYB, salicylic acid (SA)-related gene (such as AT5G24210, 418 

which encodes protein belonging to the lipase class 3 protein family), and an abscisic acid (ABA)-related gene (encoding 419 

the lipid transfer protein LTP3) (Trapet et al., 2016). Apo-pyoverdine was impaired in iron-regulated transporter1 (IRT1) 420 

and ferric reduction oxidase2 (FRO2) knockout mutants and was prioritized over immunity, reflecting the increased 421 

susceptibility to Botrytis cinerea. Due to this, an overexpression of the transcription factor HBI1, a key node for the cross 422 

talk between growth and immunity, was detected. In P. fluorescens strain WCS417 colonized A. thaliana many genes 423 

were positively regulated, including FIT, FRO2, IRT1, and MYB72 transcription factor that regulates the biosynthesis of 424 

iron-mobilizing phenolic compounds. In addition, the BGLU42 and PDR9 genes, whose products are involved in the 425 

secretion of iron-mobilizing phenolic compounds under iron-limited conditions, were also upregulated (Verbon et al., 426 

2017). Similar iron-binding phenolic compounds are produced in A. thaliana in response to inoculation with Paenibacillus 427 

polymyxa strain BFKC01 (Zhou et al., 2016). 428 

Bacterial strains that produce large amounts of siderophores showed lower growth inhibition by toxic copper 429 

concentrations, and the proportion of siderophore-synthesizing strains increased along with the ion gradient increase 430 

(Hesse et al., 2018). Furthermore, Cd(II) and Zn(II) stimulated the total siderophore synthesis, e.g. pyoverdine synthesis 431 

of Pseudomonas aeruginosa strain ZGKD3 (Shi et al., 2017). Streptomyces spp. isolated from Betula pendula and Alnus 432 

glutinosa rhizosphere containing Cd(II) and from the root endosphere produced hydroxamates, catecholates and 433 

phenolates, particularly ferrioxamine B (Złoch et al., 2016). Bacillus spp. PZ-1 under Pb(II) abundance synthesized 434 

siderophores of hydroxamate structure, which enhanced assimilation of Pb from the soil, translocated lead to the aerial 435 

tissues, and was assumed to be a bioaugmentation facilitator in B. juncea (Yu et al., 2017; Jinal et al., 2019). Inoculation 436 

of Bacillus spp. strain SC2b improved the Sedum plumbizincicola growth parameters, and enhanced Zn(II) and Cd(II) 437 

accumulation in roots and shoots (Ma et al., 2015), while the siderophore-producing Bacillus thuringiensis strain GDB-1 438 

removed heavy metals from mine tailings and supported Alnus firma growth (Babu et al., 2013). 439 

 440 

2.2. Rhizobacteria synthesizing phytohormones or influencing the hormone balance of the host plant 441 

Another way of a direct improvement of plant growth by both free-living and symbiotic bacteria is the formation of 442 

compounds that are similar in structure and function to phytohormones synthesized by the plant. A subsequent option is 443 

influencing the biosynthesis of hormones by the host plant itself. Some compounds that are important in the regulation of 444 

cellular processes crucial for plant growth and development are auxins, cytokinins, gibberellins, abscisic acid, and 445 

ethylene (Shah and Daverey, 2020).  446 

2.2.1. Auxins 447 
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Beneficial effects of phytohormone-synthesizing PGP rhizobacteria on the reduction of abiotic stress in plants has been 448 

widely reported (Ngumbi and Kloepper, 2014; Hashem et al., 2016). Numerous studies have demonstrated the significant 449 

role of auxins, most notably indolyl-3-acetic acid (IAA). Auxins are powerful molecules produced naturally by plants and 450 

involved in almost every aspect of plant physiology, controlling, amongst others, cell division, expansion, differentiation, 451 

and alleviation of abiotic stress (Paque and Weijers, 2016). While auxins are key regulators of plant development, indolyl-452 

3-acetic acid (IAA) and its biosynthesis determining genes are also found in a wide range of different bacteria or fungi 453 

(Matsuda et al., 2018). Although IAA can impact gene expression in some bacteria, it does not seem to function as a 454 

factor in bacterial growth, but rather acts as a signal to communicate with plants in an ecological context to obtain profits 455 

from improved plant growth. Moreover, IAA biosynthesis is used by some pathogenic bacteria to hijack plant 456 

development. For example, it is involved in the formation of the crown galls induced by R. radiobacter in a range of plant 457 

species. 458 

Auxins are produced and excreted by over 80% of the rhizosphere bacteria, e.g. Azospirillum spp., Azotobacter spp., 459 

Enterobacter spp., Pseudomonas spp., or Staphylococcus spp. (Patten and Glick, 1996; Rajkumar et al., 2012; Park, S-H. 460 

et al., 2017). The amounts of produced auxins vary between bacterial strains. For example, Herbaspirillum seropedicae, 461 

synthesizes an average of 8 µg mL-1 of IAA while P. fluorescens produces 28 µg mL-1 (Rajkumar et al., 2009). In bacteria, 462 

auxin synthesis was detected from only one precursor, tryptophan (Spaepen and Vanderleyden, 2011). It was revealed 463 

that beneficial rhizospheric bacteria predominantly use the indole-3-pyruvate (IPyA) pathway for the production of 464 

auxins, whereas the pathogenic plant-associated bacteria most often use the indole-3-acetamide (IAM) pathway (Ma et 465 

al., 2011) (Fig. 3). In the presence of Azospirillum spp., a positive correlation was reported between a stimulation of plant 466 

root cell membrane activity and the increases of IAA and indole-3-butyric acid (IBA) levels. Bacteria also supply other 467 

plant growth regulation compounds to their host plant, e.g. indole-3-acetaldehyde, indole-3-lactic acid (ILA), indole-3-468 

ethanol (tryptophol, TOL), indole-3-acetamide (IAM) (Spaepen and Vanderleyden, 2011; Patten et al., 2013). IAA 469 

synthesis sometimes proceeds due to modified pathways. The indole-3-pyruvic acid (IPyA) pathway is mediated by the 470 

key protein indole-3-pyruvate decarboxylase, encoded by the pyruvate decarboxylase (ipdC) gene, and catalyzes the 471 

decarboxylation of IPyA to the indole-3-acetalaldehyde (IAAld) intermediate that is further oxidized to IAA. For instance, 472 

genome searching of the PGP Gluconacetobacter diazotrophicus strain PAL5, that is using the IPyA pathway for IAA 473 

synthesis, showed the lack of the pyruvate decarboxylase gene (ipdC). Rodrigues et al. (2016) provided evidence when 474 

G. diazotrophicus synthesizes IAA via the IPyA pathway; it does not use IPyA as a substrate, but rather uses the L-amino 475 

acid oxidase gene cluster, constituted of lao, cccA, and ridA genes, which are encoding for L-amino acid oxidase LAAO, 476 

a putative cytochrome C, and reactive intermediate deaminase A protein RidA respectively. While LAAO catalyzes the 477 

production of IPyA from L-tryptophan, cytochrome C likely plays a redox role in G. diazotrophicus, and RidA hydrolyzes 478 
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intermediates produced by L-amino acid oxidases to α-ketoacids (Gao et al., 2016). The cucumber-Bacillus 479 

amyloliquefaciens strain SQR9 system, used as a model for the verification of the plant-microbe communication 480 

contributing to auxin synthesis by PGPR and plant growth promotion, showed that upon inoculation with B. 481 

amyloliquefaciens strain SQR9, the roots secreted high amounts of tryptophan and in turn the bacteria synthesized more 482 

IAA in the rhizosphere, which was promoting plant growth (Liu et al., 2016). In accordance with the increased tryptophan 483 

secretion by the cucumber roots, an increased expression of the plant specific tryptophan transport gene (Csa024547) was 484 

detected in the cucumber roots. An increase in the anthranilate synthesis gene (Csa013682), which product is involved in 485 

the synthesis of tryptophan, was not detected (Liu et al., 2016). The ability to improve the growth of the host-plant by B. 486 

amyloliquefaciens was confirmed in a gnotobiotic system. Significant increases of both, the expression of the IAA 487 

biosynthesis indole-3-acetonitrilase gene (yhcX) as well as of plant growth were observed (Liu et al., 2016). 488 

It was reported that Paenibacillus polymyxa and Azospirillum spp. release both tryptophan, and auxin-type compounds 489 

like TOL to the rhizosphere, which can indirectly improve plant growth (Lebuhn et al., 1997; El-Khawas and Adachi, 490 

1999). At low concentrations, bacterial auxins stimulate elongation of primary plant roots, but at higher doses auxins 491 

promote the formation of lateral and adventitious roots, which can enhance uptake of minerals, and increase the production 492 

of root exudates that increase bacterial proliferation (Patten et al., 2013; Verbon and Liberman, 2016). Patten and Glick 493 

(2002) found enhanced roots formation in canola (Brassica napus) developed from seeds inoculated with Pseudomonas 494 

putida strain GR12-2 in comparison to plants inoculated with an IAA-deficient P. putida mutant. Moreover, bacteria-495 

derived auxins may prevent the deleterious effects of various environmental stresses, like drought, salinity, or soil 496 

pollution (Kudoyarova et al., 2019). For example, Defez et al. (2019) reported that salt tolerance of Medicago truncatula 497 

inoculated with IAA-overexpressing Ensifer meliloti strain DR-64 was enhanced in comparison with the plants inoculated 498 

with the E. meliloti IAA-deficient mutant. Also, switchgrass inoculated with Pseudomonas grimontii strain Bc09, Pantoea 499 

vagans strain So23, Pseudomonas veronii strain E03, and Pseudomonas fluorescens strain Oj24 under Cd stress 500 

demonstrated increased biomass and IAA synthesis, as well as reduced Cd accumulation compared to reference plants 501 

(Begum et al., 2019). An enhanced IAA production was observed in Leifsonia xyli strain SE134 under Cu exposure (Kang 502 

et al., 2017). The halophilic Leclercia adecarboxylata strain MO1, which overproduces IAA, improves the growth and 503 

salinity resistance of Solanum lycopersicum (Kang et al., 2019b). The IAA-overproducing Rhizobium strain RD64 504 

protects Medicago sativa against drought, predominantly by the production of low molecular weight osmolites, such as 505 

proline and pinitol (Defez et al., 2017). An increased IAA synthesis was observed in Bacillus cereus strain So3II and B. 506 

subtilis strain Mt3b in a temperature gradient (Wagi and Ahmed, 2019). B. licheniformis strain HSW-16 mitigated salt 507 

stress and stimulated the growth of T. aestivum in correlation with elevated IAA concentrations (Singh and Jha, 2016). 508 

Similarly, Enterobacter spp. strain NIASMVII produced significant amounts of IAA that correlated with enhanced seed 509 
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germination of T. aestivum (Sorty et al., 2016). Some IAA-synthesizing rhizobacteria are efficient stimulators of plant 510 

growth in drought conditions. For example, positive correlations were found between increased biomass of T. repens 511 

developed from seeds inoculated with P. putida and B. megaterium and increased IAA levels under water deficiency 512 

(Marulanda et al., 2009). Zaheer et al. (2016) reported a correlation between enhanced IAA synthesis of chickpea-origin 513 

Serratia spp. and increased chickpea grain yield in a nutrient-poor soil. IAA-synthesizing bacteria are also able to improve 514 

plant growth in heavy metal polluted soils. For instance, the IAA-producing B. megaterium strain MCR-8 alleviated 515 

nickel (Ni) stress in Vinca rosea in comparison with non-inoculated plants which led to increases in root and shoot growth, 516 

as well as higher amounts of phenols, flavonoids, and antioxidative enzymes such as superoxide dismutase (SOD), 517 

catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) (Khan et al., 2017). Cadmium-resistant and IAA-518 

producing Leifsonia spp. and Bacillus spp. significantly increased the growth of Zea mays in metal polluted soils compared 519 

to nonpolluted soils (Ahmad et al., 2016). Exposure of the halotolerant plant Spartina densiflora to metals enhanced the 520 

levels of antioxidative enzymes, e.g. superoxide dismutase and catalase. Inoculation with the metal-tolerant P. 521 

agglomerans strains RSO6 and RSO7 and B. aryabhattai strain RSO25 lowered the levels of these antioxidative enzymes. 522 

The alleviation of the metal exposure enhanced expression of the PAL gene, encoding for phenyloalanine ammonia lyase 523 

involved in the secondary metabolism of lignin synthesis after inoculation with the above mentioned strains indicates that 524 

the lignin metabolism pathway might be involved in metal stress management (Paredes‐Páliz et al., 2018). 525 

2.2.2. Cytokinins 526 

Alleviation of abiotic stress in plants can also result from the activity of cytokinins. Naz et al. (2009) revealed that under 527 

salt stress conditions, cytokinin-producing bacteria such as Arthrobacter spp., Bacillus spp., Azospirillum spp., or 528 

Pseudomonas spp. increased Glycine max root and shoot biomass as well as the proline content in its tissues. Bacillus 529 

aryabhattai strain SRB02 synthesizes cytokinins and improves soybean growth under an oxidative, nitrosative, and 530 

temperature gradient (Park, Y-G., et al., 2017). Cytokinins play crucial roles in many aspects of plant growth and 531 

development, including embryogenesis, maintenance of root and shoot meristems activity, vascular development, root 532 

elongation, lateral root and nodule formation, and apical dominance in response to environmental stimuli (Osugi and 533 

Sakakibara, 2015). It was found that, in in vitro conditions, an average 90% of rhizobacteria synthesize and release 534 

cytokinin-like growth stimulators. Coleus forskohlii associated rhizobacteria, e.g. Pseudomonas stutzeri MTP40, 535 

Stenotrophomonas maltophilia MTP42 and Pseudomonas putida MTP50 synthesize plant growth enhancing cytokinins 536 

(Patel and Saraf, 2017). In Bacteria, the cytokinin synthesis pathway is initiated by a transfer of the isopentenyl moiety 537 

from DMAPP (dimethylallyl diphosphate) to the adenine compound adenosine monophosphate (AMP), a reaction 538 

catalyzed by isopentenyltransferase, the ipt gene product. As an alternative, bacteria are able to initiate the cytokinin 539 



19 
 

production by transferring the isopentenyl moiety from HMBDP (1-hydroxy-2-methyl-2(E)-butenyl 4-diposphate) to 540 

AMP (Wong et al., 2015). 541 

Recently, the dual role of bacterial cytokinins include optimizing nutrient supply and modulating host immunity in plants 542 

infected with pathogens was reported (Akhtar et al., 2020). Bacterial-origin cytokinins induced resistance against bacterial 543 

pathogens in Arabidopsis (Grosskinsky et al., 2016). In the Arabidopsis-Bacillus megaterium system, plant cytokinin 544 

recognition was responsible for B. megaterium properties that were beneficial to plants. As biocontrol agents, cytokinins 545 

regulated the P. fluorescens strain G20-18 against P. syringae infection in Arabidopsis (Grosskinsky et al., 2016). The 546 

exact mechanisms of cytokinin biosynthesis in bacteria is not yet fully elucidated. The proposed role of miaA is to encode 547 

a tRNA Δ(2)-isopentenylpyrophosphate transferase similar to tRNAIPTs, which are responsible for cytokinin 548 

biosynthesis (Stringlis et al., 2018b). 549 

2.2.3. Gibberellins 550 

Gibberellins (GAs) can alleviate abiotic stress and influence other physiological processes (Halo et al., 2015; Kang et al., 551 

2019a). This class of compounds is involved in a plethora of developmental processes in plants, including regulation of 552 

seed dormancy, quiescence, germination, flowering, ripening of fruits, promotion of root growth, and root hair abundance 553 

(Binebaun et al., 2018). Similarly to auxins and cytokinins, production of GAs is not restricted to plants, but is also a 554 

common phenomenon in fungi and bacteria. However, there is no known function for GAs in these organisms; most 555 

probably they play a role as signaling factors towards the host plants, e.g. in Rhizobiaceae symbiotic associations with 556 

legumes (Nett et al., 2017a, b). Indeed, the first report on gibberellin characterization in bacteria concerned gnotobiotic 557 

cultures of Rhizobium meliloti where the presence of GA1, GA4, GA9, and GA20 was demonstrated (Atzorn et al., 1988). 558 

Since then, GA synthesis was confirmed in numerous rhizospheric bacteria, including Acetobacter diazotrophicus, 559 

Herbaspirillum seropedicae, Bacillus spp., or Azospirillum spp. (Nett et al., 2017b; Nagel et al., 2018). To date, 136 560 

different chemical structures have been characterized as naturally occurring gibberellins, of which GA3 (gibberellic acid) 561 

is most often produced by bacteria. In Bacteria the gibberellins biosynthetic pathway starts from geranyl-geranyl 562 

diphosphate (GGPP) transformation by ent-copalyl diphosphate synthase (CPS) to produce ent-copalyl diphosphate, 563 

which is subsequently transformed by ent-kaurene synthase into ent-kaurene (Fig. 4). The oxidation of ent-kaurene at 564 

position C-19 via ent-kaurenol and ent-kaurenal generates ent-kaurenoic acid, which is oxidized to ent-7α-565 

hydroxykaurenoic acid. Finally, oxidation of ent-7α-hydroxykaurenoic acid at C-6β yields GA12-aldehyde. GA12-566 

aldehyde is subsequently converted in several steps to GA1 and GA3 (Tudzynski, 2005; Morrone et al., 2009; Hedden 567 

and Thomas, 2012; Hershey et al., 2014; Nett et al., 2017a; b; Salazar-Cerezo et al., 2018). 568 

Numerous reports have confirmed that gibberellins produced by bacteria stimulate plant growth and yield. For instance, 569 

inoculation of maize roots with different Azospirillum strains increased the levels of GA3 in the roots and promoted their 570 
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growth (Revolti et al., 2018). Enterococcus faecium strain LKE12 was shown to enhance the length and biomass of rice 571 

grains and oriental melon through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, 572 

GA20, GA24, and GA53) along with IAA (Lee et al., 2015). GAs produced by Leifsonia xyli strain SE134 are involved 573 

in maintaining the growth of Solanum lycopersicum and most likely provide the plant host tolerance to Cu(II) (Kang et 574 

al., 2017). Enhanced bacterial gibberellin production was accompanied by enhanced production of glutamic acid, 575 

threonine, phenylalanine, glycine, proline, and arginine which potentially had substantial influence on the biomass 576 

production of inoculated plant (Kang et al., 2017). The total polyphenol and flavonoid contents positively correlated with 577 

reduced superoxide dismutase activity, which was most likely the mechanism involved in Cu(II) stress alleviation (Kang 578 

et al., 2017). Moreover, the role of gibberellin’s in plant thermotolerance was recognized (Kang et al., 2019a). Soybean-579 

assisted Bacillus tequilensis strain SSB07 produced GA1, GA3, GA5, GA8, GA19, GA24, and GA53, which increased 580 

the shoot length and biomass of the host plant under the high-temperature stress (Kang et al., 2019a). The tolerance to 581 

heat stress provided by B. tequilensis strain SSB07 was possibly related to a phytohormone regulation mechanism. The 582 

levels of jasmonic acid and salicylic acid were upregulated in soybean plants inoculated with this strain SSB07 and 583 

exposed to supraoptimal temperatures (Kang et al., 2019a). GA4 synthesizing PGP Sphingomonas spp. LK11 improved 584 

the growth of Solanum lycopersicum and increased its salinity stress tolerance (Halo et al., 2015). The promotion of 585 

tomato growth during NaCl stress correlated with a decrease in lipid peroxidation, as well as a higher glutathione content 586 

accompanied with lower peroxidase, catalase, and polyphenol oxidase activities in relation to non-inoculated plants (Halo 587 

et al., 2015). 588 

2.2.4. Abscisic acid 589 

Abscisic acid (ABA) is a hormone that mainly functions as an inhibitor of growth and metabolic activities in plants. This 590 

sesquiterpenoid fulfils many important roles in seed development and maturation, induction of seed and bud dormancy, 591 

senescence processes, synthesis of proteins and compatible osmolytes, and regulation of the ability of plants to survive in 592 

harsh and changing environments due to abiotic and biotic stress factors (Belimov et al., 2014; Shu et al., 2018). Under a 593 

sodium chlorite gradient, the wheat-associated rhizobacterium Dietzia natronolimnaea strain STR1 provided protection 594 

against salt stress to host-plant by modifying the transcriptional machinery, including the ABA-signaling cascade. In 595 

comparison to non-inoculated plants, PGPR-inoculated wheat plants showed up-regulation of the ABA-responsive genes 596 

TaABARE and TaOPR1, which led to an induction of the gene expression of the transcription factors TaMYB and 597 

TaWRKY. As a result, multiple stress related genes were activated, including salt stress-induced genes (TaST – T. aestivum 598 

Salt-Tolerant) involved in salinity tolerance, as well as SOS (Salt Overly Sensitive) pathway related genes (SOS1 and 599 

SOS4). Moreover, in D. natronolimnaea strain STR1-inoculated plants, the high transcript levels of genes participating 600 

in ion transport and tissue specific responses of ion transporters, e.g. TaNHX1, TaHAK, and TaHKT1, were observed, 601 



21 
 

along with higher proline content and enhanced gene expression of several antioxidative enzymes, particularly ascorbate 602 

peroxidase, Mn superoxide dismutase (MnSOD), catalase, peroxidase, glutathione peroxidase, and glutathione reductase 603 

(GR) (Bharti et al., 2016). 604 

The presence of ABA in the rhizosphere was found to mitigate drought stress in plants and to support plant growth under 605 

water-logged conditions (Cohen et al., 2015; Tsukanova et al., 2017). For instance, ABA was detected as a product of 606 

PGPB activity by Azospirillium brasiliense strains Cd and Az39, Achromobacter xylosoxidans, Bacillus lycheniformis, 607 

B. pumilus, Brevibacterium halotolerans, Lysinibacillus fusiformis, and Rhizobium spp. (Egamberdieva et al., 2017). It 608 

was also found that inoculation of maize with the ABA-producing Azospirillum lipoferum strain USA59b increased plant 609 

biomass in water-deficient conditions (Cohen et al., 2015). Abscisic acid-producing Bacillus aryabhattai strain SRB02, 610 

isolated from soybean rhizosphere, significantly promotes the host-plant biomass and nodule formation under drought 611 

stress conditions (Park, Y-G. et al., 2017). 612 

The ABA-synthesising Pseudomonas putida strain MTCC5279 associated with Cicer arietinum (chickpea) provided salt 613 

and drought tolerance to their host-plants by altering morpho-physiological and biochemical properties and modulating 614 

the expression of stress-responsive genes (Tiwari et al., 2016). The variable expression levels of miRNAs and their target 615 

genes under both types of abiotic stress at different experimental time points suggest various mechanisms of miRNA 616 

responses to various stresses (Jatan et al., 2019). MicroRNAs (miRNAs), non-coding regulator elements that modulate 617 

transcriptional and post-transcriptional genes expression, are involved in resistance to biotic and abiotic stresses, including 618 

drought and salinity (Li and Zang, 2016; Shriram et al., 2016). Significant alterations in the gene expression patterns of 619 

C. arietinum inoculated with strain MTCC5279 in NaCl and drought stresses connected with miR159, miR160, miR166, 620 

miR167, miR169, miR171, miR172, miR393, and miR396 suggest that miRNAs play a crucial role in chickpea stress 621 

alleviation (Jatan et al., 2019). 622 

In psychrophilic Bacillus spp. strains (CJCL2, RJGP41), the genes involved in cold stress tolerance, specifically genes 623 

related to signal transduction pathways, antioxidative activity, and sugar-ABC transporters were identified and their 624 

enhanced expression under cold stress conditions was documented. It was also shown that psychrophilic PGP Bacillus 625 

spp. bacteria regulated cold stress response parameters in wheat and decreased the expression levels of ABA. They are 626 

also involved in the expression of lipid peroxidation encoding genes and can increase expression of proline synthesis 627 

genes. Psychrophilic Bacillus spp. strains are also able to upregulate the expression of genes encoding important plant 628 

growth hormones such as auxin, cytokinin, alpha expansin, and ethylene under cold stress conditions (Zubair et al., 2019). 629 

Bacteria can potentially influence plant growth through the usage of ABA as nutrients. Belimov et al. (2014) reported 630 

that Rhodococcus spp. strain P1Y and Novosphingobium spp. strain P6W in association with plant roots may utilize ABA 631 

as a carbon and energy source, decrease ABA concentrations of inoculated plants, and potentially alter plant growth. 632 
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Nevertheless, the exact mechanisms of decrease amounts of ABA in planta and its effects on plant growth is still unclear. 633 

Although it was reported that plants such as Gossypium hirsutum inoculated with Raoultella planticola strain Rs-2, or 634 

Solanum tuberosum inoculated with Promicromonospora spp. strain SE188 showed decreased ABA concentrations, more 635 

data are required to better understand the mechanisms of how bacterial ABA-utilizers influence plant biomass (Kang et 636 

al., 2012; Wu et al., 2012). ABA-catabolizing Rhodococcus quingshengii associated with Arabidopsis under heavy metal 637 

stress significantly increased the expression of Cd, Zn, and Ni-related transporters, and increased the accumulation of 638 

metal ions possibly via ABA-mediated mechanisms (Lu et al., 2020).  639 

2.2.5. Ethylene 640 

Indole-3-acetic acid (IAA) accumulation in plants induces the transcription of 1-aminocyclopropane-1-carboxylate 641 

(ACC) synthase genes, leading to increased ACC and ethylene levels (Gamelaro and Glick, 2015; Abts et al., 2017). 642 

Ethylene (ET) is a plant growth regulator that plays a role in different stages of plant ontogenesis, including germination, 643 

growth, development, flowering and senescence. Moreover, ethylene promotes formation of adventitious roots, stimulates 644 

seed germination, and breaks seed dormancy. Ethylene is also involved in stress signaling pathways. Its overproduction 645 

can be induced by biotic and abiotic stresses such as pathogen interaction, temperature gradients, flooding, drought, 646 

salinity, and metals (Han et al., 2015; Vacheron et al., 2016). High levels can lead to inhibition of root elongation, 647 

inhibition of nodule formation and nitrogen fixation by symbionts of leguminous plants, ultimately inducing hypertrophy, 648 

and accelerate senescence and abscission (Singh, S. et al., 2015). Yet, PGPB may play an important role in plant ethylene 649 

homeostasis by reducing its levels in the plant tissues because of their rhizobitoxine synthesis and/or 1-650 

aminocyclopropane-1-carboxylate (ACC) deaminase enzyme (ACCD) production (Singh, R.P. et al., 2015). 651 

Ethylene is synthesized from the amino acid precursor of L-methionine (L-aspartic acid), which is subsequently converted 652 

to S-adenosyl-L-methionine (SAM) by SAM synthetases, and further transformed to 1-aminocyclopropane-1-carboxylic 653 

acid (ACC) by ACC synthases (Fig. 5). Next, ACC is transformed to ethylene by ethylene oxidases. Bacteria may disturb 654 

the synthesis of ethylene through the production of rhizobitoxine, a competitive inhibitor of ACC synthetase (Yasuta et 655 

al., 1999; Sugawara et al., 2006). Rhizobitoxine is an enol-ether amino acid (2-amino-4-[2-amino-3-hydroxypropoxy]-656 

trans-3-butenoic acid). It was reported that the biochemical functions of rhizobitoxine relay on the inhibition of both β-657 

cystathionase in the methionine biosynthesis pathway (Sugawara, 2006) and ACC-synthase in the ethylene biosynthesis 658 

pathway (Yasuta et al., 1999). 659 

Decrease of ethylene biosynthesis due to the activity of an ACCD enzyme, involves the hydrolysis of the ethylene 660 

precursor ACC into ammonia and α-ketobutyrate. It was reported that plants inoculated with bacteria producing ACCD 661 

possess longer roots and exhibit higher resistance levels to fungal (e.g. Pythium spp., Fusarium spp.) and bacterial (e.g. 662 

Erwinia spp.) pathogens, as well as to flooding (Ravanbakhsh et al., 2017; Ghosh et al., 2018; Saikia et al., 2018; Gupta 663 

https://www.frontiersin.org/articles/10.3389/fmicb.2019.01506/full#B69
https://www.frontiersin.org/articles/10.3389/fmicb.2019.01506/full#B25
https://www.frontiersin.org/articles/10.3389/fmicb.2019.01506/full#B73
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and Pandey, 2019). The ACCD was found as crucial enzyme in improving rice growth under salt and heavy metals stress 664 

in the presence of the Pseudomonas stutzeri strain A1501 (Han et al., 2015). A P. stutzeri mutant in the ACCD encoding 665 

gene (acdS) showed lack of ACCD activity and lower resistance to NaCl as well as to metal salts like NiCl2 in comparison 666 

with the wild type bacteria. Moreover, a mutation of acdS correlated with a lower dinitrogenase activity under NaCl stress, 667 

as well as a lack of ability to promote host-plant growth in salt and metal stress conditions (Han et al., 2015). Jaemsaeng 668 

et al. (2018) reported that inoculation of the ACCD producing endophyte Streptomyces spp. strain GMKU 336 669 

significantly improved salt tolerance of rice plants by decreasing ethylene and reactive oxygen species, and balancing ion 670 

content and osmotic pressure. The strain GMKU 336 significantly influenced stress response involved genes, e.g. ACO1 671 

and EREBP1 encoding enzymes involved in the ethylene pathway, which were down-regulated, whereas genes involved 672 

in osmotic balance (BADH1), Na+ transporters (NHX1, SOS1), calmodulin (Cam1-1), antioxidant enzymes (Cu/ZnSOD1, 673 

CATb), and acdS in Streptomyces spp. GMKU 336 were up-regulated (Jaemsaeng et al., 2018). Enhanced SOD activity 674 

and growth parameters were detected in Parastrephia quadrangularis exposed to salt stress and inoculated with ACCD-675 

producing Klebsiella spp strains 8LJA and 27IJA (Acuña et al., 2019). Yet, ACCD-producing rhizobacteria associated 676 

with Panicum maximum reduced salt and drought stress (Tiwari et al., 2018), similarly to ACCD-producing Lactobacillus 677 

spp., P. putida, and Azotobacter chroococcum in respect to Lactuca sativa and Raphanus sativus (Hussein and Joo, 2018). 678 

 679 

3. Increasing tolerance to biotic stresses 680 

Under biotic stress conditions, bacteria assist plants by (i) competing with pathogens for limited nutrient resources, mainly 681 

iron; (ii) biocontrol of pathogen activity, including production of antibiotic compounds; (iii) synthesis of fungal cell wall 682 

lytic enzymes, and (iv) induction of systemic response in host plants (Glick, 2014; Ma et al., 2016). An improvement of 683 

plant resistance against pathogens may be attributed to competition of beneficial microorganisms with pathogenic ones 684 

for nutrients with limited availability. PGPB, which produce siderophores, may reduce the pool of iron ions accessible to 685 

their competitors (Verbon et al., 2017). Kramer et al. (2020) indicated that bacteria that usually live in consortia with 686 

interacting strains produce different siderophores, each requiring a specific cognate receptor for iron uptake (Kümmerli 687 

et al., 2014). In addition, siderophores can function as competitive agents against other bacteria (Niehus et al., 2017). For 688 

example, Pseudomonas aeruginosa strain 7NSK2 competes with the pathogenic Colletotrichum lindemuthianum in the 689 

rhizosphere of bean (Bigirimana and Höfte, 2002), and with a Pyricularia grisea, which is ultimately deleterious to rice 690 

(De Vleesschauwer et al., 2006). The beneficial Pseudomonas fluorescens strain CHA0 competes with Peronospora 691 

parasitica, a pathogen of Arabidopsis sp. (Iavicoli et al., 2003) while Pseudomonas putida strain WCS358 competes with 692 

Pseudomonas syringae pv. tomato in the rhizosphere of Arabidopsis sp. (Meziane et al., 2005), and Serratia marcescens 693 

strain 90-166 with Colletotrichum orbiculare in the rhizosphere of cucumber (Press et al., 2001; Wei et al., 2015; Compant 694 
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et al., 2019; Gu et al., 2020). Bacteria can use at least 15 different iron-uptake pathways, more specifically the one ferrous 695 

Fe(II)-uptake pathway, three heme-acquisition pathways, one ferric Fe(III)-uptake pathway by siderophores, pyoverdine 696 

and pyochelin, and (iv) ten different “siderophore piracy” strategies to take up Fe(III) (Cornelis and Dingemans, 2013; 697 

Perraud et al., 2020). Using proteomic and RT-qPCR approaches and Pseudomonas aeruginosa as a model, the catechol-698 

type siderophores, which were efficient in inducing expression of their transporters, were evidenced as the most common 699 

pathway to bind the iron, while expression of pyochelin and pyoverdine pathways were repressed (Perraud et al., 2020). 700 

P. aeruginosa upregulated siderophore production in competition with Staphylococcus aureus, while with Burkholderia 701 

cenocepacia, P. aeruginosa increased not only the total synthesis of pyoverdine but also the rate of the early growth phase 702 

(Leinweber et al., 2018). 703 

Furthermore, plant beneficial bacteria maintain control over the pathogens due to synthesis of antifungal and antibacterial 704 

metabolites. Members of Bacillus spp. produce a wide variety of antibiotics both of ribosomal origin like e.g. subtilin, 705 

subtilosin A, TasA (spore associated antibacterial protein), and sublancin, as well as synthesized through non-ribosomal 706 

peptide synthases (NRPSs) or polyketide synthases (PKS), such as bacilysin, chlorotetain, mycobacillin, rhizocticin, 707 

bacillaene, difficidin, and lipopeptides belonging to the surfactin, iturin, and fengycin families (Goswami et al., 2016; Li, 708 

Z. et al., 2020). Moreover, Pseudomonas fluorescens and P. aeruginosa are efficient in the synthesis of antiseptic 709 

compounds, e.g. 2,4 diacetyl phloroglucinol (DAPG), phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide 710 

(PCN), pyoluteorin (Plt), pyrrolnitrin (Prn), oomycinA, viscosinamide, butyrolactones, kanosamine, zwittermycin-A, 711 

aerugine, rhamnolipids, cepaciamide A, ecomycins, pseudomonic acid, azomycin, antitumor antibiotic FR901463, 712 

cepafungins, and karalicins (Goswami et al., 2016). 713 

Fungistatic activity of beneficial bacteria may also be due to the synthesis of fungal cell-wall degrading enzymes, like 714 

chitinase, β-1,3-glucanase, protease, or cellulase resulting in a direct inhibitory effect on the hyphal growth. For example, 715 

β-1,3-glucanase produced by strains of Paenibacillus spp. and Streptomyces spp. suppressed the growth of Fusarium 716 

oxysporum, while Bacillus cepacia destroyed soil borne fungi Rhizoctonia solani and Sclerotium rolfsii (Compant et al., 717 

2019). Moreover, non-pathogenic Rhizobium spp., Azospirillum spp., Klebsiella pneumoniae, Yersinia spp., and Frankia 718 

spp. demonstrate pectinolytic capability. 719 

Induced systemic resistance (ISR) is another major mechanism through which PGPB support plants for a better defense 720 

against pathogens commonly occurring in soils (Persello-Cartieaux et al., 2003; Van Loon, 2007; Arora and Jha, 2019). 721 

Rhizobacteria-induced resistance in hosts (R-ISR) relies on pathways regulated by jasmonic acid (JA) and ethylene, and 722 

leads to a response in distant plant tissues without involvement of pathogen-related (PR) proteins like antifungal 723 

chitinases, glucanases, thaumatins, oxidative enzymes (peroxidases, polyphenol oxidases, lipoxygenases), and low-724 

molecular weight phytoalexins (Pieterse et al., 2014). Rhizobacterial-ISR provides plants a long-lasting resistance to 725 

https://www.tandfonline.com/doi/full/10.1080/23311932.2015.1127500
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pathogens that are sensitive to JA- and ET-dependent defense mechanisms. For example, Bacillus amyloliquefaciens 726 

strain IN 937a bacteria present in the rhizosphere of Arabidopsis sp. induces ISR against the pathogenic Erwinia 727 

carotovora (Ryu et al., 2004), B. pumilus strain SE34 protects against infectious Pseudomonas syringae (Ryu et al., 728 

2003a, b), and Pseudomonas fluorescens strain CHA0 shields against Meloidogyne javanica (Siddiqui and Saukat, 2004; 729 

Annapurna et al., 2013). Important bacterial resistance-inducing elicitors are lipopolysaccharides, siderophores (e.g. 730 

pseudobactins, pyochelin), antibiotics (e.g. pyocyanin, 2,4-diacetylphloroglucinol), N-acylhomoserine lactones or 731 

volatile compounds (e.g. 2,3-butanediol) (Van Loon and Baker, 2005; Sharifi and Ryu, 2018a; Tyagi et al., 2018; Villena 732 

et al., 2018; Romera et al., 2019). Inoculation of blackberries (Rubus sp.) with a plant growth promoting rhizobacterium 733 

Pseudomonas fluorescens strain N21.4 triggered phenylopropanoids and flavonoid biosynthesis as a part of an ISR 734 

defense pathway. Most likely, in the interaction of P. fluorescens strain N21.4 with blackberries the gibberellins pathway 735 

is involved (Garcia-Seco et al., 2015). Inoculation of Rubus sp. with P. fluorescens strain N21.4 modulated plant gene 736 

expression and affected biosynthesis of secondary metabolites. Under the N21.4 influence the plant genes encoding 737 

enzymes involved in the conversion of phenyloalanine to flavonols, anthocyanins, and catechins, and the regulatory genes 738 

involved in controlling those enzyme activities, were identified. Furthermore, genes coordinating the expression of 739 

flavonoid biosynthetic genes with the accumulation of anthocyanins, catechins, and flavanols in blackberry fruits were 740 

determined (Garcia-Seco et al., 2015). In fruits of PGPR-associated blackberries, the PR proteins RuPR1, RuPR2 (β-1,3-741 

glucanase), RuPR3 (chitinase), and RuPR4 (unknown function) demonstrated significant differences in expression. 742 

Increasing tolerance to pathogens is a common phenomenon related to the improvement of plant growth and health 743 

through inoculation of beneficial microbes (Algar et al., 2014). 744 

2,3-butanediol (2,3-BD) and its precursor acetoin (3-hydroxy-2-butanone, AC) (Fig. 6) were found as significant inducers 745 

of ISR and helped improve plant growth (Ji et al., 2011; Sharifi and Ryu, 2018b). Both compounds are members of a 746 

numerous group of volatile organic compounds (VOCs) that gather gas-phase low molecular weight hydrocarbons (<300 747 

Da) of low boiling points and vapour pressure (0.01 kPa), which are emitted in a gaseous phase or secreted into liquids 748 

(Ali et al., 2015; Audrain et al., 2015). Bacterial volatile compounds (BVCs) may play important roles in the bacterial 749 

life cycle (e.g. regulation of bacterial motility, antibiotic resistance, biofilm formation), and their associations with host-750 

plants (e.g. increase biomass, fruit yield, seed production, lateral root and root hair formation, nutrient uptake, and 751 

photosynthetic activity (Sharifi and Ryu, 2018a; b; Morcillo et al., 2020a; b). 2,3-BD and AC are involved in ISR in 752 

tobacco (Wang et al., 2009). 2,3-BD significantly reduced symptoms caused by fungal and bacterial pathogens, which 753 

was positively correlated with enhanced expression of basic PR genes in the JA pathway (Cortes-Barco et al., 2010 a; b). 754 

2,3-BD was also reported to be implicated in ISR also in Arabidopsis sp. and pepper (Choi et al., 2014). Furthermore, 755 

acetoin synthesized by Bacillus subtilis strain FB17 as inoculum of Arabidopsis thaliana, was found to be an ISR inducer, 756 
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which protects plants from infection in an ethylene-dependent manner against the pathogenic Pseudomonas syringae pv. 757 

tomato strain DC3000 (Ali et al., 2015). It is noteworthy that, the ISR plant response to PGPR may be induced also in the 758 

absence of any physical contact with plants via VOCs emissions. In P-deficient conditions, Arabidopsis thaliana enhanced 759 

salicylic acid and jasmonic acid mediated immunity and hyper-sensitivity to phosphate deficiency, under the influence of 760 

a VOC-type diacetyl, synthesized by B. amyloloquefaciens strain GB03 (Morcillo et al., 2020b). 761 

4. Conclusions and prospects 762 

Under changing environmental conditions, the need to produce appropriate amounts of plant biomass is a serious 763 

challenge. Numerous microorganisms that inhabit the root/rhizoplane interface as well as the soil surrounding the roots 764 

are capable of beneficially influencing plant growth and enhancing plant biomass production. The potential of 765 

rhizobacteria to promote health, growth, and development of plants, which predominantly occurs as a result of bacterial 766 

activities to enhance the availability of nutrients, synthesis of phytohormones, and decrease pathogenic infections, is of 767 

significant importance, especially under abiotic stress conditions. The potential of microorganisms to support and improve 768 

plant growth under unfavorable environmental conditions is still underestimated. Therefore, more studies are needed to 769 

better understand the mechanisms of plant-microbe interactions, and the pathways of their bilateral “molecular dialogue” 770 

under both abiotic and biotic stress conditions. Based on that knowledge, new biotechnological products may be 771 

developed and innovative solutions may be introduced that exploit plant-beneficial bacteria for biological control of plant 772 

diseases (biopesticides) and for plant growth promotion (biofertilizers) for sustainable agricultural practices and 773 

phytoremediation (Mesa-Marín et al., 2020). 774 
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List of Tables and Figures 1516 

Table 1. Examples of plant growth promoting rhizobacteria and features alleviating abiotic stress in plants 1517 

Plant Bacterium Abiotic stressor Feature of plant growth promotion# 

Alyssum bertolonii Staphylococcus spp., 

Microbacterium spp., 

Pseudomonas spp. 

nickel pollution siderophores 

Acacia gerrardii Bacillus subtilis sodium chlorite 

excess 

IAA 

Brassica juncea Azotobacter chroococcum strain 

HKN-5 

chromium pollution nitrogen fixation 

Pseudomonas spp. chromium pollution siderophores, IAA 

Achromobacter xylosoxidans copper pollution P-solubilisation, IAA 

Brassica napus Mycobacterium spp. strain 

ACC14 

cadmium, nickel, and 

copper pollution 

siderophores, IAA 

Pseudomonas chlororaphis strain 

SZY6 

copper pollution ACC deaminase, P-solubilisation, 

siderophores, IAA 

Brassica oxyrrhina Pseudomonas spp. strain SR12 nickel pollution ACC deaminase, P-solubilisation, 

siderophores, IAA 

Cicer arietinum Pseudomonas spp. nickel pollution siderophores 

Serratia spp. nutrient deficience IAA 

Cucumis sativus Trichoderma asperellum sodium chlorite 

pollution 

IAA, GA, ABA 

Helianthus annuus Bacillus weihenstephanensis 

strain SM3 

copper, zinc, and 

nickel pollution 

P-solubilisation, IAA 

Oryza sativa Methylobacterium oryzae strain 

CBMB20 

nickel, and cadmium 

pollution 

ACC deaminase, 

Pisum sativum Pseudomonas marginalis strain 

Dp1 

cadmium pollution nutrient uptake, ACC deaminase 

Ricinus communis Pseudomonas spp. nickel, zinc, and 

copper pollution 

ACC deaminase, siderophores, IAA 

Salix caprea Serratia marcescens cadmium, zinc, and 

lead pollution 

siderophores, IAA 

Solanum nigrum Bacillus spp. strain SLS18 cadmium pollution siderophores, IAA, ACC deaminase 

Sorghum vulgare 

var. sudanense 

Bacillus spp. strain J119 cadmium pollution siderophores, IAA, ACC deaminase 

Thlaspi goesingense Methylobacterium spp. nickel pollution siderophores, IAA 

Trifolium repens Bacillus cereus iron, manganese, zinc, 

and cadmium 

pollution 

IAA, nutrient uptake 

Trifolium pratense Brevibacillus spp. lead pollution IAA 

Triticum aestivum Bacillus lycheniformis sodium chlorite 

excess 

IAA 

Vigna radiata Pseudomonas putida strain KNP9 cadmium, and lead 

pollution 

siderphores 

Vinca rosea Bacillus megaterium ickel pollution IAA 

Vitis vinifera Bacillus lycheniformis, 

Pseudomonas fluorescens 

flooding ABA 

Zea mays Burkholderia spp. strain J62, 

Leifsonia spp., Bacillus spp. 

cadmium, and lead 

pollution 

IAA, siderophores, ACC deaminase 

# Based on References: Braud et al. 2009, Rajkumar et al., 2009;, Glick, 20140;, Rajkumar et al. 2010, Ma et al., 2011;, 1518 

Rajkumar et al., 2012;, Salomon et al., 2014;, Zhao and Zhang, 2015;, Hashem et al., 2016;, Zaheer et al., 2016;, Ahmad 1519 

et al., 2016;, Egamberdieva et al., 2017;, Khan et al., 2017;, Singh and Jha, 2019;, Kudoyarova et al., 2019 1520 

 1521 

 1522 
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 1524 
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Figure 1. Distribution of rhizobacteria and their mechanisms of improvement plant growth and development 1526 

 1527 

 1528 

Figure 2. Examples of main categories of siderophores: (A) enterobactin as catecholate, (B) desferrioxamine B as 1529 

hydroxamate, and (C) staphylloferrin A as (α-hydroxy)-carboxylate 1530 

 1531 

 1532 

 1533 

 1534 
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Figure 3. Scheme of tryptophan-dependent pathways of IAA biosynthesis in bacteria. Numbers in circles correspond to: 1535 

1 – nitrile hydratase, 2 – tryptophan monooxygenase, 3 – tryptophan decarboxylase, 4 – nitrilase, 5 – indole-3-acetamide 1536 

(IAM) hydrolase, 6 – amine oxidase, 7 – aminotransferase, 8 – IPDC, indole-3-pyruvate decarboxylase, 9 – indole-3-1537 

acetaldehyde (IAAld) dehydrogenase. Based on Patten and Glick, 1996; Spaepen and Vanderleyden, 2011; Lin et al., 1538 

2015; Goswami et al., 2016 1539 
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 1543 

 1544 

 1545 
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 1547 

 1548 

 1549 

 1550 

 1551 
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Figure 4. Pathway of gibberellins synthesis in bacteria. Numbers in circles correspond to: 1 – ent-copalyl diphosphate 1553 

synthase, 2 – ent-kaurene synthase, 3 – ent-kaurene oxidase, 4 – ent-kaurenoic acid oxidase, 5 – 20-oxoglutarate-1554 

dependent dioxygenase, 6 – 3-oxidase, 7 – cytochrome 450 monooxygenase 1, 8 – cytochrome 450 monooxygenase 2. 1555 

Abbreviations correspond to: GGPP – geranyl-geranyl diphosphate, CPP – ent-copalyl diphosphate. Based on Hayashi et 1556 

al., 2014; Salazar-Cerezo et al., 2018 1557 
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Figure 5. Ethylene biosynthesis in plants and the mechanisms of affecting this pathway by bacteria: 1 – suppression of a 1564 

ACC synthetase by a rhizobitoxine, and 2 – degradation of ethylene intermediate ACC with ACC deaminase. Numbers 1565 

in circles correspond to: 1 – aspartokinase (AspK), 2 – aspartate semildehyde dehydrogenase (AspSD), 3 – homoserine 1566 

dehydrogenase (HSD), 4 – cystathionine β-synthase, 5 – β-cystathionase, 6 – methionine synthetase, 7 – S-1567 

adenosylmethionine (SAM) synthase, 8 – 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, 9 – ACC oxidase. 1568 

Based on Yashuta et al., 1999; Sugawara, 2006; Ong et al., 2015 1569 

 1570 

 1571 

Figure 6. Simplified diagram of 2,3-butanediol biosynthesis in bacteria. Numbers in circles correspond to: 1 – α-1572 

acetolactate synthase (ALS), 2 - α-acetolactate decarboxylase (ALDC), 3 – 2,3-butanediol dihydrogenase (acetoin 1573 

reductase). Based on Ji et al., 2011; Kandasamy et al., 2016; Ji et al., 2018 1574 
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