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a b s t r a c t 

Accurate simulation of multiphase flow in subsurface formations is challenging, as the formations span large 

length scales (km) with high-resolution heterogeneous properties. To deal with this challenge, different multiscale 

methods have been developed. Such methods construct coarse-scale systems, based on a given high-resolution 

fine-scale system. Furthermore, they are amenable to parallel computing and allow for a-posteriori error control. 

The multiscale methods differ from each other in the way the transition between the different scales is made. 

Multiscale (finite element and finite volume) methods compute local basis functions to map the solutions (e.g. 

pressure) between coarse and fine scales. Instead, homogenization methods solve local periodic problems to 

determine effective models and parameters (e.g. permeability) at a coarser scale. It is yet unknown how these two 

methods compare with each other, especially when applied to complex geological formations, with no clear scale 

separation in the property fields. This paper develops the first comparison benchmark study of these two methods 

and extends their applicability to fully implicit simulations using the algebraic dynamic multilevel (ADM) method. 

At each time step, on the given fine-scale mesh and based on an error analysis, the fully implicit system is solved on 

a dynamic multilevel grid. The entries of this system are obtained by using multiscale local basis functions (ADM- 

MS), and, respectively, by homogenization over local domains (ADM-HO). Both sets of local basis functions (ADM- 

MS) and local effective parameters (ADM-HO) are computed at the beginning of the simulation, with no further 

updates during the multiphase flow simulation. The two methods are extended and implemented in the same 

open-source DARSim2 simulator (https://gitlab.com/darsim2simulator), to provide fair quality comparisons. The 

results reveal insightful understanding of the two approaches, and qualitatively benchmark their performance. It 

is re-emphasized that the test cases considered here include permeability fields with no clear scale separation. The 

development of this paper sheds new lights on advanced multiscale methods for simulation of coupled processes 

in porous media. 
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. Introduction 

Geological formations span large (km) length scales, having hetero-

eneous properties characterized at high resolutions (cm and below).

s for the uncertainty within the integrated field data, typically, sev-

ral equiprobable realizations of the property fields are generated to

tudy and simulate the fluid flow and transport. Classical simulation ap-

roaches are too expensive for such studies. Therefore, advanced sim-

lation methods are required to allow for an accurate representation

f the heterogeneous properties. At the same time, they should pro-
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ide an efficient simulation framework to study multiple realizations

ansen et al. (2009) ; Wachspress (1966) . 

Model order reduction techniques have been developed to provide a

eaningful approximate simulation framework. Such techniques have

o be fast enough to be applied to large-scale computational domains.

n this sense, any advanced method of this type can be seen as field

pplicable only if it allows for reducing the error below any desired

hreshold value Hajibeygi et al. (2012) . 

Here we only consider numerical model order reduction tech-

iques, among which multiscale Efendiev and Hou (2009) ; Hou and

u (1997) and homogenization Weinan (2011) methods stand very

romising. 
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These approaches are different in the sense that the multi-

cale method deals with crossing the solution, e.g., the pressure,

cross the scales Aarnes and Hou (2002) ; Jenny et al. (2003) ;

ajibeygi et al. (2008) ; Chung et al. (2015) , whereas in the latter

ffective, lower-resolution parameters and functions like the perme-

bility or the transmissibility, are derived Weinan and Yue (2004) ;

bdulle et al. (2012) ; Weinan et al. (2007) ; Li et al. (2020) ; Singh and

heeler (2018) ; Vasilyeva et al. (2020) . Moreover, while the multiscale

asis functions have been expressed in a purely algebraic formulation

ang et al. (2014) , the same does not hold for the homogenization ap-

roach. Specially the integration of homogenized parameters within the

ully implicit framework in an algebraic manner has not yet been devel-

ped so far. The present work is a first step in this direction. 

At the same time, the two methods have many similarities. Both find

heir mapping strategy via local solutions of the original governing equa-

ions with local boundary conditions. Multiscale basis functions often

mploy reduced-dimensional boundary conditions Tene et al. (2015) ;

øyner and Lie (2016) , while homogenization schemes impose peri-

dic boundary conditions on local problems, and consider local rep-

esentative micro-structures even in the case of non-periodic prop-

rties Allaire (1992) ; Abdulle and Weinan (2003) ; Arbogast and

iao (2013) ; Bastidas et al. (2019) ; Brown et al. (2013) . Both meth-

ds are effective for global equations within the fully coupled sys-

em of local-global unknowns, e.g., the global pressure and the lo-

al saturation. Both have been extended to nonlinear and geologically

omplex models Amanbek et al. (2019a) ; HosseiniMehr et al. (2018) ;

ingh et al. (2019a) . Recent developments of these two classes of ap-

roaches have introduced a fully-implicit dynamic multilevel simula-

ion framework (ADM) in which heterogeneous detailed geo-models

re mapped into adaptive dynamic coarser mesh Cusini et al. (2018) ;

aigle et al. (2014) ; Klemetsdal et al. (2020) ; Carciopolo et al. (2020) . 

The ADM method develops a fully-implicit discrete system for cou-

led flow and transport system of equations, in which each equa-

ion can be represented at a different resolution than the defined

ne-scale one. More importantly, the procedure can be done fully

lgebraic, with the dynamic mesh resolution defined based on a

ront-tracking strategy. In contrast to the rich existing literature of

daptive Mesh Refinement (AMR) methods Pau et al. (2009, 2012) ;

erger and Oliger (1984) ; Schmidt and Jacobs (1988) ; Edwards (1996) ;

ammon (2003) ; Klemetsdal and Lie (2020) , ADM can be defined as an

daptive mesh coarsening strategy which is conveniently applicable for

eterogeneous and nonlinear coupled systems Cusini et al. (2016) . 

Irrespective of the choice of the dynamic mesh strategy, it is al-

ays a challenge to construct adaptive multiscale entries of the im-

licit systems. The ADM method so far has included multiscale basis

unctions Cusini et al. (2016) . In addition, homogenization methods

ave also been developed for multiphase simulations on dynamic grids

manbek et al. (2019a) ; Cusini et al. (2019) . In this context, two aspects

an be of interest: the study of the homogenization-based coarser system

ntries and the development of a benchmark study of the quality of the

wo approaches of ADM-multiscale (ADM-MS) and ADM-homogenized

ADM-HO) for coupled implicit multiphase flow scenarios. 

This paper develops such a unified framework in which the ADM

ethod is extended to account for both multiscale and homogenization

chemes for multiphase flow simulations. This development makes it

ossible to allow for different coarse-scale entries for dynamic simula-

ions, and importantly to benchmark the two classes of multiscale and

omogenization strategies. Noteworthy is that, once the effective pa-

ameters are computed, all other homogenization procedures are imple-

ented algebraically. This is done by introducing constant unity local

asis, with the support of primal (non-overlapping) coarse-scale parti-

ions. The multiscale ADM is implemented fully algebraic since local

asis functions are also solved algebraically over the overlapping (dual)

oarse grid domains Zhou and Tchelepi (2012) . The outcome of this de-

elopment is made available to the public via an open-source DARSim2

imulator, https://gitlab.com/darsim2simulator. 
Numerical test cases are considered for the challenging, highly het-

rogeneous SPE10 Christie and Blunt (2001) . The number of active grid

ells, pressure and saturation errors, and the solution maps are all re-

orted in detail. The development of this paper sheds new lights in the

pplication of multiscale and homogenization approaches in advanced

ext-generation environments for field-relevant simulation scenarios. 

The paper is structured as follows. Next, in Section 2 , the mathe-

atical model is stated briefly. Section 3 presents the computational

ramework for both multiscale and homogenization ADM methods.

ection 4 presents the test cases, and conclusions are drawn in Section 5 .

he Appendix gives more details on the multiscale and the homogeniza-

ion approaches. 

. Governing equations 

We consider flow of two immiscible and incompressible phases of

and 𝛽 through a heterogeneous porous medium. At the Darcy scale,

ass balance for the phase i ∈ { 𝛼, 𝛽} reads 

𝜕 

𝜕𝑡 
( 𝜙𝜌𝑖 𝑆 𝑖 ) − ∇ ⋅ ( 𝜌𝑖 𝜆𝑖 ⋅ (∇ 𝑝 − 𝜌𝑖 𝑔∇ 𝑧 )) = 𝜌𝑖 𝑞 𝑖 . (1)

ere, 𝜙 is the porosity of the medium, 𝜌i [kg/m 

3 ] and S i are the density

nd saturation of the phase i , respectively. The phase mobility tensor

i is equal to 𝐾 𝐾 

𝑖 
𝑟 ∕ 𝜇𝑖 , where K [m 

2 ] is the rock absolute permeability

ensor, and 𝐾 

𝑖 
𝑟 = 𝐾 

𝑖 
𝑟 ( 𝑆 𝑖 ) is the saturation-dependent relative permeabil-

ty of phase i . Moreover, 𝜇 [Pa.s] is the phase viscosity. For the ease

f presentation, the two phase pressures are assumed equal, 𝑝 = 𝑝 𝛼 = 𝑝 𝛽
Pa] (see e.g. Aziz and Settari (2002) ). However, the extension to mod-

ls involving a saturation dependent capillary pressure is also possible.

n addition, g [m/s 2 ] is the gravitational acceleration which acts on ∇ z

irection, and q [1/s] is the phase source term. 

Here it is assumed that the two fluids are occupying completely the

ore space, and no other fluid phase is present. This gives the constraint

 𝛼 + 𝑆 𝛽 = 1 , which reduces the number of unknowns in the above equa-

ions to two: S 𝛼 (in short from here on, S ) and p . Finally, the model is

ompleted by initial conditions for the saturation, and with boundary

onditions. We do not specify them explicitly since none of them play a

ole in the multiscale strategy. 

The fully-implicit coupled simulation approach Aziz and Set-

ari (2002) estimates all the parameters at next time step ( 𝑛 + 1) . As

uch, the semi-discrete nonlinear residual for the phase i ∈ { 𝛼, 𝛽} reads

 

𝑛 +1 
𝑖 = 

[
𝜌𝑖 𝑞 𝑖 

]𝑛 +1 − 

(
𝜙𝜌𝑖 𝑆 𝑖 

)𝑛 +1 − 

(
𝜙𝜌𝑖 𝑆 𝑖 

)𝑛 
Δ𝑡 

+ ∇ ⋅
(
𝜌𝑖 𝜆𝑖 ⋅

(
∇ 𝑝 − 𝜌𝑖 𝑔∇ 𝑧 

))𝑛 +1 
. 

(2) 

For finding the solution pair ( 𝑝 𝑛 +1 , 𝑆 𝑛 +1 ) one needs to employ a

inearization scheme. Here we restrict the discussion to the Newton

cheme, which is 2nd-order convergent but requires a starting point that

s close enough to the solution. In other words, the time step may be sub-

ect to restrictions also depending on the mesh size. Alternatively, one

ay consider approaches like the modified Picard Celia et al. (1990) or

he L-Scheme Radu et al. (2017) , which are less demanding from the

omputational point of view, or more robust w.r.t. the starting point

nd mesh resolution, but converge slower than the Newton scheme

astidas et al. (2019) . Applied to (2) , the Newton linearization reads 

 

𝑛 +1 ≈ 𝑟 𝜈 + 

𝜕𝑟 

𝜕𝑝 
|𝜈𝛿𝑝 𝜈+1 + 

𝜕 𝑟 

𝜕 𝑆 
|𝜈𝛿𝑆 𝜈+1 , (3) 

hich can be expressed algebraically as 𝐉 𝜈𝛿𝐱 𝜈+1 = − 𝐫 𝜈 , i.e., 

 

 

 

 

𝜕𝑟 𝛼
𝜕𝑝 

𝜕𝑟 𝛼
𝜕𝑆 

𝜕𝑟 𝛽
𝜕𝑝 

𝜕𝑟 𝛽
𝜕𝑆 

⎤ ⎥ ⎥ ⎦ 
⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝐉 

𝜈 [ 
𝛿𝑝 

𝛿𝑆 

] 
⏟⏟⏟
𝛿𝐱 

𝜈+1 

= − 

[ 
𝑟 𝛼
𝑟 𝛽

] 
⏟⏟⏟

𝐫 

𝜈

. (4) 

In each time step, the linear Eq. (4) is solved iteratively (inner loop)

everal times until nonlinear convergence (outer loop) is reached. The
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Fig. 1. Example of an ADM grid (4th from the top), obtained by combining 

fine-scale (top) and coarser resolutions of level 1 (2nd from the top) and level 

2 (3rd from the top). Also shown is the saturation profile corresponding to the 

ADM grid (bottom). 
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verall computational complexity of the simulation depends highly on

he complexity of the solution of this linear system. Advanced multiscale

nd homogenization methods aim at solving this linear system on a dy-

amic multilevel mesh. Note that, as shown before Cusini et al. (2018) ,

he overall efficiency of any advanced method should include not only

he speedup of solving the linear Eq. (4) but also the count of the Newton

outer) loops. Next, the ADM method based on multiscale and homoge-

ization formulations is presented. 

. Dynamic multilevel simulation based on multiscale and 

omogenization methods 

.1. ADM Framework formulation 

The fully-implicit linear system (4) is too expensive to be solved for

eal field scenarios. A multilevel dynamic mesh, as shown in Fig. 1 , is

enerated within the ADM framework, based on an error estimate strat-

gy. The error estimate is developed based on a front tracking criterion,

hich applies fine-scale grids only at sub-regions with sharp gradients.

he fine-scale system is then algebraically reduced into this multilevel

rid, through sequences of restriction and prolongation operators. To

btain the ADM grid, first, sets of 𝑁 

𝑙 = 𝑁 

𝑙 
𝑥 ×𝑁 

𝑙 
𝑦 hierarchically nested

oarse grids are imposed on the fine mesh. Here, l indicates the coars-
ning level. Moreover, 𝛾 l is the coarsening ratio which is defined as 

𝑙 = ( 𝛾𝑙 𝑥 , 𝛾
𝑙 
𝑦 ) = 

( 

𝑁 

𝑙−1 
𝑥 

𝑁 

𝑙 
𝑥 

, 
𝑁 

𝑙−1 
𝑦 

𝑁 

𝑙 
𝑦 

) 

, (5) 

or two-dimensional (2D) domains. The ADM grid is constructed by as-

embling a combination of cells at different resolutions within the com-

utational domain. By using the sequence of restriction ( R ) and prolon-

ation ( P ) operators, one can express the ADM system as 

̂
 

𝑙−1 
𝑙 … �̂� 

0 
1 𝐉 𝟎 �̂� 

1 
0 … �̂� 𝑙 

𝑙−1 
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐉 ADM 

𝛿�̂� ADM 

= − ̂𝐑 

𝑙−1 
𝑙 … �̂� 

0 
1 𝑟 0 

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
�̂� ADM 

. (6) 

Here, �̂� 

𝑙−1 
𝑙 

is the restriction operator which maps the parts of the

olution vector that are at level ( 𝑙 − 1) to level l . Similarly, the prolonga-

ion operator �̂� 𝑙 
𝑙−1 maps the parts of the solution vector that are at level

 to level 𝑙 − 1 . Once the ADM system (6) is solved, the approximated

ne-scale solution 𝛿𝑥 ′0 can be acquired by prolonging the ADM solution

�̂� ADM 

, i.e. 

𝑥 0 ≈ 𝛿𝑥 ′0 = �̂� 1 0 … �̂� 𝑙 
𝑙−1 𝛿𝑥 ADM 

. (7)

The ADM Restriction �̂� 

𝑙−1 
𝑙 

and prolongation �̂� 𝑙 
𝑙−1 operators are as-

embled using the static multilevel multiscale restriction 𝐑 

𝑙−1 
𝑙 

and pro-

ongation 𝐏 𝑙 
𝑙−1 operators, respectively. They are constructed only at the

eginning of the simulation and are kept unchanged throughout the en-

ire simulation. 

The static prolongation operator 𝐏 𝑙 
𝑙−1 is constructed as an assembly

f the locally computed basis functions at each coarsening level l and

eads 

 

𝑙 
𝑙−1 = 

( 

( 𝑃 𝑝 ) 𝑙 𝑙−1 0 
0 ( 𝑃 𝑆 ) 𝑙 𝑙−1 

) 

𝑁 𝑙−1 ×𝑁 𝑙 

. (8) 

Here, ( 𝑃 𝑝 ) 𝑙 𝑙−1 and ( 𝑃 𝑆 ) 𝑙 𝑙−1 are the two main diagonal blocks corre-

ponding to main unknowns (i.e., pressure p and saturation S ). In the

ase of using the homogenization scheme, i.e. ADM-HO, as will be de-

cribed in Section 3.3 ), constant basis functions for pressure are used.

owever, for the multiscale-based ADM, i.e. ADM-MS, as will be de-

cribed in Section 3.2 , locally-computed basis functions are used. Note

hat the saturation prolongation operator for both approaches is con-

tant unity function at all coarsening levels, which represents the con-

ervative finite-volume integration. 

The static restriction operator 𝐑 

𝑙−1 
𝑙 

reads 

 

𝑙−1 
𝑙 = 

( 

( 𝑅 ) 𝑙−1 
𝑙 

0 
0 ( 𝑅 ) 𝑙−1 

𝑙 

) 

𝑁 𝑙 ×𝑁 𝑙−1 

. (9) 

In this work, a finite-volume restriction operator is used to guarantee

ocal mass conservation, i.e. 

 

𝑙−1 
𝑙 ( 𝑖, 𝑗) = 

{ 

1 if cell i is inside coarser cell j , 

0 otherwise . (10)

.2. ADM Using multiscale (ADM-MS) 

In the ADM-MS method, the prolongation operator for pressure is

ound based on multiscale basis functions. These local basis functions

re computed algebraically Wang et al. (2014) , based on the steady-state

ressure equation. In this study, the incompressible flow equation (ellip-

ic pressure equation) is used to construct the multiscale basis functions

ene et al. (2015) . An example of a basis function is shown in Fig. 2 . 

The coarse grid construction and computation of multiscale basis

unctions are explained in more details in Appendix A . 

.3. ADM Using homogenization (ADM-HO) 

Homogenization is another method that can be applied to problems

nvolving multiple scales. In this method, one uses the mathematical

odels at micro (fine) scale (1) to derive effective upscaled models
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Fig. 2. An example of a basis function belonging to the middle coarse node of 

a heterogeneous 2D domain. 

Fig. 3. Sketch of the coarse partition of Ω when using two coarsening levels. 
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Fig. 4. Example of the local solutions 𝜔 1 (top right, for x -direction) and 𝜔 2 
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geneous permeability field is also shown for the entire domain (left). 
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nd parameters in which the rapidly oscillating characterstics are av-

raged out. In doing so, the upscaled model may have a different struc-

ure than the ones at the fine scale. We refer to Amaziane et al. (2017) ;

ourgeat et al. (1996) ; Hornung (1997) ; van Duijn et al. (2007) for the-

retical details. 

The goal of this work is to build a unified ADM platform where the

ultiscale and homogenization methods can be compared. Therefore,

ere, the homogenization method is used only to construct effective

roperties at the dynamic multilevel mesh. In this setup, the homoge-

ized properties of ADM-HO at multilevel mesh are found as in ADM-MS

y solving local flow (pressure) equations based on an incompressible

elliptic) equation. 

More precisely, one assumes that a scale separation holds and dou-

les the spatial variable into a fast and a slow one. The method relies on

he homogenization ansatz , meaning that all quantities in (1) can be ex-

anded regularly in terms of a scale separation parameter. Such ideas are

mployed in Bastidas et al. (2019) ; Abdulle and Nonnenmacher (2009) ;

manbek et al. (2019b) ; Amaziane et al. (1991) ; Singh et al. (2019b) ;

zymkiewicz et al. (2011) ; Henning et al. (2015, 2013) to develop ef-

ective numerical simulation schemes even in case of non-periodic me-

ia. More details about the homogenization procedure can be found in

ppendix B . 

In the present context, for a given fine-scale effective permeability

 and for each coarsening level l , an effective permeability tensor K 

l is

omputed locally in a pre-processing step. First the domain Ω ⊂ ℝ 

2 is

ivided into coarse cells Ωl that correspond to a partition of the domain

as shown in Fig. 3 . 
For each coarse cell Ωl at level l , the components of the effective

ermeability tensor are calculate as 

 

𝑙 
𝑖,𝑗 

||||Ω𝑙 = ∫Ω𝑙 
(
𝐾 

(
𝐞 𝑗 + ∇ 𝜔 𝑗 

))
⋅ 𝐞 𝑖 𝑑 y . (11) 

or 𝑖, 𝑗 = 1 , 2 . Here 𝜔 j are the periodic solutions of the pressure equation

n local domains (known as micro-cell equation in HO literature), i.e. 

∇ ⋅
(
𝐾 

(
∇ 𝑦 𝜔 

𝑗 + 𝐞 𝑗 
))

= 0 , for all y ∈ Ω𝑙 . (12) 

e remark that { 𝐞 𝑗 } 2 𝑗=1 is the canonical basis of dimension 2 and K is the

bove mentioned permeability tensor. To guarantee the uniqueness of

he solution 𝜔 j one assumes that its average value over the local coarse

ell Ωl is 0. 

To determine the value of the effective permeability tensor at each

oarse cell Ωl , two local (micro-cell) problems (12) are solved for each

patial direction in 2D. Fig. 4 provides an illustration of these local so-

utions for a coarse element. 

Note that the local problems (12) capture the rapidly oscillating char-

cteristics within a coarse element, completely decoupled from other

oarse elements. The homogenized parameters, like multiscale bases,

re computed at the beginning of the simulation. Fig. 5 illustrates the

alculation of the effective permeability at different levels. 

The homogenized parameters are used to construct the coarse sys-

em entries. More precisely, the homogenized value in a coarse cell is

istributed equally to the fine cells constructing it. Then the fine-scale

acobian and residual are computed with the fine-scale saturation field.

his system is then mapped to the ADM resolution by setting prolonga-

ion operators in (6) to unity. This is a convenient procedure, developed

n this work, to integrate the numerical homogenization method with

n existing advanced simulator. 

Notice that based on the features of the permeability tensor K , the

esulting effective parameter K may depend on the macro-scale loca-

ion and the size of the coarse-scale partition. Nevertheless, one can

how that in practice, the adaptive refinement of the mesh is an impor-

ant aspect that improve the calculation of the effective parameters (see

astidas et al. (2019) and Fig. 5 ). 

The ADM procedure is sketched in Fig. 6 . More details about the role

f the homogenization in the offline stage and the complete algorithm

f ADM-MS and ADM-HO can be found in Algorithm 1 . 

. Simulation results 

To benchmark the homogenization and multiscale based solutions

or the dynamic mesh on heterogeneous media, two heterogeneous non-

eriodic permeability fields from the top and bottom layers of the SPE

0th Comparative Solution Project Christie and Blunt (2001) are con-

idered. For both test cases, the computational domain entails 216 × 54

rid cells at fine-scale with Δ𝑥 = Δ𝑦 = 1[m] . A no-flow condition is im-

osed on all boundaries. Initially the reservoir contains only the 2nd

hase (e.g. oil), i.e. 𝑆 = 0 . The 1st phase (e.g. water) is injected from an
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Fig. 5. Example of four different levels of homogenized permeability values: fine scale (bottom right), coarse level 1 (bottom left), coarse level 2 (top right) and 

coarse level 3 (top left). 

Algorithm 1 The ADM algorithm using multiscale basis functions 

(ADM-MS) or homogenization (ADM-HO). 

Start of the simulation; 

Read the input files and scan the keywords; 

Given a fine scale permeability ( 𝐾) and the number of coarsening levels 

( 𝐿 ): 

if Multiscale then 

for 𝑙 = 0 to 𝐿 do 

Compute the multiscale basis functions Φ𝑙 
𝑀𝑆 

; 

end 

else 
Homogenization is chosen. 

for 𝑙 = 0 to 𝐿 do 

Compute the homogenized 𝐊 

𝑙 ; 

Compute the constant basis functions Φ𝑙 
𝐶𝑜𝑛𝑠𝑡 

; 

end 

end 

for time step 𝑡 𝑛 do 
Select ADM grid resolution; 

Build ADM prolongation and restriction operators; 

Take 𝑖𝑡𝑒𝑟 = 1 and use initial pressure and saturation; 

while error ≥ tolerance & not converged do 
Assemble fine scale system; 

Solve the ADM system; 

Prolong solution back to fine scale; 

Update properties; 

if error ≤ tolerance then 

Converged. 

else 
Not converged. 

end 

Next iteration 𝑖 = 𝑖 + 1 
end 

Next time step ( 𝑡 = 𝑡 + Δ𝑡 ) 
end 

Table 1 

Input parameters of fluid and rock properties. 

Property value 

Porosity ( 𝜙) 0.2 

Water density ( 𝜌w ) 1000 [Kg/m 

3 ] 

Oil density ( 𝜌o ) 1000 [Kg/m 

3 ] 

Water viscosity ( 𝜇w ) 10 −3 [Pa · s] 

Oil viscosity ( 𝜇o ) 10 −3 [Pa · s] 

Initial pressure ( p 0 ) 10 7 [Pa] 

Connate water saturation ( S wc ) 0 [-] 

Residual oil saturation ( S or ) 0 [-] 

Injection pressure ( p inj ) 2 × 10 7 [Pa] 

Production pressure ( p prod ) 0 [Pa] 
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njection well, while the reservoir fluid is produced from the production

ell. The locations of the injection and production wells are specified

n each test case. 

Table 1 shows the input parameters of the fluid and rock properties

sed in all test cases. Note that the density and viscosity ratios are as-

umed to be 1. Since compressibility and gravitational forces are both

eglected, the density values have no influence on the results. 

The numerical results provided by the ADM-MS and ADM-HO meth-

ds are compared to those obtained from simulation at fine scale (ref-

rence). Both ADM methods employ the coarsening ratio of 3 × 3 with

wo coarsening levels. This is set according to the size of the domain. 

.1. Test case 1: SPE10 top layer 

In this test case, one injection well and one production well are

laced in the bottom left corner and top right corner of the domain,

espectively. The simulation time is 𝑡 = 1000 [days] and the results are

eported on 100 equidistant time intervals. The permeability distribu-

ion of the SPE10 top layer is shown in Fig. 7 . 

Fig. 8 shows the homogenized version of the permeability at two dif-

erent levels. We highlight that the homogenized permeability at both

oarse levels preserves the structure of the original fine-scale permeabil-

ty. The high and low permeable zones remain clearly detectable. 



H. Hajibeygi, M.B. Olivares and M. HosseiniMehr et al. Advances in Water Resources 143 (2020) 103674 

Fig. 6. Schematic description of ADM reservoir simulation. 

Fig. 7. Fine-scale permeability ( Log 10 scale) from top layer of the SPE10 dataset. 

Fig. 8. Homogenized permeability of the top layer of the SPE10 with coarsening 

ratio 3. 

Fig. 9. Saturation profiles at 2000 days. The threshold value for the front track- 

ing criterion is Δ𝑆 = 0 . 3 . 
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The saturation and pressure fields at the final time step are shown

n Fig. 9 and Fig. 10 , respectively. 

From these results, it is understood that ADM-HO on a coarse cell

ontaining high and low permeable fine cells can lead to a higher flow

eakage, as compared to fine-scale and ADM-MS approaches. This effect

an be seen in Fig. 9 . Fig. 11 , illustrating the adaptive mesh at 2000 days

fter injection. Notice that the refinement of the permeability is most

ominant at the saturation front, due to the chosen mesh refinement

riterion. For this figure, the coarsening threshold value is Δ𝑆 = 0 . 3 ,
.e., a cell is successively coarsened if ΔS is lower than 0.3. 

The error history maps for both ADM-MS and ADM-HO are shown

n Fig. 12 . The relative errors, presented in Fig. 12 and Fig. 14 , are

xpressed in terms of the L 2 norm over the entire medium, calculated

ith respect to the fine-scale solution as 

𝑟𝑟𝑜𝑟 ( 𝑆) = 

‖𝑆 ref − 𝑆 ADM 

‖2 ‖𝑆 ref ‖2 (13)

𝑟𝑟𝑜𝑟 ( 𝑃 ) = 

‖𝑃 ref − 𝑃 ADM 

‖2 ‖𝑃 ‖ . (14)

ref 2 
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Fig. 10. Pressure profiles at 2000 days. The threshold value for the front track- 

ing criterion is Δ𝑆 = 0 . 3 . 

Fig. 11. Adaptive mesh and homogenized permeability for the SPE10 top layer 

test case. The threshold value for the front tracking criterion is Δ𝑆 = 0 . 3 . 
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Fig. 12. Comparison of the saturation and pressure error using ADM-MS and 

ADM-HO and 3 different values for the front tracking criterion. 

Fig. 13. Comparison of the active grid cells using ADM-MS and ADM-HO and 

3 different values for the front tracking criterion. 

 

a  

c
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b  
The results indicate that the homogenization-based simulations have

igher errors compared with the multiscale-based simulations. They

oth have similar average usage of active grid cells, with ADM-MS hav-

ng slightly fewer grid cells. This is shown in Fig. 13 . Note that the

rid cells around wells are kept at the fine-scale resolution permanently.

urthermore, for tighter error tolerance values, the quality of both ap-

roaches become comparable. 

Fig. 14 provides the average pressure and saturation errors together

ith the average percentage of active grid cells during the whole simu-

ation time as functions of the coarsening criterion threshold. 

.2. Test case 2: SPE10 bottom layer 

In the second test case the permeability distribution of the SPE10

ottom layer, presented in Fig. 15 , is considered. The location of the

njection and production wells are the top left and the bottom right cor-

ers, respectively. The simulation time is 20 [days]. All other simulation

arameters remain unchanged. 

Fig. 16 shows the homogenized permeability values at two different

evels. Due to the many high contrast channels, more active cells are

mployed compared with the SPE top layer, as shown in Fig. 17 . 

The saturation and pressure maps at the final time step are shown in

ig. 18 and Fig. 19 , respectively. 

Similar to the previous test cases, Fig. 20 compares the error between

he two ADM approaches. Moreover, in Fig. 21 , the percentage of active

rid cells per each time-step is shown. 
Fig. 22 illustrates the average values of the errors in the pressure

nd the saturation, and the percentage of the active grid cells for each

oarsening criterion threshold. 

The results indicate a noticeable difference in the errors of ADM-

S and ADM-HO. The pressure error in ADM-HO is significantly higher

ince ADM-HO uses homogenized effective parameters. This aspect can

e improved by employing first order corrections. However, such an
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Fig. 14. Average errors for the pressure and saturation and average active grid 

cells for each strategy (ADM-MS and ADM-HO). 

Fig. 15. Fine-scale permeability ( Log 10 scale) from bottom layer of the SPE10 

test case. 

Fig. 16. Homogenized permeability of the SPE10 bottom layer with coarsening 

ratio 3. 

Fig. 17. Refinement of the permeability of the bottom layer of the SPE10 using 

ADM-HO after 20 days. The threshold value for the front tracking criterion is 

Δ𝑆 = 0 . 3 . 

Fig. 18. Saturation profiles at 20 days. The threshold value for the front track- 

ing criterion is Δ𝑆 = 0 . 3 . 

Fig. 19. Pressure profiles at 20 days. The threshold value for the front tracking 

criterion is Δ𝑆 = 0 . 3 . 
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pproach would deviate from the ADM framework, and requires more

omputational effort, therefore it is not adopted here. ADM-MS instead

mploys multiscale basis functions. Due to the more accurate pressure

alculations, the ADM-MS saturation error is also lower than that of

DM-HO. The difference in the percentage of active grid cells used in

he two approaches is less noticeable than the difference in the errors.

owever, the ADM-HO uses more active grid cells, especially in this

PE10 bottom layer test case. 
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Fig. 20. Comparison of the saturation and pressure error using ADM-MS and 

ADM-HO and 3 different values for the front tracking criterion. 

Fig. 21. Comparison of the active grid cells using ADM-MS and ADM-HO and 

3 different values for the front tracking criterion. 

Fig. 22. Average errors for the pressure and saturation and average active grid 

cells for both approaches (ADM-MS and ADM-HO). 
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. Conclusion 

Homogenization and multiscale methods have been developed and

volved during the past decade as promising advanced simulation ap-

roaches for large-scale heterogeneous systems. In this work, the two

ethods were investigated, extended into a unified fully-implicit frame-

ork, and benchmarked for simulation of multiphase flow in porous me-

ia. It was shown that the two methods allow the construction of coarser

evel systems, and both rely on local solutions to find their correspond-

ng maps. While homogenization methods deliver effective models and

arameters, multiscale methods find an interpolation of the solution

pressure) across scales. This is the main difference between the two

pproaches. 

For highly heterogeneous test cases, it was shown that the two ap-

roaches provide accurate solutions. With the developed multiscale nu-

erical strategies, the ADM-MS solutions are more accurate when com-

ared to ADM-HO. The use of a constant effective parameter instead

f local multiscale basis functions results in relatively higher errors. In

ddition, using constant unity prolongation operator along with the ef-

ective coarse-scale parameters allows for straightforward implementa-

ion of the ADM-HO method for domains with non-periodic permeabil-

ty fields. The study of this paper sheds new light on the application

f multiscale and homogenization methods for real-field simulation of

ultiphase flow in porous media. Note that the computational costs of

he two approaches were comparable, as they applied almost the same

ctive cells during the simulation. Ongoing study includes benchmark

tudies of ADM-HO and ADM-MS for 3D fractured porous media, on

ompilable simulation platform, which allows scientific CPU compari-

on study. 
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Fig. 24. Illustration of a dual coarse grid and a basis function belonging to the 

bottom left coarse node. As it can be seen, the value of the bottom left coarse 

node is set to be 1.0, while the other three vertex cells are set to 0. 

Fig. 25. All the four basis functions belonging to the dual coarse grid h . Shown 

below each plot is the Dirichlet value at the corner of each dual coarse cell for 

the plotted basis function. 

Fig. 26. An example of a basis function belonging to the bottom left coarse 

node of a heterogeneous domain with 27 × 27 grid cells. The coarsening ratio 

here is 9 × 9. 
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ppendix A. ADM based on multiscale method 

In the ADM-MS approach, multiscale finite volume method (MSFV)

enny et al. (2003) ; Cortinovis and Jenny (2014) is used to compute lo-

al basis functions at multiple coarsening levels. The computation of ba-

is functions Φ is done by solving the incompressible fluid flow equation

elliptic part of the mass balance) Cortinovis and Jenny (2017) which

eads 

∇ ⋅
(
𝜆 ⋅ ∇Φ

)
= 0 . (15)

The incompressible basis functions are found to be the most efficient

nes, compared with the compressible and more complex formulations

ene et al. (2015) . The first step is to impose coarse grids on top of the

ne mesh, for the coarse level 1. Here, to simplify the visualization, a

D 15 × 15 discrete domain is considered (see Fig. 23 ). By connecting

he centers of the coarse cells, the dual-coarse grid is obtained. The dual

rid makes an overlapping partitioning of the fine-scale domain, with 3

ategories of interior (white), edge (green), and vertex (blue) cells. The

oarsening ratio in the illustrated example of Fig. 23 is 5 × 5. 

The Eq. (15) is solved at each dual coarse grid h and for each coarse

ode (vertex) k , i.e., −∇ ⋅ ( 𝜆 ⋅ ∇Φℎ 
𝑘 
) = 0 . In order to solve this local sys-

em, Dirichlet boundary conditions of 1.0 (for the corresponding coarse

ode) and 0.0 (for the other three coarse nodes) are imposed. These

irichlet values allow to solve the basis functions on the edges, if a re-

uced dimensional (1D) elliptic problem is considered. The solution at

he edge and vertex cells are then imposed as Dirichlet boundary con-

ition for the full 2D problem. The solution of this well-posed system is

he basis function of the corresponding coarse node at the correspond-

ng dual coarse grid. Fig. 24 shows a schematic of the mentioned dual

oarse grid h and an example of a basis function belonging to the bottom

eft coarse node ( Φℎ 1 ). 
Fig. 25 shows all the four basis functions for the mentioned dual

oarse grid h . 

The combination of the basis functions at all the dual coarse grid

ells surrounding the corresponding coarse node forms the basis func-

ion belonging to that coarse node. Fig. 26 illustrates an example of a
ig. 23. Construction of the coarse and dual-coarse grids on the fine-scale dis- 

rete domain. Fine cells are partitioned w.r.t. the dual coarse mesh as: interior, 

dge and vertex cells. 
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asis function belonging to the bottom left coarse node of an example

eterogeneous 2D domai. 

To obtain the basis functions at higher coarsening levels, the hierar-

hically nested coarse grid is constructed on the same domain. The same

rocedure is followed to compute the basis functions at higher coarsen-

ng levels. Fig. 27 shows the coarse grid construction at 2 consequent

oarsening levels, for a 2D domain with 75 × 75 fine cells. 

Note that, according to the vast multiscale literature, construction

f basis functions can be done purely algebraic, once the wire-basket

ecomposition of the fine cells into Vertex, Edge, Face, and Interior is

nown Tene et al. (2016) . A partitioning method should be applied

or complex mesh Møyner and Lie (2016) ; Parramore et al. (2016) ;

hah et al. (2016) ; Gulbransen et al. (2010) ; Bosma et al. (2017) ;

ehrdoost (2019) ; Mehrdoost and Bahrainian (2016) . 

ppendix B. ADM based on homogenization theory 

The main idea of the ADM-HO is to use a homogenized version of

he permeability K instead of volume-averaged permeabilities at differ-

https://doi.org/10.13039/501100003246
https://gitlab.com/darsim2simulator


H. Hajibeygi, M.B. Olivares and M. HosseiniMehr et al. Advances in Water Resources 143 (2020) 103674 

Fig. 27. Coarse grid construction at 2 consequent coarsening levels for a 2D 

domain with 75 fine cells. The coarsening ratio of 5 × 5 is chosen. The grid sizes 

of coarse level 1 and 2 are 15 × 15 and 3 × 3, respectively. 
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nt coarse levels. In doing so, two assumptions are commonly made: the

ermeability is periodic at each of the coarsening levels, and the scales

re well separated. We refer to Allaire (1992) for the rigorous mathemat-

cal support of this approach. Although the test cases considered here do

ot satisfy the two assumptions stated before, the homogenization idea

an still be considered for developing multiscale simulation tools, and

n this sense we refer to Bastidas et al. (2019) ; Amanbek et al. (2019a) ;

ingh et al. (2019a) ; Amanbek et al. (2019b) ; Singh et al. (2019b) . 

At each coarsening level l , we call micro-scale cell (i.e., local coarse

ell) the region Ωl wherein the parameters change rapidly. For each Ωl ,

he characteristic length is 𝓁, where L is the characteristic length for the

acro-scale domain Ω. The factor 𝜀 ∶= 

𝓁 
𝐿 

reflects the scale separation.

o identify the fast changes in the parameters we double the variables

nd define the fast variable y ∶= 

x 

𝜀 
. In the non-dimensional setting, Ω

an be written as the finite union of the local cells Ωl . We let Ω = ∪ Ω𝑙 
or some set of indices . 

For calculating the homogenized permeability we consider an auxil-

ary elliptic problem: Auxiliary problem. Given a fine-scale permeabil-

ty K , find a function u 𝜖 that satisfies 

 ⋅ ( 𝐾 ⋅ ∇ 𝑢 𝜖) = 0 in Ω, 

 

𝜖 = 0 on 𝜕Ω. (16) 

ere the boundary conditions are specified for completeness. 

We employ the homogenization ansatz , meaning that the unknown u 𝜖

an be written as 

 

𝜖( 𝑥 ) = �̂� 0 + 𝜖�̂� 1 + 𝜖2 �̂� 2 + … , (17)

here each �̂� 𝑖 ( x , y ) is periodic. 

Due to the doubling of variables, the gradient and divergence oper-

tors become 

 = ∇ 𝑥 + 

1 
𝜖
∇ 𝑦 and div = div 𝑥 + 

1 
𝜖
div 𝑦 . 

nserting (17) and the two scale operators above in the auxiliary problem

16) , one gets 

div 𝑥 + 

1 
𝜖
div 𝑦 

)((
∇ 𝑥 + 

1 
𝜖
∇ 𝑦 

)(
�̂� 0 + 𝜖�̂� 1 +  ( 𝜖2 ) 

))
= 0 , 

̂ 0 + 𝜖�̂� 1 +  ( 𝜖2 ) = 0 . 

Collecting the terms with factor 𝜖−2 we obtain for each domain Ωl 

 𝑦 ⋅
(
𝐾∇ ̂𝑢 0 

)
= 0 for all y ∈ Ω𝑙 , (18)

learly, any 𝑢 0 = 𝑢 0 ( x ) which does not depend on the fast variable y

s a solution of the problem (18) . Thus, one can prove that all solutions

epend only on x . The function u 0 is in fact the macro-scale approximation

f the original unknown u 𝜖 . 

On the other hand, for the 𝜖−1 terms one has 

 𝑦 ⋅
(
𝐾 

(
∇ 𝑥 ̂𝑢 0 + ∇ 𝑦 ̂𝑢 1 

))
= 0 for all y ∈ 𝑌 . 
One can determine �̂� 1 as a function of �̂� 0 and eliminate it from the

ystem. To this end, �̂� 1 is written as a linear combination of functions

 

j , and with 
𝜕 ̂𝑢 0 
𝜕𝑥 𝑗 

as coefficients 

̂ 1 ( x , y ) = 

dim ∑
𝑗=1 

𝜕 ̂𝑢 0 ( x ) 
𝜕𝑥 𝑗 

𝜔 𝑗 ( x , y ) . 

The functions 𝜔 j are solutions of the micro-cell (local domain) prob-

ems defined on each Ωl : 

∇ 𝑦 ⋅
(

A 

(
∇ 𝑤 

𝑗 
𝑦 + ⃗𝑒 𝑗 

))
= 0 for all y ∈ 𝑌 , 

𝑤 

𝑗 isperiodicin 𝑌 . 

ere, { ⃗𝑒 𝑗 } d 𝑗=1 is the canonical basis of dimension 2. To guarantee the

niqueness of the solution one requires that 

Ω𝑙 
𝜔 𝑗 = 0 𝑑 y , for all Ω𝑙 . 

The homogenized permeability in the auxiliary problem is obtained

y considering the terms of order 𝜖0 , in which �̂� 2 appears. Averaging

hese terms and using the periodicity of the functions on the right hand

ide of (17) , one obtains that the auxiliary unknown �̂� 0 ( x ) solves the

omogenized problem 

 ⋅ ( 𝐊 

𝑙 ⋅ ∇ ̂𝑢 0 ) = 0 in Ω, 

̂ 0 = 0 on 𝜕Ω. (19) 

ere the matrix valued function 𝐊 

𝑙 ∶ Ω → ℝ 

2×2 has the elements 

 

𝑙 
𝑖,𝑗 
|||Ω𝑙 = ∫Ω𝑙 

(
𝐾 

(
𝑒 𝑗 + ∇ 𝑦 𝜔 

𝑗 
))

⋅ 𝑒 𝑖 𝑑 y . 

Note that these steps are carried out only to determine the effective

ermeability tensor K 

l . The solution �̂� 0 of the effective problem (19) is

ot of interest here. In other words, we use the auxiliary problem for

he sole purpose of defining an effective parameter that could be used

t each level of the dynamic multilevel algorithm. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.advwatres.2020.103674 . 
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