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Abstract  

This article highlights the importance of using polar coordinates when 
studying functions, in particular in relation to generalized h-type indices. 
Concretely, generalized h-type indices are essentially polar coordinates. 
This observation ties informetric ideas to standard mathematics. This 
article is essentially meant to provide tools for further studies. 

Keywords: polar coordinates; generalized h-index; generalized g-index 

1. Introduction 

A. Functions 

Let X and Y be sets. A relation between X and Y is any subset of the 
Cartesian product XxY = {(x,y), x∈ X, y ∈ Y}. A relation is said to be a 
function, denoted as f, if with any element x ∈ X (or a subset A of X) 
corresponds exactly one element y  ∈ Y. This is denoted as  

𝑓:𝐴 ⊂ 𝑋 → 𝑌: 𝑥 → 𝑦 = 𝑓(𝑥)                                (1) 

The set A is called the domain of the function f, denoted as D(f) and the 
set f(A) = {𝑦 ∈ 𝑌: ∃ 𝑥 ∈ 𝐴 𝑠𝑠𝑠ℎ 𝑡ℎ𝑎𝑡 𝑓(𝑥) = 𝑦}  is called the range of f, 
denoted as R(f). If each y ∈ R(f) is the image of exactly one x in A, then f 
is said to be injective.  
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In expression (1) we have defined a function f in an explicit manner: we 
describe to which element y each element x is mapped. When working 
with real-valued functions one may consider the set {(x,f(x)) ⊂ R2} which 
is called the graph of the function f. Besides in an explicit manner it often 
happens that functions are described implicitly. This means that an 
expression F(x,y) = 0 is given, from which it is theoretically possible to 
find y, given x. Each real-valued function given in explicit form, y = f(x), 
can be rewritten in an implicit form, namely as y - f(x) = 0. The point is 
that the reverse is often not possible in practice, because F(x,y) = 0 may 
only define a relation and not a function. The circle provides a simple 
example. Indeed, x2 + y2 – 1 = 0 leads to a graph which is a circle with 
center in the origin of a Cartesian coordinate system and with radius 1. 
Yet, this relation does not correspond to a unique function. If we wish so 
we may derive two functions from it, namely 

𝑓1: [−1 , +1]  → 𝐑 ∶ 𝑥 → 𝑦 =  +�1 − 𝑥2 

which corresponds to the upper half of the circle, and 

𝑓2: ]−1 , +1[  → 𝐑 ∶ 𝑥 → 𝑦 =  −�1 − 𝑥2 

which corresponds to its lower half. If we define f2 also on [-1, +1] then 
the two graphs have two points in common. 

Points in the two-dimensional plane can uniquely be described by their 
Cartesian coordinates x and y. Yet such a point can also be described by 
polar coordinates, among others. These are described in the next section.  

B. Classical polar coordinates 

For simplicity we will work in this article in the first quadrant of the 
Euclidean plane, hence we restrict our explanation to this case. Working 
in the first quadrant means that in Cartesian coordinates (x,y), x ≥ 0 and 
y ≥ 0. Points in this quadrant can also be described using polar 
coordinates: φ ∈ [0, π/2] and ρ ≥ 0, with ρ a function of φ. Let P be a 
point with Cartesian coordinates (x,y). Then ρ(φ) denotes the distance 
between the origin and the point P and is called the radial distance, while 
φ denotes the angle, expressed in radians, between the x-axis and the 
line segment connecting the origin and the point P. It is called the polar 
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angle (actually ‘a’ polar angle as φ and φ+2kπ, for k any integer, lead to 
the same Cartesian point). 

In the first quadrant, the relation between Cartesian coordinates (x,y) and 
polar coordinates (φ, ρ) is given by 

 x = ρ cos(φ)  and y = ρ sin(φ)  (φ expressed in radians) 

and, vice versa: 𝜑 = 𝑎𝑎𝑠𝑡𝑎𝑎 �𝑦
𝑥
� and  𝜌 =  �𝑥2 + 𝑦2 ,  if (x,y) ≠ (0,0); the 

origin corresponds to ρ = 0 and its polar angle can have any value. 

If y=Z(x) in Cartesian coordinates, then ρZ.sin(φ) = Z(ρZ.cos(φ)) is the 
implicit equation of the graph of Z in polar coordinates.  

Sometimes it is easy to go from the Cartesian to the polar equation such 
as in the case 𝑦 = √𝑅2 − 𝑥2 (R > 0), which leads to ρ = R, the part of the 
circle with origin (0,0) and radius R, situated in the first quadrant. Yet, in 
many cases it is not possible to describe explicitly a Cartesian equation 
in polar coordinates. An example is y(x) = xa + b, a < 0 for which no 
explicit expression in polar coordinates exists.  

C. Generalized continuous h-type indices 

Before continuing our discussion we like to point out that although this 
article can be placed within a series of studies on generalized h-type 
indices (Egghe & Rousseau, 2019a,b,c,d) no prior knowledge of these 
articles is necessary to understand what is presented in the following 
sections. Occasionally, though, we will refer to these earlier articles to 
point out that a result has already been obtained. 

Definition 

Given a positive function Z and a real number θ ∈ ]0, +∞[ , we define 
hθ(Z) as the x-coordinate of the unique intersection, if it exists, of the line 
y = θx with the graph of y = Z(x).  

Hence hθ(Z) is characterized by: 

𝑍�ℎ𝜃(𝑍)� =  𝜃 ℎ𝜃(𝑍)                                          (2) 

We further consider the function ℎ(𝑍): 𝜃 → ℎ𝜃(𝑍), defined on its domain, 
D(h(Z)). Even if this domain exists, it may consist of a single point. 
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Consider e.g. the function Z(x) =x2+1. Then it is easy to check that D(h(Z)) 
= {2} as for other values of θ the line y = θx has either no or two 
intersection points with Z(x). For θ = 2, we find h2(x2+1) = 1. This 
example has been provided by a reviewer for which we thank him/her.  

Note that here θ = tan(φ) denotes a slope, not an angle, and that hθ is a 
function from a set of functions to the real numbers. The function hθ is 
called the generalized continuous h-index. In our previous work (Egghe 
& Rousseau, 2019c) we used this definition only for decreasing functions, 
defined on an interval of the form [0,T]. Here, however, this is not 
required anymore. 

If Z is strictly decreasing, θ = 1, hθ = h1 is the continuous h-index as 
introduced in (Egghe & Rousseau, 2006). In the discrete case h1 has 
been introduced by Hirsch (2005), while the general hθ has been 
introduced in (van Eck & Waltman, 2008) under the name of hα-index.  

2. A new existence result for hθ 

In previous work we proved that hθ exists for positive, non-constant, 
decreasing, differentiable functions defined on an interval [0,T]  (Egghe & 
Rousseau, 2019c; Proposition 1). Now we will show the (unique) 
existence of hθ for a larger family of functions. 

In what follows we will only use positive functions Z(x) such that for every 
x ∈ D(Z), there exists a unique θ > 0 such that Z(x) = θx. 

This condition implies that a function such as Z(x) = x2+1 is not covered 
by our theory. The theory does apply to positive, decreasing, continuous 
functions defined on an interval [0,T], except for the case Z(x) = 0. 

Theorem 1 

Given the positive function Z(x), defined on A ⊂  ]0, +∞[ then the 
complete graph of Z(x) can be described in polar coordinates ρZ: D(ρZ) ⊂ 
[0,π/2] : φ → ρZ(φ), with θ = tan(φ), if and only if hθ(Z) is defined for every 
θ ∈ D(ℎ(𝑍)) ⊂ ]0, +∞[  with  D(ℎ(𝑍)) = R(Z(x)/x). 

Proof. If (x, Z(x)) is a point on the graph of Z, then (φ, ρZ(φ)) is its polar 
form if ρZ is equal to the distance between (0,0) and (x, Z(x)) and φ = 
arctan(Z(x)/x). We have to check if h(Z) is a function of θ and if for every 
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x ∈ D(Z) there exists a unique θ such that Z(x)/x = θ. By the definition of 
h, uniqueness is the same as stating that tan(D(ρZ)) ⊂ D(ℎ(𝑍)). Moreover, 
we know that  D(ℎ(𝑍)) ⊂ R(Z(x)/x). Now, as we work with functions Z(x) 
such that for every x ∈ D(Z), there exists a unique θ > 0 such that Z(x) = 
θx, this implies that R(Z(x)/x) ⊂  D (ℎ(𝑍)) . Hence we conclude that 
R(Z(x)/x) = D(ℎ(𝑍)). 

Conversely, if  D(ℎ(𝑍)) = R(Z(x)/x), then for every point (x, Z(x)) on the 
graph of Z, φ = arctan(θ) is well-defined and ρ is the distance from (0,0) 
to (x, Z(x)).  

Corollary. If Z(x) is continuous and decreasing on ]0, +∞[ then hθ(Z) is 
uniquely defined. 

Proof. If Z(x) is decreasing, then Y(x) = Z(x)/x is strictly decreasing and 
hence a bijection to R(Z(x)/x). Therefore hθ(Z) is defined for θ = Z(x)/x for 
every x ∈ D(Z), i.e., D(ℎ(𝑍)) = R(Z(x)/x). Now the corollary follows from 
the previous theorem. 

Remark 

A constant function y = C > 0 is an example of a function which is not 
strictly decreasing and for which hθ(Z) = C/ θ exists for every θ ∈ ]0, +∞[.  

 

3. Generalized h-indices lead to a description of the Cartesian 
equation in polar coordinates 

Theorem 2. Let Z be a strictly positive function with D(Z) ⊂  ℝ0
+. Suppose 

further that for every x ∈ D(Z), there exists a unique θ > 0 such that Z(x) 
= θx. Then, y = Z(x), for x ∈ D(𝑍), has a polar form:  

𝜌𝑍(φ) =  ℎ𝑡𝑡𝑡(φ)(𝑍).�1 + 𝑡𝑎𝑎2(φ) =ℎ𝜃(𝑍).√1 + 𝜃2,  with θ = tan(φ). 

Proof. For x in the domain of Z, and y = Z(x) we have by definition: (ρ(x))2 
= x2 + (Z(x))2. As we only deal with positive functions Z(x) such that for 
every x ∈ D(Z), there exists a unique θ > 0 such that Z(x) = θx, we can 
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write: (ρ(hθ(Z)))2 = (hθ(Z))2 + (Z(hθ(Z)))2 = (hθ(Z))2+ θ2(hθ(Z))2=(hθ(Z))2(1+ 
θ2). 

Consequently: 𝜌𝑍(φ) =  ℎ𝜃(𝑍).√1 + 𝜃2. If we put θ = tan(φ) (as tan is a 
bijection between [0, +∞[ and [0, π/2[ ), this leads to: 

𝜌𝑍(φ) =  ℎ𝑡𝑡𝑡(φ)(𝑍).�1 + 𝑡𝑎𝑎2(φ)                              (3) 

 

Remark.  Equation (3) can be considered as an explicit expression of Z 
in the polar coordinates (φ, ρ), thanks to the generalized form of the h-
index. Note though that equation (3) only holds for φ for which ℎ𝑡𝑡𝑡(φ)(𝑍) 
is defined. Moreover, 𝜌𝑍(φ) is an explicit form for the polar equation and 
an explicit functional form if ℎ𝑡𝑡𝑡(φ)(𝑍) is given as an explicit expression 
in φ.  

Corollary. If the polar form of Z is known then equation (3) gives an 
analytic formula for the calculation of hθ(Z). Indeed, for all θ > 0, such 
that  ℎ𝜃(𝑍) =  ℎ𝑡𝑡𝑡(φ)(𝑍) is defined, we have: 

 ℎ𝜃(Z) = 𝜌𝑍(φ)
√1+𝜃2

= 𝜌𝑍(arctan (𝜃))
√1+𝜃2

                                        (4) 

 

4. Cartesian polar coordinates in the first quadrant: Another set of 
coordinates 

Besides coordinates (x,y) and (φ, ρ), as recalled in sections 1A and 1B, 
we may also introduce coordinates (θ, h) which we refer to as Cartesian 
polar coordinates. The relations between these three coordinate systems 
are: 

x = h, y = θh;    φ = arctan(θ),  ρ = ℎ √1 + 𝜃2 . 

As an illustration we check what it means that a basic coordinate is 
constant (C > 0). 

a) Cartesian coordinates: x = C; y = C;  

y = C is a horizontal straight line; x = C is not a function of x  (it is not of 
the form y(x)) as defined in section 1A. Yet, it may be considered as a 
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function x(y), and we know that x = C represents a vertical straight line, 
which has meaning if we consider the (y,x)-plane instead of the (x,y)-
plane 

b) polar coordinates: ρ = C; φ = C ;  

The equation ρ = C, in polar coordinates represents a circle with center 
in the origin of the plane and radius with length equal to R; 

φ = C; also here there is a logical problem as in polar coordinates we 
want ρ as a function of φ. Yet it is clear that φ = C represents a straight 
line through the origin and with slope equal to tan(C). 

c) Cartesian polar coordinates: h = C , θ = C 

h = C represents a vertical straight line 

θ = C represents a straight line through the origin with slope θ 

We would also like to mention that in the classical triangle with Cartesian 
coordinates (0,0), (x,0), (x, Z(x)), the lengths of the three sides can be 
considered the second coordinates in each of these three coordinate 
systems. Indeed, the vertical side corresponds to the ordinate in 
Cartesian coordinates; the hypotenuse corresponds to the ordinate in 
polar coordinates, and the horizontal side corresponds to the ordinate in 
Cartesian polar coordinates.  

5. Examples 

1) The quarter circle ρZ = C, constant for φ = [0, π/2]. Let Z(x) = √𝐶2 − 𝑥2 
for x ∈ [0, C]. This graph is completely described by the polar function 
ρ(φ) = C. By Theorem 1, hθ(Z) is defined and from eq. (4) we derive that  

ℎ𝜃(𝑍) = 𝐶
√1+𝜃2

 ; in particular: h = h1 = 𝐶
√2

. We next show that this result 
can also be derived from the definition (in Cartesian coordinates).  

𝑍(𝑥) = 𝑦 =  �𝐶2 − 𝑥2, 𝑥 > 0. 

Now x = hθ(Z) iff √𝐶2 − 𝑥2 = 𝜃𝑥  

⟺  𝐶2 − 𝑥2 = 𝜃2𝑥2, 𝑥 > 0 ⟺ (1 + 𝜃2)𝑥2 =  𝐶2
𝑥>0
��  𝑥 =

𝐶
√1 + 𝜃2
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This confirms the previous result derived from eq. (4). The major benefit 
of equation (4) is that it can be applied for any function Z(x), even in 
cases where ℎ𝜃(𝑍) is very difficult or even impossible to be calculated 
from the definition, i.e. from eq. (2). This is further illustrated in the 
following examples. 

2) The Archimedean spiral 𝜌𝑍(𝜑) = 𝑎 + 𝑏𝜑;  𝑎, 𝑏 > 0;  𝜑 ∈ [0, 𝜋
2

] . In 

general, this is not a function Z(x). Yet there exist α > a and 𝜓 ∈  �0, 𝜋
2
�  

such that Z(x) is a function defined on [0, α ], with polar graph ρ(φ) = a + 
bφ, for 𝜑 ∈ [𝜓,𝜋/2] . Then applying eq. (4) yields: 

ℎ𝜃(𝑍) =  
𝑎 + 𝑏 arctan(𝜃)

√1 + 𝜃2
 

In particular: if 𝜋
4

> 𝜓  then h = h1 = 
𝑡+𝜋𝜋4
√2

.  

3) Conic sections. The following equation 𝜌(𝜑) =  𝑡
1−𝑒.cos (𝜑)

 with  a > 0 

and e.cos(φ) < 1 represents a conic section in polar coordinates. The 
parameter e is called the eccentricity of the conic section. If e > 1 the 
conic section is a hyperbola, if e = 1 it is a parabola and if 0 ≤ e < 1 it is 
an ellipse. In the special case that e = 0 we have a circle with radius a. 
Applying formula (4) yields:   

ℎ𝜃(Z) =
𝜌𝑍(φ)
√1 + 𝜃2

=
𝜌𝑍(arctan(𝜃))

√1 + 𝜃2
=

𝑎
(1 − 𝑒. cos (arctan(𝜃)))√1 + 𝜃2

 

= 𝑡

�1−𝑒. 1
�1+𝜃2

)�√1+𝜃2
= 𝑡

√1+𝜃2−𝑒
    

In this result, y= Z(x) is the graph of the portion of the conic section in the 
first quadrant and results in polar coordinates ρ(φ) with the following 
restrictions. For e ≤ 1, 𝜑 ∈  �0, 𝜋

2
�   and θ > 0, but for e > 1, 𝜑 ∈

�arccos �1
𝑒
� , 𝜋

2
� and θ >  √𝑒2 − 1 . We note that if e = 0, hθ(Z) always exists 

and is equal to 𝑡
√1+𝜃2

, as already shown in example 1). If θ = 1, h1 = h = 
𝑡

√2−𝑒
. 

4) A general power function 
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We consider the function Z(x) = C xa, x > 0. If a > 0, this function is 
increasing; if a < 0 it is decreasing and if a = 0 we have a constant 
function. The equation of this general power function in polar coordinates 
is: 

𝜌𝑍(𝜑)𝑠𝑠𝑎(𝜑) = 𝐶�𝜌𝑍(𝜑)𝑠𝑐𝑠(𝜑)�𝑡 

With θ = tan(φ) we obtain: 

𝜌𝑍(arctan (𝜃))𝑠𝑠𝑎(𝜑) = 𝐶�𝜌𝑍(arctan (𝜃))𝑠𝑐𝑠(𝜑)�𝑡 

Or:  

𝜌𝑍(φ) = �
sin (𝜑)

𝐶(cos (𝜑))𝑡�
1/(𝑡−1)

 

Therefore, Theorem 1 holds, and we may apply equation (4) leading to: 

ℎ𝜃(𝑍) =
1

√1 + 𝜃2
�

sin(arctan(𝜃))
𝐶(cos(arctan(𝜃)))𝑡�

1
𝑡−1

 

=
1

√1 + 𝜃2
⎝

⎛
𝜃

√1 + 𝜃2

𝐶 � 1
√1 + 𝜃2

�
𝑡

⎠

⎞

1
𝑡−1

= �
𝜃
𝐶�

1
𝑡−1

 

We see that if a = 0,  

ℎ𝜃(𝑍) =
𝐶
𝜃 

a result already obtained in (Egghe & Rousseau, 2019c; Example 1).  

If a < 0 we obtain a Zipf function; if it is moreover defined on [0, T] then 
we denoted it, e.g. in (Egghe & Rousseau, 2019c, d) as: 

                       𝑍(𝑥) =  𝐵
𝑥𝛽

 ,   𝑥 ∈ ]0,𝑇], 𝑤𝑠𝑡ℎ 𝐵 =  𝑇𝛽   

Now the parameters a and C in this example, become –β and Tβ, leading 
to: 
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ℎ𝜃(𝑍) = �
𝜃
𝐶�

1
𝑡−1

=  �
𝜃
𝑇𝛽
�

1
−(𝛽+1)

=
𝑇�

𝛽
𝛽+1�

𝜃�
1

𝛽+1�
 

This result was already obtained in (Egghe & Rousseau, 2019c, example 
1). Transforming the Zipf (rank-frequency) form to the Lotka (size-
frequency) form i.e. a function of the form 𝐿(𝑎) =  𝐾

𝑡𝛼
, K > 0, α > 1, where, 

in the original version (Lotka, 1926) n refers to a number of publications 
and L(n) refers to the number of authors with n publications, see e.g.  
(Egghe, 2005; Egghe & Rousseau, 2019d) leads to: 
𝛽 = 1

𝛼−1
 and hence 𝛽

𝛽+1
= 1

𝛼
.  Using these parameters gives: 

ℎ𝜃(𝑍) = 𝜃�
1−𝛼
𝛼 �𝑇

1
𝛼 

A result already obtained in (Egghe & Rousseau, 2019c). 

 

6. The generalized g-index 

Given a function Z(x), defined on [0, +∞[ and a real number θ > 0, set  
Γ(𝑥) =  1

𝑥 ∫ 𝑍(𝑠)𝑑𝑠𝑥
0 , for x > 0. Clearly we have to require that this integral 

exists. This is always the case if Z is a piecewise continuous function or 
if Z(x) can be written as a difference of two decreasing (or increasing) 
functions (Apostol, 1957). Then we define gθ(Z) as the x-coordinate of 
the unique intersection, if it exists, of the line y = θx with the graph of Γ(x).  

Hence gθ(Z) is characterized by: 

Γ�𝑔𝜃(𝑍)� =  𝜃𝑔𝜃(𝑍)                                          (5) 

If Z is decreasing and defined on an interval [0,T] then, if θ = 1, gθ = g1 is 
the continuous version of the g-index as introduced in (Egghe, 2006). 
Again, for discrete data the general gθ-index has been introduced in (van 
Eck & Waltman, 2008), for all θ > 0, such that  ℎ𝜃(𝑍) =  ℎ𝑡𝑡𝑡(φ)(𝑍) is 
defined, 

Theorem 3 
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For all θ > 0, such that  ℎ𝜃(Γ) =  ℎ𝑡𝑡𝑡(φ)(Γ) is defined, the polar equation 
of Γ(x) is: 

 𝜌𝛤(𝜑) =  𝑔𝑡𝑡𝑡(𝜑)(𝑍)�1 + (𝑡𝑎𝑎(𝜑))2 =  𝑔𝜃(𝑍)√1 + 𝜃2           (6) 

 with tan(φ) = θ. 

Proof. We have by definition that, for all θ, where hθ(Γ) is defined, hθ(Γ) = 
gθ(Z), a remark already made in (Egghe & Rousseau, 2019c), be it in the 
context of decreasing continuous functions. This restriction is, however, 
not necessary. Consequently, equations (6) follow immediately from 
Theorem 2. 

Corollary. 

For all θ such that 𝑔𝜃(𝑍) is defined, 𝑔𝜃(𝑍) =  𝜌𝛤(arctan (𝜃))
√1+𝜃2

, where Γ(𝑥) =

 1
𝑥 ∫ 𝑍(𝑠)𝑑𝑠𝑥

0 , for x > 0. 

This follows immediately from the previous Theorem 3.  

An example. 

Again we consider the constant function Z(x) = a, a > 0. Then Γ(𝑥) =
 1
𝑥 ∫ 𝑎 𝑑𝑠𝑥

0 = 𝑎 = 𝑍(𝑥) . Consequently, gθ(Z) = hθ(Γ) = hθ(Z) = a/θ. This 
result also follows by the definition of gθ(Z). Indeed: the requirement 
Γ�𝑔𝜃(𝑍)� =  𝜃𝑔𝜃(𝑍)  leads to the equation: a =  𝜃𝑔𝜃(𝑍)  and hence 
𝑔𝜃(𝑍) = 𝑡

𝜃
. We further note from equation (6) that 𝜌𝛤(𝜑) =  𝑡

𝜃
√1 + 𝜃2 =

 𝑡
𝑡𝑡𝑡(𝜑)

�1 + (𝑡𝑎𝑎(𝜑))2. 

 

7. Discussion 

This article highlights the importance of using polar coordinates when 
studying functions, in particular in relation to generalized h-type functions. 
As such it is essentially meant to provide tools for further studies we 
intend to finish soon. 

For simplicity we have restricted ourselves to a theory of functions Z(x) in 
the first quadrant. Yet, we think that, with some adaptations, our results 
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also apply without this restriction. Moreover, if Z(0) is finite and different 
from zero then all our results apply. Finally, just like in Cartesian 
coordinates a circle is the graph of two functions, we can calculate 
generalized h-type indices for graphs that can be described through two 
or more functions in polar coordinates.  
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