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Introduction: Antibody-mediated rejection (ABMR) impacts kidney allograft outcome. The diagnosis is

made based on findings from invasive kidney transplant biopsy specimens. The aim of this study was to

identify a noninvasive urinary protein biomarker for ABMR after kidney transplantation.

Methods: We performed a multicenter case-control study to identify a urinary biomarker for ABMR

(training cohort, n ¼ 249) and an independent, prospective multicenter cohort study for validation (n ¼
391). We used concomitant biopsies to classify the samples according to the Banff classification. After

untargeted protein identification and quantification, we used a support vector machine to train the model

in the training cohort. The primary endpoint was the diagnostic accuracy of the urinary biomarker for

ABMR in the validation cohort.

Results: We identified a set of 10 urinary proteins that accurately discriminated patients with (n ¼ 60) and

without (n ¼ 189) ABMR in the training cohort with an area under the curve (AUC) of 0.98 (95% confidence

interval [CI], 0.96–1.00). The diagnostic accuracy was maintained in the validation cohort (AUC, 0.88; 95%

CI, 0.8–0.93) for discriminating the presence (n ¼ 43) from the absence (n ¼ 348) of ABMR. The negative

predictive value of the 10-protein marker set for exclusion of ABMR was 0.99, and the positive predictive

value was 0.33. The diagnostic accuracy was independent of the reason for performing the biopsy, time

after transplantation, and better than the accuracy of gross proteinuria (AUC, 0.76).

Conclusions: We identified and validated a urinary protein biomarker set that can be used to exclude

ABMR.
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L
ong-term survival of kidney allografts has
improved little during the past 2 decades. Rejection

phenomena remain major determinants of late graft
failure despite the use of powerful immunosuppressive
agents. In particular, ABMR is known to impact graft
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outcome.1,2 Histologic examination of kidney allografts
through invasive biopsies is currently the gold stan-
dard to detect rejection. The Banff classification was
established to standardize the diagnosis of rejection
phenotypes such as borderline lesions, T cell–mediated
rejection (TCMR), and ABMR.3,4 Rejection can be sus-
pected in clinical practice by a rise in the serum
creatinine level or an increase of proteinuria, but it can
also present subclinically with normal renal functional
parameters. In addition, subclinical rejection, espe-
cially subclinical ABMR, is associated with impaired
graft outcome.5
Kidney International Reports (2020) 5, 1448–1458

https://doi.org/10.1016/j.ekir.2020.06.018
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:maarten.naesens@kuleuven.be
mailto:maarten.naesens@kuleuven.be
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ekir.2020.06.018&domain=pdf


I Mertens et al.: Protein biomarkers for ABMR CLINICAL RESEARCH
Noninvasive monitoring of renal allograft rejection
is based on the measurement of serum creatinine levels,
glomerular filtration rate, proteinuria, and the mea-
surement of donor-specific human leukocyte antigen
antibodies. These graft functional parameters lack
sensitivity and specificity for rejection. Kidney trans-
plant rejection that occurs with stable graft functional
parameters remains currently undetected, unless sys-
tematic biopsies at predefined post-transplantation time
points are performed. Such protocol biopsies are not
performed in all transplant centers, leaving many cases
of subclinical rejection undetected and thus not
treated. Centers that do perform routine protocol bi-
opsies will perhaps identify rejection at an earlier stage
before chronic injury develops and when the disease
process may be more responsive to treatment. In
addition, kidney allograft biopsies remain expensive
and invasive, with the inherent risk for postbiopsy
complications.6

Noninvasive biomarkers with good sensitivity and
specificity for kidney allograft disease processes are an
unmet clinical need. Several biomarkers for acute
rejection have been suggested,7 but none were devel-
oped specifically for ABMR. As ABMR is a main cause
of kidney transplant failure but is often missed by
current functional testing owing to the lack of vali-
dated and specific noninvasive markers, we aimed to
develop and validate a novel urinary biomarker for
ABMR after kidney transplantation.
METHODS

Study Population

We included patients who received a kidney allograft
in 4 European transplant centers (Necker Hospital
Paris, France; University Hospitals Leuven, Belgium;
Medical School Hannover, Germany; and University
Hospital Centre, Limoges, France) after written
informed consent was obtained. Samples were pro-
spectively collected in the context of the BIOMArkers
of Renal Graft INjuries (BIOMARGIN) study (www.
biomargin.eu; P.I. Prof. P. Marquet). Protocol or indi-
cation renal allograft biopsies were performed, and
urine samples were prospectively and consecutively
collected at the time of the biopsies. In the 4 clinical
centers, protocol biopsies were performed at 3 and 12
months, and sometimes at 24 months after trans-
plantation according to local center practice, in addi-
tion to clinically indicated biopsies (biopsies at time of
graft dysfunction). All adult patients who had received
a single-kidney allograft at these institutions and who
provided written informed consent were eligible. Re-
cipients of combined transplantations were excluded.
Kidney International Reports (2020) 5, 1448–1458
All transplantations were performed with negative
complement-dependent cytotoxicity crossmatches.
Institutional review boards and national regulatory
agencies (when required) approved the study protocol
at each clinical center.

The training cohort (grouping steps 1 and 2 of the
initial BIOMARGIN program) consisted of 249 samples
collected following a case-control study design. Pa-
tients and controls were selected based on sample
availability and histology of the concomitant renal
allograft biopsies, with exclusion of patients with
diagnosis of glomerulonephritis or polyomavirus-
associated nephropathy and those with unclear diag-
nosis. Based on local biopsy results, a preselection was
made, which was then further refined by central
reading by a group of 3 expert pathologists, indepen-
dent from the local reading.

The independent validation cohort (step 3 of initial
BIOMARGIN program) consisted of 391 consecutive
samples collected according to the study protocol in
the 4 centers between June 24 2014 and July 2 2015.
In the validation cohort, no samples were excluded.
There was no overlap in samples between the training
and the validation cohort. All biopsies included in
this study were reviewed and graded in a blinded
fashion by the expert pathologists independent from
the local reading. All biopsies were rescored semi-
quantitatively according to the updated Banff 2017
classification.3

Urine Proteome Analysis

We collected fresh urine samples in the morning before
the biopsies were performed. No protease inhibitors
were added to the samples, and the pH of the urine
samples was measured but not adjusted. Urinary
creatinine, hemoglobin, leukocytes, glucose, and pro-
tein content levels were checked locally using dipstick
tests. Upon receipt of samples, urine creatinine and
protein content were measured centrally at CHU
Limoges using enzymatic assays on an Architect c8000
clinical chemistry analyzer (Abbott, Abbott Park, IL)
No freeze-thaw cycles were allowed. In both the
training and the validation cohorts, we performed
untargeted proteomics using nano–reversed-phase
liquid chromatography and shotgun mass spectrometry
(Nano Acquity Ultra Performance LC system, Waters,
Milford, MA, coupled to an LTQ Orbitrap Velos mass
spectrometer, Thermo Scientific, Waltham, MA) (see
Supplementary Methods). For protein identification,
we searched against the human uniprot database using
Proteome Discoverer software version 2.1(Thermo Sci-
entific), including 2 search engines, Mascot and
SEQUEST. A precursor mass tolerance of 10 ppm and a
1449
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fragment mass tolerance of 0.5 Da were used. Trypsin
was chosen as the cleavage enzyme and 2 missed
cleavages were allowed. Carbamidomethylation was set
as a fixed modification on cysteine and methionine
oxidation, and serine, tyrosine, and threonine phos-
phorylations were set as variable modifications. We
filtered the resulting peptide identification results us-
ing a false discovery rate <5% based on the target-
decoy approach. The first ranked peptides were
included. Protein quantification was based on the
unique, fully digested and unmodified peptides, except
for cysteine carbamidomethylation, which was allowed
as a modification. Precursor peak areas of all peptides
identified in the liquid chromatography–mass spec-
trometry runs were exported using Proteome Discov-
erer version 2.1 (Thermo Scientific). To avoid missing
data from data-dependent acquisition of mass
spectrometry–based proteomics,8 we extracted time-
intensity chromatograms from high-resolution MS1
(parent ion spectra) data to quantify all peptides
identified with high confidence.
Statistical Analysis

We normalized the proteome data by quantile
normalization, starting from the peak intensities
extracted from the MS1 data. We used the training
cohort to build the model to discriminate patients with,
versus those without, ABMR using analysis of variance
on the unique peptides. The corresponding proteins
were selected by a false discovery rate–corrected P
value of 0.05 and at least a log2–fold difference of 0.6.
We selected proteins based on their relative abundance
in urine samples and subsequently 2 unique peptides
per protein. This selection was based on uniqueness for
targeted quantitative analysis and the quality of the
chromatographic peaks (Gaussian shape, absence of
fronting or tailing, peak width). The selected peptides
were then used to build a linear support vector ma-
chine on the training cohort, with 100 times resampling
internal cross-validation. A model was considered valid
when adding an extra protein to the model did not
increase the percentage of correctly classified samples.
Finally, the support vector machines modeled on the
training cohort were applied on the independent vali-
dation cohort. Receiver operating characteristic (ROC)
curves were then generated to evaluate the diagnostic
accuracy of the models in the validation cohort.
Sensitivity, specificity, negative predictive value, and
positive predictive value were determinted in both the
training and validation cohorts. All analyses were
performed using R Project software version 3.5.0
(R Foundation for Statistical Computing, Vienna,
Austria).9,10
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RESULTS

Demographics

The clinical and histologic characteristics of the pa-
tients and samples included in the training and the
validation cohorts are provided in Table 1. In the
training cohort, 60 of 249 (24.1%) patients had ABMR
compared with 43 of 391 (11.0%) patients in the vali-
dation cohort (Figure 1). There were differences in the
baseline characteristics of patients with versus without
ABMR. Patients with ABMR were younger at the time
of transplantation, were more often female, and were
more often diagnosed based on an indication biopsy
than patients without ABMR, both in the training and
in the validation cohorts (Table 1). Supplementary
Table S1 provides the histologic characteristics of the
biopsies included in the validation cohort (N ¼ 391)
according to rejection subtypes.

Biomarker Development in the Training Cohort

After extraction of the MS1 data (intact peptide pre-
cursor data) from the training cohort, we were able to
quantify 1658 peptides, corresponding to 531 indi-
vidual proteins. Ten proteins are Alpha-1 B glycopro-
tein (A1BG); afamin (AFM); apolipoprotein A1
(APOA1); apolipoprotein A4 (APOA4); Ig heavy con-
stant a1 (IGHA1); Ig heavy constant g4 (IGHA4);
leucine rich a2 glycoprotein 1 (LRG1); alpha-1 anti-
trypsin (SERPINA1); antithrombin (SERPINC1); and
transferrin (TF).

differed significantly between patients with versus
without ABMR (Table 2). Two unique peptides per
protein were then selected based on peptide peak in-
tensity and shape. In addition, peptides were selected
based on their use for targeted proteomics experiments.
The final set of differentially expressed peptides used
in the statistical model thus contained 10 proteins,
represented by 20 unique peptides (Supplementary
Table S2).

Training of the Statistical Model

We next determined the minimal number of proteins
needed in the model, using 100-times resampling cross-
validation on the training cohort. This indicated that a
minimum of 6 proteins was needed to obtain an accu-
rate model for diagnosis of ABMR (Supplementary
Figure S1). Next, a support vector machine was built
on the 10 proteins (model 10) with ABMR as dependent
variable. This model reached an AUC ROC of 0.98%
(95% CI, 0.96– 1.00) (Figure 2). After fixing the cutoff
point for optimal sensitivity and specificity, this model
reached a sensitivity of 95% and a specificity of 96%
for diagnosis of ABMR (Table 3). Depending on the
cutoff point, the diagnostic performance of the model
changes (Supplementary Table S3), so the treshold can
Kidney International Reports (2020) 5, 1448–1458



I Mertens et al.: Protein biomarkers for ABMR CLINICAL RESEARCH
be chosen in relation to the intended use of the diag-
nostic test. To make a selection between the many
possible combinations of minimal sets of 6 proteins, 3
additional models were constructed, containining the
most abundant proteins based on either sequence
coverage (model 6A), number of peptide spectral
matches (model 6B), or peptide peak intensity (model
6C) (Supplementary Table S4). These 3 models were
then fixed and applied unaltered to the validation
cohort.
Table 1. Demographics of the patients and biopsies included in the train

Variable

Training phase (N [ 249)

No antibody-mediated rejection
(N [ 189)

Antibody-mediated rejection
(N [60)

Transplant characteristics

Recipient age at
transplantation, yr

531 (50.07) � 14.5
(14.8 – 78.8)

48.9 (46.2) � 15.1
(16.6 – 72.4)

Recipient age at time of
biopsy, yr

55.0 (53.1) � 14.0
(19.8 – 79.9)

52.5 (50.9) � 14.8
(23.2 – 76.0)

Recipient gender, male/
female

119/69 (63.3%/36.7%) 30/27 (52.6%/47.4%)

Repeat transplantation,
yes/no

24/165 (12.7%/87.3%,) 18/42 (30%/70%)

Recipient ethnicity

European 163 (87.2%) 46 (70%)

Asian 6 (3.2% 2 (3.4%)

African 6 (3.2%) 3 (5.25)

Other 12 (6.4%) 7 (12.1%)

Donor age, yr 52.5 (51.7) � 16.0 (8–89) 49 (47.4) � 16.3 (14–75)

Donor gender, male/female 85/94 (47.5%/52.5%) 18/35 (34%/66%)

Deceased/living donor 151/38 (79.9%/20.1%) 49/10 (83%/17%)

Heart-beating/non–heart-
beating donor

137/14 (90.7%/9.3%) 48/1 (98%/2%)

Cold ischemia time, hr 13.1 (13,0) � 7.9 (0.3–37.2) 14.4 (15.1) � 8.6
(1.5–38.2)

Biopsy characteristics

Indication/protocol biopsy 53/136 (28%/72%) 43/15 (74.1%/25.9%) <

Time after transplantation, d 371 (866.0) � 1,387.3
(5 – 10,063)

992.5 (1771.7) � 2258.4
(6 - 9435)

Biopsy time after
transplantation

<1 yr 88 (46.6%) 33 (56.9%)

>1 yr 101 (53.4%) 25 (43.1%)

Proteinuria, g/g creatinine 0.1 (0.3) � 0.6 (0.03–4.6) 0.5 (1.2) � 1.4 (0.04–6.6) <

MDRD eGFR, ml/min per
1.73 m2a

45.6 (47.8) � 22.1
(5.4–140.8)

34.5 (37.0) � 19.3
(5.6–97.1)

Immunosuppression at time of biopsy

Cyclosporine, yes/no 22/167 (11.6%/88.4%) 8/50 (13.8%/86.2%)

Tacrolimus, yes/no 152/37 (80.4%/19.6%) 45/13 (77.6%/22.4%)

Mycophenolate, yes/no 162/27 (85.7%/14.3%) 53/5 (91.4%/8.6%)

Azathioprine, yes/no 10/179 (5.3%/94.7%) 0/58 (0%/100%)

mTOR inhibitor, yes/no 7/182 (3.7%/96.3%) 6/52 (10.3%/89.7%)

Corticosteroids, yes/no 162/27 (85.7%/14.3%) 55/3 (94.8%/5.2%)

Histological diagnosis

No rejection 146 (77.2%) 0 (0%)

T cell–mediated rejection

No 146 (77.2%) 35 (58.3%)

Borderline changes 31 (16.4%) 18 (12.1%)

Grade 1 or 2 12 (6.3%) 7 (11.7%)

Kidney International Reports (2020) 5, 1448–1458
Validation of the Statistical Model

The data acquisition for the assessment of the selected
peptides was the same as for the untargeted discovery
approach. After acquisition of the data, only the rele-
vant data of the selected peptides were retrieved and
analyzed. Thus, in the independent validation cohort
(N ¼ 391), only the 20 peptides from the 10 proteins
selected in the training cohort were quantified to
validate the statistical model developed on the training
cohort.
ing and the validation phase
Validation phase (N [ 391)

P value
No antibody-mediated rejection

(N [ 348)
Antibody-mediated rejection

(N [ 43) P value

0.042 52.1 (50.9) � 14.7
(2.7 – 78.4)

45.5 (44.1) � 17.8
(7.4 – 71.8)

0027

0.31 54.1 (52.8) � 14,3
(19.0 – 78.7)

54.1 (51.5) � 14.6
(19.9 – 79.6)

0.61

0.023 228/120 (65.5%/34.5%) 17/26 (39.5%/60.5%) 0.0013

0.0029 63/285 (18.1%/81.9%) 10/33 (23.3%/76.7%) 0.41

0.28 1.00

305 (88.4%) 40 (93%)

3 (0.9%) 0 (0%)

7 (2.0%) 0 (9%)

30 (8.7%) 3 (7.0%)

0.13 53 (51.4) � 14.9 (5–91) 44 (41.9) � 17.4 (7–75) 0.0019

0.050 167/176 (48.7%/51.3%) 24/16 (60%/40%) 0.028

0.27 263/83 (76%/24%) 36/5 (87.8%/12.2%) 0.018

0.12 233/30 (88.6%/11.4%) 34/2 (94.4%/5.6%) 0.39

0.13 12.6 (12) � 8.0 (0.3–35.8) 13.1 (13.4) � 7.0 (0.4–29) 0.36

0.0001 102/240 (29.8%/70.2%) 31/12 (72.1%/27.9%) <0.0001

0.018 335 (672.1) � 1,265.9 (12–
10,023)

1132 (2693.3) � 3198.7
(6–12,564)

<0.0001

0.65 0.001

189 (55.3%) 12 (27.9%)

153 (44,7%) 31 (72.1%)

0.0001 0.1 (0.3) � 0.7 (0.02–7.3) 0.7 (1.4) � 1.8 (0.03–8.1) <0.0001

0.00062 44.4 (46.5) � 18.7
(5.4–119.3)

29.9 (37.8) � 24.5
(7.7–110.8)

0.00055

0.65 32/310 (9.4%/90.6%) 6/37 (13.9%/86.1%) 0.41

0.71 297/45 (86.8%/13.2%) 34/9 (79.1%/20.9%) 0.17

0.37 282/60 (82.5%/17.5%) 38/5 (88.4%/11.6%) 0.39

0.12 8/334 (2.3%/97.7%) 1/42 (2.3%/97.7%) 1.00

0.084 44/298 (12.9%/87.1%) 3/40 (7%/93%) 0.33

0.069 311/31 (91%/9%) 38/5 (88.4%/11.6%) 0.58

NA 332 (95.4%) 0 (0%) NA

NA 332 (95.4%) 40 (93%) NA

NA 13 (3.7%) 2 (4.7%) NA

NA 3 (0.9%) 1 (2.3%) NA

(Continued on next page)
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Table 1. (Continued) Demographics of the patients and biopsies included in the training and the validation phase

Variable

Training phase (N [ 249) Validation phase (N [ 391)

No antibody-mediated rejection
(N [ 189)

Antibody-mediated rejection
(N [60) P value

No antibody-mediated rejection
(N [ 348)

Antibody-mediated rejection
(N [ 43) P value

Antibody-mediated rejection 0 (0%) 60 (100%) NA 0 (0%) 43 (100%) NA

Mixed rejection 0 (0%) 25 (41.7%) NA 0 (0%) 3 (7%) NA

Interstitial fibrosis/tubular
atrophy

Grade 0 92 (48.7%) 31 (51.7%) NA 167 (50%) 17 (39.5%) NA

Grade 1 25 (132%) 17 (28.3%) NA 87 (25%) 6 (14%) NA

Grade 2–3 71 (37.6%) 12 (20%) NA 94 (27%) 19 (44.2%) NA

Polyomavirus-associated
nephropathyb

0 (0%) 0 (0%) NA 14 (4.0%) 0 (0%) NA

De novo/recurrent
glomerulonephritisb

0 (0%) 0 (0%) NA 20 (5.7%) 6 (14%) NA

eGFR, estimated glomerular filtration rate; IFTA, interstitial fibrosis and tubular atrophy; MDRD, modification of diet in renal disease; NA, not applicable; mTOR, mammalian target of
rapamycin;
aThe eGFR is calculated using the MDRD formula.
bIn the training cohort, N ¼ 1 had missing data on IFTA grade. In the validation cohort, N ¼ 1 had missing data on IFTA grade, N ¼ 14 on polyomavirus-associated nephropathy, and N ¼
13 on glomerulonephritis.
Values are depicted as follows: median (mean) � SD (minimum – maximum) or as absolute numbers (percentages). P values were calculated using the Mann-Whitney-Wilcoxon test
(nonparametric comparisons) for continuous variables and Fisher exact test with 2-tailed P value for categorical variables.

CLINICAL RESEARCH I Mertens et al.: Protein biomarkers for ABMR
The diagnostic accuracy of the full 10-protein model
reached a diagnostic accuracy of 0.88 (95% CI, 0.83–
0.93) (Figure 2), with a sensitivity of 95% and a spec-
ificity 76% for diagnosis of ABMR at the cutoff value
defined in the training cohort (Table 3). Only 2 patients
with ABMR were misclassified, which translated into a
negative predictive value of 99%. There was no
apparent trend in the diagnoses of the misclassified
cases; misclassification occurred in all diagnostic cate-
gories (Supplementary Tables S5 and S6). The model
also captured almost half of the patients with TCMR in
the validation cohort (16/391) as ABMR, indicating that
the model is not entirely reflecting processes that are
241 pa�ents were included
249 allogra� biopsies (96 indica�on 
biopsies (IB) and 151 protocol 
biopsies (PB); 2 missing) and 
concomitant urine samples selected 
and collected in 4 clinical centers

249 urine samples analyzed with 
shotgun LC-MS/MS 

Training cohort

60 biopsies 
(43 IB, 15 
PB, 2 
missing) 
with ABMR

189 biopsies 
(53 IB, 136 PB) 
without ABMR

Pep�de selec

Figure 1. Study design. ABMR, antibody-mediated rejection; LC-MS/MS,

1452
specific for ABMR (Supplementary Table S6). This is
also reflected by the fact that the model also picks up
polyomavirus nephropathy and glomerulonephritis.
The results for the 3 models containing 6 proteins
yielded similar diagnostic performance (Table 3).

Sensitivity Analysis

The full 10-protein model retained good diagnostic
accuracy for ABMR both at time of graft dysfunction
(in indication biopsies) and at time of stable graft
function (protocol biopsies), and both early (before 1
year) and late (after 1 year) after transplantation. When
we adjust for time after transplantation (as a log10-
369 pa�ents were included
391 allogra� biopsies (133 indica�on 
biopsies (IB) and 252 protocol 
biopsies (PB); 6 missing) and 
concomitant urine samples serially 
collected in 4 clinical centers between 
June 2014 and July 2015

391 urine samples analyzed with 
shotgun LC-MS/MS (only 20 selected 
pep�des quan�fied)

Valida�on cohort

�on

43 biopsies 
(31 IB, 12 PB) 
with ABMR

348 biopsies 
(102 IB, 240 PB, 
6 missing) 
without ABMR

liquid chromatography and shotgun mass spectrometry.

Kidney International Reports (2020) 5, 1448–1458



Table 2. List of significantly upregulated proteins that segregated
presence from absence of antibody-mediated rejection in the
training cohort (N ¼ 249)

Gene
identification

UniProt
protein

accession
number

Total number
of peptides
identified

Total number of
unique peptides

identified

Median
log2-fold
change

FDR-
corrected
P value

A1BG P04217 12 4 1.13 0.011

AFM P43652 14 14 1.00 0.0001

APOA1 P02647 16 3 0.61 0.045

APOA4 P06727 21 21 0.60 0.0001

IGHA1 P01876 12 4 0.87 0.00030

IGHG4 P01861 2 2 0.78 0.0076

LRG1 P02750 9 9 0.68 <0.0001

SERPINA1 P01009 24 18 1.29 <0.0001

SERPINC1 P01008 9 7 0,86 0.00022

TF P02787 53 31 1,37 <0.0001

FDR, false discovery rate.

I Mertens et al.: Protein biomarkers for ABMR CLINICAL RESEARCH
transformed variable) in a multivariate model, the
urinary marker remains significantly associated with
diagnosis of ABMR (P < 0.0001). The 10-protein model
also retained accuracy in subgroups of proteinuria
(Table 4). The 10-protein model had better diagnostic
accuracy than gross proteinuria as a marker of ABMR
(Supplementary Figure S2). In a sensitivity analysis in
patients with human leukocyte antigen donor-specific
antibodies, the biomarker demonstrates an ROC AUC
of 0.92 (95% CI, 0.84–1.00) for diagnosis of ABMR. In
addition, in patients without human leukocyte antigen
Figure 2. Diagnostic accuracy of the protein biomarker in (a) the training c
Receiver operating characteristic curves are shown for the full model with
The full model with 10 proteins reached an area under the curve of 0.98 (95
the training and validation cohorts, respectively.

Kidney International Reports (2020) 5, 1448–1458
donor-specific antibodies, there was good diagnostic
performance of the urinary marker for ABMR with an
ROC AUC of 0.88 (95% CI, 0.83–0.93) (Supplementary
Figure S3). Supplementary Table S7 provides an over-
view of the sensitivity analyses of the diagnostic ac-
curacy of the urinary marker in the presence or
absence of hematuria, leukocyturia, and bacteriuria.
The urinary marker also has significant diagnostic
performance in all 4 centers; the AUC for all 4 clinical
centers was calculated, and all of them yielded good
results with AUC of the ROC curves ranging from
85.1% to 94.6% (KU Leuven AUC, 85.1%; 95% CI,
72.2–94.1; Paris-Necker AUC, 91.1%; 95% CI, 84.1%–
96.1; Limoges AUC, 94.6%; 95% CI, 83–100; Hannover
89.7%, 95% CI, 82.4–95.1).

Correlation of the Biomarker Model With

Histologic and Clinical Variables

Figure 3 shows the probability of ABMR, as assessed
by the 10-protein model, per histologic lesion grade in
the validation cohort. The marker is significantly
associated with lesions of ABMR (glomerulitis, peri-
tubular capillaritis, microvascular inflammation score,
transplant glomerulopathy, and intimal arteritis). Less
significant associations were observed with lesions of
TCMR (tubulitis, interstitial inflammation) and
nonspecific chronic damage (arteriolar hyalinosis,
interstitial fibrosis, and tubular atrophy). The model
ohort (N ¼ 249) and (b) the independent validation cohort (N ¼ 391).
10 proteins (black line) and the 3 models with 6 proteins (blue line).

% confidence interval [CI], 0.96—1.00) and 0.88 (95% CI, 0.83—0.93) in
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Table 3. Diagnostic accuracy of all 4 models for diagnosis of antibody-mediated rejection in the training (N ¼ 249) and the validation cohorts
(N ¼ 391)
Model name AUC TP TN FP FN Sensitivity Specificity PPV NPV

Training cohort

Model 10 0.98 57 182 7 3 0.95 0.96 0.89 0.98

Model 6A 0.98 57 179 10 3 0.95 0.95 0.85 0.98

Model 6B 0.98 57 178 11 3 0.95 0.94 0.84 0.98

Model 6C 0,97 57 178 11 3 0.95 0.94 0.84 0.98

Validation cohort

Model 10 0.88 41 263 85 2 0.95 0.76 0.33 0.99

Model 6A 0.84 36 243 105 7 0.84 0.70 0.26 0.97

Model6B 0.84 36 241 107 7 0.84 0.69 0.25 0.97

Model 6C 0.86 40 243 105 3 0.93 0.70 0.28 0.99

FN, false negatives; FP, false positives; NPV, negative predictive value; PPV, positive predictive value; TN, true negatives; TP, true positives; UC: area under the curve.
The individual proteins included in models 6A, 6B, and 6C are provided in Supplementary Table S2. Model 6A is based on sequence coverage, model 6B on the number of peptide
spectral matches, and model 6C on peptide peak intensity.
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cannot be used to distinguish TCMR from no rejection
samples; when comparing the urinary protein scores of
the TCMR cases versus no rejection cases, no significant
difference was noted (P ¼ 0.11). The 3 ABMR-TCMR
mixed cases seem to behave as ABMR cases
(Supplementary Figure S4).

The fact that TCMR cannot be classified from any
TCMR samples using this model is also shown in the
ROC curve with an AUC value of 64.4% (95% CI, 51.3–
77.3) (Supplementary Figure S5). When we compare
only the pure cases of ABMR and TCMR, the model
does seem to have some potential to discriminate the 2
groups (Supplementary Figure S4), with an ROC AUC
of 71% (95% CI, 54.5–85.5).
Comparison With Traditional Clinical

Biomarkers and Added Value of the Urinary

Protein Biomarker Panel

In another study of the BIOMARGIN group, a clinical
model for diagnosis of ABMR was built consisting of 8
parameters (donor-specific antibodies, proteinuria,
Table 4. Diagnostic accuracy of the 10-protein model (model 10) for noni
cohort (N ¼ 391) in different subgroups, according to biopsy type, time a
Characteristic Total TP TN FP FN

Biopsy type

Protocol biopsy 252 11 200 40 1

Indication biopsy 133 30 57 45 1

Missing 6 0 6 0 0

Biopsy timing

Early (<1 yr post-transplant) 201 12 144 45 0

Late (>1 yr post-transplant) 184 29 113 40 2

Missing 6 0 6 0 0

Proteinuria

<0.3 g/g creatinine 295 14 238 41 2

0.3-1 g/g creatinine 49 9 14 26 0

1-3 g/g creatinine 25 11 2 12 0

>3 g/g creatinine 10 6 0 4 0

Missing 12 1 9 2 0

NA, not applicable; NPV, negative predictive value; PPV, positive predictive value; TN, true ne
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estimated glomerular filtration rate, time after trans-
plantation, recipient age at time of transplantation,
donor age, recipient sex, and protocol vs. indication
biopsy).11 When this model is applied to the proteomics
validation dataset and compared with the diagnostic
accuracy of our urinary marker, the urinary biomarker
model clearly outperforms the clinical model (AUC 0.88
vs. AUC 0.78). Figure 4 shows the ROC curves of the
different models. After adding the urinary marker to
the clinical model, the diagnostic accuracy increases
significantly to an ROC AUC of 0.91. Also, the clinical
model does not perform well for diagnosis of subclin-
ical ABMR.

DISCUSSION

In this study, we propose a novel biomarker based on
urinary proteomics for diagnosis of ABMR with high
diagnostic performance and clinically useful test pa-
rameters. The urinary biomarker consists of 10 pro-
teins, most of which have already been suggested as
biomarkers in (native) kidney diseases, supporting
nvasive diagnosis of antibody-mediated rejection in the validation
fter transplantation, and different levels of proteinuria

Sensitivity (%) Specificity (%) PPV (%) NPV (%)

91.7 83.3 21.6 99.5

96.8 55.9 40 98.3

NA 100 NA 100

100 76.2 21.1 100

93.5 73.9 42.0 98.3

NA 100 NA 100

87.5 85.1 20.0 99

100 35 25.7 100

100 14.3 47.8 100

100 0 60 NA

100 81.8 33.3 100

gatives; TP, true positives.

Kidney International Reports (2020) 5, 1448–1458



Figure 3. Distribution of the probability of antibody-mediated rejection (ABMR) as assessed by the urinary protein marker per histologic lesion
grade in the validation cohort (N ¼ 385). The urinary protein marker score was significantly associated with lesions of antibody-mediated
rejection (glomerulitis, peritubular capillaritis, microvascular inflammation score, transplant glomerulopathy, and intimal arteritis). Less signif-
icant associations were seen with lesions of T cell–mediated rejection (tubulitis, interstitial inflammation) and nonspecific chronic damage
(arteriolar hyalinosis, interstitial fibrosis, and tubular atrophy). Significance was assessed with nonparametric 1-way analysis of variance and
pairwise comparisons with t test. ah, arteriolar hyalinosis; C4d, C4d deposition in peritubular capillaries; cg, transplant glomerulopathy; ci,
interstitial fibrosis; ct, tubular atrophy; cv, intimal fibrosis; g, glomerulitis; ptc, peritubular capillaritis; i, nterstitial inflammation; mvi, micro-
vascular inflammation; ns, not significant; peritubular capillaritis; t, tubulitis; v, intimal arteritis. *P < 0.05; **P < 0.01; ***P < 0.001; ****P <
0.0001.
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Figure 4. (a) Receiver operating curve (ROC) curve of the urinary biomarker model including all 10 protein biomarkers. The area under the curve
(AUC) value is 0.88 (AUC, 0.88; 95% confidence interval [CI], 0.83–0.93). (b) ROC curve of the clinical model including 8 clinical parameters. The
AUC value is 0.78 (AUC, 0.78; 95% CI, 0.70–0.86). (c) ROC curve of the combined model including both the urinary biomarker and the clinical
parameters. The AUC value is 0.91 (AUC, 0.91; 95% CI, 0.86–0.94).
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their relevance. The model including these 10 proteins
reaches a very high negative predictive value (99%),
making it a clinically useful marker for excluding
ABMR. The presented urinary protein biomarker per-
forms well independent of gross proteinuria. In pa-
tients with undetectable gross proteinuria, this urinary
marker still has good discriminative value for ABMR,
whereas in patients with high proteinuria, reflecting a
higher pretest probability of ABMR, the positive pre-
dictive value increases. In clinical practice, the com-
bination of our urinary protein marker with other
noninvasive markers for TCMR, as previously pro-
posed, would be interesting to assess different graft
injury processes simultaneously.

A major strength of this study is the validation of
the biomarker in an independent cross-sectional cohort
with actual disease prevalence. This independent
validation is often lacking in biomarker discovery. Other
urinary protein biomarkers for kidney allograft rejection
have been reported.12,13 However, an important differ-
ence with these previous studies is that we analyzed all
individual patient samples separately, eliminating major
drawbacks inherent to the analysis of pooled samples,
where results of the samples cannot be linked back to
the individually identified pure phenotypes.

Another strength of this study is the supporting
literature on the proteins involved in our biomarker.
Many of these proteins have already been reported as
potential biomarkers for renal dysfunction, mostly in
native kidney diseases. a1-B glycoprotein,14 afamin15,
apolipoprotein A1 and A4,16–20 leucine-rich a2-
glycoprotein 1,21–23 a1-antitrypsin,

24,25 antithrombin,26,27

transferrin,28,29 and Ig heavy chain a1 and g4 are not
specific for disease processes or histologic lesions and
1456
have been associated with a wide range of kidney
diseases or kidney dysfunction. It could be that some
of the proteins in the panel might represent general
injury or injury mechanisms, rather than being specific
for antibody-mediated injury. This notion is also sug-
gested by the association of our 10-protein marker
with polyoma-associated nephropathy and glomerulo-
nephritis. Moreover, major injury patterns in TCMR
and viral nephropathy are interstitial inflammation and
tubulitis, also often present in ABMR. The same is true
with glomerulonephritis. One key feature of ABMR is
glomerulitis, and conversely, glomerulonephritis can
also show glomerulitis. Nevertheless, despite the non-
specificity of the individual molecules, the combina-
tion of these proteins seems to be highly sensitive in
diagnosing ABMR. Moreover, the proteins were not
selected because of their biologic function, but solely
on their statistical relevance. Thus, the statistical
relevance of the individual proteins is most probably
the result of the resulting phenotype, not the cause.

The high negative predictive value of our 10-protein
marker for detecting ABMR could be of importance in
clinical practice—for example, to decide in which pa-
tients invasive biopsies can be omitted. The relative
low positive predictive value should be put in
perspective of the low prevalence of ABMR, where a
20% to 30% risk of having ABMR based on a positive
result with this noninvasive, inexpensive urinary
protein marker warrants a more invasive approach for
histologic proof through biopsy. As the false-positive
cases with our biomarker consist mostly of other in-
flammatory intrarenal diseases such as polyomavirus
nephropathy and glomerulonephritis, performing a
biopsy in such cases still contributes to clinical
Kidney International Reports (2020) 5, 1448–1458
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decision-making. Depending on biopsy practice by
center, a different threshold may be chosen. On the one
hand, a high threshold leads to high specificity for
ABMR and a high positive predictive value, which
could be important in centers performing only indi-
cation biopsies for reason of graft dysfunction that
want to avoid too many false-positive results. On the
other hand, centers performing protocol biopsies could
apply a lower threshold, resulting in a higher negative
predictive value and the ability to rule out ABMR and
avoid performing too many biopsies yielding negative
results.

Our study has several limitations. First, using mass
spectrometry–based proteomics, the minimum set of
proteins to make a model seems to consist of at least 6
proteins. However, more accessible quantification of
these proteins could be considered–for example, by
translating the 10-protein test into a test based on
enzyme-linked immunoassay. If the platform for the
biomarker is changed to such a targeted technique,
additional validation will be necessary. Second, the
nonspecificity of the separate proteins in this urinary
biomarker indicates that further invasive histopatho-
logic evaluation is necessary in case of positive test
findings. Third, based on previous literature, not all
individual proteins in our panel are specific for ABMR.
Testing this panel in cohorts at higher risk of, for
example, recurrent glomerular disease, is warranted.
Also, our validation cohort with real-life disease
prevalence had very low incidence of TCMR, with a
majority of our TCMR samples meeting only criteria for
borderline changes. Although this reflects the natural
disease prevalence in our clinical centers, this could
differ from other clinical centers with different clinical
practice and perhaps overestimate the discriminative
performance of our marker for ABMR versus TCMR.
Finally, the temporal evolution of the 10-protein
marker and the response to treatment needs further
evaluation in larger prospective studies with repeated
sampling.

In conclusion, our study shows that (i) a protein
marker set including 10 proteins is able to predict
ABMR with high accuracy and (ii) this marker panel
can be used in clinical practice. Because of its very high
negative predictive value the test could be used to rule
out many biopsies in clinical centers that perform
protocol biopsies at regular time points. Clinical vali-
dation of a test based on enzyme-linked immunoassay
will be needed to guarantee easy implementation of the
marker in daily clinical practice.
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