
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 170 (2020) 584–593

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.
10.1016/j.procs.2020.03.129

10.1016/j.procs.2020.03.129 1877-0509

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2020) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

The 11th International Conference on Ambient Systems, Networks and Technologies (ANT)
April 6-9, 2020, Warsaw, Poland

Queue based Vehicular Ad Hoc Network Prognostic
Offloading Approach

Sony Guntukaa,*, Elhadi M. Shakshukia, Siddardha Kajaa, Ansar Yasarb

aJodrey School of Computer Science, Acadia University, Wolfville, Nova Scotia, B4P2R6, Canada
bTransportation Research Institute, B-3500 Hasselt, Hasselt University, Belgium

Abstract

Vehicular Ad hoc NETworking (VANET) enables a vehicle to connect with other vehicles and the surrounding
devices such as Road Side Units (RSUs) and base-stations through a wireless network. There are challenging issues
within VANET environment caused by the high demand of Internet access. These issues include an increase in the
vehicle traffic and the necessity of dynamic topologies. Nowadays, the high usage of Internet in vehicles is also
increasing the load on the cellular network base-stations. To alleviate the load from the base-stations, vehicles should
be able to switch the communication between the cellular network and RSUs to offload the data. When a vehicle is
not within the RSU signal range, it is still possible for the vehicle to exchange information using Vehicle-to-Vehicle
(V2V) communication. The main aim of this paper is to predict the vehicles topology, identify multiple offloading
paths and compute the costs of the identified paths. Towards this end, knowledge defined network is utilized. To deal
with connection interruptions in V2V, we develop algorithms for predicting an efficient V2V offloading path using
queues. These algorithms make it possible to reduce the response time, improve the resource management of the
network and helps in efficient service connectivity.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: VANET; RSU; Offloading path; Knowledge Defined Networking

* Corresponding author. Tel.: +19025851524; fax: +19025851067.

E-mail address: 152874g@acadiau.ca

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2020) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

The 11th International Conference on Ambient Systems, Networks and Technologies (ANT)
April 6-9, 2020, Warsaw, Poland

Queue based Vehicular Ad Hoc Network Prognostic
Offloading Approach

Sony Guntukaa,*, Elhadi M. Shakshukia, Siddardha Kajaa, Ansar Yasarb

aJodrey School of Computer Science, Acadia University, Wolfville, Nova Scotia, B4P2R6, Canada
bTransportation Research Institute, B-3500 Hasselt, Hasselt University, Belgium

Abstract

Vehicular Ad hoc NETworking (VANET) enables a vehicle to connect with other vehicles and the surrounding
devices such as Road Side Units (RSUs) and base-stations through a wireless network. There are challenging issues
within VANET environment caused by the high demand of Internet access. These issues include an increase in the
vehicle traffic and the necessity of dynamic topologies. Nowadays, the high usage of Internet in vehicles is also
increasing the load on the cellular network base-stations. To alleviate the load from the base-stations, vehicles should
be able to switch the communication between the cellular network and RSUs to offload the data. When a vehicle is
not within the RSU signal range, it is still possible for the vehicle to exchange information using Vehicle-to-Vehicle
(V2V) communication. The main aim of this paper is to predict the vehicles topology, identify multiple offloading
paths and compute the costs of the identified paths. Towards this end, knowledge defined network is utilized. To deal
with connection interruptions in V2V, we develop algorithms for predicting an efficient V2V offloading path using
queues. These algorithms make it possible to reduce the response time, improve the resource management of the
network and helps in efficient service connectivity.

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Conference Program Chairs.

Keywords: VANET; RSU; Offloading path; Knowledge Defined Networking

* Corresponding author. Tel.: +19025851524; fax: +19025851067.

E-mail address: 152874g@acadiau.ca

2 Author name / Procedia Computer Science 00 (2018) 000–000

1. Introduction

Vehicular Ad hoc NETworking (VANET) facilitate the communication between vehicles and the Internet. The
increasing demand of accessing Internet whenever and wherever is high; thereby, increasing data load on the cellular
network base-stations. To reduce the load from the base-stations and satisfy the increasing demand for the Internet,
a dedicated short-range communication (DSRC) network is used, which are fixed on the roadside called Road Side
Units (RSUs). The deployment of RSUs improve the communication between moving vehicles and the Internet.
Typically, vehicles communicate with other entities of the infrastructure through RSUs are called Vehicle-to-
Infrastructure (V2I) communication. Vehicles communicate with each other directly using DSRC through On Board
Units (OBU) called Vehicle-to-Vehicle (V2V) communication, as shown in Fig. 1. Vehicles continue to communicate
through cellular networks when there is no RSU signal.

Fig. 1. VANET environment.

VANETs are connected, by default, to cellular network to exchange the data. Whenever the vehicle is in the range

of an RSU, it should switch the connection from cellular network to RSU. The typical signal coverage of an RSU is
approximately one square kilometer [1]. A vehicle can pass a signal range of RSU in no more than two minutes; if
an average vehicle speed of 30 to 40 km/h is assumed. However, there are high chances that a vehicle picks up a high
speed and gets out of the signal range of RSU very quickly. Whenever there is no RSU available for the vehicle to
communicate, the vehicle is connected to the cellular network and the data is carried by the cellular networks; this in
turn increases the data load on base-stations. Offloading reduces the amount of data being carried on the cellular
bands, and consequently freeing bandwidth for other users. There are two cases worth mentioning when offloading
takes place using RSU. The first case when a vehicle is in the signal range of an RSU. The second case when there
exists a V2V path to communicate with an RSU.

1.1 Related Work

Research in the transport network management field and VANET are gaining momentum. Much of this research
considering VANET system level design and also node level design [2,3,4].

Vladyko, A. et.al. [17] proposed an architecture for assisting the ultra-low latency VANET systems using Software
Defined Network (SDN) technology and Mobile Edge Computing (MEC) at Radio Access Network (RAN).
Introducing the combination of SDN and MEC in their architecture, the computation is managed and handled at the
edge of the network which decreases the network congestion at the core network. Their experimental work proved to
achieve better efficiency in terms of packet delivery time and packet loss. For autonomous vehicles, ubiquitous
connectivity is a desirable feature. To achieve this, Aljeri, N. and Boukerche, A. [3] proposed an approach that utilizes
the concept of neural networks. This neural network predicts the vehicles upcoming Access Router (AR) connection.
They claimed that the low computation time and the high prediction accuracy can be achieved. In their approach,
probabilistic neural network [2,10] classification model is used to estimate the next most probable AR transition
given the vehicles mobile characteristics (such as location, direction, and speed). Huang, C. and Wu, Z. [5] presented
the data offloading technique and discussed the VANET architecture using the concept of Mobile Edge Computing
(MEC). The key idea of this architecture is to show how a vehicle can offload its data when there is a V2V offloading
path with k hops to reach an RSU. The presented scenarios are based on the vehicles position from the RSU. In their
work, they discussed how the k-hop V2V offloading path is implemented in these scenarios. As well as, they
introduced the parameter of staying time of the offloading vehicle under an RSU signal coverage. In our proposed

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2020.03.129&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

	 Sony Guntuka et al. / Procedia Computer Science 170 (2020) 584–593� 585
2 Author name / Procedia Computer Science 00 (2018) 000–000

1. Introduction

Vehicular Ad hoc NETworking (VANET) facilitate the communication between vehicles and the Internet. The
increasing demand of accessing Internet whenever and wherever is high; thereby, increasing data load on the cellular
network base-stations. To reduce the load from the base-stations and satisfy the increasing demand for the Internet,
a dedicated short-range communication (DSRC) network is used, which are fixed on the roadside called Road Side
Units (RSUs). The deployment of RSUs improve the communication between moving vehicles and the Internet.
Typically, vehicles communicate with other entities of the infrastructure through RSUs are called Vehicle-to-
Infrastructure (V2I) communication. Vehicles communicate with each other directly using DSRC through On Board
Units (OBU) called Vehicle-to-Vehicle (V2V) communication, as shown in Fig. 1. Vehicles continue to communicate
through cellular networks when there is no RSU signal.

Fig. 1. VANET environment.

VANETs are connected, by default, to cellular network to exchange the data. Whenever the vehicle is in the range

of an RSU, it should switch the connection from cellular network to RSU. The typical signal coverage of an RSU is
approximately one square kilometer [1]. A vehicle can pass a signal range of RSU in no more than two minutes; if
an average vehicle speed of 30 to 40 km/h is assumed. However, there are high chances that a vehicle picks up a high
speed and gets out of the signal range of RSU very quickly. Whenever there is no RSU available for the vehicle to
communicate, the vehicle is connected to the cellular network and the data is carried by the cellular networks; this in
turn increases the data load on base-stations. Offloading reduces the amount of data being carried on the cellular
bands, and consequently freeing bandwidth for other users. There are two cases worth mentioning when offloading
takes place using RSU. The first case when a vehicle is in the signal range of an RSU. The second case when there
exists a V2V path to communicate with an RSU.

1.1 Related Work

Research in the transport network management field and VANET are gaining momentum. Much of this research
considering VANET system level design and also node level design [2,3,4].

Vladyko, A. et.al. [17] proposed an architecture for assisting the ultra-low latency VANET systems using Software
Defined Network (SDN) technology and Mobile Edge Computing (MEC) at Radio Access Network (RAN).
Introducing the combination of SDN and MEC in their architecture, the computation is managed and handled at the
edge of the network which decreases the network congestion at the core network. Their experimental work proved to
achieve better efficiency in terms of packet delivery time and packet loss. For autonomous vehicles, ubiquitous
connectivity is a desirable feature. To achieve this, Aljeri, N. and Boukerche, A. [3] proposed an approach that utilizes
the concept of neural networks. This neural network predicts the vehicles upcoming Access Router (AR) connection.
They claimed that the low computation time and the high prediction accuracy can be achieved. In their approach,
probabilistic neural network [2,10] classification model is used to estimate the next most probable AR transition
given the vehicles mobile characteristics (such as location, direction, and speed). Huang, C. and Wu, Z. [5] presented
the data offloading technique and discussed the VANET architecture using the concept of Mobile Edge Computing
(MEC). The key idea of this architecture is to show how a vehicle can offload its data when there is a V2V offloading
path with k hops to reach an RSU. The presented scenarios are based on the vehicles position from the RSU. In their
work, they discussed how the k-hop V2V offloading path is implemented in these scenarios. As well as, they
introduced the parameter of staying time of the offloading vehicle under an RSU signal coverage. In our proposed

586	 Sony Guntuka et al. / Procedia Computer Science 170 (2020) 584–593
 Author name / Procedia Computer Science 00 (2018) 000–000 3

approach, we utilized similar staying time parameter. We also utilized the concept of Knowledge Defined Networking
(KDN) for implementing the Artificial Neural Network (ANN) through the knowledge plane, similar to the work
presented in [7]. The ANN model presented in [7] predicts the network performance for multiple paths identified and
showed the experimental results that the increased performance of KDN based data center. A detailed information
about KDN is provided in [6], and a detailed information about the concept of Knowledge plane in SDN architecture
are provided in [8].

2. The Proposed Approach

This section provides a detailed description of our proposed approach. The road traffic in real time is considered
as a Non-Homogenous Poisson Process (NHPP) [1]. The rate of NHPP is a function of time. In order to reduce the
complexity of the environment, a unidirectional traffic of vehicles is considered. We also considered the vehicle
traffic is homogeneous Poisson process, which is independent of time. To project real time situations, we assume the
signal coverage of the deployed RSUs are not overlapping.

The main focus of our approach is to overcome the challenges with the real time data of the vehicles’ traffic;
specially, the fast-changing topology of the moving vehicles. If we could predict the vehicles position after a certain
time, then we would be able to avoid network delays. It should be noted that RSUs are not programmable. To
introduce the programmability feature at the network level, we therefore need to utilize the concept of Knowledge
Defined Network (KDN). KDN is an advancement of Software Defined Network (SDN) [12,13].

In the SDN architecture, the control and data planes are disaggregated as shown in Fig. 2. The underlying network
infrastructure in data plane is abstracted from the applications. Also, the network intelligence and state are logically
centralized in the control plane. The controller in the control plane exchanges data with the abstracted application
plane and data plane using northbound and southbound interfaces respectively. Knowledge-defined networking is a
networking paradigm that allows users to develop artificial intelligence techniques for network operation and control.
KDN is dependent on SDN to retrieve the usual telemetry and network analytics and introduces the knowledge plane
[14] for network control and management operations.

Fig. 2. Knowledge Defined Network planes [6].

The data plane in the KDN architecture provides all the node level network information. This data along with the

network analytics are fed to the input layer of the neural network in the knowledge plane. The neural network takes
the input data that includes the vehicle parameters received from the Global Positioning System (GPS) [15,16], such
as location, direction and the speed of the vehicle. The output of the neural network is a set of V2V offloading paths.
The link parameters such as bandwidth, transmission latency, etc., are predicted and then the cost of each path [11]
is computed. The cost of the path is determined based on the settings that put forth by the network administrator. We
utilize a queue data structure to save all paths with their corresponding costs after they are sorted. In this process, the
paths and their costs are enqueued by least cost so that the least cost path is dequeued first. The vehicles in the signal
coverage of next RSU are enqueued by staying time [5] of the vehicle so that the vehicle with maximum staying time
is dequeued first. The vehicle with the highest staying time under the next RSU is dequeued and used to build a V2V
path. The staying time is defined as the time a vehicle is expected to stay in the RSU signal range.

2.1. Path Cost Evaluation

The networks’ performance is affected by the path chosen by the network. Various network variables are
considered for computing the path’s cost [13]. The metrics are varied for different networks, because they depend on

4 Author name / Procedia Computer Science 00 (2018) 000–000

the requirements set by the administrator. To this end, we used a neural network in our proposed approach to find the
best V2V offloading path. This is achieved by utilizing queue data structure for the identified V2V paths computed
costs. The following parameters are utilized to calculate the networks’ performance and used by the neural network
for best results.

• Average Bandwidth (BWAVG). If one path contains several links (L1, L2,…, Ln) with the corresponding bandwidth

utilization ratio (BW1, BW2,…, BWn), the available bandwidth ratio of this path can be calculated by the average
of the bandwidths, as follows:

𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴 = 1
𝑛𝑛 ∑ 𝐵𝐵𝐵𝐵𝑖𝑖

𝑛𝑛
𝑖𝑖=1 .

• Hop Count (NUMhops). The hop count refers to the number of intermediate devices, I, through which data must

pass between source and destination. The path with low number of hops is the shortest path and will be the best
path to consider (NUMhops = I-1).

• Transmission Latency (L). The latency of each link, Li, can be calculated as the ratio of the transmitted number of

bytes, Nbytes, to the transmission rate, Trate. The overall latency is the average latencies of all the links.

𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 ,
𝐿𝐿 = 1

𝑛𝑛 ∑ 𝐿𝐿𝑖𝑖
𝑛𝑛
𝑖𝑖=1 .

• Utilization (U). Network utilization is the ratio of current network traffic, Ncurrent, to the maximum traffic, Nmax,

that the port can handle. The maximum utilization of the predicted V2V path is the best path.

𝑈𝑈 = 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

 .

• Throughput (TP): It is the number of information units that can be processed or moved successfully in a designated
amount of time. It can be calculated by use the data size, D, and time, T, as follows:

𝑇𝑇𝑇𝑇 = 𝐷𝐷

𝑇𝑇 .
• Response Time (RT): The time interval that begins with accepting a task or a request, Taccept, to responding, Trespond,

to a task or a request from the server. This can be calculated as follows and should be minimized for best results.

RT = Trespond - Taccept.

• Energy Consumption (EC): An efficient and optimal offloading path reduces the energy consumption as this

makes better utilization of the resources. Energy consumption can be defined as the required amount of energy
for completing a task. The energy consumed by the tasks T1, T2,…, Tn is the average of individual energies
consumed.

𝐸𝐸𝐸𝐸 = 1
𝑛𝑛 ∑ 𝑇𝑇𝑖𝑖

𝑛𝑛
𝑖𝑖=1 .

• Execution Time (ET): The time spent by the system to execute a specific task. This is not the same as a response
time. In our approach, this is related to computing time to identify multiple V2V paths and calculating the cost of
the path and staying time of the vehicle in RSU.

2.2. The Proposed Algorithms

Considering the dynamic behaviour of the vehicle’s location, it is expected that it is possible that there are
connection interruptions in the predicted V2V. It should be noted that the VANET environment that we deal with is
to be predicted after a given time t. In this section, we discuss our proposed algorithms with possible real time
scenarios in mind that may occur in a VANET environment. A V2V path is the path that connects the source vehicle

	 Sony Guntuka et al. / Procedia Computer Science 170 (2020) 584–593� 587
4 Author name / Procedia Computer Science 00 (2018) 000–000

the requirements set by the administrator. To this end, we used a neural network in our proposed approach to find the
best V2V offloading path. This is achieved by utilizing queue data structure for the identified V2V paths computed
costs. The following parameters are utilized to calculate the networks’ performance and used by the neural network
for best results.

• Average Bandwidth (BWAVG). If one path contains several links (L1, L2,…, Ln) with the corresponding bandwidth

utilization ratio (BW1, BW2,…, BWn), the available bandwidth ratio of this path can be calculated by the average
of the bandwidths, as follows:

𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴 = 1
𝑛𝑛 ∑ 𝐵𝐵𝐵𝐵𝑖𝑖

𝑛𝑛
𝑖𝑖=1 .

• Hop Count (NUMhops). The hop count refers to the number of intermediate devices, I, through which data must

pass between source and destination. The path with low number of hops is the shortest path and will be the best
path to consider (NUMhops = I-1).

• Transmission Latency (L). The latency of each link, Li, can be calculated as the ratio of the transmitted number of

bytes, Nbytes, to the transmission rate, Trate. The overall latency is the average latencies of all the links.

𝐿𝐿𝑖𝑖 = 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 ,
𝐿𝐿 = 1

𝑛𝑛 ∑ 𝐿𝐿𝑖𝑖
𝑛𝑛
𝑖𝑖=1 .

• Utilization (U). Network utilization is the ratio of current network traffic, Ncurrent, to the maximum traffic, Nmax,

that the port can handle. The maximum utilization of the predicted V2V path is the best path.

𝑈𝑈 = 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

 .

• Throughput (TP): It is the number of information units that can be processed or moved successfully in a designated
amount of time. It can be calculated by use the data size, D, and time, T, as follows:

𝑇𝑇𝑇𝑇 = 𝐷𝐷

𝑇𝑇 .
• Response Time (RT): The time interval that begins with accepting a task or a request, Taccept, to responding, Trespond,

to a task or a request from the server. This can be calculated as follows and should be minimized for best results.

RT = Trespond - Taccept.

• Energy Consumption (EC): An efficient and optimal offloading path reduces the energy consumption as this

makes better utilization of the resources. Energy consumption can be defined as the required amount of energy
for completing a task. The energy consumed by the tasks T1, T2,…, Tn is the average of individual energies
consumed.

𝐸𝐸𝐸𝐸 = 1
𝑛𝑛 ∑ 𝑇𝑇𝑖𝑖

𝑛𝑛
𝑖𝑖=1 .

• Execution Time (ET): The time spent by the system to execute a specific task. This is not the same as a response
time. In our approach, this is related to computing time to identify multiple V2V paths and calculating the cost of
the path and staying time of the vehicle in RSU.

2.2. The Proposed Algorithms

Considering the dynamic behaviour of the vehicle’s location, it is expected that it is possible that there are
connection interruptions in the predicted V2V. It should be noted that the VANET environment that we deal with is
to be predicted after a given time t. In this section, we discuss our proposed algorithms with possible real time
scenarios in mind that may occur in a VANET environment. A V2V path is the path that connects the source vehicle

588	 Sony Guntuka et al. / Procedia Computer Science 170 (2020) 584–593
 Author name / Procedia Computer Science 00 (2018) 000–000 5

with an RSU through one or more vehicles. The following are some situations that may occur in real time:

• A best-case scenario. In this situation the source vehicle is within the signal coverage of an RSU.
• The source vehicle is not in the signal range of RSU and a V2V offloading path exists.
• The source vehicle is not in the signal range of RSU and the existing V2V offloading path is interrupted. This

situation results into two possible cases.
o Case 1: Path interrupted because of a vehicle not in the RSU signal range.
o Case 2: Path interrupted because of an offloading vehicle within the signal range of RSU.

This approach uses artificial intelligence techniques through neural networks in the network level, which are

programmed using knowledge defined networking. To start with, a data set is given as an input to the neural network,
as shown in Fig. 3. For selecting the input, we consider k-order Markov model [9], which specifies the events to be
considered for predictions. The k-order Markov model assumes that the location of the vehicle at time t depends on
the most recent activity history of the vehicle. Let us consider there are n events happened in the history of a single
vehicle H = {e1, e2, e3, …, en}. The most recent k events are Hk = {en-k+1 en-k+2, en-k+3, …, en}. A random event ei
belongs to Hk which can be represented as ei = {(xi, yi, vi, ti, di) | 1<= i <=k}, where i belongs to [1,n), ti is the time
stamp of the event happened at ti < t , vi is the vehicle speed, and (xi,yi) denotes the coordinates of the vehicle location.
Also, assume a set of vehicles V = {V1, V2, V3, …, Vm} in a segment Sp that are not in the signal coverage of any RSU
and they are using the cellular network to communicate. These vehicles try to connect to the ahead RSU Rp+1, where
m is the total number of vehicles in the segment Sp.

Fig. 3. Basic Neural Network Model.

A sample data set input of the neural network is provided in Table 1. The data set explains the trajectory data

generated by GPS by a specific vehicle. Time is represented by ti, the coordinates of the vehicle (xi,yi) by positions
X and Y, three direction by X, Y, Z, and the speed of the moving vehicle vi by speed in Km/h. (X,Y) is a set such that
each (X,Y)j are the predicted coordinates for a vehicle 𝑉𝑉𝑗𝑗 ∈ 𝑉𝑉. In our approach, we assume it is unidirectional traffic.
Hence, the trajectory probability model with a single motion pattern [16] can be utilized to predict the location of the
vehicle at time t.

Table 1. Sample data set.

Time position X position Y direction X direction Y direction Z Speed in Km/h
1.71573 6798.471191 13262.82959 0.51717782 0 -0.855877995 17.57944508
1.98171 6809.912598 13243.89209 0.51706332 0 -0.855947137 21.99577904
2.0317 6798.479492 13262.81641 0.517216325 0 -0.85585469 18.05904293

2.08171 6809.927246 13243.86768 0.51706332 0 -0.855947137 22.56219463
2.13171 6798.488281 13262.80176 0.51726234 0 -0.855826914 18.52701244

Output layer Hidden layer
2

Hidden layer
1 Input layer

(x
i,

y i,
 v

i,
t i,

 d
i)

V2
V se

t , V
Sp

+
1, (

X,
Y)

6 Author name / Procedia Computer Science 00 (2018) 000–000

Notations:
H – a set of vehicle history events

Hk – set of recent k history events

ei – a random event in Hk

V – set of vehicles

Rp+1 – RSU ahead of vehicle Vj

(xi, yi) – current coordinates of vehicle Vj

vi – current speed of vehicle Vj

ti – time stamp of vehicle Vj at (xi,yi)

(X,Y) – a set of predicted coordinates of all the vehicles in V after time t

(X,Y)j – predicted coordinates of Vj after time t

VSp+1 – a set of vehicles predicted to be in the signal range of Rp+1

Vmax – a vehicle under Rp+1 having highest staying time

S_T – Staying time

QRp+1 – Queue of vehicles in set VSp+1 sorted by staying time

V2Vset – Set of V2V predicted paths

Qpath – Queue of all V2V paths sorted by path cost

VVleastcost – a V2V path with the lowest cost

x – number of V2V predicted paths

Vfailure – interrupted connection of vehicle Vj with Rp+1

Vrepair – reconnecting vehicle Vj with Rp+1

The following describes our proposed algorithms.

Algorithm 1: Vehicle Coordinates Prediction

1. Input: H, V
2. Output: (X,Y)
3. Repeat for each Vj in V // for all the vehicles in V

3.1. Repeat for each Hk in H // for all vehicles’ recent history
3.1.1. For each ej in Hk // for each event in the vehicles’ history

 3.1.1.1. Calculate (X,Y)j = f(xi, yi, vi, ti) // predict vehicle coordinates
 3.1.2. End for
3.2. End for

 4. End for

Algorithm 2: Vehicles’ staying time

1. Input: (X,Y)
2. Output: Vmax in VSp+1 // Vmax is a vehicle with maximum staying time
3. While (Vj is in the range of Rp+1) Do // check if the vehicle in RSU range

3.1. Create a set VSp+1 // create a set to store vehicles under RSU range
3.2. For each Vj in VSp+1 // for all the vehicles in set VSp+1
 3.2.1. Calculate S_T // compute staying times
3.3. End for

	 Sony Guntuka et al. / Procedia Computer Science 170 (2020) 584–593� 589
6 Author name / Procedia Computer Science 00 (2018) 000–000

Notations:
H – a set of vehicle history events

Hk – set of recent k history events

ei – a random event in Hk

V – set of vehicles

Rp+1 – RSU ahead of vehicle Vj

(xi, yi) – current coordinates of vehicle Vj

vi – current speed of vehicle Vj

ti – time stamp of vehicle Vj at (xi,yi)

(X,Y) – a set of predicted coordinates of all the vehicles in V after time t

(X,Y)j – predicted coordinates of Vj after time t

VSp+1 – a set of vehicles predicted to be in the signal range of Rp+1

Vmax – a vehicle under Rp+1 having highest staying time

S_T – Staying time

QRp+1 – Queue of vehicles in set VSp+1 sorted by staying time

V2Vset – Set of V2V predicted paths

Qpath – Queue of all V2V paths sorted by path cost

VVleastcost – a V2V path with the lowest cost

x – number of V2V predicted paths

Vfailure – interrupted connection of vehicle Vj with Rp+1

Vrepair – reconnecting vehicle Vj with Rp+1

The following describes our proposed algorithms.

Algorithm 1: Vehicle Coordinates Prediction

1. Input: H, V
2. Output: (X,Y)
3. Repeat for each Vj in V // for all the vehicles in V

3.1. Repeat for each Hk in H // for all vehicles’ recent history
3.1.1. For each ej in Hk // for each event in the vehicles’ history

 3.1.1.1. Calculate (X,Y)j = f(xi, yi, vi, ti) // predict vehicle coordinates
 3.1.2. End for
3.2. End for

 4. End for

Algorithm 2: Vehicles’ staying time

1. Input: (X,Y)
2. Output: Vmax in VSp+1 // Vmax is a vehicle with maximum staying time
3. While (Vj is in the range of Rp+1) Do // check if the vehicle in RSU range

3.1. Create a set VSp+1 // create a set to store vehicles under RSU range
3.2. For each Vj in VSp+1 // for all the vehicles in set VSp+1
 3.2.1. Calculate S_T // compute staying times
3.3. End for

590	 Sony Guntuka et al. / Procedia Computer Science 170 (2020) 584–593
 Author name / Procedia Computer Science 00 (2018) 000–000 7

3.4. Create/Refresh QRp+1 // create a queue to store vehicle information
3.5. For each Vj in VSp+1 // for all the vehicles in set VSp+1
 3.5.1. Enqueue S_Tj in QRp+1 // insert the vehicle staying time
 3.5.2. Sort QRp+1 from least to highest //sort the queue such that vehicle S_T is maximum
3.6. End for
3.7. Dequeue (QRp+1) as Vmax // get the highest staying time

 4. End while

Algorithm 3: Integral V2V Paths
Input: (X,Y), Vmax
Output: V2Vset // a set of possible V2V paths between Vsource and Vmax

1. For each Vj in V //repeat this for all the vehicles in the segment
1.1 Vsource = Vj //trying the paths from the selected vehicle
1.2 V2Vset = BFS (Vsource, Vmax) //using Breadth First Search for finding the paths

2. End for
3. Create queue Qpath //creating a queue data structure for storing the paths identified
4. For each V2V in V2Vset //repeat this for all the paths in V2Vset

4.1 Compute path cost //calculate the cost of the paths cost=f(BW, L, ET, EC, RT)
4.2 Enqueue (Qpath) //insert the path in the queue

5. End for
6. Qpath = Sort (Qpath) //sorting the paths in the queue based on the cost function values
7. VVleastcost = Dequeue (Qpath) //retrieve the path with least cost from the queue

Algorithm 4: Queue based Offloading
Input: Qpath, QRp+1, VVleastcost, Vmax
Output: Offload(data)

1. While (Qpath<0) Do // for all the V2V paths in the queue
1.1 If (VVleastcost) // least path cost

1.1.1 Connect (Vsource -> Rp+1) // connection established between source vehicle and RSU
1.1.2 Offload (data) // data offloading

1.2 Else
1.2.1 Find (Vfailure) // find the failure node
1.2.2 If (Vfailure equals Vmax) // failure node is a vehicle in the signal range of RSU

1.2.2.1 Vmax = Execute Algorithm 2 // select another vehicle in RSU signal range
1.2.2.2 Repair (Vsource ->Vmax -> Rp+1) // repair the path
1.2.2.3 Offload (data) // data offloading

1.2.3 Else // failure node is a vehicle not in RSU signal range
1.2.3.1 If (Vrepair) // a repair node exists

1.2.3.1.1 Repair (Vsource ->Vrepair -> Vmax -> Rp+1) // repair the path
1.2.3.1.2 Offload (data) // data offloading

1.2.3.2 Else // repair node does not exist
1.2.3.2.1 VVleastcost = Execute Algorithm 3// choose next V2V path with low cost
1.2.3.2.2 Go to Step 2

1.2.3.3 End If
1.2.4 End If

1.3 End If
2 End While

8 Author name / Procedia Computer Science 00 (2018) 000–000

The proposed algorithms are demonstrated and discussed on the following real time scenarios. Consider a vehicle,
Vsource, road segment, Sp, road segment next to Sp is Sp+1, RSU in segment Sp is Rp and next RSU at which the vehicle
Vsource is trying to offload is Rp+1. Vmax is the vehicle in the signal coverage of Rp+1, which is used in V2V offloading
path. Assume we are predicting an offloading path which is about to happen at time t. Fig. 4 shows the environment
that we used to demonstrate the scenarios.

Fig. 4. Test cases scenarios

The best and the worst cases that may occur in real time vehicle traffic are considered and categorized into various
scenarios and discussed. The first and straight forward scenario, which we consider as a simple and best-case scenario,
is when a vehicle Vsource in a road segment Sp is in the signal coverage of RSU Rp . Vehicle Vsource offloads data through
Rp. The second scenario that we considered is when the vehicle Vsource is reaching a point p located in segment Sp+1
in time t (calculated based on direction, location and speed of the vehicle). Vehicle Vsource doesn’t have a direct path
to reach and offload the data to Rp+1, because it is not within RSU signal coverage. But, Vsource can reach Rp+1 using a
V2V offloading path.

 V2V = Vsource -> V1 -> V2 -> V3 -> … -> Vmax -> Rp+1

The third scenario is when the vehicle Vsource is reaching a point p located in segment Sp+1 in time t. Vehicle Vsource
doesn’t have a direct path to reach and offload the data through Rp+1, because Vsource is not within the RSU signal
coverage. But, Vsource can reach Rp+1 using a V2V offloading path. In this scenario, there are three possible cases that
may happen and categorized based on the connection that interrupting the vehicle, as follows:

- The predicted offloading path doesn’t work when a vehicle Vj between Vsource and Vmax is interrupting the path.
A vehicle Vrepair exists between these two vehicles to repair the path and maintain the communication.

- The predicted offloading path doesn’t work when a vehicle Vj between Vsource and Vmax is interrupting the path
and there is no other vehicle Vrepair exists between these two vehicles to repair the path. In this case, the least
cost path VVleastcost stored in the queue Qpath is dequeued as the offloading path.

- The predicted offloading path doesn’t work when the vehicle Vmax is interrupting the path. In this case, the
vehicle with maximum staying time under the RSU Rp+1 which is the next available vehicle in the queue QRp+1
is to be considered as Vmax for offloading.

3. Implementation

In this section, we describe the VANET environment used in our proposed approach. To demonstrate the
operations of the proposed algorithms presented in this paper, we used Vehicular network simulation (Veins)
framework. In the following, we discuss the simulation methodologies, the simulation configuration, and show some
results.

3.1. Simulation Methodologies

For simulation purposes, we utilized OMNET++ due to its domain specific nature for supporting wireless ad hoc
networks. An open source framework Veins is used for VANET network simulations. The Veins framework makes

	 Sony Guntuka et al. / Procedia Computer Science 170 (2020) 584–593� 591
 Author name / Procedia Computer Science 00 (2018) 000–000 7

3.4. Create/Refresh QRp+1 // create a queue to store vehicle information
3.5. For each Vj in VSp+1 // for all the vehicles in set VSp+1
 3.5.1. Enqueue S_Tj in QRp+1 // insert the vehicle staying time
 3.5.2. Sort QRp+1 from least to highest //sort the queue such that vehicle S_T is maximum
3.6. End for
3.7. Dequeue (QRp+1) as Vmax // get the highest staying time

 4. End while

Algorithm 3: Integral V2V Paths
Input: (X,Y), Vmax
Output: V2Vset // a set of possible V2V paths between Vsource and Vmax

1. For each Vj in V //repeat this for all the vehicles in the segment
1.1 Vsource = Vj //trying the paths from the selected vehicle
1.2 V2Vset = BFS (Vsource, Vmax) //using Breadth First Search for finding the paths

2. End for
3. Create queue Qpath //creating a queue data structure for storing the paths identified
4. For each V2V in V2Vset //repeat this for all the paths in V2Vset

4.1 Compute path cost //calculate the cost of the paths cost=f(BW, L, ET, EC, RT)
4.2 Enqueue (Qpath) //insert the path in the queue

5. End for
6. Qpath = Sort (Qpath) //sorting the paths in the queue based on the cost function values
7. VVleastcost = Dequeue (Qpath) //retrieve the path with least cost from the queue

Algorithm 4: Queue based Offloading
Input: Qpath, QRp+1, VVleastcost, Vmax
Output: Offload(data)

1. While (Qpath<0) Do // for all the V2V paths in the queue
1.1 If (VVleastcost) // least path cost

1.1.1 Connect (Vsource -> Rp+1) // connection established between source vehicle and RSU
1.1.2 Offload (data) // data offloading

1.2 Else
1.2.1 Find (Vfailure) // find the failure node
1.2.2 If (Vfailure equals Vmax) // failure node is a vehicle in the signal range of RSU

1.2.2.1 Vmax = Execute Algorithm 2 // select another vehicle in RSU signal range
1.2.2.2 Repair (Vsource ->Vmax -> Rp+1) // repair the path
1.2.2.3 Offload (data) // data offloading

1.2.3 Else // failure node is a vehicle not in RSU signal range
1.2.3.1 If (Vrepair) // a repair node exists

1.2.3.1.1 Repair (Vsource ->Vrepair -> Vmax -> Rp+1) // repair the path
1.2.3.1.2 Offload (data) // data offloading

1.2.3.2 Else // repair node does not exist
1.2.3.2.1 VVleastcost = Execute Algorithm 3// choose next V2V path with low cost
1.2.3.2.2 Go to Step 2

1.2.3.3 End If
1.2.4 End If

1.3 End If
2 End While

8 Author name / Procedia Computer Science 00 (2018) 000–000

The proposed algorithms are demonstrated and discussed on the following real time scenarios. Consider a vehicle,
Vsource, road segment, Sp, road segment next to Sp is Sp+1, RSU in segment Sp is Rp and next RSU at which the vehicle
Vsource is trying to offload is Rp+1. Vmax is the vehicle in the signal coverage of Rp+1, which is used in V2V offloading
path. Assume we are predicting an offloading path which is about to happen at time t. Fig. 4 shows the environment
that we used to demonstrate the scenarios.

Fig. 4. Test cases scenarios

The best and the worst cases that may occur in real time vehicle traffic are considered and categorized into various
scenarios and discussed. The first and straight forward scenario, which we consider as a simple and best-case scenario,
is when a vehicle Vsource in a road segment Sp is in the signal coverage of RSU Rp . Vehicle Vsource offloads data through
Rp. The second scenario that we considered is when the vehicle Vsource is reaching a point p located in segment Sp+1
in time t (calculated based on direction, location and speed of the vehicle). Vehicle Vsource doesn’t have a direct path
to reach and offload the data to Rp+1, because it is not within RSU signal coverage. But, Vsource can reach Rp+1 using a
V2V offloading path.

 V2V = Vsource -> V1 -> V2 -> V3 -> … -> Vmax -> Rp+1

The third scenario is when the vehicle Vsource is reaching a point p located in segment Sp+1 in time t. Vehicle Vsource
doesn’t have a direct path to reach and offload the data through Rp+1, because Vsource is not within the RSU signal
coverage. But, Vsource can reach Rp+1 using a V2V offloading path. In this scenario, there are three possible cases that
may happen and categorized based on the connection that interrupting the vehicle, as follows:

- The predicted offloading path doesn’t work when a vehicle Vj between Vsource and Vmax is interrupting the path.
A vehicle Vrepair exists between these two vehicles to repair the path and maintain the communication.

- The predicted offloading path doesn’t work when a vehicle Vj between Vsource and Vmax is interrupting the path
and there is no other vehicle Vrepair exists between these two vehicles to repair the path. In this case, the least
cost path VVleastcost stored in the queue Qpath is dequeued as the offloading path.

- The predicted offloading path doesn’t work when the vehicle Vmax is interrupting the path. In this case, the
vehicle with maximum staying time under the RSU Rp+1 which is the next available vehicle in the queue QRp+1
is to be considered as Vmax for offloading.

3. Implementation

In this section, we describe the VANET environment used in our proposed approach. To demonstrate the
operations of the proposed algorithms presented in this paper, we used Vehicular network simulation (Veins)
framework. In the following, we discuss the simulation methodologies, the simulation configuration, and show some
results.

3.1. Simulation Methodologies

For simulation purposes, we utilized OMNET++ due to its domain specific nature for supporting wireless ad hoc
networks. An open source framework Veins is used for VANET network simulations. The Veins framework makes

592	 Sony Guntuka et al. / Procedia Computer Science 170 (2020) 584–593
 Author name / Procedia Computer Science 00 (2018) 000–000 9

the vehicular network simulations as realistic as possible. We are using Veins with a road traffic simulator Simulation
of Urban Mobility (SUMO). SUMO is an open source which is designed to handle large road networks. This
combination of OMNET++ with Veins and SUMO helps us to demonstrate our proposed algorithms.

3.2. Simulation Configurations

Our simulation is conducted within the OMNET++ 5.5.1 environment with INET framework in a windows 10
operating system. The system is running on a laptop with Intel(R) Core (TM) i5-8250U CPU @ 1.60GHz and 8-GB
RAM. To demonstrate our simulation, we have implemented the possible situations in OMNET++ 5.5.1. The default
VANET environment configured using Veins with SUMO frameworks includes a set of vehicles, a base station and
an RSU.

3.3. Simulation Results

This section provides some results produced from the proposed algorithms, using predefined input data. When our
proposed algorithms are utilized in the network, they provided an immediate backup in terms of task and resource
management. The algorithm identifies multiple V2V offloading paths to reach an RSU, which reduces the load on
the base station. When the selected path is identified to interrupt the connection between the vehicle and the RSU,
the next V2V path with least path cost residing in the queue is executed.

The vehicles v8, v9 and v10 shown in Fig. 5. are in the signal range of the RSU. All other vehicles are using the
cellular network base station. The data offloading from source vehicle to RSU through wireless networks using V2V
communication is demonstrated in the simulations. The resource management and service connectivity of the vehicles
in the network are expected to be more efficient when using these proposed algorithms.

Fig. 5. VANET Environment in OMNET++

4. Conclusions and Future work

In this paper, we have introduced the concept of neural networks for predicting a V2V offloading path which is
programmed in the Knowledge Plane of Knowledge Defined Network. Several algorithms are proposed for predicting
data offloading from a source vehicle to the next available RSU. These algorithms include predicting the coordinates
of the vehicles, computing the staying times of vehicles under an RSU, identifying the possible V2V offloading paths,
and to handle the connection interruptions. The beacon information of the vehicles such as vehicles location, direction
and speed are considered, and the vehicles’ position is determined after a certain time frame. This information is used
to predict the fast-changing topology of the vehicles in advance. Also, the multiple paths of offloading are predicted.
Two queues were introduced one to store all offloading paths that are sorted based on the path cost and the other one
to store the vehicles in the signal coverage of the RSU to offload the data that are sorted based on staying time. These
queues in the network reduced the computation time when the connection is interrupted while offloading. Our

10 Author name / Procedia Computer Science 00 (2018) 000–000

proposed approach is demonstrated all the possible real time scenarios. The scenarios are also implemented using
OMNET++ IDE with SUMO and Veins network simulations. Predicting the offloading path made the resource
allocation for the future tasks much easier to handle. Also, a continuous service connectivity is considered and
expected when using the proposed approach. In the future, we plan to implement our proposed approach using
different neural network techniques and make some comparisons with real collected and distributed data. We also
plan to enhance our proposed algorithms with more analyses. We will consider utilizing the combination of different
parameters such as bandwidth, latency and other possible parameters that help to predict an efficient path.

References
[1] Yujie Tang, Nan Cheng, Wen Wu and Other (2019) “Delay-Minimization Routing for Heterogeneous VANETs

With Machine Learning Based Mobility Prediction” IEEE Transactions on Vehicular Technology 68 (4): 3967-
3979.

[2] Chen, B.-H., & Huang, S.-C. (2015) “Probabilistic neural networks based moving vehicles extraction algorithm
for intelligent traffic surveillance systems” Information Sciences 299 :283-295.

[3] Noura Aljeri and Azzedine Boukerche (2019) “A Probabilistic Neural Network-Based Road Side Unit
Prediction Scheme for Autonomous Driving” ICC 2019 - 2019 IEEE International Conference on
Communications (ICC) 1-6.

[4] Sara Mehar, Sidi Mohammed Senouci and Others (2015) “An Optimized Roadside Units (RSU) placement for
delay-sensitive applications in vehicular networks” 2015 12th Annual IEEE Consumer Communications and
Networking Conference (CCNC) 121 – 127.

[5] Chung-Ming Huang, Zhong-You Wu (2019) “The Mobile Edge Computing (MEC)-based VANET Data
Offloading using the Staying-Time oriented k-hop away Offloading Agent” 2019 International Conference on
Information Networking (ICOIN) 357-362.

[6] Albert Mestres, Alberto Rodriguez-Natal and Others (2017) “Knowledge-Defined Networking” ACM
SIGCOMM Computer Communication Review 47 (3): 2-10.

[7] Alex M. R. Ruelas, Christian E. Rothenberg (2019) “Load balancing method for KDN-based data center using
neural network” Universidad de Lima 87-97.

[8] David D. Clark, Craig Partridge, J. Christopher Ramming and John T. Wroclawski (2003) “A Knowledge Plane
for the Internet” SIGCOMM '03 Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications 3-10.

[9] Christine Cheng, Ravi Jain (2003) “Location prediction algorithms for mobile wireless systems” Wireless
internet handbook 245-263.

[10] Specht, D.F (1990). “Probabilistic neural networks” Neural networks 3 (1): 109-118.
[11] U-Chupala, P., Ichikawa, K., Iida, H., Kessaraphong, N., Uthayopas, P., and Others (2014) “Application-

Oriented Bandwidth and Latency Aware Routing with Open Flow Network” 2014 IEEE 6th International
Conference on Cloud Computing Technology and Science 775-780.

[12] Open Networking Foundation (2012) “Software-Defined Networking: The New Norm for Networks” ONF
white paper.

[13] Ali Akbar Neghabi, Nima Jafari Navimipour and Others (2019) “Nature‐inspired meta‐heuristic algorithms for
solving the load balancing problem in the software‐defined network” International Journal of Communication
Systems 32 (4): 1-26.

[14] David D. Clark, Craig Partridge, J. Christopher Ramming and John T. Wroclawski (2003) “A Knowledge Plane
for the Internet” SIGCOMM '03 Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications 3-10.

[15] J. Ghosh, M. J. Beal, H. Q. Ngo, and C. Qiao (2006) “On profiling mobility and predicting locations of wireless
users” Proceeding REALMAN '06 Proceedings of the 2nd international workshop on Multi-hop ad hoc
networks: from theory to reality 55-62.

[16] Lei-lei Wang, Zhi-gang Chen, Jia Wu (2019) “Vehicle trajectory prediction algorithm in vehicular network”,
Wireless Networks 25 (4): 2143–2156.

[17] Andrei Vladyko, Abdukodir Khakimov, Ammar Muthanna, Abdelhamied A. Ateya and Andrey Koucheryavy
(2019) “Distributed Edge Computing to Assist Ultra-Low-Latency VANET Applications” Special
Issue Vehicle-to-Everything (V2X) Communication for Intelligent Transportation Systems (ITS) 11 (6): 128.

	 Sony Guntuka et al. / Procedia Computer Science 170 (2020) 584–593� 593
 Author name / Procedia Computer Science 00 (2018) 000–000 9

the vehicular network simulations as realistic as possible. We are using Veins with a road traffic simulator Simulation
of Urban Mobility (SUMO). SUMO is an open source which is designed to handle large road networks. This
combination of OMNET++ with Veins and SUMO helps us to demonstrate our proposed algorithms.

3.2. Simulation Configurations

Our simulation is conducted within the OMNET++ 5.5.1 environment with INET framework in a windows 10
operating system. The system is running on a laptop with Intel(R) Core (TM) i5-8250U CPU @ 1.60GHz and 8-GB
RAM. To demonstrate our simulation, we have implemented the possible situations in OMNET++ 5.5.1. The default
VANET environment configured using Veins with SUMO frameworks includes a set of vehicles, a base station and
an RSU.

3.3. Simulation Results

This section provides some results produced from the proposed algorithms, using predefined input data. When our
proposed algorithms are utilized in the network, they provided an immediate backup in terms of task and resource
management. The algorithm identifies multiple V2V offloading paths to reach an RSU, which reduces the load on
the base station. When the selected path is identified to interrupt the connection between the vehicle and the RSU,
the next V2V path with least path cost residing in the queue is executed.

The vehicles v8, v9 and v10 shown in Fig. 5. are in the signal range of the RSU. All other vehicles are using the
cellular network base station. The data offloading from source vehicle to RSU through wireless networks using V2V
communication is demonstrated in the simulations. The resource management and service connectivity of the vehicles
in the network are expected to be more efficient when using these proposed algorithms.

Fig. 5. VANET Environment in OMNET++

4. Conclusions and Future work

In this paper, we have introduced the concept of neural networks for predicting a V2V offloading path which is
programmed in the Knowledge Plane of Knowledge Defined Network. Several algorithms are proposed for predicting
data offloading from a source vehicle to the next available RSU. These algorithms include predicting the coordinates
of the vehicles, computing the staying times of vehicles under an RSU, identifying the possible V2V offloading paths,
and to handle the connection interruptions. The beacon information of the vehicles such as vehicles location, direction
and speed are considered, and the vehicles’ position is determined after a certain time frame. This information is used
to predict the fast-changing topology of the vehicles in advance. Also, the multiple paths of offloading are predicted.
Two queues were introduced one to store all offloading paths that are sorted based on the path cost and the other one
to store the vehicles in the signal coverage of the RSU to offload the data that are sorted based on staying time. These
queues in the network reduced the computation time when the connection is interrupted while offloading. Our

10 Author name / Procedia Computer Science 00 (2018) 000–000

proposed approach is demonstrated all the possible real time scenarios. The scenarios are also implemented using
OMNET++ IDE with SUMO and Veins network simulations. Predicting the offloading path made the resource
allocation for the future tasks much easier to handle. Also, a continuous service connectivity is considered and
expected when using the proposed approach. In the future, we plan to implement our proposed approach using
different neural network techniques and make some comparisons with real collected and distributed data. We also
plan to enhance our proposed algorithms with more analyses. We will consider utilizing the combination of different
parameters such as bandwidth, latency and other possible parameters that help to predict an efficient path.

References
[1] Yujie Tang, Nan Cheng, Wen Wu and Other (2019) “Delay-Minimization Routing for Heterogeneous VANETs

With Machine Learning Based Mobility Prediction” IEEE Transactions on Vehicular Technology 68 (4): 3967-
3979.

[2] Chen, B.-H., & Huang, S.-C. (2015) “Probabilistic neural networks based moving vehicles extraction algorithm
for intelligent traffic surveillance systems” Information Sciences 299 :283-295.

[3] Noura Aljeri and Azzedine Boukerche (2019) “A Probabilistic Neural Network-Based Road Side Unit
Prediction Scheme for Autonomous Driving” ICC 2019 - 2019 IEEE International Conference on
Communications (ICC) 1-6.

[4] Sara Mehar, Sidi Mohammed Senouci and Others (2015) “An Optimized Roadside Units (RSU) placement for
delay-sensitive applications in vehicular networks” 2015 12th Annual IEEE Consumer Communications and
Networking Conference (CCNC) 121 – 127.

[5] Chung-Ming Huang, Zhong-You Wu (2019) “The Mobile Edge Computing (MEC)-based VANET Data
Offloading using the Staying-Time oriented k-hop away Offloading Agent” 2019 International Conference on
Information Networking (ICOIN) 357-362.

[6] Albert Mestres, Alberto Rodriguez-Natal and Others (2017) “Knowledge-Defined Networking” ACM
SIGCOMM Computer Communication Review 47 (3): 2-10.

[7] Alex M. R. Ruelas, Christian E. Rothenberg (2019) “Load balancing method for KDN-based data center using
neural network” Universidad de Lima 87-97.

[8] David D. Clark, Craig Partridge, J. Christopher Ramming and John T. Wroclawski (2003) “A Knowledge Plane
for the Internet” SIGCOMM '03 Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications 3-10.

[9] Christine Cheng, Ravi Jain (2003) “Location prediction algorithms for mobile wireless systems” Wireless
internet handbook 245-263.

[10] Specht, D.F (1990). “Probabilistic neural networks” Neural networks 3 (1): 109-118.
[11] U-Chupala, P., Ichikawa, K., Iida, H., Kessaraphong, N., Uthayopas, P., and Others (2014) “Application-

Oriented Bandwidth and Latency Aware Routing with Open Flow Network” 2014 IEEE 6th International
Conference on Cloud Computing Technology and Science 775-780.

[12] Open Networking Foundation (2012) “Software-Defined Networking: The New Norm for Networks” ONF
white paper.

[13] Ali Akbar Neghabi, Nima Jafari Navimipour and Others (2019) “Nature‐inspired meta‐heuristic algorithms for
solving the load balancing problem in the software‐defined network” International Journal of Communication
Systems 32 (4): 1-26.

[14] David D. Clark, Craig Partridge, J. Christopher Ramming and John T. Wroclawski (2003) “A Knowledge Plane
for the Internet” SIGCOMM '03 Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications 3-10.

[15] J. Ghosh, M. J. Beal, H. Q. Ngo, and C. Qiao (2006) “On profiling mobility and predicting locations of wireless
users” Proceeding REALMAN '06 Proceedings of the 2nd international workshop on Multi-hop ad hoc
networks: from theory to reality 55-62.

[16] Lei-lei Wang, Zhi-gang Chen, Jia Wu (2019) “Vehicle trajectory prediction algorithm in vehicular network”,
Wireless Networks 25 (4): 2143–2156.

[17] Andrei Vladyko, Abdukodir Khakimov, Ammar Muthanna, Abdelhamied A. Ateya and Andrey Koucheryavy
(2019) “Distributed Edge Computing to Assist Ultra-Low-Latency VANET Applications” Special
Issue Vehicle-to-Everything (V2X) Communication for Intelligent Transportation Systems (ITS) 11 (6): 128.

