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1. Introduction 

The amount of data generated by the vehicles is a real problem for the cellular networks to handle. A lot of research 
is done finding various approaches to offload the vehicles data. It is noted that a modern car generates around 25 
gigabytes of data every hour [17]. According to the expert forecasts in [17], an autonomous vehicle generates up to 
3600 gigabytes of data per hour. Based on the technology evolving every day, we witnessed an increase of 
autonomous vehicles on the road on daily bases. This huge amount of data cannot be processed on the go to act 
accordingly in the real time. In our work, we are interested in making sure that the RSUs communicate with the 
vehicles to process the requested service with an optimal speed given the available bandwidth. 

Vehicular users communicate with the cellular networks. Vehicles may connect through various devices such as 
mobiles, tablets, laptops, etc. The basic need and usage of these devices for applications such as maps for road 
directions, safety messages for the autonomous vehicles, whether conditions, etc. Also, there are data hungry 
applications such as Netflix and Facebook that need continuous flow of data downloads from the cellular networks 
on user demand. This increases the data load on cellular network Base Stations (BSs).  
 
Road-Side Unit is a dedicated short-range communication (DSRC) device for vehicular networks located on the 
roadside that provides connectivity and information support to passing vehicles, including safety warnings and 
traffic information. RSUs also act as access points along the road that provide opportunity for the vehicle to switch 
the network and reduce delays. Software Defined Network (SDN) is a centralized approach to network management, 
where the underlying network infrastructure is abstracted from applications [12,15]. SDN provides choice in 
automation and programmability across data centers, campuses, and wide-area networks, which helps to make 
intelligent decisions. SDN is a promising approach that helps in dynamic optimization processes due to the 
separation of data and control planes [10]. For intelligent decision-making during data offloading, SDN controller 
consists of a priority manager and load balancer [16]. Our idea is to make the user comfortable with seamless 
internet connectivity and Quality of Service. These comforts can be drawn when the load on the cellular stations is 
reduced; hence, the concept of offloading [13]. 
 
The road is split into multiple segments called placeholders. It is expected that a user may use different types of 
applications. All the application service requests are classified into safety and non-safety applications [3].  Safety 
applications include the messages for automotive safety such as accident warnings. Safety application requests are 
always given top priority to communicate important details and warnings faster and to avoid accidents. 

2. Related Work 

A centralized routing scheme for end-to-end unicast communication in VANET is discussed in [19]. The proposed 
routing scheme has the prediction capability and selects the optimal routing path based on the global information. To 
adapt to the dynamic changing network topologies, the proposed routing scheme can choose either Vehicle-to-
Infrastructure (V2I) or Vehicle-to-Vehicle (V2V) communication. In [25], the authors proposed a new framework of 
mobile edge cloud-based vehicular networks. Based on the framework, the time consumption and the off-loading 
cost of various transmission modes are discussed. The authors in [25] also designed a task-file transmission strategy 
with predictive V2V relay and an optimal predictive combination-mode off-loading scheme. The authors in 
[22,23,24] proposed different architectures to adopting SDN and Mobile Edge Computing (MEC) together in the 
VANET environment to increase overall network reliability and scalability under high traffic density conditions. 
The authors in [4] presented a survey of Machine Learning (ML) approaches applied to SDN. In the survey a 
detailed background knowledge of SDN with an overview of ML algorithms are also discussed. The authors have 
shown how both ML algorithms works together on the perspective of traffic classification, routing optimization, 
QoS prediction, resource management and security. The need for MEC to integrate it with the network is discussed 
in [5]. A solution towards how this integration technology coexists with Long Term Evolution (LTE) to advance the 
future of 5G network is presented in [5]. The authors in [8] investigated the synergy between centralized and 
decentralized (i.e., ad hoc) data scheduling in vehicular ad hoc networks (VANETs) for offloading and balancing the 



	 Sony Guntuka  et al. / Procedia Computer Science 177 (2020) 151–161� 153
 Guntuka et al./ Procedia Computer Science 00 (2018) 000–000  3 

workloads of roadside units (RSU) in bidirectional road scenarios. They also proposed an algorithm using three 
mechanisms including a centralized scheduling mechanism at each RSU, an ad hoc scheduling mechanism for 
vehicles, and a cluster management mechanism. 
 
Machine learning is playing an important role in every field making human work look effortless and faster. The 
applications of machine learning have attracted a lot of networking researchers too. In [18], the authors proposed a 
data-driven approach for implementing an artificial intelligent model for vehicular traffic behavior prediction. In this 
model, the combination of Software Defined Vehicular Network (SVDN) architecture with the machine learning 
algorithms to model the traffic flow efficiently is introduced. This was achieved by introducing an ingenious 
approach to find congestion sensitive spots in the VANET by means of clustering algorithm and then predicting the 
future traffic densities for each spot by recurrent neural networks (RNNs). A protocol is proposed in [21] to store the 
data in VANETs by transferring data to a new carrier (vehicle) before the current data carrier is moving out of a 
specified region. In addition, a reinforcement learning-based algorithm is used to consider the future reward of a 
decision. For data collection, the protocol uses a cluster-based forwarding approach to improve the efficiency of 
wireless resource utilization. In [2], the authors developed an artificial agent and deployed at the RSU, which will 
learn a scheduling policy from high-dimensional continuous inputs using end-to-end deep reinforcement learning. A 
detailed comparison among four machine learning classifiers, namely: Support Vector Machine, C4.5 decision tree, 
Naïve Bays and Bayes Net classifiers is performed when experimentally applied on a captured network traffic 
dataset [6]. Similar approaches were adapted and presented in [6] and [7]. In these works, to predict the vehicle 
positions, the authors experimented with machine learning techniques, including K Nearest Neighbors (KNN), 
Support Vector Machine (SVM) and Random Forest. A distributed Q-learning algorithm in which each cellular user 
learns about his local environment and selects the best base station after reaching convergence is proposed in [11]. 
The authors of [11] introduced a new reward parameter which considers the load of each detected base station, the 
duration of the vertical handover, the offered gain, as well as the achieved signal-to-interference-plus-noise ratio. 
The issues and challenges that are faced by many developers to implement applications using RL methods is 
discussed in [20]. They discussed several issues that are related to dynamic network access, data rate control, 
wireless caching, data offloading, network security, and connectivity preservation which are all important to next 
generation networks, such as 5G and beyond.  

3. The Proposed Approach 

This section discusses our proposed approach on a real time urban traffic environment. This environment is 
considered as Heterogeneous Vehicular Network (HVN), which means the amount of traffic on the road changes 
from time to time. For example, the vehicle traffic on the road between 8:00 a.m. to 10:00 a.m. is very high as 
compared to the traffic during noon time. We are considering these times to improve our proposed algorithm. Figure 
1 shows the HVN environment with multiple RSUs, Mobile Edge Computing (MEC) servers, SDN controller, 
Cloud, and Vehicles.  
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Fig. 1. RSU-MEC environment. 

 
In our approach, we divide the road into segments called placeholders. Each placeholder in this network is in the 
signal coverage of one or more RSUs. The SDN controller within the network communicates with vehicles through 
Mobile Edge Computing servers. One of the important actions that SDN Controller must do is to rank the RSUs 
using RL mechanisms. To make sure all the nodes in the network are connected and make the RSUs intelligent, we 
utilize Mobile Edge Computing servers [9]. Each RSU is connected to a MEC server. All the MEC servers are 
connected to the SDN controller and Cloud. This approach provides low latency, location awareness, emergency 
management, caching, content discovery, and computation. It also improves the quality of services since it is at the 
proximity to vehicles, and it is used for real-time interaction. The SDN controller performs the RL related 
computation, while the MEC servers perform the real-time traffic data processing during peak hours of traffic. This 
makes the data flows easy and reduces the latency. In our approach, we consider low latency is very important 
because the safety application messages require quick services. 
 
Whenever there is a vehicle passing from one placeholder to another, the RSU communicates with the MEC server 
with the vehicles real-time data. The real-time data of a vehicle includes its current geographical position, speed, and 
direction. This information is utilized by the MEC server to choose the next placeholder of the vehicle. This is when 
MEC server need to choose an RSU for the vehicle to offload the data.  
 
The Q-Learning module in the SDN controller learns from the data at predefined times during the day when the 
traffic is low. This module ranks each RSU with respect to the corresponding placeholder. Ranking is performed 
based on the rewards gained by the RSU. This happens when a vehicle is successfully connected and maintained 
throughout its time in the placeholder. The MEC server stores the information of the placeholders and their 
respective RSUs in their ranking order. Each placeholder (Ph) information is represented by a segment tuple with 
Ids and a list of the corresponding RSUs, as shown in Fig. 2. 

 
Ph Id RSU1 RSU2 … RSUn-1 RSUn 

 
Fig. 2. Placeholder segment tuple. 

 
An RSU serving a vehicle in a placeholder communicates with MEC server. Based on the location, speed, and 
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direction of the vehicle from the RSU, the MEC server will retrieve the segment tuple of the placeholder and check 
for the top ranked RSU. If the top ranked RSU is not overloaded, then the vehicle is connected to the RSU as soon 
as it enters the placeholder. If the top ranked RSU is beyond the threshold load, then the next highest rank RSU is 
chosen to connect to the vehicle. 
 
3.1. Scenarios 
 
In contrast to the existing ANDSF-based WLAN offloading in the Evolved Packet System (EPS) [1] that chooses 
the minimal distance RSU, our proposed architecture consists of RL mechanism in SDN controller. It is designed to 
choose an optimal RSU among the available ones, using the reward computed by the Q-Learning module. Here, an 
optimal RSU selection depends upon the connectivity with the vehicle in a placeholder. The key for an RSU to 
receive a reward value depends on the variable Connection Time (Ct). Ct is defined as the time difference between 
the time when an RSU and vehicle are connected and disconnected. Based on the user application request, the 
priority of offloading is chosen, and then a placeholder is selected with the reward values calculated for the local 
RSUs. By calculating the reward values of all available RSUs, a vehicle V selects the RSU with maximal reward 
value. In the following we adapt the algorithms proposed in our previous work [10] for VANET and we show 
different cases that are considered and handled by our approach: 
 
Notations for scenarios: 
 

V – Set of vehicles 
R – Set of RSUs 
PH – Set of placeholders 
Vi – Vehicle at a position 
PHc – Current placeholder of the vehicle 
PHc-1, PHc+1 – neighbouring placeholders of PHc 
VPHc – Vehicles in the current placeholder PHc 
n – number of vehicles in current placeholder 
Vin – Vehicle entering the PHc  
Vout – Vehicle exiting PHc 
Srsu – Set of RSUs available under a PHc 
Rk– random RSU in set Srsu 

Rrank – Rank of an RSU 
T – time taken for a vehicle to pass the placeholder 
Ct – connection time of vehicle with RSU in 
placeholder 
ST – Segment Tuple of each PH 
STset – Set of Segment Tuples of all placeholders in PH 
PH[] – Array of RSUs in a PH sorted by ranks 
Th – Threshold load 
s – Speed of the vehicle 
l – Location of the vehicle 
d – Direction of the vehicle 
Rfinal – Chosen RSU to connect with vehicle 
 

 
3.2. Algorithms 
 
This section describes our proposed Smart Ranking based Data Offloading (SRDO) algorithms which is a modified 
version of our previous research work [10]. Algorithm 1 shows how the process of ranking RSUs, while algorithm 2 
demonstrates how the selection of the RSUs is performed.  
 
Algorithm 1: Rewarding RSU 
 

1. Input: V, R, PH 
2. Output: STset 
3. For each Vi in V  // For all the vehicles in set V 

3.1 If (Vi belongs to Vin) // If the vehicle belongs to a set of vehicles entering current placeholder PHc 
3.1.1 Choose Rk // Randomly choose an RSU  
3.1.2 Connect Vi to Rk // Connect the vehicle to the RSU 

3.1.2.1 If (Ct = T) // If the Connection time is same as time taken for the vehicle 
                                                 3.1.2.1.1 Rewardi = reward + 1 //Update reward of RSU when connected 

3.1.2.2 Else If 
                                                 3.1.2.2.1 Rewardi = reward – 1 // Update reward of RSU when disconnected                                                                                                          
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3.1.2.3 Else 
3.1.2.3.1 Rewardi = reward // Update reward of RSU when idle 

3.1.2.4 EndIf 
                            3.1.3 Return Rewardi  // Assign reward value to RSU Rk 
                3.2 EndIf 
                3.3 Map Rk to Ph  // Mapping all the RSUs with the final rewards with Phc 
        4. EndFor 
        5. Sort Ph from high to low  // Sort the RSUs according to ranks and put together as tuple 
 
 
 
Algorithm 2: Selecting RSU in MEC Server 
 

1. Input: V, R, STset 
2. Output: Rfinal 
3. For each Vi in V   // For all the vehicles in set V 

3.1 If ( Vi belongs to Vin ) // If the vehicle belongs to a set of vehicles entering PHc 
                         3.1.1 Find Ph  // Search for the right Ph of Vi using location l, speed s, and direction d  

     from previous RSU 
                         3.1.2 Retrieve ST of PH // Retrieve the Segment tuple computed by SRDO algorithm 
                         3.1.3 For each i in PH // For loop to find the right RSU 
                                  3.1.3.1 If ( Ph[i] < Th ) //If the load on RSU is less than threshold value 

3.1.3.1.1 Connect Vi to Ph [i] // Connect the RSU to Vehicle 
3.1.3.1.2 Offload (Vi)  // Offload the data to RSU 
3.1.3.1.3 Break                // Choose the RSU and exit loop 

3.1.3.2 EndIf 
                         3.1.4 EndFor 
                3.2 ElseIf ( Vi belongs to Vout )   // If the vehicle belongs to a set of vehicles entering PHc 
                          3.2.1 Store (l, s, d)   // Collect vehicle location, speed and direction 
                          3.2.2 Disconnect to RSU in Phc-1 // Disconnect from the existing RSU 
                3.3 Else 

3.4.1 Connect Vi to Rk  // Connect vehicle to random RSU 
                3.4 EndIf 

4. EndFor 
 
 
 
4. Implementation and Results 
 
In this section, we describe the Urban traffic VANET environment with RSU-MEC Architecture proposed in this 
paper. To demonstrate the algorithms presented in our approach, we use an object-oriented discrete event simulator 
Objective Modular Network Testbed in C++ (OMNeT++) [26]. It provides infrastructure and the required tools for 
our planned experiments. 
 
Our experiments are performed on simulated Urban traffic environment. For this purpose, we integrate OMNeT++ 
and Simulation of Urban MObility (SUMO) [27] with Vehicular Network Simulation (Veins) [28]. SUMO is a road 
traffic simulator which we utilized to make our environments as realistic as possible. The proposed SRDO algorithm 
is implemented using a python module utilizing Tensorflow [29]. The output produced from the Python module is 
fed to the MEC Servers. Then, an optimal RSU is chosen from the available RSUs.  
 
For example, a vehicle A in a placeholder P connects to an RSU X. Here, the Q-Learning passes through multiple 
steps to assess the ability of the RSU by rewarding based on its performance. The following are a few cases that are 
discussed to show how the reward is assigned to RSU X. 
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• Case 1: X is connected to A and continues to serve A throughout its time in P. X did maintain the connection 

with A. Hence, X need to be rewarded in this case. 
• Case 2: X is connected to A and disconnected due to some reason such as weak signal range of X. Although X 

is connected and served A for a certain amount of time, the connection is interrupted, and this considered as a 
downside of X. Therefore, in this case, X is initially rewarded and later given a negative reward showing X 
may not the best one in P. 

• Case 3: X is not connected to A due to connection timeout. In this case, there is no connection established 
between X and A. Hence, there is no reward given to X. 

 
 
4.1. Learning module operation 
 
Reinforcement learning mechanism works on trial-and-error approach by assigning reward and penalty for the 
actions taken at each state. We choose a model free policy based RL mechanism called Q-Learning. The elements of 
Q-Learning algorithm are State, Action, Agent and Reward. Each of these elements in our environments are 
explained, as follows: 
 

• State: s	∈ S, where a set of states, S, represents the positions of the vehicle entering the placeholder. 
• Action: Action a belongs to A(s), where the actions are the RSUs with signal range detected in the 

placeholder.  
 A(s) = {R0, R1, R2, R3, …, Rn}, where n is the number of RSUs detected. The vehicle connected to R0 enters 

the current placeholder. So, when A(s) is R0, the vehicle stays connected to R0. If the vehicle selects the next 
action from R1, R2, R3, …, Rn; then, it connects to it.  

• Agent: Let us assume the vehicle connects to different RSUs (R1, R2, R3, R4) in its path to offload data while 
staying in the placeholder. 

• Reward: PH Ratio is calculated for each RSU for a vehicle V that connects within the placeholder P. Based 
on the PH Ratio of each RSU, the reward value is calculated. The ratio of connection time of a vehicle with 
RSU in placeholder and time taken by the vehicle to pass the placeholder. A PH ratio close to one is the best 
case which represents that the RSU is connected to the vehicle throughout its time in the placeholder without 
any interruptions. PH Ratio is calculated using Equation (1). 

 

   (1) 
 

Where, CTrsu represents the amount of time an RSU is chosen and remain intact with the vehicle and Tv is the time 
taken by a vehicle to travel through the placeholder distance. 
 
Q-Learning mainly focuses on maximizing the future reward value to improve the result in the next steps. This way 
an optimal path is determined. Therefore, it finds an optimal policy (s,a) to increase the reward in a short time with 
lesser number of iterations. Here, the next state of the network does not depend on the previous state and the actions 
get executed based on that state. Bellman derived equations which allows us to start solving Markov Decision 
Processes (MDPs). Solving MDPs is a step by step process. Initially, we find a set of possible set of states, S, and 
actions A.  
 
If we start at state s and take an action a, we arrive at state, s`. s` is the new state with probability   and st 
represents the step taken at certain time t.  is the transition probability. It can be defined by Equation (2).  
 

                                                                                             (2) 
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 is the expected reward that we receive when starting in state, s, taking an action a, and moving to state, s`. This 
is represented by Equation (3). 
 

                                                                                       (3) 
 
E is the expected immediate reward. With the help of Equations (2) and (3) in this derivation, we get the state value 
function. Where, the state value function  is represented by Equation (4): 
 

    (4) 
 

ϒ is a discount factor 0<ϒ<1. The discount factor helps getting a finite value for infinite series and it gives greater 
weight to sooner rewards. This way, we get immediate rewards rather than getting the rewards in a later time. A 
smaller value of ϒ gives more accurate results. Equation 5 is used to calculate  for pulling out the first reward. 
 

    (5) 
 
Equation (6) means that we are expecting the return when continued from state, s, by following policy . The sum 
of all the transition probabilities and expected rewards are used to determine the expected immediate reward. Hence, 
the expected reward is calculated using Equation (6). 
 

                            (6) 
 

 
 
The importance of Bellman equation for our approach is that it allows us to express the values of states as values of 
other states. This means that if we know the value of st+1, we can easily calculate the value of st. Q-table will reach 
convergence values in a finite number of episodes in a certain time frame. This state of Q-table with rewards for all 
the RSUs in the placeholder are the optimal values. These finalized values of the RSUs along with their 
placeholder’s information is sent to MEC Servers for further usage in real-time traffic environment. A sample data 
set showing the parameters of Vehicle and RSU which are used for learning is shown in the Table 1. 
 
     Table 1. A sample dataset. 
 

Timestamp Request Size 
(in bytes) 

Vehicle 
Latitude 

Vehicle 
Longitude 

Vehicle 
Speed RSU Latitude RSU Longitude Request 

Received 
Request 

Processed 
8:32:45.126 1470 33.816008N 84.421498W 21.099998 33.826032N 84.424257W Y Y 
8:32:45.127 1470 33.816009N 84.421499W 21.099998 33.826032N 84.424257W Y Y 
8:32:45.128 1470 33.816010N 84.421500W 21.099998 33.826032N 84.424257W Y Y 
8:32:45.129 1470 33.816011N 84.421501W 21.099998 33.826032N 84.424257W Y Y 
8:32:45.130 1470 33.816012N 84.421502W 21.099998 33.826032N 84.424257W Y Y 
8:32:45.131 1470 33.816013N 84.421503W 21.099998 33.826032N 84.424257W Y Y 
8:32:45.132 1470 33.816014N 84.421504W 21.099998 33.826032N 84.424257W Y Y 
8:32:45.133 1470 33.816015N 84.421505W 21.099998 33.826032N 84.424257W Y N 
8:32:45.134 1470 33.816016N 84.421506W 21.099998 33.826033N 84.424250W Y Y 
8:32:45.135 1470 33.816017N 84.421507W 21.099998 33.826033N 84.424250W Y Y 
8:32:45.136 1470 33.816018N 84.421508W 21.099998 33.826033N 84.424250W Y Y 

 
Based on the above dataset in Table 1, each of the requests are received and processed until one point. At this point 
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another RSU takes the request and process it. Based on the Timestamp in the dataset, the total time for an RSU to 
connect and process the requests is determined. In this way, the information of PH Ratios of each RSU in the 
placeholder is used for learning purposes. 
 
4.2. Performance analysis and results 
 
In the evaluation process, our performance metrics considered to achieve a higher QoS are throughput, latency, and 
packet loss. Each of these parameters are defined and explain in the following paragraphs. 
 

• Throughput: A measure to know how much data is offloaded successfully from vehicle to RSU from start to 
end of the connection. Let the packets p1, p2, p3,…, pn are transferred successfully to RSU during times t1, t2, 
t3,…, tn respectively for the packets to be delivered to RSU. The throughput is calculated using Equation (7). 
 

             (7) 
 

• Latency: Time delay for the vehicle to switch the connection from BS to RSU or from one RSU to another 
RSU. Let TE and TA are the expected time and actual time taken by the vehicle to connect with BS or RSU. 
The latency is calculated using Equation (8). 

 

                 (8) 
     

• Packet Loss: We intend to minimize the packet loss to be close to zero, especially for safety messages. 
Difference between the number of data packets sent by source RSU (Ds) to the number of data packets 
received by destination vehicle (Dd). Packet loss is calculated using Equation (19). 
 

                                     (9) 
 

Our goal is to increase the throughput of the network and to minimize the latency and packet loss values. A higher 
throughput proves that the connection between the vehicle and RSU is reliable. The values of the latency and the 
packet loss are indicators to show that by utilizing our proposed approach we expect less delays and loss of data. 
This makes the safety message requests delivered faster. 
 
During our simulations, we utilized the combination of software VEINS, SUMO and OMNET++. We performed 
our experiments on VANET environment shown in Fig. 6. In this figure, we have simulated multiple nodes using 
SUMO; a snapshot is shown in Fig. 7. which represent vehicles moving on a unidirectional road placeholder with a 
traffic signal and then integrated with OMNET++. To obtain this simulation, multiple xml files and a sumo 
configuration file is defined. For this purpose, we have used netedit 1.4.0 which is an in-built application in sumo 
source files. To show the vehicles in the proximity of the RSU components, rsu[0], rus1[0], rsu2[0], rsu3[0] and 
rsu4[0] are designed in NED file and configured in omnetpp configuration settings file. The coordinates returned by 
SUMO and TraCI methods in VEINS are different. Hence, we used an internal method called omnet2traci to show 
the components together as an environment. Other elements used include Cloud, SDN Controller and MEC Servers.  
 
We have defined two variables numSent and numReceived to track the packets of information communicated 
between RSU and Vehicles, as demonstrated in Fig. 8. Initially, applying the equation (10) is used to calculate the 
difference between numSent and numReceived. Later percentage of packet loss is calculated. These values are 
stored in a buffer and saved in vector file of results in the project. 
 
During our experiments, we have calculated the packet loss in TraCIMobility.cc file in VEINS throughout the 
simulation time of 100 seconds. The python module that incorporates all Equations (3-7) are not implemented as of 
this writing. However, to demonstrate the results we have assigned reward values and threshold load for each RSU 
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and stored in MEC Servers during the simulation. Once the MEC Servers acquired information from the python 
module, all the nodes, RSUs and MEC servers communicate using channel switching and continuous beaconing.  
 
Due to the lack of results from other contributions, we have compared our results with our own findings. During this 
experiment, we compared the achieved results with and without using machine learning approach, as shown in Fig. 
3. The red line shows the results without utilizing machine learning, while the blue line shows the results of our 
approach when an RSU is ranked with respect to a road segment utilizing Q-Learning. Unlike the traditional 
approach, our results show a maximum of 7% of packet loss for a very short time and a consistent behavior in the 
performance.  
 

 
Fig. 3. Time vs. packet loss 

 
 
5. Conclusions and Future work 
 
This paper discussed the problem of cellular networks due to Urban traffic environments high data load. A brief 
background on Urban road environment and its infrastructure is also discussed. Our proposed approach is one way 
to relieve the excessive load on cellular networks using Reinforcement learning. A model free policy-based 
reinforcement learning called Q-Learning is utilized to choose the optimal RSU which serves vehicles for longer 
time. For this purpose, we developed an algorithm Smart Ranking based Data Offloading (SRDO) that runs in SDN 
controller at scheduled times. To run this algorithm, roads are divided into multiple segments called placeholders. 
This concept of dividing the road into placeholders gave a prior map for computing and analyzing the geographical 
area. Our experiments are performed by considering a unidirectional road segment. Given the priority to the RSUs 
based on the reward value of each RSUs available, our simulated vehicles chosen the RSU with highest reward 
value. The results have shown a noticeable difference by reducing the percentage of packet loss by 9%. This 
improvement is impacted on the overall network performance by increasing the throughput of the network and 
decreasing the latency time. Our future research includes finding the ideal size of a placeholder to improve our 
results in real time environment. We also plan to improve the efficiency of our algorithms with advanced RL 
techniques such as deep reinforcement learning with double Q-Learning.  
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