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Summary: Given the heterogeneous responses to cancer immunotherapy and the high cost of such treatments,

there is an increasing interest in identifying, using pretreatment variables, patients that would likely benefit from

them. Clearly, the success of such an endeavor will depend on the amount of information that the patient-specific

variables convey about the individual causal treatment effect on the response of interest. In the present work, using

causal inference and information theory, a strategy is proposed to evaluate individual predictive factors for cancer

immunotherapy efficacy. In a first step, the methodology proposes a causal inference model to describe the joint

distribution of the pretreatment predictors and the individual causal treatment effect. Further, in a second step, the

so-called predictive causal information (PCI), a metric that quantifies the amount of information the pretreatment

predictors convey on the individual causal treatment effects, is introduced and its properties are studied. The

methodology is applied to identify predictors of therapeutic success for a therapeutic vaccine in advanced lung

cancer. A user-friendly R library EffectTreat is provided to carry out the necessary calculations.
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1. Introduction

Medicine, as we know it today, is based on the idea of ‘standard care’, which provides

patients with the best treatment for the general population or for the average patient. As

a result, many clinicians use a ‘one size fits all’ approach. Specifically in cancer, patients

are traditionally prescribed a predetermined first-line treatment, taking into account the

indication and the degree of the cancer. However, the sustainability of the ‘one size fits all’

approach is questioned because of the complexity and uniqueness in which each individual

tumor evolves. Therefore, the idea of giving a patient the right medicine at the right dose

at the right time has become the golden dream of medical science in general and oncology

in particular. With recent advances in cancer therapy, precision medicine has played an

increasingly important role in the treatment of this malignancy (Wang andWang, 2017). Now

therapies can be designed to attack cancer cells more precisely through two main methods:

selectively interrupting the pathways necessary for the survival or growth of cancer cells

(targeted therapy) and artificially modulating the immune system of patients to generate a

response against cancer cells (immunotherapy). To drive the transition from a traditional

clinical practice model, precision medicine therapies will also require the joint development

of diagnostic tools and the identification of key predictors to select the optimal treatment for

individual patients (Dugger, Platt and Goldstein, 2018). However, despite recent advances in

medical imaging, biomarkers, genetics and computer science, the difficulty of predicting the

response to treatment of an individual patient remains a major challenge. For successful

development of a drug that is tailored to a biomarker-defined patients, employment of

appropriate statistical tools is paramount.

Attempts have been made to evaluate pretreatment predictors of therapeutic success using

correlational techniques; methods like linear and logistic regression, discriminant analysis

and boosting are often combined with measures of association like odds ratios and Pearson
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correlations for evaluation purposes in this domain (Banerjee et al., 2010; Honda et al., 2014;

Shin et al., 2013; Spielmans et al., 1983; van Loendersloot et al., 2010; Zeller et al., 2014).

Regression models, the most used method, are able to include prognostic and predictive

variables in an interaction with a treatment variable. A statistically significant and large

interaction effect usually indicates potential subgroups that may have different responses to

the treatment. However, this approach often fails to identify the correct subgroups due to

large number of covariates and complex interactions among them. Other proposals to tackle

the problem include tree-based partitioning and machine learning. Lipkovich, Dmitrienko

and Agostino (2017) have made a comprehensive tutorial, Zhang et al. (2018) provide R

codes to implement these methods and Kourou et al. (2015) presented a review of recent

applications relevant to cancer prediction and prognosis.

In addition, another line of research has focused on the development of algorithms that

determine optimal individualized treatment rules (ITR). For instance, Qian and Murphy

(2011) constructed an optimal ITR that maximizes an empirical version of the mean response

conditional on treatment and pretreatment covariates. The conditional mean approximation

requires estimating a prediction model of the relationship between pretreatment prognostic

variables, treatments and clinical outcome. Reduction in the mean response is related to

the excess prediction error, through which an upper bound can be constructed for the mean

reduction of the associated treatment rule. However, it has been argued that by inverting

the model to find the optimal treatment rule, this method emphasizes prediction accuracy

of the clinical response model instead of directly optimizing the decision rule (Zhao et al.,

2012). Zhao et al. (2012) circumvented the need for conditional mean modeling followed

by inversion by directly estimating the decision rule that maximizes clinical response. In

addition, these authors showed that the optimal treatment rule can be estimated within

a weighted classification framework, where the weights are determined from the clinical
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outcomes. Ma, Hobbs and Stingo (2015) provide an overview of statistical methods for

establishing optimal treatment rules for personalized medicine and discuss specific examples

in the contexts of oncology. These authors argued that the utility of these recent advances

has not been fully recognized by the oncological community and that the available statistical

methodology must evolve in order to optimally exploit the information on biomarkers for

personalized cancer medicine.

Most importantly, before embarking on the development of ITRs, the existence problem

should be addressed. Basically, one should determine if it is possible to develop such a rule

based on a given set of pretreatment predictors in the first place. Alonso, Van der Elst

and Molenberghs (2015) introduced a procedure to evaluate a pretreatment predictor of

therapeutic success based on causal inference. Unlike Qian and Murphy (2011) and Zhao

et al. (2012), these authors did not model the expected mean response as a function of

treatment and pretreatment covariates, but focused on directly modeling the individual

causal treatment effect as a function of a univariate pretreatment predictor. The main idea

is to assess if it can actually predict treatment success for a specific patient. Furthermore,

they argued that, rather counter intuitively, studying the association between the putative

predictor and the response variable of interest in groups of patients that either receive or did

not receive the treatment, is not sufficient to answer the relevant scientific question. Actually,

a predictor exhibiting a strong and positive correlation with the most credible outcome to

assess therapeutic success, the so-called true endpoint T , in the new treatment and control

groups, may still carry no information whatsoever on the individual causal treatment effect

on T . Using such a predictor to construct an ITR would be misleading, irrespectively of

the procedure used to do it. A major limitation of their approach is that it can only cope

with univariate pretreatment predictors. In the present work, using causal inference and

information theory, a strategy is proposed to evaluate several individual predictive factors for
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cancer immunotherapy efficacy. In a first step, the methodology proposes a causal inference

model to describe the joint distribution of the pretreatment predictors and the individual

causal treatment effect. Further, in a second step, the so-called predictive causal information

(PCI), a metric that quantifies the amount of information the pretreatment predictors convey

on the individual causal treatment effects, is introduced and its properties are studied. The

identifiably problems associated with the use of causal inference models are approached via

sensitivity analysis.

In Section 2, the causal-inference model underlying the evaluation strategy is introduced.

A new validation metric, the so-called predictive causal information, is proposed in Section 3

where some of its properties are discussed. Some important identifiably issues are studied in

Section 4 and a sensitivity analysis approach is introduced to handle the problem. The case

study is presented and analyzed in Section 7 and some final comments are given in Section 8.

2. A causal inference model

In the following, T will denote the most credible outcome to assess therapeutic success, the

so-called true endpoint, Z the treatment indicator and S = (S1, S2, . . . , Sp)
′ a p-dimensional

vector of putative pretreatment predictors. Rubin’s model for causal inference assumes the

existence, for each patient j, of two potential outcomes for the true endpoint: an outcome T0

that would be observed under the control condition Z = 0 and an outcome T1 that would be

observed under the treatment condition Z = 1. T0 and T1 are potential outcomes in that they

represent the outcomes of the patient had he received the treatment or control, respectively.

Notice that, to simplify notation, the sub-index j has been omitted and this convention will

be adopted throughout the manuscript.

Let us now consider for each patient the response vector Y = (T ′,S′)′ with T = (T0, T1).

In the following, attention will be restricted to continuous outcomes. Although, in general,

the use of only continuous variables may be seen as a limitation, this special case does appear
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in important applications in this area like, for instance, the case study analyzed in this work.

Extensions to more general scenarios are the subject of ongoing research. It will be further

assumed that Y ∼ N (µ,Σ), with

Σ =

 ΣTT ΣTS

ΣST ΣSS

 ,

where

ΣTT =

σT0T0 σT0T1

σT0T1 σT1T1

 , ΣTS =

σT0Sr

σT1Sr

 , ΣSS = (σSrSn) ,

and σTrTn = cov (Tr, Tn) (r, n ∈ {0, 1}), σTnSr = cov (Tn, Sr) (n = 0, 1, r = 1 . . . p), σSrSn =

cov (Sr, Sn) (n, r = 1 . . . p). The variable ∆T = T1 − T0 quantifies the individual causal

treatment effect on the patient and, therefore, studying its relationship with the pretreatment

predictor vector S is at the center of the evaluation strategy. In fact, when deciding on the

appropriateness of an immunotherapy for a given patient one always, implicitly or explicitly,

needs to consider an alternative intervention, for example, the best supportive care or another

immunotherapy also registered for the use in the cancer indication of the patient. In such a

scenario, one needs to compare the potential response of the patient to the immunotherapy

with his potential response if he had received the alternative treatment or control (Z = 0).

The so-called fundamental problem of causal inference states that, often in practice, only one

of T0 and T1 is observed and, consequently, ∆T is not identifiable from the data (Holland,

1986).

Based on ∆T , one can define the expected or average causal treatment effect in the popu-

lation of interest as β = E(∆T ). Rosenbaum and Rubin (1983) provided three identifiability

conditions under which it is possible to obtain consistent estimators of the expected causal

treatment effect. If Y denotes the response of interest and Yz the potential outcome associated

with Z = z then the three identifiability conditions are: 1) Consistency: If Z = z for a
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given subject then Yz = Y for that subject, 2) Conditional exchangeability: This condition

essentially states that there are no unmeasured confounders given data on baseline covariates

L, that is, Yz ⊥ Z|L = l for each possible value z of Z and l of L and 3) Positivity: If fL(l) 6= 0

then fZ|L(z|l) > 0. It can easily be shown that in randomized clinical trials all conditions hold

and the expected causal treatment effect can be estimated as β = E(T |Z = 1)−E(T |Z = 0),

where the conditional expectations are estimated using the observed means in the control and

treated groups, respectively. The methodology proposed in the following sections is based

only on the individual causal treatment effect ∆T and it is valid if consistency holds. Clearly,

if consistency does not hold, then the potential outcomes are ill-defined and the methodology

cannot be applied.

An ITR is given by a map τ : S → Z. An optimal ITR is often defined as a rule that

maximizes the expected value of E (T |Z,S) (Qian and Murphy, 2011; Zhao et al., 2012). In

the present work, the focus is shifted from the conditional expected value of the response

E (T |Z,S) to a model that studies the relationship between ∆T and S. It will also be

illustrated that studying the relationship between S and T , based on the model E (T |Z,S),

may actually say very little about the relationship between ∆T and S. Given that one is

primarily interested in predicting the best treatment for each specific patient, setting the

focus on the individual causal treatment effect seems to be the most natural approach.

To study the relationship between ∆T and S let us consider the vector ψ = (∆T,S′)
′. It

can easily be shown that

ψ =

∆T

S

 = AψY , (1)

where

Aψ =

a1 0′p

A0 Ip

 ,
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with a1 = (−1 1) a 1×2 matrix, 0p a p dimensional zero vector, A0 = (0p 0p) a p×2 matrix

of zeros and Ip a p dimensional identity matrix. From the distributional assumptions for Y

it follows that ψ ∼ N
(
µψ,Σψ

)
, where µψ = (β,µS) and Σψ = AψΣA′ψ with

Σψ =

a1ΣTTa
′
1 a1ΣTS

ΣSTa
′
1 ΣSS

 . (2)

The scalar σ∆T = a1ΣTTa
′
1 = σT0T0 + σT1T1 − 2

√
σT0T0σT1T1 ρT0T1 is the variance of the

individual causal treatment effect ∆T , the 1×p vector a1ΣTS = (σT1Sr − σT0Sr) (r = 1 . . . p)

characterizes the association between ∆T and the pretreatment predictors and the covariance

matrix ΣSS describes the association structure of S. In the following, a validation strategy

will be proposed based on the previous causal inference model.

3. Predictive causal information

The primary objective of this work is to find a vector of pretreatment predictors S that

conveys a substantial amount of information about the individual causal treatment effect

∆T . The mutual information between ∆T and S quantifies the amount of uncertainty in

∆T , expected to be removed if the value of S were known and, under the assumptions

presented in Section 2, it is given by

I (∆T,S) = −1

2
log

(
|Σψ|

|σ∆T ||ΣSS|

)
,

where |A| denotes the determinant of matrix A. Although it seems sensible to use this

measure to quantitatively assess the validity of S, the absence of an upper bound for

I (∆T,S) hinders its interpretation. To solve this problem, we propose to use instead a

normalized version of the mutual information, the so-called, squared informational coefficient

of correlation (SICC) introduced by Linfoot (1957) and Joe (1989)

R2
ψ = 1− e−2I(∆T,S) = 1− |Σψ|

|σ∆T ||ΣSS|
. (3)
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The SICC is always in the interval [0, 1], is invariant under bijective transformations, and

takes value zero if and only if ∆T and S are independent. Moreover, mutual information

approaches infinity when the distribution of (∆T,S) approaches a singular distribution, that

is, R2
ψ ≈ 1 if and only if there exists an approximate functional relationship among ∆T and S

(Joe, 1989). In the following, we will refer to (3) as the predictive causal information (PCI).

Taking into account that |Σψ| = |ΣSS||σ∆T |S| where σ∆T |S = a1ΣTTa
′
1 − a1ΣTSΣ−1

SSΣSTa
′
1

one gets

R2
ψ =

a1ΣTSΣ−1
SSΣSTa

′
1

a1ΣTTa′1
. (4)

Notice further that, using the previous notation, σ∆T |S = σ∆T

(
1−R2

ψ

)
. The following lemma

summarizes some properties of R2
ψ that further justify its use as a validation metric in the

present context.

Lemma 1: Let ψ = (∆T,S′)′ denote the vector containing the individual causal treat-

ment effect on T and the pretreatment predictor vector S with ψ ∼ N
(
µψ,Σψ

)
and Σψ as

given in (2). The coefficient R2
ψ satisfies the following properties

1. R2
ψ is invariant by bijective transformations of ∆T and S

2. 0 6 R2
ψ 6 1

3. R2
ψ = 0 if and only if σT0Sr = σT1Sr for all r = 1, 2 . . . p, where Sr denotes the r component

of S. If homoscedasticity is further assumed, i.e., if σT0T0 = σT1T1 = σT then R2
ψ = 0 if

and only if ρT0Sr = ρT1Sr for all r

4. R2
ψ = 1 if and only if there exists a deterministic relationship between ∆T and S

Moreover, it can easily be shown that R2
ψ is the maximum squared correlation between

∆T and a linear combination of S, i.e., R2
ψ = maxt

[
corr

(
∆T, t

′
S
)]2. Let us now assume

that homocedasticity holds and ρT0Sr = ρT1Sr = γ ≈ 1 for r = 1, . . . , p, that means

all pretreatment predictors are strongly associated with the true endpoint in the control
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and treated groups (this association is typically studied based on model E (T |Z,S)). Item

3 in Lemma 1 shows that, rather counter-intuitively, such a multivariate predictor will

carry no information whatsoever about the individual causal treatment effect ∆T and,

therefore, developing meaningful ITRs based on it would be impossible, irrespectively of the

methodology used for that purpose. These results are a natural extension of those presented

in Alonso, Van der Elst and Molenberghs (2015). Actually, it follows naturally that if p = 1

then R2
ψ = ρ2

ψ, where ρψ = corr (∆T, S) is the coefficient introduced by these authors to

quantify PCI in the univariate case. On the other hand, if the PCI is close to one then ∆T

and S are almost deterministically related and the development of meaningful ITRs is now

within reach. A proof of the lemma can be found in the Web-appendix.

Note that σT0Sr and σT1Sr are the covariances between the potential outcomes for the true

endpoint T and the pretreatment predictors Sr. Under consistency, these covariances could

in principle be estimated using information from patients that received and did not receive

the treatment, respectively.

There are important reasons to move towards multivariate pretreatment predictors as the

following lemma shows.

Lemma 2: Let S∗ = (S′, S∗)
′ be a new (p+1) dimensional predictor of therapeutic

success, constructed by adding a new univariate predictor S∗ to S. Using obvious notation

one has that R2
ψ 6 R2

ψ∗.

Essentially, lemma 2 states that considering more pretreatment predictors can only improve

our capacity to predict the individual causal treatment effect on the true endpoint and,

consequently, multivariate pretreatment predictors are worth pursuing (proof provided in

Web-based Supplementary Materials).
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4. Predictive Causal Information (PCI): Some indentifiability issues

The quantification of PCI, as given by R2
ψ, suffers from some important identifiability issues.

In fact, even though ΣSS is always identifiable and ΣTS is identifiable under the weak

assumption of consistency, the covariance matrix of the potential outcomes ΣTT cannot be

inferred from the data basically because, due to the fundamental problem of causal inference,

the correlation between the potential outcomes ρT0T1 is not estimable, with similar issues

for correlations between potential surrogates.

To overcome this problem two strands of action are possible. First, one can try to define

plausible identifiability conditions based on biological or subject-specific knowledge. For in-

stance, in certain applications it may be plausible to assume that both potential outcomes are

uncorrelated (T0⊥T1). There are, however, some serious problems with this approach. Indeed,

such subject-specific knowledge may not always be available and/or, as the fundamental

problem of causal inference states, these biologically plausible assumptions can neither be

proved nor disproved using data.

A second strategy is to implement a sensitivity analysis in which R2
ψ is estimated across a

fine grid of values for ρT0T1. In a first step, a grid of values G = {g1, g2, . . . , gk} is considered

for the unidentified correlation between the potential outcomes. Next, several Σ matrices

are constructed fixing the identifiable correlations ρT0Sr , ρT1Sr , ρSrSn and variances σT0T0,

σT1T1, σSrSr at their estimated values and considering all the values in G for ρT0T1. From

all the previous Σ matrices only those that are positive-definite are used in the subsequent

step. Finally, R2
ψ is estimated based on these positive-definite matrices. The obtained vector

R2
ψ can intuitively be interpreted as a quantification of PCI across all plausible “realities”,

i.e., across those scenarios where the assumptions made for the unidentified correlation are

compatible with the observed data. Further, the general behavior of R2
ψ can subsequently

be examined by quantifying the variability and the range of its estimates and in this way
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the sensitivity of the results with respect to the unverifiable assumptions can be assessed.

Notice that this approach does not preclude the use of subject-specific knowledge when it

exists. For example, suppose we are comparing two different immunotherapy with the same

specific target, so the correlation between the potential outcomes should be positive, then

the grid G = {0, 0.05, . . . , 0.95} could be used for this correlation when carrying out the

sensitivity analysis. In the present work, the sensitivity analysis approach will be adopted

for the analysis of the case study.

5. Regression approach

As previously stated, the model E (T |Z,S) has played a central role in the methodologies

developed for the evaluation and construction of ITRs. Unlike the previous strategies, the

approach introduced in Section 3 uses individual causal treatment effects as the main building

block for the analysis. However, the newly introduced methodology is intrinsically related to

the model E (T |Z,S) and in the following this relationship will be studied in detail.

When interest is in the evaluation of predictors of therapeutic success, it is natural to allow

for an interaction between the predictors contained in S and the treatment indicator Z thus,

typically, the following model is considered

T = β0 + β1Z +

p∑
k=1

αkSk +

p∑
k=1

γkSkZ + ε. (5)

In model (5) the expected causal treatment effect (ECE) of Z on T , in the population under

study, is given by ECE(S) = β1 +
∑p

k=1 γkSk, i.e., it varies as a function of the pretreatment

predictor S (Gelman and Hill, 2006). The vector of coefficients γ ′ = (γ1, γ2, . . . , γp) fully cap-

tures the relationship between ECE and the pretreatment predictors. From (5) also follows

σT1Sr − σT0Sr =
∑p

k=1 γkσSkSr for all r = 1, 2 . . . p. These expressions conform a system of

p linear equations in p covariates that can be rewritten in matrix form as a1ΣTS = γ ′ΣSS,
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and has solution γ ′ = a1ΣTSΣ−1
SS or, equivalently, γ = Σ−1

SSΣSTa
′
1. Substituting this value

into (4) leads to the following lemma.

Lemma 3: Let us assume that the causal inference model introduced in Section 2 and the

linear regression model given in (5) are both valid. If one further assumes that Z⊥S then

R2
ψ =

γ ′ΣSSγ

σ∆T

.

Details of the proof are provided in the Web-based Supplementary Materials. Given that ΣSS

is positive-definite, γ ′ΣSSγ > 0, with equality if and only if γ = 0. Thus, if the predictor

is not valid at the individual level (R2
ψ = 0) then it will not be valid at the population

level neither (γ = 0) and vice versa. Consequently, a likelihood ratio test for the hypothesis

H0 : γ = 0 involving only identifiable parameters, will also be a valid test for the hypothesis

H0 : R2
ψ = 0 involving an unidentifiable parameter. However, when one moves away from

these extreme scenarios (R2
ψ = 0 and γ = 0) important differences between both paradigms

can emerge. For instance, low values of R2
ψ may occur when γ > 0 if σ∆T is large relative to

γ ′ΣSSγ > 0.

The numerator in the expression for R2
ψ given in Lemma 3 is fully identifiable and the

denominator only depends on one unidentifiable parameter, namely, ρT0T1. Moreover, R2
ψ

will reach its maximum (minimum) when σ∆T reaches its minimum (maximum) and, hence,

max
ρT0T1

R2
ψ =R2

ψmax =
γ ′ΣSSγ(√

σT0T0 −
√
σT1T1

)2 ,

min
ρT0T1

R2
ψ =R2

ψmin =
γ ′ΣSSγ(√

σT0T0 +
√
σT1T1

)2 .

Probably, these maxima and minima will never be reached in practical situations. Indeed,

R2
ψmax (R2

ψmin) is reached only when ρT0T1 = −1 (ρT0T1 = 1) and, therefore, the distribution

of T would be degenerate in such a situation. However, for any practically attainable value

of ρT0T1 one will always have R2
ψmin < R2

ψ < R2
ψmax. Importantly, both R2

ψmax and R2
ψmin are

identifiable from the data.
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Note further that (5) implies E (T |Z) = β0 + β1Z +α′µS + Zγ ′µS withα′ = (α1, α2, . . . , αp)

and, hence, µT0 = β0 +α′µS and µT1 = β0 +β1 +α′µS+γ ′µS. Furthermore, under the iden-

tifiability conditions (i)–(iii) presented in Sectioin 2, β = E (∆T ) = µT1 − µT0 = β1 + γ ′µS

implying β1 = β − γ ′µS. Plugging this expression into the equation for ECE leads to ECE(S) =

β + γ ′(S − µS). Finally, taking into account that γ ′ = a1ΣTSΣ−1
SS one gets

ECE(S) = β + γ ′(S − µS) = g (S) .

Thus, both methods provide the same point prediction for ∆T . However, unlike the regression

approach, the causal inference approach allows quantifying the uncertainty of the prediction

as σ∆T |S = σ∆T

(
1−R2

ψ

)
and, even though σ∆T |S depends on unidentifiable parameters, the

simulation approach described in Section 4 can be used to assess its value.

6. Is there a useful multivariate predictor?

In order to assign the best treatment to an individual patient, one needs to predict the

individual causal treatment effect on that patient (∆T ), based on his vector of pretreatment

predictors (S). The prediction variance σ∆T |S = σ∆T

(
1−R2

ψ

)
quantifies the accuracy of

such a prediction and, ultimately, its practical utility. The formula for σ∆T |S raises some

important issues. In fact, the right side of the equation is decomposed into two different

elements. The second element depends on the multivariate predictor S through the value of

R2
ψ; the first element, however, is an intrinsic characteristic of the true-endpoint-treatment

pair and is independent of the predictor. It is clear that the accuracy of the prediction (the

inverse of the prediction variance) is a decreasing function of σ∆T and, consequently, if the

individual causal treatment effect on the true endpoint has large variability, then a predictor

should produce a close to one R2
ψ to have some predictive value. This hints on the fact

that, for some true endpoints and treatments, the search for valid pretreatment predictors of

therapeutic success, and/or the development of meaningful ITRs, may rather be a difficult
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task. It also stresses the importance of multivariate predictors. Actually, as Lemma 2 states,

increasing the dimension of S always leads to larger value for R2
ψ and, hence, multivariate

predictors may be the only hope for reaching meaningful predictions, when the individual

responses to treatment are very variable.

Notice further that:

(
√
σT0T0 −

√
σT1T1 )

2 (
1−R2

ψ

)
6 σ∆T |S 6 (

√
σT0T0 +

√
σT1T1 )

2 (
1−R2

ψ

)
. (6)

The upper bound in (6) can be used to assess the plausibility of finding a good predictor.

Indeed, let us assume that one would like to keep the prediction variance under a certain

value δ. Setting
(√

σT0T0 +
√
σT1T1

)2 (
1−R2

ψ

)
6 δ leads to:

R2
δ = 1− δ(√

σT0T0 +
√
σT1T1

)2 6 R2
ψ.

The quantity R2
δ is completely identifiable from the data (if negative it is set to zero and

this inequality becomes trivial) and may be useful to assess the plausibility of finding good

pretreatment predictors for a given true endpoint and treatment. Indeed, let us assume that

a prediction variance σ∆T |S 6 δ = 1.3, is considered acceptable. Suppose further that for

δ = 1.3 the R2
δ=1.3 = 0.98, then one would need to find a predictor that produces a PCI

of at least 98% in order to keep the prediction variance smaller than 1.3. Arguably, such a

predictor may be difficult to find. On the other hand, if for δ = 1.3 a R2
δ=1.3 = 0.65 is obtained

then a predictor with a PCI of at least 65% will be capable of keeping the prediction variance

smaller than the pre-specified δ. Therefore, although a R2
δ=1.3 = 0.65 does not guarantee that

a good predictor exists, it certainly makes its existence more plausible.

7. Case Study

7.1 A clinical trial in advanced lung cancer

The data come from a randomized clinical trial to assess the effect of a therapeutic vaccine

to induce specific antibodies against the epidermal growth factor (EGF) in the treatment
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of advanced non-small lung cancer patients. The experimental treatment CIMAvaxEGF was

compared to the best supportive care (control treatment). In previous studies, laboratory

results associated with the CIMAvaxEGF mechanism of action confirmed the vaccine is

intended to induce antibodies against self EGFs that block EGF-EGFR interaction (Garcia

et al., 2008). On the other hand, it is known that the immune system deteriorates with cancer

progression as a consequence of decreasing levels of functional T cells, down-regulation of

the co-stimulatory molecules and expansion of hyporesponsive populations such as CD28-.

The scientific community has been interested in finding markers, able to predict immune

capacity and proper response to vaccination.

Peripheral blood samples were collected from patients before the treatment to assess

immunological status. Three types of pretreatment markers were considered. Firstly, the

basal EGF concentration in serum (S1), that is a marker directly related with the mechanism

of action of the vaccine. Secondly, immunosenescence markers previously reported as predic-

tive biomarkers using a univariate approach (Saavedra et al., 2016). Here we included the

proportion of CD4+ (S2), CD8+CD28- T cells (S3), CD4/CD8 ratio (S4) and the proportion

of CD19+ B cells (S5) as putative predictors of therapeutic success. Also we considered

peripheral blood biomarkers associated with clinical outcome in patients with non-small

cell lung cancer: the absolute lymphocyte count (S6), the neutrophil-to-lymphocyte ratio

(NLR:S7), absolute eosinophil count (S8), absolute monocyte count (S9) and white blood

cell count (S10) (Tanizaki et al., 2017). The time since trial inclusion till death was the true

endpoint T of the study. The follow-up period started in July 2006 and ended in July 2016.

By the end of the follow-up only 2 patients remained alive (only to censored values) and, for

this reason, we consider time to death as a continuous random variable.

By design, only 52 patients from hospitals located in the city of Havana were included

in the immunological study, of whom n = 33 had complete information. All missing values
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were in the predictive biomarkers, due to logistic issues in the laboratory analyzing the

samples. Therefore, in the following, it will be assumed that the missing data generating

mechanism was missing completely at random (MCAR). The data were analyzed using

the newly developed R package EffectTreat (freely available at http://cran.r-project.org/).

For conciseness, in the present section no reference to the software is made but in the

Supplementary Materials Web Appendix a more comprehensive analysis of the data is

provided and the use of the R package EffectTreat is explained in detail.

7.2 Data description.

Table 1 shows the correlations between the different components of S and T under control

(ρT0Sr) and experimental treatment (ρT1Sr) conditions. In the control group, all correlations

were low and not significant, except for the absolute leucocyte count (S10). In the treated

group, significant correlations were observed for the proportion of CD4+ T cell (S2) and

CD4+/CD8+ ratio (S4). The difference between both correlation coefficients was significant

only for S2 and S10. Notice that, although no significant differences were observed, the

correlations between S5, S6, S9 and T0/T1 change from negative in the control to positive in

the treated group. Given the relatively small sample size, the previous findings may indicate

that patients who have higher CD19+ B cell, absolute limphocytes count and monocytes

tend to have shorter survival times when they are treated with the best supportive care.

In contrast, the patients under the same conditions, but treated with CIMAvaxEGF tend

to live longer. In addition, the correlations between S3, S8 and T0/T1 change from positive

in the control to negative in the treated group, which indicates that patients with more

CD8+CD28- T cells and high absolute eosinophils count tend to live longer in the control

group and less in the CIMAvaxEGF group. The correlations between S1, S7 and T were not

significant in either group, that is, no differences were observed between control and treated

Page 17 of 27 Biometrics



predictive factors for immunotherapy efficacy 17

groups. The previous results, together with item 3 in Lemma 1, suggest that some of these

predictors may be useful to construct a valid multivariate predictor of therapeutic success.

7.3 Regression approach

Several models with the structure given in (5) were fitted to the data. A model building

exercise was carried out based on the AIC criterion and the final model included S1: basal

EGF Concentration, S4: CD4+/CD8+ ratio, S7: NLR, S9: absolute monocyte count and

their interaction with the treatment (for more details, see the supplementary materials).

Table 2 shows the results for this model. The estimated average causal treatment effect

was ECE (S) = 28.097 + 0.003S1− 21.776S4− 3.883S7− 0.840S9. A Likelihood Ratio Test

indicated that the S by treatment interaction was significant (p = 0.008). Therefore, Lemma

3 guarantees that the PCI associated with the vector (S1, S4, S7, S9) will be strictly positive,

i.e., R2
ψ > 0. However, the previous analysis says nothing about the magnitude of the PCI

for this 4-dimensional vector of pretreatment predictors and, consequently, it may still carry

very little information about the individual causal treatment effect. To get an idea about the

magnitude R2
ψ the identifiable bounds R =

(
R2
ψmin, R

2
ψmax

)
were estimated as R = (0.528, 1)

and, therefore, the vector of pretreatment predictors (S1, S4, S7, S9) would produce a PCI of

at least 0.53.

7.4 Predictive causal information

To quantify PCI, the algorithm introduced in Section 4 was used to estimate R2
ψ across a

set of plausible values for ρT0T1, the grid G = {−1, −0.99, −0.98, . . . , 1}. All combinations

including from one to ten predictors were evaluated. A total of 201 matrices were formed,

based on the specified ΣTT , ΣTS, ΣSS and the grid G. Only the positive-definite matrices

were considered for the estimation of the PCI. Table 3 summarizes the results. For simplicity,

only the results of the p-dimensional predictors (p = 1 . . . 10) with the highest PCI are

presented. The first line shows the measures of central tendency for the univariate predictor

Page 18 of 27Biometrics



18 Biometrics, XX XX

with the highest average PCI, the second line shows the results for the bivariate predictor

with the highest average PCI and so forth. Notice that the average R2
ψ increases from 0.486,

when only one predictor is considered, to 0.855 when the 10-dimensional predictor is used.

Importantly, the minimum PCI obtained with the 6-dimensional predictor (minR2
ψ = 0.727)

already exceeds the maximum value obtained for the best univariate predictor (maxR2
ψ =

0.694). Lemma 2 in Section 3 states that the use of a multivariate predictor will always lead

to a better prediction of the individual causal treatment effect on the true endpoint; this

theoretical statement is now empirically illustrated in this case study.

The results obtained for the 6-dimensional predictor show that using the basal EGF

concentration, the CD4+/CD8+ ratio, the proportion of CD4+ T cells, CD19+ B cell,

Neutrophils-to-Lymphocyte ratio and the absolute monocyte count, lead to PCI values

R2
ψ > 0.72 across all “realities” compatible with the data at hand and, consequently, one

may be able to construct meaningful ITRs based on these predictors.

As Lemma 2 clearly shows, the inclusion of more predictors will always lead to and

increase in information about the individual causal treatment effect. However, measuring and

collecting data on multiple predictors may increase the burden to clinical researchers and

patients, and lead to higher costs. In situations where this is indeed the case, a thoughtful

discussion of the advantages and disadvantages of using a high-dimensional multivariate

predictor in that specific context will be needed. Such a discussion goes beyond the statistical

framework provided by any specific evaluation strategy and clinical, economical and ethical

considerations will need to be brought up as well.

8. Discussion

It may be argued that the future impact of PM on medical practice will largely depend on

the construction of valid ITRs. However, before this, one should assess if the pretreatment

predictors convey enough information about the individual causal treatment effect on the
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response of interest. In the present work an evaluation metric, the so-called predictive causal

information, was introduced to evaluate multivariate predictors of therapeutic success. The

PCI has a simple yet appealing interpretation in terms of information gain. Unlike some

previously introduced methodologies that require randomized data, the PCI is identifiable

under the weaker condition of consistency. The properties of the PCI and its relationship

with some previously introduced approaches was studied.

The case study showed the utility of the proposed methodology not only to identify the

relevant individual predictive factors, but also to estimate the predictive probability of

success and failure of treatment with an immunotherapy for a given patient. Specifically,

it showed the relevance of taking into account together with the basal EGF concentration

in serum, which is a measure directly related to the mechanism of action of the evaluated

immunotherapy, the immunosenescence and inflammatory biomarkers, to predict the success

of CIMAvaxEGF in the treatment of patients with advanced lung cancer. Previous studies

evaluated (using a univariate approach) biomarkers to predict which patients will receive the

greatest clinical benefits with CIMAvax-EGF (Garcia et al., 2008; Saavedra et al., 2016). In

these studies, the biomarkers, as is common in medical research, where dichotomized using

the median or an optimal cutpoint. This follows the clinical practice of labeling individuals

as having or not an attribute. Nevertheless, it is well know in the methodological literature

that dichotomization of continuous variables introduces major problems including loss of

information, reduction in power and uncertainty in defining the cutpoint (Royston, Altman,

and Sauerbrei, 2006). In this study we propose an adequate methodology for the treatment

of biomarkers as continuous variables. Aditionally, to facilitate its implementation in practice

the use of the R library EffectTreat is illustrated to perform the necessary calculations. In its

current form, the PCI is only applicable when both the response and the predictors, are all

continuous random variables. This is without doubt an important scenario but it does not
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cover other equally relevant settings when the outcomes have different scale of measurement.

Extensions to these other important settings are the subject of future research.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]
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Table 1: Correlations between S1 = Basal EGF concentration, S2 = proportion of CD4+ T
cell, S3 = CD8+CD28- T cells , S4 = CD4/CD8 ratio, S5 = CD19 B cell, S6 = absolute
lymphocyte count, S7 =neutrophil-to-lymphocyte ratio , S8 =absolute eosinophil count, S9

= absolute monocyte count,S10 = white blood cell count and T =the elapsed time since trial
inclusion to death using the best supportive care in the control (T0) and CIMAvaxEGF in
the treatment (T1) group, and significance of the difference of the correlations.

T0 T1 Difference r(Sx, T0) and r(Sx, T1)

S1 0.192 (p = 0.594) 0.107 (p = 0.628) p = 0.421

S2 0.101 (p = 0.781) 0.687 (p < 0.001) p = 0.046

S3 0.046 (p = 0.900) −0.357 (p = 0.093) p = 0.169

S4 0.423 (p = 0.223) 0.791 (p < 0.001) p = 0.078

S5 −0.125 (p = 0.730) 0.202 (p = 0.355) p = 0.225

S6 −0.048 (p = 0.894) 0.157 (p = 0.473) p = 0.318

S7 0.022 (p = 0.952) 0.192 (p = 0.379) p = 0.347

S8 0.138 (p = 0.703) −0.023 (p = 0.917) p = 0.356

S9 −0.294 (p = 0.410) 0.323 (p = 0.133) p = 0.073

S10 −0.676 (p = 0.031) −0.095 (p = 0.665) p = 0.049
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Table 2: Parameter estimates for regression model (5).

β s.e. p

intercept −46.638 25.064 0.075

Z 28.097 19.183 0.156

S1: EGF −0.007 0.011 0.530

S4: CD4/CD8 ratio 45.785 9.234 < 0.001

S7: NLR 8.204 5.344 0.138

S9: Monocytes count 1.375 2.132 0.525

Z by S1 interaction 0.003 0.008 0.688

Z by S4 interaction −21.776 6.911 0.004

Z by S7 interaction −3.883 4.060 0.349

Z by S9 interaction −0.840 2.064 0.688
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Table 3: Summary statistics for R2
ψ using the combinations of S1 = Basal EGF concentration,

S2 = proportion of CD4+ T cell, S3 = CD8+CD28- T cells , S4 = CD4/CD8 ratio, S5 =
CD19 B cell, S6 = absolute lymphocyte count, S7 =neutrophil-to-lymphocyte ratio , S8

=absolute eosinophil count, S9 = absolute monocyte count,S10 = white blood cell count as
pretreament predictors and T = The elapsed time since trial inclusion to death in the control
(T0) and CIMAvaxEGF treatment (T1) groups.

R2
ψ

S Mean Min Median Max
(S2) 0.486 0.354 0.469 0.694

(S2, S9) 0.563 0.423 0.546 0.772

(S2, S7, S9) 0.658 0.521 0.645 0.847

(S2, S4, S7, S9) 0.721 0.603 0.713 0.873

(S1, S2, S4, S7, S9) 0.795 0.689 0.789 0.923

(S1, S2, S4, S5, S7, S9) 0.814 0.727 0.810 0.915

(S1, S2, S4, S5, S6, S7, S9) 0.836 0.751 0.832 0.933

(S1, S2, S4, S5, S6, S7, S9, S10) 0.847 0.796 0.846 0.902

(S1, S2, S4, S5, S6, S7, S8, S9, S10) 0.851 0.815 0.851 0.889

(S1, S2, S3, S4, S5, S6, S7, S8, S9, S10) 0.855 0.825 0.854 0.886
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