
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Approximate Repeated Administration Models for Pharmacometrics

Non Peer-reviewed author version

NEMETH, Balazs; HABER, Tom; LIESENBORGS, Jori & LAMOTTE, Wim (2019)

Approximate Repeated Administration Models for Pharmacometrics. In: Rodrigues,

João M. F.; Cardoso, Pedro J. S.; Monteiro, Jânio; Lam, Roberto; Lees, Michael H.;

Dongarra, Jack J.; Sloot, Peter M.A. (Ed.).  Computational Science – ICCS 2019

19th International Conference, Faro, Portugal, June 12–14, 2019, Proceedings, Part

I,  SPRINGER INTERNATIONAL PUBLISHING AG,  p. 628 -641.

DOI: 10.1007/978-3-030-22734-0_46

Handle: http://hdl.handle.net/1942/33064



Approximate Repeated Administration Models for Pharmacometrics Link
Non peer-reviewed author version

Made available by Hasselt University Library in Document Server@UHasselt

Reference (Published version):
Nemeth, Balazs; Haber, Tom; Liesenborgs, Jori & Lamotte, WIm(2019) Approximate
Repeated Administration Models for Pharmacometrics. In: Rodrigues, João M. F.; Cardoso,
Pedro J. S.; Monteiro, Jânio; Lam, Roberto; Krzhizhanovskaya, Valeria V.; Lees, Michael
H.; Dongarra, Jack J.; Sloot, Peter M.A. (Ed.). Computational Science – ICCS 2019, Springer
Nature Switzerland,p. 628-641 (Art N° 438)

DOI: 10.1007/978-3-030-22734-0_46
Handle: http://hdl.handle.net/1942/28494

https://www.uhasselt.be
http://hdl.handle.net/1942/28494
https://uhdspace.uhasselt.be


Approximate Repeated Administration Models
for Pharmacometrics

Balazs Nemeth1, Tom Haber1,2, Jori Liesenborgs1, and Wim Lamotte1

1 Hasselt University - tUL - Expertise Center for Digital Media,
Wetenschapspark 2, 3590 Diepenbeek, Belgium

{balazs.nemeth,tom.haber,jori.liesenborgs,wim.lamotte}@uhasselt.be
2 Exascience Lab, Imec, Kapeldreef 75, B-3001 Leuven, Belgium

Abstract. Improving performance through parallelization, while a com-
mon approach to reduce running-times in high-performance computing
applications, is only part of the story. At some point, all available par-
allelism is exploited and performance improvements need to be sought
elsewhere. As part of drug development trials, a compound is periodi-
cally administered, and the interactions between it and the human body
are modeled through pharmacokinetics and pharmacodynamics by a set
of ordinary differential equations. Numerical integration of these equa-
tions is the most computationally intensive part of the fitting process.
For this task, parallelism brings little benefit. This paper describes how
to exploit the nearly periodic nature of repeated administration models
by numerical application of the method of averaging on the one hand and
reusing previous computational effort on the other hand. The presented
method can be applied on top of any existing integrator while requiring
only a single tunable threshold parameter. Performance improvements
and approximation error are studied on two pharmacometrics models. In
addition, automated tuning of the threshold parameter is demonstrated
in two scenarios. Up to 1.7-fold and 70-fold improvements are measured
with the presented method for the two models respectively.

Keywords: Pharmacometrics · Monte Carlo Sampling · Hamiltonian
Monte Carlo · High-Performance Computing · Hierarchical Models · Ap-
proximation · Importance Sampling

1 Introduction

One of the key questions of drug development, which pharmacometrics is con-
cerned with, is what dosage regimen is safe and effective for individuals within
a population. In this field, models from pharmacokinetics (PK) and pharmaco-
dynamics (PD) characterize the interactions between a drug and an organism.
Here, PK describes how a drug is affected by the organism, and PD describes the
effect of the compound on the organism. The use of tools in this field requires
both theoretical knowledge of biological systems and statistical expertise [14].
Therefore, methods that are easy to use, like the one described in this paper,
are of great interest.
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Due to the complexity of these models, sufficient data is required to derive
meaningful conclusions, but clinical data is typically sparse. Therefore, the com-
mon approach is to pool data from multiple drug trails and subjects within
those trials. In this context, it is imprecise to merely consider the data as an un-
structured collection of observations. Rather, with each observation, additional
valuable information is available. This includes from which subject an observa-
tion is taken, his or her weight and height.

To incorporate this information, mixed effect models are used. Since PK and
PD models typically rely on ordinary differential equations (ODEs), simulation
requires computationally intensive numerical methods. An integrator is config-
ured to ensure some level of accuracy in the result. Depending on the ODEs,
the size of the steps that are taken is limited. More importantly, models with
repeated administration hamper performance further. In these models, the sim-
ulation of dosing events causes the integrator to invalidate any gathered knowl-
edge about the ODEs and take small steps. In addition, after a dosing event,
computational time is spent on determining what step size to use.

Estimating parameters for these models in a reasonable amount of time re-
quires not only the right mathematical tools, but also techniques from computer
science. For example, within a drug trial, a compound is tested on multiple
subjects and to determine the model parameter quality, each subject can be
simulated in parallel. After parallelization, the most computationally intensive
part is the numerical integration. Although parallel numerical integration has
been studied [11], only limited improvements are possible [13].

Instead, the method outlined in this paper exploits the periodic behavior of
models in pharmacometrics by reusing previous computations and employing
the method of averaging to form an approximation of the model. It is applicable
on top of any numerical integrator and besides a single parameter, no additional
input from the user is required. To de-emphasize the existence of the parameter,
it is important to note that it can be tuned automatically in a use-case dependent
manner. Two examples are discussed to demonstrate this.

The remainder of this paper is structured as follows. Section 2 lists related
work. Two examples of repeated administration models are discussed in Sec-
tion 3. Section 4 discusses how these are used when data is sparse. The ap-
proximation method is presented in Section 5. Next, experimental results are
shown in Section 6, and the paper is concluded and directions for future work
are provided in Section 7.

2 Related Work

Dunne et al. [5] studied the application of the method of averaging in phar-
macometrics, but their approach consisted of transforming the model by hand
followed by solving it symbolically. The automated method presented in Sec-
tion 5 partially relies on the same observations but differs in two ways. First, it
does not require the user to manually alter the model. Second, for models that
combine both PK and PD, all portions of the model are handled while the ap-
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proach outlined by Dunne et al. focuses mainly on dealing with the PD portion
where no periodicity is observed.

Conrad et al. [3] tackle computationally expensive models by constructing
and gradually refining approximations of the posterior for Bayesian inference
during Markov Chain Monte Carlo (MCMC) sampling. Their approximation
method uses previous evaluations in a shrinking region to interpolate the poste-
rior function. Similarly, Gong et al. [6] propose an adaptive refinement strategy
that builds a surrogate model to explore a target distribution. Compared to
these approaches where no knowledge of the underlying model is used, the ap-
proximation described in this paper works at the level of the model itself. As
such, the two approaches are complementary.

Rasmussen [15] considers Hybrid Monte Carlo (HMC) on Bayesian integrals.
In his work, gradients of the posterior are approximated using a Gaussian Pro-
cess. He notes that to guarantee that the samples generated by HMC are un-
biased, accurate posterior evaluations are only required at the end of a set of
leapfrog iterations. Similarly, in Section 6, gradients are computed from the ap-
proximation and the final accept-reject step relies on the real model.

3 Repeated Administration Models

This paper considers two models to exemplify what is seen in drug development
when patients are administered a compound periodically. While the details of
the models are less important for the work presented in this paper, they are
listed here to describe their structure. Each model in this paper, denoted by f ,
is built using a set of ODEs parametrized by a vector φ. The set of q equations
in f is denoted by S = {Si(t)}q1.

Data to which these models are fit consists of a dosage regimen D and a
sequence of observations (yj , xj). Each dosing event (a, c, t) in D adds some
amount a of a compound to any state identified by c in model f at time t. With-
out loss of generality, the first dose is administered at t = 0, and all observations
and dosing events are sorted by increasing time t. To fit φ, prediction ŷj need
only be made at xj and Algorithm 1 outlines how to obtain predictions. It relies
on a subroutine that implements an integrator of which the state is stored in I.

The execution time of the integrator is mainly determined by the range
spanned by xj and the number of dosing events falling in that range since.
Repeatedly stopping the integrator to simulate dosing events is the main cause
for slowdown; as noted in Section 1, the integrator cannot take large steps when
the internal state is changed. The method presented in Section 5 avoids this.

3.1 Nimotuzumab Model

The first model characterizes PK behavior of Nimotuzumab, a humanized mon-
oclonal antibody mAb, in patients with advanced breast cancer [16]. The system
of coupled differential equations in Equation (1) describes the dynamics of this
model.



4 Nemeth et al.

Algorithm 1: Using an integrator to collect predictions ŷj .

Input: x1, . . . , xn, D, and S
Result: ŷ1, . . . , ŷn
k = 1; I = InitializeIntegrator(S)
(a, c, t) = GetDose(D, k)
for j = 1, . . . , n do

while t ≤ xj do
IntegrateTo(I, t)
AddToState(I, c, a)
k = k + 1; (a, c, t) = GetDose(D, k)

end
IntegrateTo(I, xj)
ŷj = GetState(I)

end



dCtot(t)
dt = −(ke + kpt) · C(t) + ktp ·At(t)−

(
kint·Rtot·C(t)
kss+C(t)

)
dAt(t)

dt = kpt · C(t) · v1 − ktp ·At(t)
dRtot(t)

dt = ksyn − kdeg ·Rtot(t)−
(

(kint−kdeg)·C(t)·Rtot(t)
kss+C(t)

)
C(t) = 0.5 ·

[
Ctot(t)−Rtot(t)− kss

+
√

(Ctot(t)−Rtot(t)− kss)2 + 4 · kss · Ctot(t)
]

(1)

Observations to which this model is fit consist of measured free concentra-
tions of the mAb compound C(t), at a particular time t, determined by the
total mAb concentrations Ctot(t), the total target concentration Rtot(t) and
the steady state rate constant kss. The change in the amount of free mAb
in tissue compartments A(t) depends on C(t) and kpt and ktp which denote
tissue-serum and serum-tissue rate constants respectively. The other constants
that need to be estimated are the elimination rate kel, the degradation rate
kdeg, zero-order kinetic synthesis ksyn and irreversible internalization rate kint.
Note that there is a bidirectional influence between the compartments and C(t)
since it also appears on the right hand side. The model parameter vector φ
is [cl, v1, Q, v2, kss, kint, ksyn, kdeg], where ke = cl/v1, kpt = Q/v1 and ktp = Q/v2.

Figure 1 shows an example of the evolution of ODE states in time for the
Nimotuzumab model from Equation (1) with parameters cl = 9.93 × 10−4,
v1 = 1.38, Q = 4.00 × 10−3, v2 = 44, kss = 12.71, kint = 3, ksyn = 1 and
kdeg = 7. There are ten dosing events, each adding 50 milliliters intravenously.
Programmatically, this is done by adding the same amount to Ctot(t) at each
dosing event. During the first few dosing intervals, the concentration of the com-
pound increases until the rate at which it is eliminated balances the rate at
which the compound is added to the system. While At(t) increases perpetually
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due to the bidirectional interplay between it and the compartments, nearly pe-
riodic behavior is observed in Ctot(t) and Rtot(t). Note that measurements are
also taken after the final dosing event as C(t) drops.
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)Fig. 1. The ODE states from the Nimotuzumab three-compartment model with ten
dosing events. The state for Ctot(t), At(t) and Rtot(t) in function of time is shown on
the left and top right, and the projected value C(t) with observations shown as red
crosses on the bottom right. After the first few dosing events, Ctot(t) and Rtot(t) exhibit
close to periodic behavior. The plots were created by supplying a dense sequence of
time points for xj to Algorithm 1. The inset on At(t) is discussed in Section 5.

3.2 Canagliflozin Model

Canagliflozin is a drug for type-2 diabetes treatment. The model in Equation (2)
for this drug consists of both a PK and a PD portion. The former is modelled
by a two-compartment model [9] denoted by the gut compartment AG(t), the
central compartment AC(t) and the peripheral AP (t). Following Dunne et al. [4],
the latter is captured by glycated haemoglobin (HbA1c) denoted by H(t).



dAG(t)
dt = −ka ·AG(t)

dAC(t)
dt = ka ·AG(t)− k23 ·AC(t) + k32 ·AP(t)− ke ·AC(t)

dAP(t)
dt = k23 ·AC(t)− k32 ·AP(t)

dH(t)
dt = kin + Ef − kout ·H(t)

C(t) = AC(t)/v

Ef = (Efc + Efp)H(0)−5
8−5

Efc(t) = Emax
C(t)

EC50+C(t)

(2)

For this model, φ = [kout, H(0), Efp, EC50, Emax], where Efp represents the
placebo effect, kin = H(0) · kout, EC50 is the exposure that gives half-maximal
effect and Emax is the maximal effect of the drug. The remaining parameters
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are fixed. A simulation with kout = 10.24 × 10−4, H(0) = 7.72, Efp = −0.482,
EC50 = 60.34 and Emax = −0.736 is shown in Figure 2. The remaining param-
eters are ka = 3.86, k23 = 0.101, k32 = 0.0928, ke = 0.174 and v = 92.2260.
Similarly to Nimotuzumab, periodic behavior is observed for the PK portion.
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Fig. 2. Canagliflozin PK/PD model for the first 21 dosing events. Periodic behavior is
observed after a few dosing events for the PK portion of the model shown at the top.
The PD portion, shown at the bottom, does not stabilize.

4 Hierarchical Models

Pharmacometrics deals with models where the amount of available data is lim-
ited. Therefore, mixed effects models are used where data is grouped and struc-
tured into a hierarchy according to some classification [2]. The data considered
in this paper is structured as shown in Equation (3).

yij = f(xij , φi) + εij , i = 1, . . . ,M, j = 1, . . . , ni (3)

A one-way classification is used resulting in a hierarchy with two layers. The
first layer represents the population as a whole, and the second layer consists of
individuals. The number of individuals is denoted by M , each of which has ni
observations. The function f , parameterized by φ, describes the structural model
exemplified by those from Section 3. As these models capture PK or PD behavior
or both, xij will be the jth time point at which an observation was taken for
the ith individual. The residuals εij ∼ N (0, σ) account for the intra-individual
variance. With a slight abuse of notation, the individual parameters φi are given
by µ+ ηi where ηi ∼ N (0, Ω) and Ω captures inter-individual variance. Here, ηi
and µ are called the random and fixed effect respectively. While Equation (3)
only allows for additive error, its purpose is to be illustrative. It is important to
note that the framework is general enough for other likelihood models as well.
The goal is to estimate µ, Ω, and σ.
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5 Approximating Models

In a model, states are classified either as periodic or non-periodic. Typically, the
PK portion is periodic and the PD portion is non-periodic, but this need not be
the case. In the integrated states, three phases are distinguished. The first phase
spans over all dosing events for which the system has not yet entered periodicity.
The second phase is the periodic phase typically taking up the majority of time in
repeated dosing models as noted in Section 3. The start of this phase is detected
based on a threshold τ that defines when a state is classified as periodic. The final
phase starts at the last dosing event and ends at the last observation. In Figure 1,
depending on τ , the second phase could start at 500 hours.

The goal is to avoid stopping and altering the state of the integrator to sim-
ulate dosing events since this increases execution time substantially. During the
first interval of the second phase, all periodic states for the remaining observa-
tions are collected. The value of all non-periodic states is collected during the
full length of the second phase by applying the method of averaging numerically.

In clinical trials, it is common to have dosage regimens where all dosing events
add the same amount of a compound in the same way, i.e. ai = aj and ci = cj
for any pair of dosing events i and j in Algorithm 1. However, it is possible to
generalize the presented method where multiple runs of periodic behavior are
observed. Since the models targeted in this paper only use dosage regimens with
a fixed dosing amount, such extensions are left as future work. As will be shown
in Section 6, the efficacy of the presented method depends on the time spent in
periodic phases.

In reality, doses will never be spaced exactly uniformly throughout time. For
example, one of the individuals in the Nimotuzumab data set with 10 dosing
events, has the last dose administered at 1512.2 hours after the start of the trial.
The average dosing interval is thus approximately 168.02, but the dosing inter-
vals for this individual are between 167.33 and 170.07. In case varying intervals
are captured by the model, noise is added complicating periodicity detection.
Therefore, a preprocessing step ensures that the events are spaced equally at the
cost of potentially introducing some error in the final approximation.

If the mean time between doses is ∆t = t|D|/(|D| − 1), then the time for
dosing event k is set to t′k = (k − 1) · ∆t. Next, each observation j is shifted
according to the offset to the dosing event before it. Concisely, xj is shifted
to x′j = t′k + zj , where zj is computed as follows. If tk denotes the time of the
dosing event before it, then zj = min(xj − tk, ∆t − ε). Here, capping the offset
at ∆t − ε ensures that the observation is not shifted to the next interval when
it is close to the end since doing so introduces a large error due to the rapid
rise in compound concentration after a dose. Figure 3 illustrates this process
for an exaggerated example; as for the Nimotuzumab example shown above,
the variance in dosing intervals for real use cases is typically much smaller. For
models in which the dosing intervals are fixed, like for the Canagliflozin model,
data need not be preprocessed.

After preprocessing, integration can start. For any model f , three different
sets of equations S, S′ and S̃ are used. Here, S is the original unaltered set of
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Fig. 3. Dosing events are shifted to ensure that each dosing interval is the same. All
observations, shown as red crosses, associated with each dosing interval are shifted
accordingly. The 7th observation is an example of an observation that, without capping,
would be shifted to the next interval.

equations used during the first and third phase. During the first interval of the
second phase, S′ is used and the method of averaging is applied numerically
during the remaining intervals in the second phase using S̃. The details of these
sets of equations will be introduced next.

Integration commences on the set of equations S = {Si(t)}q1 in f . At each
dosing event k, all states in S are partitioned into r periodic states P = {Pi(t)}r1
and q−r non-periodic states N = {Ni(t)}qr+1 by using some threshold τ and the
criteria |(Si(t′k) − Si(t′k−1))/Si(t

′
k)| < τ . If |P | > 0, the state of the integrator

Ireal is copied to Iapprox. At this time, denoted by tα below, the second phase is
entered and integration continues using Iapprox.

During the first interval of the second phase, integration continues with S′, a
set of equations constructed by adding the equations dP ′i (t)/dt = Pi(t) to those
in S for a total of 2|P | + |N | equations. The value of P ′i (tα) is set to 0. These
additional equations will be used to compute the average for use in the remaining
intervals of the second phase. After one dosing interval, integration continues
using S̃, constructed by taking the equations P̃ = {dP̃i(t)/dt = 0}r1 together
with the states in N . The initial value for the states in P̃ is P ′i (tα + ∆t)/∆t.
In other words, the states in P are replaced by a constant equal to the mean
value during a dosing interval. This is how the method of averaging is applied
numerically. The values of the states in N are then collected during the second
phase at each x′j . Finally, at the last dose, integration continues using S restoring
the state of the states in P to those saved in Ireal. The top left of Figure 4
demonstrates when each of these sets is used.

The states of P during the second phase are collected at times tα + zj for
all observations j for which x′j > tα. Note that if integration can only continue
forward in time, all zj need to be sorted. This can be seen as moving observations
to the first interval of the second phase. Figure 4 shows the output for the
Nimotuzumab model from Figure 1. Note that except for a different value of the
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integrated states, preprocessing and shifting of observations and events is not
reflected in the output.
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Fig. 4. Approximation of the Nimotuzumab three-compartment model with ten dosing
events. Different sets of equations are used at different times. The sets are S = P ∪N ,
S′ = P ′ ∪N and S̃ = P̃ ∪N . These are only shown in the top left, but the change in
equations effects all states. The choice for τ defines the phases. Here, the first phase
spans [0, 504], the second phase spans [504, 1512.2] of which the first interval is [504, 672]
and the third phase starts at 1512.2. Compare all results with Figure 1 and note how
At(t) is smoothed out due to applying the method of averaging numerically. However,
preprocessing and event shifting happens transparently. The effect of approximation
on the other states is barely visible.

Let c(t0, t1, S) denote the computational cost of using an integrator between
time t0 and t1 on a set of equations S. The total cost of integration can be broken
down into c(0, tα, S), c(tα, tα+∆t, S

′), c(tα+∆t, t|D|, S̃) and c(t|D|, tni
, S). Since

doses need not be simulated in S̃, c(tα+∆t, t|D|, S̃) � c(tα+∆t, t|D|, S). Some
overhead is introduced by preprocessing the data and using S′ for one interval,
but this is typically much smaller than the reduction in execution time obtained
by avoiding simulation of doses between tα+∆t and t|D|.

Note that states in P are distinguished from those in N by τ . If τ is set too
low, all states remain non-periodic and there is no second and third phase. In this
case, no cost reduction will be made while some error will still be introduced by
the preprocessing step. On the other hand, if all states are marked as periodic,
then c(tα + ∆t, t|D|, S̃) = 0 since it can be skipped completely and larger cost
reductions are expected. Note also that if all measurements after the last dose
fall within a span of ∆t, integration does not need to switch back to S from S̃.

A useful aspect of the outlined approach is that S′ and S̃ can be constructed
from S without symbolic manipulation. Integrator implementations require the
user to provide a function that, given Si(t), returns a vector of which the ith com-
ponent represents dSi(t)/dt . Multiplying this vector with the bit vector where
all the components corresponding to states in N are set to 1 is a straightforward
way to transform S into S̃.
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6 Performance Evaluation

Test data is taken from an online resource [17] for the Nimotuzumab model
and is generated synthetically for the Canagliflozin model using the parame-
ter estimates from Dunne et al.[4]. The Stochastic Approximation Expectation
Maximization (SAEM) algorithm from Kuhn et al. [10] is used to fit a complete
hierarchical model, described in Section 4. It is difficult to obtain a clear under-
standing of how well the presented approximation performs by comparing SAEM
directly. Instead, the SAEM algorithm is run on the real model and the param-
eters at which the likelihood is evaluated are logged. The CVODE solver from
the SUNDIALS software package [8] is used as the integrator implementation.

The evaluation time together with the log-likelihood value of the classical
approach from Algorithm 1 is measured for the collected parameters. The same
is measured for the approximate model with different choices for τ . Figure 5
illustrate the influence of τ on both the relative error of the log-likelihood and
the speedup between the real and the approximate model. For τ = 0, no speedup
is expected since no states will be classified as periodic. Since doses are shifted
for the Nimotuzumab model, some error is still introduced. This is not the case
for the Canagliflozin model as it does not take into account varying dosing
intervals. In both models, the slowdown with τ = 0 is due to computing and
sorting zj , and the additional bookkeeping that is needed to compare the value
of each state with τ . Note the difference in speedup between the two models.
The Canagliflozin data contains individuals with a much larger number of dosing
events than those in the data for the Nimotuzumab model.
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Fig. 5. Violin plots showing relative error and speedup as the threshold τ increases for
the Nimotuzumab model at the top and for the Canagliflozin model at the bottom.
A larger τ increases the probability of introducing a larger error. At the same time,
a higher speedup factor is obtained. While both models show the same behavior as τ
increases, there is a difference in scale of the error and τ due to a different number of
dosing events in the data and structural differences between the models.
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Next, data is generated synthetically with an increasing number of doses to
show that the total time spent by the integrator in the second phase determines
the improvements that can be obtained by using the approximate model. In
Figure 6, τ increases from 0 to 0.008, showing that with more dosing events, and
hence more periodic behavior, a larger increase in performance is observed.
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Fig. 6. Speedup for varying τ and varying number of observations for the Canagliflozin
model. With more observations, the second phase makes up a larger fraction of the total
execution time. Hence, there is a more opportunity to reduce execution time. Although
not clearly visible, with τ = 0, a slowdown of up to 25% is seen.

Recall from Section 4 that φi = µ + ηi. In algorithms like SAEM, one of
the steps involves integrating out random effects ηi for a given individual. Due
to the complexity of the models, MCMC samplers are used. Using the approx-
imate model directly in this step results in biased estimates as the introduced
errors change the distribution of random effects. As shown above, through the
choice of τ , accuracy is sacrificed for performance. Two ways are discussed to
use the approximation without introducing bias. A function that weights both
the accuracy and the performance aspects is given for each. The same function
can then be used to tune τ automatically. While tuning brings with it some
computational costs, estimating parameters of hierarchical models takes orders
of magnitude longer so it is worth spending some time on the tuning process.
The objective is to find a sufficiently good value for τ and not necessarily the
optimum. Therefore, tuning can be done on a subset of individuals.

One way to use the approximation is with HMC. Here, new positions are
proposed by following the gradient L times and performing an accept-reject step
at the final position. If gradients are computed from the approximate model and
the accept-reject relies on the real model, the samples obtained remain unbi-
ased [15]. Note that in scenarios where L is large, larger reductions in execution
time are possible. Since the gradients are only approximate, proposals will be
of lower quality. For example, if the real and the approximate gradients differ
too much, the proposed positions will have low mass and many points will be
rejected. In turn, this lowers the effective sample size (ESS), a metric used to
evaluate the information content of dependent samples. Tuning τ is accomplished
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by maximizing ESS per unit time. Figure 7 shows this metric for Canagliflozin
using L = 4 while varying τ . Clearly, the optimal value for τ depends on the
choice of L.
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Fig. 7. Effective sample size per unit time while varying τ for the Canagliflozin model.
This metric can be used to tune τ automatically.

As noted above, generating samples directly with any MCMC sampler from
the random effects distribution built with the approximate model will introduce
bias due to the errors. Another way to use the approximation is through im-
portance sampling, where bias is corrected by weighting each sample [12]. These
weights, obtained by taking the ratio between the density of the real and the
approximate model, can be computed in parallel. If there is too much difference
between the importance distribution and the target distribution, expectations
computed from samples will exhibit more variance, denoted by στ . An estimator
σ̂τ is built by repeated sampling. A value for τ that trades off between com-
putational efficiency and quality is chosen by minimizing σ̂τ while keeping time
fixed. With multiple random effects, the covariance estimator Σ̂τ is used instead.
Figure 8 shows this for the Nimotuzumab example. In this case, τ is tuned by
minimizing |Σ̂τ |, the determinant of the covariance matrix.

7 Conclusion and Future Work

This paper introduces an approximation of repeated administration models that
exploits past computation efforts and employs the method of averaging numeri-
cally. In case of models with varying dosing intervals, a preprocessing step allows
for detection of periodic behavior at the cost of adding some error to the ap-
proximation. The actual improvements vary depending on the model and the
parameters of the model. On one of the test models, up to 70-fold reductions
in run-time were measured while introducing only on the order of 10−3 rela-
tive error. Since fitting a hierarchical model can take up to hours or even days
depending on the configuration parameters of algorithms like SAEM, these im-
provements have a tremendous impact on the end-users.
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Fig. 8. The value of log|Σ̂τ | in function of τ for the importance sampling estimator.
By setting τ to 0.7, an appropriate trade-off between approximation accuracy and
computational cost is made.

The approximation relies on setting the threshold τ to detect repetitive be-
havior in ODE states. It determines both the error and speedup of using the
approximation instead of the real model. Incorporating a self-adjusting mech-
anism to automatically set τ for an MCMC sampler was discussed. Different
objective functions can be devised depending on the use-case to tune τ , some of
which will be studied in future work.

Speculative parallelism is a method to parallelize sequentially dependent
tasks [7]. It has previously been applied to the classic Metropolis-Hastings MCMC
sampler [1] where the sequence of accept-reject choices are guessed to predict
the chain positions. Verification of these predictions then proceeds in parallel. A
benefit of the speculative approach is that the collected samples are unaffected.
Similarly, the approximation method presented in this paper can be applied to
predict the chain, after which verification can occur in parallel. As in Section 6,
it is again possible to tune τ . Here, τ trades off between the prediction accuracy
and the time spent creating the prediction.

The choice of τ does not bound the error in the approximation. Tolerance
bounds are typically already provided as parameters for numerical integration
methods. Therefore, a promising direction of future work is to consider the
change in integration results by entering the second phase one interval later.
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