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Abstract  

In recent years, composite indicators have become increasingly recognized as a useful tool 

for performance evaluation, benchmarking, and decision-making by summarizing 

complex and multidimensional issues. In this study, we focus on the application of data 

envelopment analysis (DEA) on index construction in the context of road safety and 

highlight the shortcomings of using the classical DEA models. The DEA method assigns a 

weight to each indicator by selecting the best set of weights for the unit under evaluation. 

The flexibility in selecting the weights in the classical DEA approach may lead to two 

interrelated problems: compensability and unfairness. These shortcomings are, 

respectively, overcome traditionally by imposing weight restrictions and applying a 

common weights approach. However, the problem of evaluating a layered hierarchy of 

indicators with a common set of weights (CSW) has not been addressed in the literature. 

To fill this gap, we propose a new approach for index construction to determine an 

optimal CSW to assess all units simultaneously while reflecting the hierarchical structure 

of the indicators in the model. The applicability of the suggested common-weight 

approach is illustrated by a case study on constructing a road user behavior index for a 

set of European countries. From a theoretical point of view, our approach provides a fair 

and identical basis for evaluation and comparison of countries in terms of driver’s 

behaviors and, from a practical point of view, it significantly reduces the required 

computational burden for solving the formulated model. The obtained results clarify the 

sharper discrimination power of our model compared to the other methods in the 

literature.  

Keywords: Road user behavior; Performance evaluation; Hierarchical structure; 

Composite indicators; Data envelopment analysis; Common set of weights.  

1 Introduction 

Road traffic crashes are the eighth highest cause of death globally, cutting short the lives 

of almost 1.35 million people every year (World Health Organization, 2018). Although 

road safety actions taken so far have been effective, the number of road fatalities and 

injuries is still unacceptably high. In order to improve road safety, one should consider 
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not only the crash data but also the underlying risk factors influencing safety. In this 

respect, a road safety target hierarchy was proposed for the development of various 

indicators. The concept was first introduced in New Zealand's National Road Safety 

Strategy 2001–2010 (LTSA, 2000), in which road safety was represented as a pyramid 

consisting of four horizontal layers, from bottom to top respectively: safety measures and 

programs, safety performance indicators (SPIs), number killed and injured, and social 

cost. In the later European SUNflower study (Koornstra et. al, 2002), the layer “structure 

and culture” was added at the bottom of the pyramid to highlight the policy context of a 

country or its background conditions. The pyramid describes the relationships that exist 

between indicators in the road safety system indicating processes that lead to accidents 

and their consequent social costs (ETSC, 2001).  

In Europe, based on the potential for different road safety domains to improve road safety, 

together with available data, the following seven risk factors have been identified as 

essential for road safety management and, hence, can be considered for the development 

of SPIs: drinking and driving, speeding, protective systems, daytime running lights, 

vehicles (passive safety), roads (infrastructure), and trauma management. These risk 

factors are in turn quantified by several appropriate SPIs that serve as the basis for 

assessing the current level of road safety in each country and checking progress, 

evaluating the impacts of various safety interventions, and comparing road traffic systems 

between countries and/or regions (Hakkert and Gitelman, 2007). Although individual 

indicators provide large amounts of information, it is not easy to compare countries by 

identifying an identical trend in many separate indicators because making a simple 

comparison for each indicator across countries only reveals a small (often trivial) portion 

of the road safety situation. As a result, in order to evaluate the multi-dimensional concept 

of road safety, it is beneficial to create a single composite indicator by consolidating a set 

of performance indicators. 

In this study, we focus on road user behavior, which is recognized as the main contributor 

in the majority of all crashes (Stanton and Salmon, 2009). In a European SafetyNet project, 

Hakkert, Gitelman and Vis (2007) identified the most common risk factors for measuring 

the performance of road user behavior as drink driving, speeding, and nonuse of 

protective systems, each having various indicators. Figure 1 depicts the road user behavior 

index, which is constituted from three behavioral factors: (i) drink driving, (ii) driving at 
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inappropriate or excessive speed, and (iii) the use of protective systems. Drink driving is 

represented by two indicators: percentage of drivers with a blood alcohol level beyond 

the legal limit in roadside police tests (𝐼1), and the percentage of fatalities caused by 

accidents involving at least one driver affected by alcohol (𝐼2). Driving at inappropriate or 

excessive speed is evaluated by two indicators: the mean speed and the speed limit 

violations in free flow traffic, i.e. the percentage of vehicles exceeding the speed limit. 

Since the level of risk varies on different road types, the indicators for speed are further 

segregated into motorways, rural roads, and urban roads (𝐼3 − 𝐼8). The last behavioral 

characteristic, protective systems, is quantified by three indicators: the daytime seat belt 

rate, which is obtained by the percentage of wearing in front (𝐼9), and rear (𝐼10) seats of 

passenger cars and vans under 3.5 tons, and the percentage of daytime usage of child 

restraints (𝐼11).  

 
Figure 1. The hierarchical structure of road user behavior (source: Shen, Hermans, Brijs,  Wets (2013)) 

In summary, there are eleven SPIs which are combined into a single hierarchical index 

with the aim of evaluating the performance of road user behavior for some European 

countries. The road user behavior index comprises of three pillars: Alcohol, Speed, and 

Protective systems. The first two indicators, i.e., 𝐼1 and 𝐼2, relate to Alcohol; the next six 

indicators relate to Speed via Mean Speed (𝐼3-𝐼5) and Speed Limit Violations (𝐼6-𝐼8) sub-

indexes; the last three indicators, i.e., 𝐼9-𝐼11 , relate to Protective systems. For instance, 
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increasing the seat belt wearing rate in the front and rear seats leads to an increase in the 

seat belt sub-index which enhances the protective systems pillar and subsequently 

improves the road safety situation in a country. Calculating the index requires a 

scientifically sound methodology that considers the layered hierarchy of the indicators 

and hence provides a sound basis for cross-country comparison. 

The main approach for constructing an index is to assign a weight to each indicator and 

then aggregate them into a single index. Such aggregations and assignments directly affect 

the quality and reliability of the calculated index (see Greco, Ishizaka, Tasiou, Torrisi , 

2019, Nardo et al., 2005, Saisana, Saltelli, Tarantola, 2005). Data envelopment analysis 

(DEA) has been accepted as a promising method that assigns the best set of weights to 

SPIs and then aggregates them into an index with a maximum possible score without 

relying on a priori knowledge on finding the weights. In fact, the relative performance of 

a specific country is calculated by considering the performance of all the other countries 

by solving a linear optimization problem. As a matter of fact, DEA finds the best possible 

weights directly from the data. The term ‘best’ means that the measured index score of 

each country is maximized relative to the others when these weights are assigned to the 

indicators. However, this flexibility in selecting the weights in the traditional DEA 

approach may lead to two interrelated issues: compensability and unfairness (Hatami-

Marbini and Toloo, 2016). The former problem arises when an extreme (very low or very 

high, unrealistic) value is assigned to a weight, which is in conflicting contrast to decision-

makers’ beliefs. The latter problem refers to the situation in which variable weights are 

assigned to a single indicator rather than a fixed weight that deters the evaluation process 

from a fair and identical condition. To overcome these shortcomings, imposing suitable 

weight restrictions, respectively, applying the common-weights (CW) approach was 

developed within the DEA literature (for a deeper discussion we refer the reader to Hatefi 

and Torabi, 2010, Sun, Wu, Guo, 2013, and Wang, Luo, Lan, 2011). A point in common 

among them is that all indicators were simply treated as if they belong to the same layer. 

However, in creating an index, it is worthwhile to pay attention to the structure of the 

indicators, i.e., indicators that share similar conceptual features must be considered in the 

same category. Consequently, the indicators might belong to a different item and further 

be linked to one another creating a multilayer hierarchical structure, as shown in Figure 

1. In this situation, considering the basic DEA models which consider a single layer for all 

the indicators results in ignoring the information available on their hierarchical structure. 
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To overcome this limitation, Meng, Zhang, Qi, Liu (2008) suggested a layered hierarchy 

DEA approach in which the weights among categories are determined by the DEA model 

and the weights within categories (internal weights) are determined by the weighted-

average approach embedded in the DEA framework. However, their proposed model is 

non-linear and limited only to situations with a two-layer hierarchy. Later, Kao (2008) by 

using variable substitution, transformed it into a linear form. Thereafter, as a valuable 

extension, Shen et al. (2011, 2013) developed a generalized multi-layer DEA (MLDEA) and 

MLDEA based index (MLDEA-I) model, which consider the layered hierarchy of indicators, 

without any limitation on the number of layers. Nevertheless, the weights derived by 

these methods are not the same for all the DMUs which deters the evaluation process (i.e., 

ranking and benchmarking) from a fair and identical condition. 

This study proposes a new approach for index construction with an optimal common set 

of weights (CSW) to evaluate all DMUs simultaneously whereas the hierarchical structure 

of the indicators is considered. Specifically, the concept of CSW is integrated into the 

model of Shen et al. (2013) leading to a new model with sharper discrimination power. In 

doing so, not only it contributes to the set of methods currently available for index 

construction, but also it proposes an extension of common weights to a case of 

hierarchically structured indicators. To the best of our knowledge, this paper is the first 

to combine the common weights approach with the hierarchical structure of indicators. 

The suggested approach leads to index values composed of similar weights which are 

important for a fair evaluation.  

The rest of this paper is organized as follows: the next section presents the most 

important road safety indexes. Section 3 briefly reviews the classical DEA based index 

model and highlights some shortcomings of it. In Section 4, we propose a new method to 

generate an index with a CSW with considering the hierarchical structure of the 

indicators. The application of the proposed model is presented in Section 5, by a case 

study on benchmarking the road user behavior for a set of European countries. The paper 

ends with the conclusions in Section 6.  

2 Road Safety Indexes 

In the traditional approach, the safety performance of countries was assessed mainly by 

the safety outcomes in terms of fatalities per head of population, vehicle fleet, or exposure 



6 
 

(Gitelman, Doveh, Hakkert, 2010; ITF, 2017). Currently, benchmarking of road safety at 

the (inter)national level is being done using the concept of composite indicators in which 

road safety performance indicators are combined into an overall index. Prominent 

undertaken research studies on the road safety index (RSI) applied both objective and 

subjective approaches (See Table 1).  

Table 1.  Summary of the existing road safety indices 

Ref. The set of indicators 
Index construction 
methodology 

Aims 

Al Haji, G. 
(2007) 

Three pillars of the road safety domain: (i) 
Human performance which shows how safe 
the behavior of the road users is 
(ii) System performance comprised of safer 
roads, safer vehicles, enforcement, and 
socioeconomic performance 
 (iii) Product performance considering 
fatality rates 

- Equal weighting 
- Principal component 
analysis 
- Expert judgments 
 - Weights based on previous 
experience 

To assess the road safety 
performance at two groups of 
Highly motorized and less 
motorized countries 

Hermans 
et al 
(2008) 

- Alcohol and drugs 
- Speed 
- Protective systems 
- Vehicle 
- Infrastructure 
- Daytime running lights 

-Equal weighting 
-Factor analysis 
-Analytic hierarchy process 
-Budget allocation  
-DEA 

To evaluate the safety 
performance of 21 EU countries 
by applying 5 different 
weighting methods and selecting 
the best one for the context of 
road safety 

Gitelman 
et al. 
(2010) 

-Policy performance indicators 
-Final road safety outcome indicators 
-Intermediate outcome indicators 
-Background characteristics of the countries 

-Factor analysis 
-Principal component 
analysis 

To explore different trials in 
creating a road safety 
performance index for 27 
European countries 

Shen 
 et al. 
(2011) 

-Road user behavior indicators (i.e., Alcohol,  
speed, protective systems) as the model’s 
input  
-Road safety final outcomes (# fatalities per 
million population, # serious injuries per 
million population, # slight injuries per 
million population, # crashes per million 
population) as the output 

Multiple Layer Data 
Envelopment Analysis 

To measure the road safety 
efficiency of thirteen European 
countries 

Shen  
et al. 
(2013) 

The same set of road user behavior 
indicators used in our study 

Multiple Layer Data 
Envelopment Analysis based 
index  

To assess the road safety 
performance of thirteen 
European countries 

Bao et al. 
(2012) 

Alcohol and drugs, speed, protective 
systems, vehicle, roads, and trauma 
management 

Enhanced Fuzzy Technique 
for Order Preference by 
Similarity to Ideal Solution 
(TOPSIS) 

To assess the road safety 
performance of some European 
countries 

Chen 
 et al. 
(2015) 

- Indirect dimension including human, 
vehicle, road, environment and management 
factors 
- Direct dimension: personal and traffic risk 

Integrated entropy, TOPSIS, 
and Rank Sum Ratio methods 

To assess the safety 
performance of 31 provinces in 
China 

Chen 
 et al. 
(2016) 

-Policy performance indicators 
-Road safety performance indicators 
including final and intermediate outcome 

Entropy-embedded RSR 

To rank and classify some 
European countries and find the 
best-in-class as a benchmark in 
each group 

For instance, Al-haji (2007), proposed a road safety development index to indicate the 

severity of the road safety situation in a set of countries by focusing on three pillars of the 

road safety domain: (i) Human performance which shows how safe the behavior of the 

road users is, (ii) System performance which is comprised of safer roads, safer vehicles, 

enforcement and socioeconomic performance, and (iii) Product performance considering 

fatality rates. He applied four weighting approaches including equal weighting, principle 
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component analysis, expert judgments and weights based on previous experience, for the 

index construction. 

In the SafetyNet project, Hakkert and Gitelman (2007) defined seven risk factors for road 

safety management. Thereafter, Hermans, Van den Bossche, and Wets (2008) suggested 

a safety performance indicator for each risk factor and investigated the assignment of 

different weighting methods to the individual indicators. The authors employed five 

commonly used approaches for the RSI creation, i.e., equal weighting, factor analysis, 

analytic hierarchy process, budget allocation, and DEA. Furthermore, the theoretical 

consideration, as well as the pros and cons of each method were described and the results 

were compared with the mortality rate as a relevant reference. Hermans, Van den 

Bossche, and Wets (2008) concluded that the DEA is the best approach for the RSI 

construction since it resulted in the highest correlation with the ranking of countries 

based on the mortality rate. Gitelman, Doveh, and Hakkert (2010) proposed an RSI by 

taking into account relevant indicators from different layers of the road safety pyramid. 

They utilized four categories of road safety indicators in their study: policy performance 

indicators, final road safety outcome indicators, intermediate outcome indicators, and the 

background characteristics of the countries (e.g. motorization level, population density). 

Two statistical weighting schemes, namely factor analysis and principal component 

analysis, were applied. 

Contrary to the others who ignored the hierarchical structure of SPIs in the analysis, Shen 

(2012) conducted several outstanding studies on the consolidation of risk indicators 

considering the hierarchy of safety performance indicators. He identified six leading road 

safety risk indicators within three main road transport components to develop a 

comprehensive set of hierarchically structured safety performance indicators. Shen 

(2012) employed various extensions of the DEA method to construct an RSI for cross-

country comparison (c.f. Shen et al., 2013). 

Bao et al. (2012) utilized the well-known Technique for Order Preference by Similarity to 

Ideal Solution (TOPSIS) method to assess the road safety performance of some European 

countries and proposed an enhanced hierarchical fuzzy TOPSIS model to integrate the 

multilayer SPIs and value judgment from experts in the form of linguistic expression into 

an overall index. Thereafter, Chen, Wang, and Deng (2015) integrated entropy, TOPSIS, 

and Rank Sum Ratio methods to assess the safety performance of 31 provinces in China. 
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Based on the resulting index scores, all the provinces were ranked and then categorized 

into five groups based on their level of road safety. Chen, Wu, Chen, Wang, and Wang 

(2016) also investigated a new approach, named Entropy-embedded RSR, to construct 

the RSI score with the aim of ranking and classifying some European countries and finding 

the best-in-class as the benchmark in each group. By comparing the results with other 

methods (e.g. SUNflower approach), the authors came to the conclusion that the proposed 

approach can facilitate comprehensive benchmarking of the countries. As there is no 

universally agreed-upon methodology to construct an index, it is worth exploring new 

approaches.  

3 Data Envelopment Analysis (DEA) 

DEA has been originated by  Charnes, Cooper, Rhodes (1978) as a data-driven, 

nonparametric, optimization-based benchmarking technique that uses linear 

programming to evaluate the relative efficiency of a set of similar decision-making unit 

(DMU) with multiple inputs and multiple outputs. DEA has immediately been identified 

as a useful decision support system for performance evaluation, benchmarking, and 

decision-making and it has successfully been applied in a wide variety of research areas 

(Emrouznejad, Yang, 2017). Recently, Toloo, Mirbolouki (2019) extended an approach for 

selecting the best composite project using DEA. During the last two decades, significant 

attention has also been drawn to the application of DEA in index construction, i.e., 

integrating some indicators into a single composite index which is also known as the 

“benefit of the doubt” (BOD) approach (Cherchye, Moesen, Rogge, Puyenbroeck, 2007). A 

DEA based index (DEA-I) model is a conventional DEA model with multiple outputs 

without explicit inputs (for a deeper discussion of DEA-I models, we refer the readers to 

Liu, Zhang, Meng, Li, Xu, 2011, Toloo, 2013, and Toloo, Tavana, 2017). Assume that there 

are 𝑛 DMUs (DMU𝑗; 𝑗 = 1,… , 𝑛) to evaluate in terms of 𝑠 indicators (𝒚1, … , 𝐲s), the DEA-I 

model for the DMU under evaluation, DMU𝑜, can be formulated as follows:  

𝐼𝑜 = max∑ 𝑢𝑟𝑜𝑦𝑟𝑜
𝑠
𝑟=1

s. t.
∑ 𝑢𝑟𝑜𝑦𝑟𝑗
𝑠
𝑟=1 ≤ 1    𝑗 = 1,… , 𝑛

𝑢𝑟𝑜 ≥ 0                    𝑟 = 1, … , 𝑠

  (1) 

where 𝑢𝑟𝑜  is the weight (a non-negative decision variable) for the 𝑟𝑡ℎ indicator 𝒚𝑟 for 𝑟 =

1, … , 𝑠 and the optimal objective value 𝐼𝑜 is the composite indicator or the index score of 
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DMU𝑜. To get the highest or maximum index score, the above model assigns an optimal 

weight to each indicator in favor of DMU𝑜 subject to a condition that the weighted sum of 

indicators for all DMUs does not exceed one. Model (1) is solved 𝑛 times, one time for each 

DMU, and hence the optimal set of weights can differ from one DMU to another. Cooper, 

Seiford and Tone (2007) proved that the basic DEA models are always feasible and their 

optimal objective value is bounded, i.e., 0 < 𝐼𝑜 ≤ 1. DEA partitions all the DMUs into two 

mutually exclusive and collectively exhaustive sets: efficient and inefficient DMUs. DMU𝑜 

is efficient if 𝐼𝑜 = 1 and otherwise it is inefficient. Moreover, a higher index value implies 

a better overall relative performance. 

Model (1) seeks the optimal weights in favor of the DMU under evaluation and this 

flexibility may lead to different weights for an indicator. Moreover, the optimal weights 

may not be unique for an efficient DMU. Such weight flexibility prevents to have a fair 

comparison with identical optimal weights for all the DMUs. To overcome this issue, Cook, 

Roll, Kazakov (1990) and Roll, Cook, Golany (1991) introduced the common-weights 

(CW) approach in the context of applying DEA to calculate the performance of highway 

maintenance patrols in Ontario.  

Recently, more indicators which often have hierarchical structures are developed and 

applied in the construction of indexes, such as road safety performance indicators (see 

ETSC, 2001 and  Hakkert, Gitelman, 2007). In this situation, it is not advisable to use the 

conventional DEA models anymore, because in these models it is assumed that all 

indicators are in a single layer. Shen et al. (2013) imposed some interesting weight 

restrictions on the DEA model to formulate an innovative MLDEA approach which is 

empowered to define indicators in different layers. The next section discusses a new CW 

Multi-layer DEA Index (CMI) approach, reducing the weight flexibility of Shen et al. 

(2013)’s model. 

4 The Proposed Approach  

The process of constructing a composite index with CSW in the presence of hierarchical 

layers comprises of five steps: Step 1, data gathering and processing; Step 2, imposing the 

set of weight restrictions to hold the given hierarchical structure of the indicators; Step 3, 

formulating a CMI model considering the provided weight restrictions which maximizes 

the performance of all DMUs, simultaneously; Step 4, calculating the index scores by 
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multiplying the CSW obtained from the model with the (normalized) indicator values; 

Step 5, Computing the target values and drawing useful policy insights from the model 

output. Figure 2 depicts the schematic diagram of the proposed methodology including 

five steps. 

 

Figure 2.  Schematic diagram of the proposed methodology 

Assume that there are 𝑛 DMUs to be evaluated with 𝑠 indicators 𝒚1, … , 𝒚𝒔 along with a 𝐾 

layered hierarchy, shown in Figure 3 † . The first layer involves 𝑠  indicators (nodes) 

𝑦1
(1)
, … , 𝑦𝑠

(1)
 which constitute 𝑠(2) indexes (nodes) in the second layer (in the same way, 

 
† The figure can be interpreted as a tree with 𝑠 leaves  𝑦1

(1)
, … , 𝑦𝑠

(1)
 and a root DMU (graph theory). 
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Road User 

Behavior Index 
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hierarchical structure of the indicators. 
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restrictions for maximizing the performance 
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CSW obtained from the model with the 
(normalized) indicator values 

Compute the target values and compare it 
with the current ones to get useful policy 
insights from the model output. 
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the other layers are constructed). The value of each index (internal nodes) is measured as 

the normalized weighted sum of connected indicators (nodes) in the previous layer.  

 

Figure 3. A typical hierarchical structure of indicators, adapted from Shen et al. (2013) 

To clarify the concept of the common weight multi-layer DEA index construction, we 

continue explaining our proposed CMI model using a simple example which is depicted in 

Figure 4. It is assumed that  𝑠(𝑘) is the number of categories in the 𝑘𝑡ℎ layer (𝑘 = 1,… , 𝐾). 

Note that with this definition in our example, we have  𝐾 = 3  and 𝑠(1) = 11; 𝑠(2) =

5; 𝑠(3) = 2. Moreover, let 𝐴𝑟𝑘
(𝑘)

and 𝑝𝑟𝑘
(𝑘)

 be the set of indicators and the internal weights 

belonging to the 𝑟𝑡ℎ category (node) in the 𝑘𝑡ℎ layer, respectively. The weighted sum of 

indicators for the DMU under evaluation in Figure 4 is ∑ 𝑢𝑟𝑘𝑦𝑟𝑘
(𝐾)𝑠(𝐾)

𝑟𝑘=1
 where 𝑢𝑟𝑘 is the 

weight given to the 𝑟𝑡ℎ category in the 𝐾𝑡ℎ layer (i.e., the final layer).  

According to our example, the weighted sum of indicators is equal to 𝑢1𝑦1
(2) + 𝑢2𝑦1

(3) +

𝑢3𝑦2
(3). Considering the nodes of the last layer, we have 𝑦1

(2) = 𝑝1
(1)𝑦1

(1) + 𝑝2
(1)𝑦2

(1) ; 𝑦1
(3) =

𝑝1
(2)𝑦2

(2) + 𝑝2
(2)𝑦3

(2)  and 𝑦2
(3) = 𝑝3

(2)𝑦4
(2) + 𝑝4

(2)𝑦5
(2) . Therefore, the weighted sum of 

indicators for the DMU can be rewritten as 𝑢1(𝑝1
(1)𝑦1

(1) + 𝑝2
(1)𝑦2

(1)) + 𝑢2(𝑝1
(2)𝑦2

(2) +

𝑦1
(2) 

 
𝑦1
(1) 

  𝑦2
(1) 

  

  

  

  

  

   

  

𝑦2
(2) 

𝑦
𝑠(2)
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(1) 

𝑝2
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⋮ 
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(1) 

  
𝑝𝑠
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⋯ 
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⋮ 
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𝑝2
(2)
𝑦3
(2)
) + 𝑢3(𝑝3

(2)
𝑦4
(2)
+ 𝑝4

(2)
𝑦5
(2)
). In a similar manner, for a fixed node in the second 

layer we have 𝑦2
(2) = 𝑝3

(1)𝑦3
(1) + 𝑝4

(1)𝑦4
(1) + 𝑝5

(1)𝑦5
(1) and so on. As a result, from a sequential 

substitution system, we can denote the objective function as: 

CMI = max∑ 𝑢𝑟𝐾 (∑ 𝑝𝑟𝐾−1
(𝐾−1)

𝑟𝐾−1∈ 𝐴𝑟𝐾
(𝐾)  ( ⋯∑ 𝑝𝑟2

(2)

𝑟2∈ 𝐴𝑟3
(3) (∑ 𝑝𝑟1

(1)
 (∑ 𝑦𝑟1𝑗

𝑛
𝑗=1 ) 

𝑟1∈ 𝐴𝑟2
(2) )))𝑠(𝐾)

𝑟𝐾=1
  (2) 

 

 

Figure 4. Three-layered hierarchical structure of indicators 

which is corresponding to the following in our example: 

CMI = max ( 𝑢1𝑝1
(1) (∑ 𝑦1𝑗

(1)𝑛
𝑗=1 ) + 𝑢1𝑝2

(1) (∑ 𝑦2𝑗
(1)𝑛

𝑗=1 ) + 𝑢2𝑝1
(2)𝑝3

(1) (∑ 𝑦3𝑗
(1)𝑛

𝑗=1 ) +

 𝑢2𝑝1
(2)
𝑝4
(1)
(∑ 𝑦4𝑗

(1)𝑛
𝑗=1 ) + 𝑢2𝑝1

(2)
𝑝5
(1)
(∑ 𝑦5𝑗

(1)𝑛
𝑗=1 ) + 𝑢2𝑝2

(2)
𝑝6
(1)
(∑ 𝑦6𝑗

(1)𝑛
𝑗=1 ) +

𝑢2𝑝2
(2)𝑝7

(1) (∑ 𝑦7𝑗
(1)𝑛

𝑗=1 ) + 𝑢2𝑝2
(2)𝑝8

(1) (∑ 𝑦8𝑗
(1)𝑛

𝑗=1 ) + 𝑢3𝑝3
(2)𝑝9

(1) (∑ 𝑦9𝑗
(1)𝑛

𝑗=1 ) +

 𝑢3𝑝3
(2)𝑝10

(1) (∑ 𝑦10𝑗
(1)𝑛

𝑗=1 ) + 𝑢3𝑝4
(2)𝑝11

(1) (∑ 𝑦11𝑗
(1)𝑛

𝑗=1 ))  

This way, the existing hierarchical structure of the indicators is considered in the model 

and weights in one layer can be treated differently from the ones in another layer. 

However, since all the weights mentioned above are unknown (decision variables), their 
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multiplication will turn the model nonlinear. More indicators in more layers extend the 

required computational time which makes the problem more complicated to deal with. 

Following Shen, Hermans, Brijs, and Wets (2012), we denote the weight for the indicators 

in the first layer by �̂�𝑟𝑘 which is measured as, i.e., �̂�𝑟𝑘 = 𝑢𝑟𝑘∏ 𝑝𝑟𝑘
(𝑘)

𝑟𝑘∈ 𝐴𝑟𝑘+1
(𝑘+1)

𝐾−1
𝑘=1  for 𝑟𝑘 =

1,… , 𝑠‡.  In our example, we have: 

�̂�1 = 𝑢1𝑝1
(1)  

�̂�2 = 𝑢1𝑝2
(1) 

�̂�3 = 𝑢2𝑝1
(2)𝑝3

(1) 

�̂�4 = 𝑢2𝑝1
(2)𝑝4

(1) 

�̂�5 = 𝑢2𝑝1
(2)𝑝5

(1) 

�̂�6 = 𝑢2𝑝2
(2)𝑝6

(1)  

�̂�7 = 𝑢2𝑝2
(2)𝑝7

(1) 

�̂�8 = 𝑢2𝑝2
(2)𝑝8

(1) 

�̂�9 = 𝑢3𝑝3
(2)𝑝9

(1) 

�̂�10 = 𝑢3𝑝3
(2)𝑝10

(1) 

�̂�11 = 𝑢3𝑝4
(2)𝑝11

(1) 

Thus, ∑ �̂�𝑖 (∑ 𝑦𝑖𝑗
𝑛
𝑗=1 )11

𝑖=1  should be maximized. As a result, we suggest the following CMI 

model with the aim of maximizing the performance of all DMUs simultaneously:  

CMI = max∑ (∑ �̂�𝑟1 𝑦𝑟1𝑗
𝑠
𝑟1=1

)𝑛
𝑗=1

s. t.
∑ �̂�𝑟1 𝑦𝑟1𝑗
𝑠
𝑟1=1

≤ 1  𝑗 = 1, … , 𝑛

�̂�𝑟1 ≥ 0 𝑟1  =  1, … , 𝑠

  (3) 

In addition, since the sum of the internal weights in each category of each layer is equal to 

one, i.e.,  

𝑝1
(1)+𝑝2

(1) = 1 𝑝11
(1) = 1

𝑝3
(1)+𝑝4

(1)+𝑝5
(1) = 1 𝑝1

(2)+𝑝2
(2) = 1

𝑝6
(1)+𝑝7

(1)+𝑝8
(1) = 1 𝑝3

(2)+𝑝4
(2) = 1

𝑝9
(1)+𝑝10

(1) = 1

 

we have 𝑢1 = �̂�1 + �̂�2 ; 𝑢2 = �̂�3 + �̂�4 + �̂�5 + �̂�6 + �̂�7 + �̂�8 and 𝑢3 = �̂�9 + �̂�10 + �̂�11 . To 

illustrate the latter, we start from the right side of the above equation: 

𝑢3𝑝3
(2)𝑝9

(1) + 𝑢3𝑝3
(2)𝑝10

(1) + 𝑢3𝑝4
(2)𝑝11

(1) = 𝑢3 [𝑝3
(2)(𝑝9

(1)+𝑝10
(1)) + 𝑝4

(2)𝑝11
(1)] 

 
‡ A tree has a unique path connecting each leaf to the root (see Bazaraa, Jarvis, Sherali (2010)). Let 𝑃 be the 
path that connects indicator (leaf) 𝑟 to the root. Then,  �̂�𝑟 is measured as the product of the internal weights 
for each arc in 𝑃. 
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= 𝑢3𝑝3
(2)
+ 𝑢3𝑝4

(2)
= 𝑢3(𝑝3

(2)
+𝑝4

(2)
) = 𝑢3 

Analogously, 𝑢2 = �̂�3 + �̂�4 + �̂�5 + �̂�6 + �̂�7 + �̂�8 and 𝑢3 = �̂�9 + �̂�10 + �̂�11 which can be 

generalized as follows: 

𝑢𝑟𝐾 = ∑  �̂�𝑟1 𝑟1∈ 𝐴𝑟𝐾
(𝐾)   (4) 

Suppose that model (3) is solved and the common set of optimal weights, �̂�𝑟1 
∗ , is obtained. 

Thus, the internal weights of the indicators in each category of each layer can be realized 

as follows: 

𝑝
𝑟𝑘

(𝑘)∗

𝑟𝑘∈ 𝐴𝑟𝑘+1
(𝑘+1) =

∑ �̂�𝑟1 
∗

𝑟1∈ 𝐴𝑟𝑘
(𝑘)

 

∑ �̂�𝑟1 
∗

𝑟1∈ 𝐴𝑟𝑘+1
(𝑘+1)

      𝑟𝑘  =  1, … , 𝑠(𝑘),   𝑘 = 1,… ,𝐾− 1 (5) 

which is equivalent to the following in our example: 

𝑝1
(1) =

�̂�1 
∗  

�̂�1 
∗ + �̂�2 

∗   ; 𝑝2
(1) =

�̂�2 
∗  

�̂�1 
∗ + �̂�2 

∗    

𝑝3
(1) =

�̂�3 
∗

�̂�3 
∗ + �̂�4 

∗ + �̂�5 
∗   ; 𝑝4

(1) =
�̂�4 
∗

�̂�3 
∗ + �̂�4 

∗ + �̂�5 
∗  ; 𝑝5

(1) =
�̂�5 
∗

�̂�3 
∗ + �̂�4 

∗ + �̂�5 
∗  ; ... 

𝑝1
(2) =

�̂�3 
∗ + �̂�4 

∗ + �̂�5 
∗  

 �̂�3 
∗ + �̂�4 

∗ + �̂�5 
∗ + �̂�6 

∗ + �̂�7 
∗ + �̂�8 

∗  ; 𝑝2
(2) =

�̂�6 
∗ + �̂�7 

∗ + �̂�8 
∗  

 �̂�3 
∗ + �̂�4 

∗ + �̂�5 
∗ + �̂�6 

∗ + �̂�7 
∗ + �̂�8 

∗  ; ... 

The internal weights assigned to each indicator in each category of each layer indicates 

the importance level of the corresponding indicators. Therefore, to better reflect the 

reality of the situation, value judgment or experts’ opinions can be integrated into the 

model by adding appropriate weight restrictions. To this aim, we can utilize various 

weight restriction techniques proposed in the DEA literature, such as absolute weight 

restrictions (Roll et al. 1991), assurance region or relative weight restrictions (Thompson, 

Singleton, Thrall, Smith 1986), ordinal weight restrictions and virtual weight restrictions 

(Wong, Beasley ,1990) (Cooper et al., 2007; Cherchye et al., 2007).  

Now by incorporating the realized internal weights as additional constraints into model 

(3) and adding suitable weight restrictions, we obtain the following CMI model:  
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CMI = max∑ (∑ �̂�𝑟1 𝑦𝑟1𝑗
𝑠
𝑟1=1

)𝑛
𝑗=1

s. t.
∑ �̂�𝑟1 𝑦𝑟1𝑗
𝑠
𝑟1=1

≤ 1  𝑗 = 1,… , 𝑛
∑ 𝑢𝑟1 𝑟1∈ 𝐴𝑟𝑘

(𝑘)

∑ 𝑢𝑟1 𝑟1∈ 𝐴𝑟𝑘+1

(𝑘+1)
= 𝑝𝑟𝑘

(𝑘)

𝑟𝑘∈ 𝐴𝑟𝑘+1
(𝑘+1) ∈ Θ 𝑟𝑘  =  1, … , 𝑠(𝑘), 𝑘 = 1,… , 𝐾 − 1

�̂�𝑟1 ≥ 0 𝑟1  =  1, … , 𝑠

  (6) 

where 𝐾  stands for the number of layers in the layered hierarchy,  �̂�𝑟1 indicates the 

unknown weight for 𝑟1
𝑡ℎ  indicators of the first layer (𝑟1 = 1,… , 𝑠), and Θ indicates the 

restrictions imposed on the corresponding internal weights. The objective function aims 

to maximize the index score of all DMUs simultaneously while satisfying the imposed 

weight restrictions. Moreover, let CMI𝑗  be the composite indicator of DMU𝑗  with the CSW, 

i.e., CMI𝑗 = ∑ �̂�𝑟1 𝑦𝑟1𝑗
𝑠
𝑟1=1

. Then, mathematically CMI = ∑ CMI𝑗
𝑛
𝑗=1 . The first constraint set 

guarantees an intuitive interpretation of the composite indicator and implies that the 

composite indicator of no DMU is larger than one under the CSW. The second constraint 

set with the aim of reflecting the layered hierarchy of the indicators specifies the weights 

in each category of each layer and further restricts their flexibility.  

It should be noted that although the suggested model (6) has some similarities with the 

classical model (1), it differs with respect to the following key features: the objective 

function and some additional constraints on the layer-specific weights. Before running 

the model, first, we have to aggregate the values of the indicators within each category of 

each layer by the weighted sum approach in which the sum of the internal weights is equal 

to one. Then, in the objective function, instead of using the indicator values for each DMU, 

and running the model 𝑛 times, one time for each DMU separately, we calculate the sum 

of the indicator values of all DMUs and then run the model once, to get the optimal CSW 

for the indicators.  

The suggested CMI approach has the following distinct advantages over the traditional 

DEA approach:  
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I. Realistic: the proposed model takes into account the hierarchical relationship that 

exists among the indicators, contrary to the traditional DEA models in which all 

the indicators are simply treated as if they belong to the same layer.  Assume an 

index is going to be created with both the traditional and the proposed approach. 

As can be seen in Figure 5, the conceptual framework of the indicators and their 

hierarchy in the proposed approach (b) are kept, while in the traditional approach 

(a) all the indicators, i.e., 𝐼1 𝑡𝑜 𝐼11, are considered in just one layer.   

  

(a) Traditional approach  (b) Proposed CW approach  

Figure 5. Simplified versus realistic approaches 

II. One model to solve: in the proposed model, the optimal set of weights is obtained 

by solving only a single integrated problem, in contrast to solving 𝑛 problems in 

the traditional DEA models and there is no need to solve corresponding individual 

Linear Programming problems for evaluating all efficiencies/calculating all the 

index scores. In the proposed model, the index score of each DMU is calculated 

simply by multiplying the CSW obtained from model (6) with the (normalized) 

indicator values. 

III. Discrimination power: the proposed model enables considering the hierarchical 

information of the indicators, and incorporating the weight restrictions in each 

category of each layer improves the discrimination power of the approach. Cooper 

et al. (2007) discussed that DEA models with restricted weight results possess 

sharper discriminating power. In other words, if a DMU is efficient in our model, 

then it is efficient in the traditional model. However, its reverse is not always true.  

CI

𝐼1

𝐼2

𝐼3
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𝐼6
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B
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C
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IV. Reasonable and fair: Our proposed approach provides a fair evaluation (ranking 

and benchmarking) since the performance of all the DMUs is evaluated based on 

the same set of weights under an identical condition. As mentioned earlier, 

traditional DEA models put each DMU in its best light by allowing each DMU to 

freely choose the weights of the indicators to maximize its performance (they are 

known to be optimistic). Therefore, solving the model for each DMU provides 𝑛 

different sets of weights for the indicators. The CW models solve a single 

optimization problem to obtain a set of weights that results in the highest overall 

efficiency of all DMUs (See Figure 6). 

[

𝐼11
𝐼21

𝐼12
𝐼22

… 𝐼1𝑚
… 𝐼2𝑚

⋮ ⋮ ⋱ ⋮
𝐼𝑛1 𝐼𝑛2 ⋯ 𝐼𝑛𝑚

] [

𝑤11
𝑤21

𝑤12
𝑤22

… 𝑤1𝑚
… 𝑤2𝑚

⋮ ⋮ ⋱ ⋮
𝑤𝑛1 𝑤𝑛2 ⋯ 𝑤𝑛𝑚

]

𝑇

⟹ [

𝐶𝐼11
𝐶𝐼21

𝐶𝐼12
𝐶𝐼22

… 𝐶𝐼1𝑛
… 𝐶𝐼2𝑛

⋮ ⋮ ⋱ ⋮
𝐶𝐼𝑛1 𝐶𝐼𝑛2 ⋯ 𝐶𝐼𝑛𝑛

] 

(a) Basic DEA approach 

[

𝐼11
𝐼21

𝐼12
𝐼22

… 𝐼1𝑚
… 𝐼2𝑚

⋮ ⋮ ⋱ ⋮
𝐼𝑛1 𝐼𝑛2 ⋯ 𝐼𝑛𝑚

] [

𝑐𝑤1
𝑐𝑤2
⋮

𝑐𝑤𝑚

] ⟹ [

𝐶𝐼1
𝐶𝐼2
⋮
𝐶𝐼𝑛

] 

(b) Suggested CW approach 

Figure 6. Graphical representation of CI construction in different approaches 

V. Target setting and enhancement recommendation: The model output provides 

recommendations for inefficient DMUs on how to improve their performance. This 

feature is demonstrated in section 5 in the context of road safety. 

5 Case study: Constructing a Road User Behavior Index 

To validate the effectiveness of our proposed approach, we construct a road user behavior 

index for a set of European countries (or DMUs): Austria (AT), Belgium (BE), Finland (FI), 

France (FR), Hungary (HU), Ireland (IE), Lithuania (LT), the Netherlands (NL), Poland 

(PL), Portugal (PT), Slovenia (SI), Sweden (SE), and Switzerland (CH) by applying the CMI 

model. The data of eleven hierarchical safety performance indicators for these countries 

have been adopted from Shen et al. (2013) and refer to the period 2006-2008. We use the 

same data set to compare the results of our proposed model with the MLDEA-I model. 

First, to tackle the different measurement units of the indicators and to ensure that all the 

indicators are expressed in the same direction with respect to their expected safety 
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performance impact, the raw data have to be normalized. Among existing normalization 

methods (see OECD, 2008), the distance to a reference method (7) is used since the ratio 

of two numbers is best kept by this approach. 

 

 𝐼𝑟𝑗 =

{
 
 

 
 

𝑦𝑟𝑗

max{𝑦𝑟𝑗: 𝑗 = 1,… , 𝑛}
if 𝑦𝑟𝑗 is a benefit

 
min{𝑦𝑟𝑗 ∶ 𝑗 = 1,… , 𝑛}

𝑦𝑟𝑗
if 𝑦𝑟𝑗  is a cost

 (7) 

where 𝐼𝑟𝑗  and 𝑦𝑟𝑗  are the normalized and raw value of the individual indicator 𝑦𝑟 , 

respectively, for DMU𝑗  (𝑗 = 1, . . . , 𝑛); “max 𝑦𝑟𝑗” and “min 𝑦𝑟𝑗” represent the maximum and 

minimum value of each indicator in the data set which are selected as the reference (or 

benchmark) for normalization when a benefit respectively a cost indicator is taken into 

account. Among the indicators, the eight SPIs related to alcohol and speed are undesirable 

indicators, while the three SPIs related to protective systems are desirable ones which 

means the higher the value of a given individual indicator, the better for the 

corresponding DMU. As a result, the DMU with the highest performance receives a 

normalized value of one whereas the others are expressed as the percentage share of that 

DMU’s value. The resulting normalized data based on (7) are presented in Table 2. 

Next, due to the hierarchical structure of the indicators, different preferences can be used 

at different levels, and as a result, the value judgment from decision makers or experts 

can be incorporated by restricting the weight flexibility in each category of each layer. 

Table 2. Normalized data on the eleven hierarchical SPIs. 

Country 
Alcohol Speed Protective systems 

𝐼1 𝐼2 𝐼3 𝐼4 𝐼5 𝐼6 𝐼7 𝐼8 𝐼9 𝐼10 𝐼11 

AT 0.116 0.463 0.917 0.781 0.802 0.766 0.051 0.254 0.904 0.669 0.863 

BE 0.068 0.654 0.827 0.743 0.768 0.348 0.029 0.222 0.799 0.467 0.729 

FI 0.593 0.136 0.942 0.729 0.907 0.409 0.023 0.323 0.911 0.949 0.716 

FR 0.263 0.123 0.912 0.787 0.838 0.505 0.037 0.318 1.000 0.957 0.937 

HU 0.279 0.283 0.973 0.793 0.817 0.362 0.033 0.230 0.727 0.479 0.433 

IE 0.237 0.119 0.924 0.762 0.724 1.000 0.032 0.223 0.901 0.875 0.857 

LT 0.555 0.321 0.978 0.713 0.714 0.789 0.025 0.318 0.609 0.350 0.404 

NL 0.081 1.000 0.879 0.740 0.881 0.454 0.020 0.234 0.959 0.852 0.758 

PL 0.091 0.438 0.788 0.697 0.647 0.290 0.015 0.165 0.799 0.564 0.905 

PT 0.137 0.610 0.828 0.618 0.919 0.302 0.014 0.360 0.881 0.549 0.591 

SI 0.122 0.078 0.943 1.000 0.713 0.480 1.000 0.163 0.874 0.527 0.672 

SE 1.000 0.357 0.864 0.717 0.870 0.241 0.019 0.259 0.973 0.887 1.000 

CH 0.277 0.230 0.922 0.757 1.000 0.710 0.043 1.000 0.887 0.770 0.895 
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In this study, to be consistent with Shen et al. (2013), the same weight restrictions are 

imposed. i.e. to make sure that all the three risk factors – alcohol (Al.), speed (Sp.), and 

protective systems (P.S.) – will be represented to some extent in the overall road user 

behavior index, the share of each of these three risk factors is considered to lie within the 

range of [0.1,0.5], still wide enough to allow a high level of flexibility;   

0.1 ≤ 𝑆ℎ𝑎𝑟𝑒𝐴𝑙., 𝑆ℎ𝑎𝑟𝑒𝑆𝑝., 𝑆ℎ𝑎𝑟𝑒𝑃.𝑆. ≤ 0.5  

It is worth noting that the share restitution is, in fact, the product of the indicator values 

and the corresponding weights, divided by the final index score: 

0.1 ≤
𝑢𝑟𝐾  × 𝑦𝑟𝐾

(𝐾)

𝐶𝑀𝐼
≤ 0.5, 𝑟𝐾  =  1, 2, 3 

Then for the rest, the SPIs belonging to the same category of each layer are considered to 

be of similar importance and are obligated to vary within a range of 0.8 to 1.2 of their 

average weights. It means that for the case of three indicators in a category, the weights 

are restricted to lie between 0.267 (= 0.8 ×
1

3
)  and  0.4 (= 1.2 ×

1

3
)  such as the three 

indicators with respect to the mean speed and the speed limit violations. Similarly, for the 

case of two indicators in a category, they are restricted to lie between 0.4 (= 0.8 ×
1

2
)  and 

0.6 (= 1.2 ×
1

2
) such as the two alcohol indicators, as well as the two seat belt indicators 

in the first layer, and the speed indicators and the protective systems indicators in the 

second layer. Now, the proposed CMI model can be applied to compute the optimal road 

user behavior index score of each country by combining 11 hierarchically structured 

indicators grouped into three different categories: alcohol, speed and protective systems. 

While in the MLDEA-I model each DMU obtains its own best possible indicator weights, 

the CMI model determines a set of weights to get the highest performance for all DMUs 

simultaneously, leading to a fair comparison among the DMUs. We have employed GAMS§ 

optimization software to solve model (6).  

 

 
§ General Algebraic Modeling System, available at www.gams.com 

http://www.gams.com/
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Table 3 shows the best possible multiple layer common weight for each indicator, 

together with their rank in descending order on the third row.  

 

 

Table 3. Optimal Multiple Layer CSW 
Indicator 𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑰𝟒 𝑰𝟓 𝑰𝟔 𝑰𝟕 𝑰𝟖 𝑰𝟗 𝑰𝟏𝟎 𝑰𝟏𝟏 

CW 0.275 0.413 0.080 0.053 0.066 0.120 0.080 0.099 0.133 0.089 0.148 

Rank 2 1 9 11 10 5 8 6 4 7 3 

Based on the obtained optimal CW, the proportion of the three risk domains, i.e., alcohol, 

speed, and protective systems, and the percentage share of each indicator in the final 

index score are represented on the following pie chart, respectively. 

 

Figure 7. The proportion of the three risk domains in the final index score 

Figure 7 indicates that alcohol with 44.2% accounts for the highest percentage share of 

the road user behavior index score followed by speed with 32% and protective systems 

with 23.8% in the third place.  

Moreover, Figure 8 illustrates the contribution of each indicator to the final index score. 

It shows that the percentage of alcohol-related fatalities (26.5%) , the percentage of 

drivers above the alcohol limit (17.7%), the usage rate of child restraint (9.5%), the seat 

belt wearing rate in front seat (8.6%) and the percentage of vehicles exceeding the speed 

limit on motorways (7.7%) are the top five influential factors in the final index score. 

Alcohol
44,2%

Speed
32%

Prot. Sys.
23,8 %



21 
 

 

Figure 8. The percentage share of each indicator in the final index score 

Having gained the CSW from model (6), the internal common weights for indicators in 

each category of each layer can be deduced using (5). For instance, consider 𝐼1 = 0.275 

and 𝐼2 = 0.413  which belong to the category of alcohol. Their corresponding internal 

weight is equal to 0.400 (=
0.275

0.275+0.413
) and 0.600 (=  

0.413

0.275+0.413
) respectively. (for more 

details, See Figure 9) 

 

Figure 9. The internal Common Weights of hierarchically structured SPIs for all countries 
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Moreover, the index score of each country is calculated by multiplying the common 

weights obtained by solving model (6) with the normalized indicator values (Table 2). 

Table 4 compares the road user behavior index score for the 13 European countries with 

different approaches. All index values lie between zero and one, with a value equal to one 

identifying the best performer, whereas a score of less than one indicates 

underperforming countries. The higher the index score, the better the overall relative 

performance in road user behavior. 

Table 4. Road user behavior index scores for 13 European countries 

Country Basic DEA-I Shen’s model New model 

AT 1.000 0.935 0.820 

BE 0.938 0.829 0.767 

FI 1.000 0.925 0.788 

FR 1.000 0.865 0.745 

HU 1.000 0.728 0.640 

IE 1.000 0.863 0.746 

LT 1.000 0.846 0.748 

NL 1.000 1.000 0.998 

PL 0.955 0.806 0.692 

PT 0.979 0.835 0.776 

SI 1.000 0.679 0.658 

SE 1.000 1.000 1.000 

CH 1.000 1.000 0.858 

By checking the index scores obtained from these models in Table 4, we see that the one 

layer model, i.e., the basic DEA-I model, was weak in distinguishing the best-performing 

countries from the underperforming ones, as most of the countries achieved an index 

score of one which is mainly due to the large number of indicators in comparison to the 

number of DMUs (or countries), and imposing the non-negativity as the only weight 

restriction into the model. In Shen’s model, although by taking the layered hierarchy of 

indicators into account and incorporating weight restrictions in each category of each 

layer, the discrimination power of the model is improved, it is still not capable to 

discriminate between the following three countries: the Netherlands, Sweden and 

Switzerland. However, by applying the new model and generating the CW for indicators 

while considering the hierarchical structure of indicators and their corresponding weight 

restrictions, it can be seen that even with the same set of weight restrictions imposed to 

the models, the discriminative power of the proposed model is obviously improved and 

the optimal index score of one is obtained by only one country. It shows that Sweden is 
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the best performing while the others are underperforming countries in terms of road user 

behavior.  

Table 5 shows the ranking of the 13 European countries based on the values in Table 4. 

Furthermore, the number of road fatalities per million inhabitants which is traditionally 

used as a basis for countries’ comparison, is also included in the analysis and is listed in 

the sixth column of Table 5. As can be seen, there is a relatively high degree of consistency 

between the index rankings across the different approaches, especially for those with 

better performing (such as Sweden, the Netherlands, and Switzerland) and with worst 

performing (such as Poland, Slovenia, and Hungary). The largest difference in the ranking 

is for Lithuania and France, each with five positions. Taking Lithuania as an example, it 

receives a rank of 8 based on the new model, but is ranked last out of 13 based on the 

number of fatalities per million inhabitants. To explain the reason for this wide deviation, 

first of all, we have to keep it in mind that the former considers a set of safety performance 

indicators, and consequently, the overall index-based country ranking is different from 

the traditional one that is only based on the fatality rate. Looking back to the indicator 

data, we find out that Lithuania suffers from very poor performance with respect to 

protective systems and speed limit violations on rural roads, nonetheless, it has relatively 

good scores on the other top influential indicators in the final index score, i.e. the alcohol 

related indicators. Accordingly, a better rank is obtained for Lithuania in the index-based 

ranking.  

Table 5. The road user behavior index scores and ranking for 13 European countries  
Country New model Ranking Shen’s model Ranking No. of fatalities* Ranking 

SE 1.000 1 1.000 1-3 47 1 

NL 0.998 2 1.000 1-3 48 2 

CH 0.858 3 1.000 1-3 49 3 

AT 0.820 4 0.935 4 84 7 

FI 0.788 5 0.925 5 67 4 

PT 0.776 6 0.835 9 89 8 

BE 0.767 7 0.829 10 96 9 

LT 0.748 8 0.846 8 198 13 

IE 0.746 9 0.863 7 75 6 

FR 0.745 10 0.865 6 71 5 

PL 0.692 11 0.806 11 142 12 

SI 0.658 12 0.679 13 127 11 

HU 0.640 13 0.728 12 117 10 

* Average value of 2006-2008, source: OECD (2016)  
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To further explore the relationship among the three rankings and make a quantitative 

comparison, we use the correlation coefficient. According to Table 6, the ranking results 

derived from the new model and Shen’s model are highly correlated with a correlation 

coefficient of 0.890. Concerning their comparison in terms of computational complexity, 

the latter is obtained by solving 𝑛 individual LP problems, while the former is obtained by 

solving only one integrated LP problem for evaluating all DMUs. Moreover, compared 

with the ranking based on the number of road fatalities per million inhabitants, the index 

ranking derived from the new model and Shen’s model are relatively close to each other, 

0.758 versus 0.870.  

Table 6. Pearson’s Correlation Coefficients among different ranking results 
 New model No. of fatalities Shen’s model 

New model 1.000 0.758 0.890 

No. of fatalities   1.000 0.870 

Shen’s model   1.000 

 
Target setting is the process of establishing a target for an inefficient country in which 

meeting the target makes the country efficient. We take Belgium as an example (See Table 

7). To get useful policy insights from the model output, we first divide all the current 

indicator values by Belgium’s index score to obtain the target values (see Cooper et al., 

2007). The sum-product of the new indicator values and the CSW gained from our model 

gives us the new index score equal to one. It means that if Belgium reaches these target 

values, then it is an efficient country. Next, we compute the difference between the actual 

and target values for each indicator and finally rank them to prioritize the road safety risk 

domains that Belgium needs to give extra attention to increasing its relative performance.  

An indicator with a higher ranking score is more important than those with a lower 

ranking score. Hence, it indicates that mean speed on motorways and speed limit 

violations on rural roads (𝐼3 and 𝐼7) are the most and the least urgent road safety aspect, 

respectively, for Belgium. 
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Table 7. Target setting based on model output for Belgium 

Indicator 𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑰𝟒 𝑰𝟓 𝑰𝟔 𝑰𝟕 𝑰𝟖 𝑰𝟗 𝑰𝟏𝟎 𝑰𝟏𝟏 
Index 
Score 

Current 
Value 

0.275 0.413 0.080 0.053 0.066 0.120 0.080 0.099 0.133 0.089 0.148 0.767 

Target 
value 

0.089 0.853 1.078 0.969 1.002 0.454 0.038 0.290 1.042 0.609 0.951 1.000 

Difference 0.021 0.199 0.251 0.226 0.234 0.106 0.009 0.068 0.243 0.142 0.222 

Rank 10 6 1 4 3 8 11 9 2 7 5 

 

Analogously, we can rank all the indicators for inefficient countries, as exhibited in Table 

8 in which only risk domains with a growth rate higher than 12% have been considered. 

There is an exception only for the Netherlands where the growth rate is set to 0.2% since 

Sweden and the Netherlands are performing very close to each other in terms of road 

safety.  

As can be seen, most countries should take policy actions on speed and protective 

systems, i.e., wearing a seat belt to enhance their road safety. It can be accomplished by 

enforcement and education. Switzerland should focus on speed mainly on urban roads 

and so on. 

Table 8. The Road safety priorities for each country 

Country 
Alcohol Mean Speed Speed limit violation Protective system 

𝐼1 𝐼2 𝐼3 𝐼4 𝐼5 𝐼6 𝐼7 𝐼8 𝐼9 𝐼10 𝐼11 

AT   1 5 4 6   2  3 

BE  6 1 4 3    2  5 

FI   2 5 4    3 1 6 

FR   4 6 5 7   1 2 3 

HU   1 3 2 7   4 5 6 

IE   2 6 7 1   3 4 5 

LT 6  1 4 3 2   5   

NL  1       2   

PL  7 3 4 5    2 6 1 

PT  5 3 4 1    2  6 

SI   3 1 5 8 1  4 7 6 

CH     1   1    

 

Though countries can learn from actions taken in all other countries, from the practical 

point of view to set targets for improvement, it is more valuable to compare countries 

with the same level of motorization and safety development (Wegman et al., 2008). 

Therefore, it is of great importance to group comparable countries. In this study, using the 

hierarchical cluster analysis, and implementing the Average Linkage (between groups) 

method in SPSS 25, countries with similar safety levels based on the computed index 

scores are classified as follows (see Figure 10 and Table 9):  
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Group 1: countries with a high level of road user behavior: Sweden and the Netherlands.  

Group 2: countries with a moderate level of road user behavior: Switzerland, Austria, 

Finland, Portugal, Belgium, Lithuania, Ireland, and France.  

Group 3: countries with a low level of road user behavior: Poland, Slovenia, and Hungary. 

 

Figure 10. Dendrogram using the average linkage method 

Consequently, the main characteristics of each group can be analyzed in detail to draw 

important conclusions on their features and provide recommendations for countries on 

how to improve their safety behavior**. 

Table 9. Clustering countries based on the index scores using the Hierarchical Cluster Analysis  

Group Level  Country Best country 

I High SE, NL SE 

II Moderate CH, AT, FI, PT, BE, LT, IE, FR CH 

III Low PL, SI, HU PL 

 
** By performing the analysis of target setting and enhancement recommendations in each group 
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6 Discussion and Conclusion 

In recent years, composite indicators have become increasingly recognized as a useful tool 

for performance evaluation, benchmarking, policy analysis, and public communication by 

summarizing complex and multidimensional issues in a relatively simple way. In this 

study, we focused on the application of DEA on index construction in the context of road 

safety and highlighted the shortcomings of using the classical DEA models. In particular, 

we dealt with two large methodological challenges: one was to reflect the hierarchical 

structure of the indicators into the model, and the other was to generate at the same time, 

the common weights for the indicators. To tackle the aforementioned issues, we proposed 

an integrated model with the aim of maximizing the performance of all DMUs 

simultaneously while reflecting the hierarchical structure of the indicators into the model. 

The advantages of the new approach have been identified and supported by the results of 

the case study on constructing a road user behavior index for a set of European countries. 

Using the 11 hierarchically structured SPIs related to road user behavior, the index scores 

were calculated for 13 European countries by selecting an optimal set of common weights 

under the imposed weight restrictions for the indicators, in each category of each layer. 

Thanks to the additional constraints on different layers, the flexibility of weights was 

reduced and consequently, the discrimination power of the proposed model was 

improved. Moreover, instead of solving the model 𝑛 times, one model for each DMU as in 

the case of the classical DEA model, the proposed model aims, by solving a single 

optimization problem, to obtain a set of weights that results in the highest overall 

efficiency of all DMUs which greatly reduces the computational costs and provides a fair 

and identical platform for evaluation of DMUs. 

Such a powerful tool is essential for benchmarking purposes: assessing the current level 

of road safety in each country, measuring the impacts of various safety interventions and 

monitoring the progress, and comparing road traffic systems between 

countries/jurisdictions thereby learning from the best practice policy. Nevertheless, 

benchmarking is not the end of the process and it needs to be followed by effective 

strategies, sufficient allocation of resources, successful implementation and persistent 

monitoring and evaluation in order to achieve continuous improvement over time. 

Though in this study we presented the application of the proposed model on 
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benchmarking road user behavior for a set of European countries, it is transferable and 

feasible to apply it easily to a great number of applications in other areas. 

Future work will require an uncertainty and sensitivity analysis of the index score. Since 

there exists a sequence of steps in the construction process of an index, it can be largely 

influenced by the methodological choices made during the index building process. 

Decisions concerning the selection of indicators, the normalization of the indicator values, 

the weighting of indicators and the way of aggregating, all can influence the final results. 

Therefore, it is of great importance to perform a sensitivity analysis to investigate the 

robustness of the index. 
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