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Estimation of safety performance functions for urban intersections using 
various functional forms of the negative binomial regression model and a 
generalized Poisson regression model 

ABSTRACT 

Intersections are established dangerous entities of a highway system due to the challenging and unsafe 
roadway environment they are characterized for drivers and other road users. In efforts to improve 
safety, an enormous interest has been shown in developing statistical models for intersection crash 
prediction and explanation. The selection of an adequate form of the statistical model is of great 
importance for the accurate estimation of crash frequency and the correct identification of crash 
contributing factors. Using a six-year crash data, road infrastructure and geometric design data, and 
traffic flow data of urban intersections, we applied three different functional forms of negative binomial 
models (i.e., NB-1, NB-2, NB-P) and a generalized Poisson (GP) model to develop safety performance 
functions (SPF) by crash severity for signalized and unsignalized intersections. This paper presents the 
relationships found between the explanatory variables and the expected crash frequency. It reports the 
comparison of different models for total, injury & fatal, and property damage only crashes in order to 
obtain ones with the maximum estimation accuracy. The comparison of models was based on the 
goodness of fit and the prediction performance measures.  

The fitted models showed that the traffic flow and several variables related to road infrastructure and 
geometric design significantly influence the intersection crash frequency. Further, the goodness of fit 
and the prediction performance measures revealed that the NB-P model outperformed other models in 
most crash severity levels for signalized intersections. For the unsignalized intersections, the GP model 
was the best performing model. When only the NB models were compared, the functional form NB-P 
performed better than the traditional NB-1 and, more specifically, the NB-2 models. In conclusion, our 
findings suggest a potential improvement in the estimation accuracy of the SPFs for urban intersections 
by applying the NB-P and GP models.  

Keywords:  

Urban intersections, Crash frequency, Crash severity, Negative binomial models, Safety performance 
functions, Geometric design 
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1. Introduction 1 

Drivers encounter multiple interactions with turning and crossing vehicles, pedestrians, and 2 

cyclists at intersections. A plethora of information (e.g., the presence of road signs, street signs and 3 

name tags, traffic lights, channelization and road markings, conflicting, crossing and adjacent traffic 4 

movements, dedicated lanes for left and right turning vehicles, billboards and advert screens, and many 5 

others) at intersections produce an unsafe environment, which poses an enormous challenge for drivers 6 

to operate safely. The demand for instant decision-making, complex urban design, dense and rigorous 7 

land use, congestion, heavy traffic, vulnerable road users, and many on-and-off-vehicle distractions 8 

overload driver's attentional resources. That, in turn, leads to poor judgment of the traffic situation, 9 

confusion, inadequate decision, and ultimately a crash. It is not surprising to note that intersections 10 

constitute the highest proportion of total crashes on the roads. Tay (2015) has provided some statistics 11 

from around the world to highlight this safety concern. In the past, the operational aspects of urban 12 

intersections, such as optimization of traffic signals or reduction of vehicular and pedestrian traffic 13 

delays, travel time, and congestion, have received significant coverage in the literature (Dong et al., 14 

2014; Roshandeh et al., 2014; Nesheli et al., 2009). However, these operational improvements do not 15 

account for the overall performance-based benefits (Roshandeh et al., 2016). The roadway network's 16 

overall performance requires consideration of additional aspects like safety, comfort, cost, availability, 17 

accessibility, etc. In this paper, we have focused on the safety of intersections in urban areas.  18 

The safety of intersections can be improved by understanding the factors that contribute to the 19 

occurrence of crashes and thereby proposing appropriate countermeasures. Concerning this, an 20 

intersection safety analysis is typically suggested. One of the tools to measure the safety performance 21 

of intersections is by developing crash prediction models (CPMs). The CPMs are mathematical 22 

equations obtained through the statistical modeling of crash data and a series of explanatory variables. 23 

They are used to estimate the expected average crash frequency of roadway facilities over a specified 24 

period. The CPMs are also known as safety performance functions (SPFs) or collision prediction models 25 

(CPMs). The SPFs are applied to evaluate the safety of intersections and road segments, identify 26 

hazardous locations, assess the safety of applied solutions, and compare and prioritize the best 27 
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alternative designs (AASHTO, 2010). To address safety issues, the SPFs  have been developed for many 28 

years now across the globe for numerous highway facilities (Elvik et al., 2019; Abdel-Aty et al., 2016; 29 

Janstrup, 2016; Cafiso et al., 2012; Persaud et al., 2012; Vieira Gomes et al., 2012; Srinivasan and 30 

Carter, 2011; Wong et al., 2007; Greibe, 2003). Leaving aside the applicability of these models, the 31 

development of the SPFs is a critical process in which a modeler makes crucial decisions. To emphasize, 32 

Hauer and Bamfo (1997) argued, “In the course of modeling, the modeler will make two major 33 

decisions: (a) What explanatory variables to include in the model equation; and, (b) What should be its 34 

functional form.” Factors, such as the SPF's purpose, the availability, quality, and quantity of the data, 35 

and required expertise affect those decisions.  36 

 American Association of State Highways and Transportation Officials (AASHTO) published 37 

the Highway Safety Manual (HSM), first in 2010 (AASHTO, 2010), and then in 2014 with a few 38 

supplements (AASHTO, 2014). The HSM offers the SPFs to predict intersection and road segment 39 

crashes on several highway facility types, such as rural two-lane and multilane highways, urban and 40 

suburban arterials, and freeway ramp terminals (AASHTO, 2014; AASHTO, 2010). The predictive 41 

models in the HSM were developed using data from a small number of States. Because of the possible 42 

differences in travel behavior, traffic conditions, and road characteristics across different geographical 43 

regions, it has been highlighted that the crash relationships in these states may not be necessarily 44 

representative of those in the other states. Regarding this, the guidelines in the HSM recommend either 45 

(i) the calibration of its base models for applications in other jurisdictions or (ii) the estimation of new 46 

SPFs for the regions where sufficient good quality local data is available. Therefore, several states in 47 

the US and other countries have developed their own SPFs. The SPFs given in the HSM for intersections 48 

estimate only total crashes that might not be an ideal approach since crashes vary by type and severity 49 

across intersections (Wang et al., 2019; Zhao et al., 2018; Wang et al., 2017). Some intersections might 50 

be crowded by fatal crashes only, and others might experience injury or property damage only (PDO) 51 

crashes. Similarly, some intersections could have a higher proportion of a different particular type of 52 

crash compared to other intersections. Differences in the distribution of crash severity and/or crash type 53 

could be attributed to the variation in the geometric design and traffic characteristics between 54 
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intersections. In order to consider those variations, studies estimate predictive models for intersections 55 

by crash type (Wang et al., 2019; Gates et al., 2018; Liu and Sharma, 2018; Wu et al., 2018; Dixon et 56 

al., 2015; Geedipally and Lord, 2010), and/or by severity level (Liu and Sharma, 2018; Wang et al., 57 

2017; Wu et al., 2013; Oh et al., 2010). 58 

Regarding the statistical methodologies, crash prediction modeling has come a long way. In the 59 

beginning, researchers used linear regression models for the estimation of crashes and determining  60 

relationships between crash frequency and explanatory variables (Joshua and Garber, 1990; Okamoto 61 

and Koshi, 1989). However, with new research, it was soon realized that linear regression models have 62 

certain limitations in treating the non-negative and discrete nature crash data (Lord and Mannering, 63 

2010; Miaou and Lum, 1993). This led to the adoption of count data models in crash prediction. 64 

Naturally, the first choice of researchers was the Poisson regression model, which assumes that the data 65 

variance is equal to its mean. On the other hand, the crash data is frequently characterized by over-66 

dispersion, which occurs when the crash data variance is greater than its mean. To overcome the over-67 

dispersion issue, negative binomial (NB) regression models were used (Abdel-Aty & Radwan, 2000; 68 

Miaou, 1994). With the progress in statistical methods and improved computing power, more advanced 69 

techniques have been applied recently to model the crash data. Lord and Mannering (2010), and 70 

Mannering and Bhat (2014) have provided detailed accounts of the existing trends in the crash 71 

prediction and future directions. Despite all the intricacy, the traditional NB model still enjoys great 72 

popularity due to its inherent simplicity of estimation and relatively better performance. 73 

Several parameterizations of the NB model are available in the literature. Nonetheless, the NB-74 

1 and NB-2 (Cameron and Trivedi, 1986) have been commonly used to model the count data (Wang et 75 

al., 2019; Giuffrè et al., 2014; Ismail and Zamani, 2013; Hilbe, 2011; Winkelmann, 2008; Chang and 76 

Xiang, 2003; Miaou and Lord, 2003). The two models necessarily differentiate based on the relationship 77 

between the variance of the data and the mean of the data. The NB-1 assumes a linear relationship 78 

between the variance and the mean, while the NB-2 assumes a quadratic relationship. Detailed 79 

estimation procedures of the two alternative forms are given in Hardin (2018), Lord and Park (2015), 80 

and Hilbe (2011). In traffic safety, the NB-2 has been frequently used to estimate the SPFs, while the 81 
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NB-1 has been applied in a few studies. For instance, Chang and Xiang (2003) created SPFs using both 82 

the NB-1 and NB-2 models to study the relationship between crashes and congestion levels on freeways. 83 

The authors found that both models showed consistent results for the relationship between crashes and 84 

traffic volume, the number of through lanes, and median. Giuffrè et al. (2014) applied the NB-1 and 85 

NB-2 models to develop the SPFs for urban unsignalized intersections. They found that the NB-1 fits 86 

the data better than the NB-2. Wang et al. (2019) used the NB-1 model with the standard Poisson, NB-87 

2, and NB-P models to estimate the SPFs and select a better performing model for rural two-lane 88 

intersections.  89 

The applications of the NB-1 and NB-2 models, however, come with a few compromises. For 90 

instance, the NB-1 and NB-2 models restrict the variance structure in estimating the SPFs (Park, 2010). 91 

In other words, the mean-variance relationship of the crash data is constrained to either a linear or 92 

quadratic link for the NB-1 and NB-2 models, respectively. The restricted variance structure may result 93 

in biased estimates of model parameters and, ultimately, incorrect crash forecasts (Wang et al., 2019). 94 

Furthermore, both the NB-1 and NB-2 are non-nested models, and an appropriate statistical test to 95 

determine a better model of the two cannot be carried out directly (Wang et al., 2019; Greene, 2008). 96 

To account for that, Greene (2008) introduced a new functional form of the NB regression called an 97 

NB-P that nests both the NB-1 and NB-2 models. The NB-P is essentially the extension of the traditional 98 

NB models to address the restricted variance structure problem. The NB-P reduces to NB-1 when P=1 99 

and to NB-2 when P=2. Since the NB-P model parametrically nests both the NB-1 and NB-2 models, 100 

it allows analysts to test the two NB functional forms (NB-1, NB-2) against a more general alternative 101 

(NB-P) for a better model (Greene, 2008; Ismail and Zamani, 2013; Hilbe, 2011). The NB-P model has 102 

been used in a few studies dealing with count data. For example, Greene (2008) applied the NB-P with 103 

the NB-1 and NB-2 models to the German health care data and found that the NB-P outperformed the 104 

other two models based on the goodness of fit measures. Ismail and Zamani (2013) used the NB-1, NB-105 

2, and NB-P models to study the Malaysian private car own damage claim counts. They also reported 106 

that the best performing model was the NB-P model. In traffic safety, Wang et al. (2019) used the NB-107 

P model with the standard Poisson, NB-1, and NB-2 models to study rural two-lane intersections' safety 108 
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performance by crash type and intersection type. They developed traffic only models. Their findings 109 

revealed that the NB-P model performed better than the Poisson model, NB-1, and NB-2 models for 110 

most crash types and intersection types. They concluded that the flexible variance structure of the NB-111 

P model significantly improves the estimation accuracy. Recently, Wang et al. (2020) applied the NB-112 

P model to examine various functional forms of intersection safety performance functions in an urban 113 

and suburban context. 114 

The literature review shows that the NB-P model, despite the apparent improvement in 115 

estimation accuracy compared to the traditional NB models, are still not commonly applied in traffic 116 

safety and crash prediction. To the authors' knowledge, only Wang et al. (2020) have used the NB-P 117 

model to estimate SPFs for urban roads. However, there has been no evidence that the NB-P model is 118 

used to estimate multivariate SPFs. Given that the applications of the NB-P model in road safety are 119 

rare, its potential to improve the estimation accuracy by offering a flexible variance structure, and that 120 

it allows to statistically test the NB-1 and NB-2 models against a general alternative, are motivations 121 

behind this work. Besides, the HSM recommendation of developing local SPFs for locations with 122 

enough data was another driving force. In this paper, we applied different functional forms of the NB 123 

regression model (NB-1, NB-2, and NB-P) and compared the results with the Generalized Poisson (GP) 124 

regression model, also a popular count data modeling technique, in the pursuit of obtaining the best 125 

model for the estimation of intersection SPFs in the urban areas. The GP model, discussed in detail in 126 

section 2.4, is an extension of the Generalized NB models (Ismail and Zamani, 2013). In the past, the 127 

GP models have been applied to study road crashes (Famoye et al., 2004), shipping damage incidents 128 

(Ismail and Jemain, 2007), vehicle insurance claims (Ismail and Zamani, 2013), etc. The rationale for 129 

choosing the GP model to compare with the NB models was that it could also accommodate the over-130 

dispersed data equally well, has relatively fewer applications in the SPF estimation, and the fact that it 131 

is regarded as a potential competitor to the NB models for treatment of over-dispersed count data 132 

(Melliana et al., 2013). The contribution of the current study to traffic safety literature is that it applies 133 

the functional form NB-P of the NB regression, along with the NB-1, NB-2 and a GP model for the 134 

estimation of intersection SPFs in the urban areas. A unique combination of the new approach for the 135 
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SPFs estimation and the use of not only the traffic flow but also other explanatory variables adds to the 136 

novelty of this work. To the best of our knowledge, no micro-level SPFs have been developed for the 137 

urban intersections in Belgium. Results of this study could potentially serve the local research 138 

community involved in traffic safety as well as the industry in planning level safety assessment of new 139 

road infrastructure projects. 140 

2. Methodology 141 

The count data models have been widely applied to estimate crashes at road segments and 142 

intersections in a non-negative, discrete, and random fashion (Washington et al., 2010). Since the 143 

Poisson regression model is usually not fit for modeling crash data due to its inability to accommodate 144 

overdispersion, three different functional forms of the NB model and a GP model were applied to 145 

estimate the SPFs in this study. 146 

2.1 Negative binomial model-type 2 (NB-2) 147 

The negative binomial regression is the derivative of the standard Poisson regression. It 148 

redefines the conditional mean (i.e., the data variance equals its mean) of the standard Poisson model 149 

and incorporates a latent heterogeneity term to account for over-dispersion in data. The expected crash 150 

frequency "μi" at the intersection “i” obtained by applying the NB model as in Washington et al. (2010) 151 

is given by: 152 

௜ߤ  = ߚ)݌ݔ݁ ௜ܺ+ߝ௜) (1) 

where " ௜ܺ" is the vector of explanatory variables, "ߚ" is the vector of estimable coefficients, 153 

and "exp (ߝ௜)" is the latent heterogeneity term, also known as an error term. When "exp (ߝ௜)" follows a 154 

gamma distribution with mean 1 and variance 1/σ = k where "k" represents an over-dispersion 155 

parameter, a traditional NB model, called the NB-2 model, is derived.  156 

For the interest of readers, equation 1, according to the standard Poisson regression model, 157 

would have been: 158 

௜ߤ  = ߚ)݌ݔ݁ ௜ܺ) (2) 

As can be seen, equation 2 lacks the term "exp (ߝ௜)" to account for over-dispersion.  159 
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The probability density function of the NB-2 model for estimation of the SPFs as in Washington 160 

et al. (2010): 161 

[௜ߤ|௜ݕ]ܾ݋ݎܲ  = Γ[(ߪ) + !௜ݕ(ߪ)௜]Γݕ ൤ (ߪ)ߪ + ௜൨ఙߤ ൤ (ߪ)௜ߤ + ௜൨௬೔ߤ
 (3) 

where Γ is a gamma function. The mean and variance of the NB-2 regression model are equal 162 

to ܧ(ݕ௜) = (௜ݕ)ݎܸܽ ௜ andߤ = ௜ߤ  + ௜(1ߤ =௜ଶߤ݇ +  ௜), respectively. When 1/σ = k, the marginal 163ߤ݇

distribution function of the NB-2 model can be reproduced: 164 

[௜ߤ|௜ݕ]ܾ݋ݎܲ  = Γ ቂቀ1݇ቁ + ௜ቃΓݕ ቀ1݇ቁ !௜ݕ ቎ 1݇ቀ1݇ቁ + ௜ߤ ቏ଵ௞ ቎ ௜ቀ1݇ቁߤ + ௜቏ߤ
௬೔

 (4) 

2.2 Negative binomial model-type 1 (NB-1) 165 

A re-parameterization of the variance structure of the NB model by replacing ଵ௞ in the NB-2 166 

(equation 4) with ଵ௞  ௜ allows for another functional form, called the NB-1 (Wang et al., 2019; Hilbe, 167ߤ

2011; Greene, 2008; Cameron & Trivedi, 1986). The marginal distribution function of the NB-1 is given 168 

by:   169 

[௜ߤ|௜ݕ]ܾ݋ݎܲ  = Γ ቂቀ1݇ ௜ቁߤ + ௜ቃΓݕ ቀ1݇ ௜ቁߤ !௜ݕ ቎ 1݇ ௜ቀ1݇ߤ ௜ቁߤ + ௜቏ߤ
ଵ௞ఓ೔ ቎ ௜ቀ1݇ߤ ௜ቁߤ + ௜቏ߤ

௬೔
 (5) 

The mean of the NB-1 is ܧ(ݕ௜) = (௜ݕ)ݎܸܽ ௜ and the variance of the NB-1 isߤ = ௜ߤ  +  ௜. 170ߤ݇

2.3 Negative binomial model-type P (NB-P) 171 

Greene (2008) proposed a new form of the NB regression that uses the parameter “P” to 172 

represent the mean-variance relationship. It is known as the NB-P model. The NB-P model is obtained 173 

by replacing  ଵ௞ in the NB-2 model (equation 4) with  ଵ௞  ௜ଶି௉. The marginal distribution function of the 174ߤ

NB-P model is given by: 175 

[௜ߤ|௜ݕ]ܾ݋ݎܲ  = Γ ൤൬1݇ ௜ଶି௉൰ߤ + ௜൨Γݕ ൬1݇ ௜ଶି௉൰ߤ !௜ݕ ൦ 1݇ ௜ଶି௉ߤ
൬1݇ ௜ଶି௉൰ߤ + ௜൪ߤ

ଵ௞ఓ೔మషು
൦ ௜൬1݇ߤ ௜ଶି௉൰ߤ + ௜൪ߤ

௬೔
 (6) 
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where mean and variance of the NB-P are ܧ(ݕ௜) = (௜ݕ)ݎܸܽ ௜ andߤ = ௜ߤ  +  ௜௉, respectively. 176ߤ݇

“P” represents the functional parameter of the NB-P model. 177 

All the NB models used the maximum likelihood estimation (MLE) approach to estimate  the 178 

parameter coefficients. 179 

2.4 Generalized Poisson model (GP) 180 

The generalized Poisson (GP) regression is another popular approach to model count data. As 181 

an alternative to the NB regression, the GP models have the advantage of modeling both over-dispersed 182 

and under-dispersed data. Like the NB regression, the GP model has an extra parameter, called a scale 183 

or dispersion parameter. A distinctive feature of the GP dispersion parameter is that it can take both 184 

positive and negative values for over-dispersed and under-dispersed data, respectively. The probability 185 

mass function (p.m.f.) of the GP distribution given as in Yang et al. (2009): 186 

) ܾ݋ݎܲ  ௜ܻ = (௜ݕ = ఏ(ఏା௞௬೔)೤೔షభ ୣ୶୮(ିఏି௞௬೔)௬೔! ௜ݕ        , = 0,1,2, ….  , (7) 

where ߠ > 0, and 0 < ݇ < 1.  From Joe and Zhu (2005), the mean of the GP regression is 187 ܧ( ௜ܻ) = ߤ = (1 − ݇)ିଵߠ, and the variance of the GP regression is ܸܽݎ( ௜ܻ) = (1 − ݇)ିଷߠ =188 (1 − ݇)ିଶߤ = ∅. ∅ The term .ߤ = (1 − ݇)ିଶ is a dispersion factor, and it is used in the GP mass 189 

function where “݇” is a dispersion parameter. It can be seen that when ݇ = 0, a standard Poisson model 190 

is obtained. For ݇ < 0, under-dispersion is assumed while ݇ > 0 represents over-dispersion. Since crash 191 

data normally exhibits over-dispersion, this study will assume ݇ > 0 condition. There are other 192 

parametrizations of the GP, but their applications are left for future studies. 193 

2.5 Model structure 194 

The literature offers several ways to model the relationships between intersection crash 195 

frequency and explanatory variables (Barbosa et al., 2014; Park and Lord, 2009; Nambuusi et al., 2008; 196 

Miaou and Lord, 2003). They are differentiated based on the type of variables, the number of variables, 197 

the form that the variables take during the modeling process and the transformation applied to the 198 

variables (Oh et al., 2003). In this study, the following model structure was used to estimate the expected 199 

crash frequency “ߤ௜" of the intersection “i”: 200 
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௜ߤ  = ଴ߚ)݌ݔ݁ + ܦܣܣ)݈݊ ଵߚ ௠ܶ௔௝௢௥) ܦܣܣ)݈݊ ଶߚ +  ௠ܶ௜௡௢௥) + ௠ୀଷ௡ߑ   ௠ܺ௠) (8)ߚ

where ߚ଴ represents the intercept, ܦܣܣ ௠ܶ௔௝௢௥ is the major approach average annual daily 201 

traffic (AADT), ߚଵ represents the coefficient estimate of the major approach AADT, ܦܣܣ ௠ܶ௜௡௢௥ 202 

represents the minor approach AADT, ߚଶ  represents the coefficient estimate of the minor approach 203 

AADT, ߚ௠ is the vector of the coefficient estimates of explanatory variables and “ܺ௠” denotes the 204 

vector of explanatory variables. For the NB models (NB-1, NB-2, and NB-P) and GP model, the 205 

coefficients denoted by ߚ௠ and a dispersion parameter denoted by “k” were estimated, but for the NB-206 

P model, an additional parameter “P”, known as the functional parameter, was also estimated. 207 

2.6 Model comparison 208 

 For model comparison, both the likelihood-based and the predictive ability-based measures 209 

were used. The likelihood-based measures consisted of the likelihood ratio test (LRT), the Akaike 210 

Information Criteria (AIC), and the Bayesian Information Criteria (BIC). The LRT was used when 211 

comparing the hierarchically nested models only (Greene, 2008; Wang et al., 2019). The AIC and the 212 

BIC were used for comparing the non-nested models (Ismail and Jemain, 2007). 213 

The predictive ability-based measures compared all developed models for predictive 214 

performance using the validation data. Those included in the study were; mean prediction bias (MPB), 215 

mean absolute deviation (MAD), and mean squared prediction error (MSPE) as in Oh et al. (2003), and 216 

% CURE deviation and a validation factor (Hauer, 2015; Wang et al., 2019). To measure the degree to 217 

which our models were well-calibrated and to assess the certainty level of crash predictions by our 218 

models, we also estimated a range of prediction intervals (50%, 75%, 90%, and 95%) for each 219 

intersection type using the method proposed by Wood (2005), and then compared our models using 220 

those intervals.  221 

3. Data  222 

The data used for modelling was obtained for urban intersections of Antwerp, Belgium. A 223 

dataset consisting of crash data of six years (2010-2015), road geometry data, and traffic flow data was 224 

created to estimate the SPFs. An online database of the regional government called the Flanders road 225 
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register was consulted for the intersection data. A total of 760 intersections were used for analysis, of 226 

which 198 were signalized, and 562 were unsignalized. Around 470 were three-legged intersections, 227 

and the remaining 290 were four-legged intersections.  228 

Table 1 Variables description for urban intersections of Antwerp 229 

Variable Description  Variable levels 
    
AADT on the major approach - 
AADT on the minor approach - 
  
Skewness 1: Intersection angle is less than/equal to 75-degrees 
 2: Intersection angle is greater than 75-degrees 

Legs/approaches of the intersection 1: For 4 legged intersections 
 0: For 3 legged intersections 

Existence of stop sign on the minor approach 1: Stop sign is present on at least one minor approach 
 0: No stop sign on the minor approaches 
Existence of stop line on the minor approach 1: Stop line is present on at least one minor approach 
 0: No stop line on the minor approaches 
Number of left turn lane on the major approach 2: At least one left turn lane exists on each direction of the 

major approach 
 1: At least one left turn lane exists on only one direction of 

the major approach 
 0: No left turn lane exists 

Number of right turn lane on the major approach 2: At least one right turn lane exists on each direction of the 
major approach 

 1: At least one right turn lane exists on only one direction of 
the major approach 

 0: No right turn lane exists 

Number of through lanes of the minor approach 4 or 4+: Four and more through lanes of the minor approach 
 1-3: One to three through lanes of the minor approach 
 0: No through lane of the minor approach 

Left turn (LT) movements on the minor approach 2: LT movement on each minor approach 
 1: LT movement on only one minor approach 
 0: No LT movement on the minor approach 

Existence of crosswalk on minor approach 2: Crosswalk on each minor approach 
 1: Crosswalk on only one minor approach   
 0: No crosswalk 
Existence of crosswalk on major approach 2: Crosswalk on each major approach 
 1: Crosswalk on only one major approach   
 0: No crosswalk 

Size of the intersection a 4: for 5*4, 5*8, 6*4, 6*6, 6*8, 8*4, 8*6,     8*8, 8*10, 10*8, 
10*10 

 3: for 3*2, 3*4, 3*6, 4*2, 4*4, 4*6 
 2: for 2*2, 2*3, 2*4, 2*6 
 1: for 1*2, 1*3, 1*4 

 

a The first number is the total number of approach lanes for a minor approach, and the second number is the total number of through lanes for 
a major approach (as per, Abdel-Aty and Haleem 2011) 
 

Because the skewness of intersection has been reported to impact its safety (Kumfer et al., 2019; 230 

Nightingale et al., 2017; Haleem and Abdel-Aty, 2010), we decided to include skewness as a potential 231 
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explanatory variable. The smallest angle between the two adjacent approaches of the intersection, 232 

known as an intersection angle (Nightingale et al., 2017), was used as a surrogate to define the level of 233 

skewness. A 75 degrees intersection angle used by Haleem and Abdel-Aty (2010) was chosen as a 234 

threshold to define the levels of skewness. An intersection angle less than or equal to 75 degrees 235 

represented skewness level 1, while an intersection angle greater than 75 degrees represented skewness 236 

level 2. Two hundred and seventeen intersections had a skewness level 1, and five hundred and forty-237 

three intersections had a skewness level 2. Table 1 describes the variables employed in this study for 238 

urban signalized and unsignalized intersections. 239 

The police of Antwerp provided the crash data. The crash records featured the severity level of 240 

a crash, coordinates of a crash location, time and date of a crash, number of the vehicles involved and 241 

their type, maneuver of the involved vehicles at the time of the crash, data about the involved drivers, 242 

and road and pavement conditions. Only intersection and intersection-related crashes were used in the 243 

analysis. Because of the inconstancy in the influence area's definition to classify a crash as intersection-244 

related (Wang et al., 2008), we chose to use the HSM guidelines to differentiate the intersection and 245 

intersection-related crashes from segment crashes. According to the HSM (AASHTO, 2014, 2010); 246 

- An intersection crash is one that has occurred within the physical boundaries of an 247 

intersection area 248 

- An intersection related crash is one that has occurred on the road segment but the presence 249 

of the intersection was the cause of that crash, and it falls within its influence area 250 

Using the above definition, 5128 intersection and intersection- related crashes were identified 251 

for analysis (Table 2). To account for the potential variation in the SPFs by crash severity, those crashes 252 

were divided into total crashes, injury & fatal crashes and property damage only (PDO) crashes. In the 253 

beginning, we had plans to disaggregate crash data further by type and developed separate models for 254 

various crash types, but the partial availability of the information in our dataset and the resulting smaller 255 

sample size did not allow for the SPF estimation by crash type.  256 
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Table 2 Descriptive statistics of crash data (by severity) and traffic flow data for signalized and unsignalized intersections 257 

Variables Signalized Intersections  Unsignalized Intersections 
 Min. Max. Aver. Std. Dev.  Min. Max. Aver. Std. Dev. 

Total Crashes 0 87 13.899    13.848        0 51 4.347     5.223       

PDO Crashes 0 50 6.979    7.760         0 49 2.540     3.671       

Injury & Fatal 
Crashes 0 39 6.919     7.224  0 25 1.806     2.557 

Ln (AADT)major 183 41915 14559 9424.8  13 30648 3511 2884.1 

Ln (AADT)minor 31 26837 5225 4905.8  9 7595 1001 815.2 
 258 

The traffic data was acquired from Lantis, a mobility management company based in Antwerp. 259 

Lantis also provides its services to the Mobiliteit en Parkeren Antwerpen Ag, an office for Antwerp 260 

city's parking and mobility services. The data was received in two sets, actual counts and traffic model 261 

estimates. The actual counts were collected using either manual counting techniques or loop detectors 262 

installed at random locations on the roads in the studied network. The traffic model estimates were 263 

generated using a microsimulation traffic model called Dynamisch Model Kernstad Antwerpen 264 

(DMKA). It is important to note that the model was calibrated for 2010-2015, when the crash data was 265 

recorded. Results from several runs of the simulation model were obtained and averaged to get a better 266 

convergence towards the actual counts. Actual counts and model generated counts were compared at 267 

locations where both were available to check for the residuals. An absolute difference of not greater 268 

than 5% between the simulation counts and actual counts was reported for most locations. The outliers 269 

were discarded. The authors agreed to use a combination of actual counts and traffic model estimates 270 

to ensure as many intersections included in the SPFs estimation as possible with a maximum degree of 271 

accuracy.  272 

4. Results  273 

Table 3 and Table 4 present the parameter estimates (β) of the NB-1, NB-2, NB-P, and GP 274 

models developed by crash severity (total crashes, PDO crashes, and injury & fatal crashes) for 275 

signalized and unsignalized intersections, respectively. The numbers enclosed within the parenthesis 276 

correspond to their p-values. The SPFs show that the signs of estimated parameters are similar across 277 

different models developed for the same severity level. This indicates that given the same severity level, 278 
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the potential impact of explanatory variables on the expected crash frequency obtained from different 279 

models is similar. However, the estimated parameters vary slightly across different severity levels, 280 

which could be one reason that implies the need to develop separate models for each crash severity. 281 

Using a 90% confidence level as in Vieira Gomes et al. (2012) for similar data, we found that five 282 

variables were significant in the models for signalized intersections and four variables in the models for 283 

unsignalized intersections. The significant variables included the traffic flow, intersection skewness, 284 

existence of crosswalk on a minor approach, the number of through lanes on a minor approach, and the 285 

number of approaches. To our surprise, the presence of exclusive left and right turn lanes were not 286 

significant in any model. The intersection size and crosswalk on the major approaches were other 287 

insignificant explanatory variables.  288 

4.1 SPFs of signalized intersections 289 

Table 3 provides the SPFs for the signalized intersections. It shows a statistically significant 290 

increase in the crash frequency with an increase in the natural logarithm of AADTs (which necessarily 291 

indicates an increase in traffic flow) of the major and the minor approaches of the intersection. The 292 

crosswalk on a minor approach was significant only when it existed on both approaches of a signalized 293 

intersection across all developed models and all severity levels. However, there was an exception in the 294 

case of the NB-2 and NB-P models of total crashes, in which, in addition to a crosswalk on each minor 295 

approach, a crosswalk variable was also significant when present on only one of the minor approaches 296 

of an intersection. The estimated coefficients in the former case were approximately double that of the 297 

latter. This was not true for other crash severity levels (i.e., PDO, and injury & fatal crashes) and model 298 

types. The intersection skewness was significant for total crashes (all the NB models only), and injury 299 

& fatal crashes (all models) but not for the PDO crashes. The coefficient estimates were negative in the 300 

developed models. Since the high skewness level was a base case, the negative sign indicates that no 301 

skewness or low skewness level (i.e., intersection angle greater than 75 degrees, please see section 3 302 

for details) results in a reduced crash frequency. In other words, intersections with no or low skewness 303 

were safer than intersections with high skewness. An important observation from the results was that 304 
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the absence of skewness causes a more significant decrease in injury & fatal crashes than total crash 305 

frequency.  306 

Table 3 Estimated models for urban signalized intersections 307 

   NB-1   NB-2   NB-P   GP 

Variables  β (p-value)   β (p-value)   β (p-value)   β (p-value) 

TOTAL CRASHES         

Intercept  -3.9067 
(0.0000)  -4.2775 

(0.0000)  -4.2761 
(0.0000)  -3.7402 

(0.0000) 

AADT Major  0.4058 
(0.0000)  0.3623 

(0.0000)  0.3621 
(0.0000)  0.3934 

(0.0000) 

AADT Minor  0.2450  
(0.0000)  0.3002 

(0.0000)  0.3003 
(0.0000)  0.2425 

(0.0000) 
No crosswalk: 0 (Base)         

Crosswalk on one of the minor approaches: 1  N/S a  0.5547 
(0.0690)  0.5551 

(0.0690)  N/S 

Crosswalk on each of the minor approach: 2  0.8867  
(0.0050)  1.2151 

(0.0000)  1.2155 
(0.0000)  0.8549 

(0.0040) 
Skewness: 1 (Base)         

Skewness: 2  -0.1572 
(0.0970)  -0.2180 

(0.0360)  -0.2181 
(0.0360)  N/S  

Over-dispersion   4.1062  0.2977  0.2953  0.5778 
P  1.000 

(0.0000)  2.000 
(0.0000)  2.0031 

(0.0000)   
Log Lba  -653.03  -640.65  -640.65  -651.79 
AIC  1320.06  1295.31  1297.31  1317.58 
BIC  1343.07  1318.33  1323.62  1340.60 

PDO CRASHES         

Intercept  -4.4085 
(0.0000)  -4.8088 

(0.0000)  -4.8899 
(0.0000)  -4.2727 

(0.0000) 

AADT Major  0.3396 
(0.0100)  0.2992 

(0.0010)  0.3153 
(0.0010)  0.3269 

(0.0010) 

AADT Minor  0.2954 
(0.0000)  0.3367 

(0.0000)  0.3357 
(0.0000)  0.2942 

(0.0000) 
No crosswalk: 0 (Base)         

Crosswalk on one of the minor approaches: 1  N/S  N/S  N/S  N/S 

Crosswalk on each of the minor approaches: 2  0.9062 
(0.0150)  1.3397 

(0.0010)  1.2820 
(0.0020)  0.9008 

(0.0130) 
Skewness: 1 (Base)         
Skewness: 2  N/S  N/S  N/S  N/S 

Over-dispersion  2.7650  0.3840  0.6319  0.5022 

P  1.000 
(0.0000)  2.000 

(0.0000)  1.7530 
(0.0000)   

Log L  -538.89  -533.32  -532.91  -538.16 

AIC  1091.79  1080.65  1081.81  1090.33 
BIC  1114.80  1103.66  1108.12  1113.35 

INJURY & FATAL  CRASHES         

Intercept  -4.9921 
(0.0000)  -5.6066 

(0.0000)  -5.6210 
(0.0000)  -4.9458 

(0.0000) 

AADT Major   0.4963 
(0.0000)  0.4797 

(0.0000)  0.4835 
(0.0000)  0.4952 

(0.0000) 

AADT Minor  0.1917 
(0.0030)  0.2586 

(0.0000)  0.2563 
(0.0000)  0.1879 

(0.0040) 
No crosswalk: 0 (Base)         
Crosswalk on one of the minor approaches: 1  N/S  N/S  N/S  N/S 

Crosswalk on each of the minor approaches: 2  0.8633 
(0.0150)  1.0876 

(0.0030)  1.0856 
(0.0040)  0.8576 

(0.0140) 
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Skewness: 1 (Base)         

Skewness: 2  -0.2056 
(0.0620)  -0.3258 

(0.0070)  -0.3213 
(0.0090)  -0.1984 

(0.0740) 
Over-dispersion   2.3591  0.3324  0.3679  0.4727 

P  1.000 
(0.0000)  2.000 

(0.0000)  1.9500 
(0.0000)   

Log L  -531.95  524.40  -524.39  -530.87 

AIC  1077.91  1062.81  1064.77  1075.74 
BIC  1100.93  1085.83  1091.08  1098.76 

 
Notes: a Not Significant, b Log-Likelihood 308 
 
4.2 SPFs of unsignalized intersections 309 

Table 4 presents the coefficient estimates of the SPFs for unsignalized intersections. The traffic 310 

flows of major and minor approaches were significantly associated with crash frequency except for 311 

injury & fatal crashes, where the AADT of the minor approach was found insignificant. The presence 312 

of a crosswalk on the minor approach was only significant for total crashes, and injury & fatal crashes 313 

across all developed models. Unlike signalized intersections, the crosswalk was significant when it was 314 

present on only one of the minor approaches of unsignalized intersections. However, crosswalk 315 

presence on one or both approaches was significant only in injury & fatal crashes, as can be seen in the 316 

NB-2 and NB-P models. The number of approaches/legs of an intersection was a significant predictor 317 

of the total, and PDO crashes at unsignalized intersections at a 90% confidence level. Intersections with 318 

three approaches/legs as a base level, the positive signs of the estimated coefficients show higher 319 

expected crash frequency on intersections with four approaches compared to intersections with three 320 

approaches. Another statistically significant variable was the number of through lanes of the minor 321 

approaches of unsignalized intersection. A positive association was found between crash frequency and 322 

the number of through lanes of its minor approach for the total crashes, and injury & fatal crashes. 323 

While the first level of this variable was not significant, the second level, which represents four or more 324 

through lanes of minor approaches, was significant for total crashes. For injury & fatal crashes, all levels 325 

of the number of through lanes were significant. This means that a significant increase can be expected 326 

in total crashes, and injury & fatal crashes with an increase in the number of through lanes of the minor 327 

approach of an unsignalized intersection. It is noteworthy that this result can be generalized only to 328 

four-legged unsignalized intersections because through lanes were reported only for such facility type 329 

in this study. 330 



 

19 
 

Table 4 Estimated models for urban unsignalized intersections 331 

  NB-1  NB-2  NB-P  GP 
Variables  β (p-value)  β (p-value)  β (p-value)  β (p-value) 
TOTAL CRASHES         

Intercept  -1.2095 
(0.0000)  -1.4860 

(0.0000)  -1.4082 
(0.0000)  -1.1683 

(0.0000) 

AADT Major  0.1948 
(0.0000)  0.2155 

(0.0000)  0.2113 
(0.0000)  0.1883 

(0.0000) 

AADT Minor  0.1262 
(0.0010)  0.1539 

(0.0010)  0.1379 
(0.0010)  0.1266 

(0.0010) 
No crosswalk: 0 (Base)         
Crosswalk on one of the minor approaches: 1  0.2668 

(0.0010)  0.1709 
(0.0500)  0.2485 

(0.0040)  0.2728 
(0.0010) 

Crosswalk on each of the minor approaches: 2  N/S a  N/S  N/S  N/S 
No. of approaches: 3 (Base)         
No. of approaches: 4  0.3878 

(0.0010)  0.2369 
(0.0950)  0.3547 

(0.0070)  0.3994 
(0.0010) 

No. of through lanes on the minor approaches: 0 
(Base)         

No. of through lanes on the minor approach: 1-3  N/S  N/S  N/S  N/S 

No. of through lanes on the minor approach: 4 & 
4+  0.8029 

(0.0000)  0.8797 
(0.0120)  0.8176 

(0.0010)  0.7760 
(0.0000) 

Over-dispersion   2.3705  0.5680  1.4209  0.4708 
P  1.0000 

(0.0000)  2.0000 
(0.0000)  1.3598 

(0.0000)   
Log Lb  -1369.80  -1372.45  -1368.53  -1362.96 
AIC  2757.61  2762.89  2757.06  2743.93 
BIC  2796.61  2801.89  2800.39  2782.93 

PDO CRASHES         
Intercept  -1.039 

(0.0020)  -1.2663 
(0.0000)  -1.2223 

(0.0010)  -1.0004 
(0.0030) 

AADT Major  0.1011 
(0.0370)  0.0989 

(0.0600)  0.1067 
(0.038)  0.0987 

(0.0420) 

AADT Minor  0.1619 
(0.0010)  0.2040 

(0.0000)  0.1842 
(0.0010)  0.1583 

(0.0010) 
No crosswalk: 0 (Base)         
Crosswalk on one of the minor approaches: 1  N/S  N/S  N/S  N/S 
Crosswalk on each of the minor approaches: 2  N/S  N/S  N/S  N/S 
No. of approaches: 3 (Base)         

No. of approaches: 4  0.3189 
(0.0000)  0.2122 

(0.0280)  0.2912 
(0.0030)  0.3291 

(0.0000) 
No. of through lanes on the minor approaches: 0 
(Base)         

No. of through lanes on the minor approach: 1-3  N/S  N/S  N/S  N/S 
No. of through lanes on the minor approach: 4 & 
4+  N/S  N/S  N/S  N/S 

Over-dispersion   1.7930  0.7114  1.1867  0.4167 

P  1.0000 
(0.0000)  2.0000 

(0.0000)  1.4507 
(0.0000)   

Log L  -1149.44  -1149.70  -1148.76  -1140.98 

AIC  2308.87  2309.41  2309.51  2291.96 

BIC  2330.54  2331.07  2335.51  2313.63 

INJURY & FATAL  CRASHES         

Intercept  -3.6679 
(0.0000)  -4.0729 

(0.0000)  -4.0075 
(0.0000)  -3.6730 

(0.0000) 

AADT Major  0.4225 
(0.0000)  0.4507 

(0.0000)  0.4489 
(0.0000)  0.4229 

(0.0000) 

AADT Minor  N/S  N/S  N/S  N/S 
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No crosswalk: 0  (Base)         

Crosswalk on one of the minor approaches: 1  0.3155 
(0.0030)  0.3582 

(0.0020)  0.3439 
(0.0020)  0.3136 

(0.0030) 

Crosswalk on each of the minor approaches: 2  N/S  0.3740 
(0.0290)  0.3091 

(0.0570)  N/S 

 No. of through lanes on the minor approaches: 0      
(Base)         

No. of approaches: 3 (Base)         
No. of approaches: 4  N/S  N/S  N/S  N/S 

No. of through lanes on the minor approaches: 1-3  0.4208 
(0.0100)  0.5060 

(0.0080)  0.4678 
(0.0090)  0.4167 

(0.0110) 
No. of through lanes on the minor approaches: 4 & 
4+  1.2610 

(0.0000)  1.2376 
(0.0020)  1.2515 

(0.0000)  1.2484 
(0.0000) 

Over-dispersion  1.2707  0.5680  0.9755  0.3489 

P  1.0000 
(0.0000)  2.0000 

(0.0000)  1.4601 
(0.0000)   

Log L  -931.85  -933.04  -929.64  -931.01 
AIC  1881.70  1884.07  1879.28  1880.02 
BIC  1920.70  1923.07  1922.61  1919.02 

 

Notes: a Not Significant, b Log-Likelihood 332 
 
4.3 Comparison and performance evaluation of the developed SPFs 333 

The likelihood ratio test (LRT) was used for comparing either the NB-1 with the NB-P model 334 

or the NB-2 with the NB-P model since both (NB-1 and NB-2) are parametrically nested by the NB-P 335 

(Greene, 2008). However, the LRT was not applied to compare the non-nested models, i.e., the NB-1 336 

model against the NB-2 model, or the NB models against the GP model. Instead, the AIC and BIC were 337 

used as in Ismail and Jemain (2007).  338 

The LRT indicated that the NB-P model performed better than the NB-1 model for total crashes, 339 

PDO crashes, and injury & fatal crashes in case of signalized intersections (Table 5). However, the 340 

result of the LRT test was inconclusive when the NB-P and NB-2 were compared and, hence, it cannot 341 

be said with certainty, which of the two was a better model.  Based on other measures, e.g., the log-342 

likelihood, AIC, and BIC (Table 3), it can be seen that the NB-P and NB-2 performed relatively closely, 343 

but both performed better than the NB-1 models and GP models for all crash severities. The functional 344 

parameter “P” of the estimated NB-P models was statistically significant across all severity levels. The 345 

estimated value of the functional parameter “P” of the NB-P models for total crashes, and injury & fatal 346 

crashes was close to 2, while for the PDO crashes, it was significantly different from either 1 or 2 (Table 347 

3). Although this does not entirely verify the assumption that the NB-1 or NB-2 models' restricted 348 

variance structure may lead to biased estimates of model parameters, it does not entirely reject the 349 
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possibility either, as indicated by the PDO crashes on signalized intersections and the result for the NB-350 

1 models. 351 

Table 5 Likelihood ratio (NB-1 vs NB-P and NB-2 vs NB-P) for signalized and unsignalized intersections 352 

 Signalized Intersections  Unsignalized Intersections 
TOTAL CRASHES 

Test/Criteria NB-1  NB-P  NB-1  NB-P 
Log La -653.028  -640.655  -1369.804  -1368.529 
Likelihood ratio (߯2)    24.75 (0.0000) b    2.55 (0.1104) 
Test/Criteria NB-2  NB-P  NB-2  NB-P 
Log L -640.655  -640.6552  -1372.4456  -1368.529 
Likelihood ratio (߯2)   0.0002 (0.9893)    7.83 (0.0051) 

PDO CRASHES        
Test/Criteria NB-1  NB-P  NB-1  NB-P 
Log L -538.894  -532.906  -1149.436  -1148.756 
Likelihood ratio (߯2)   11.98 (0.0005)    1.36 (0.2436) 
Test/Criteria NB-2  NB-P  NB-2  NB-P 
Log L -533.324  -532.906  -1149.705  -1148.756 
Likelihood ratio (߯2)   0.84 (0.3606)    1.90 (0.1682) 

INJURY & FATAL  CRASHES        
Test/Criteria NB-1  NB-P  NB-1  NB-P 
Log L -531.954  -524.388  -931.851  -929.6407 
Likelihood ratio (߯2)   15.13 (0.0001)    4.42 (0.0355) 
Test/Criteria NB-2  NB-P  NB-2  NB-P 
Log L 524.404  -524.388  -933.036  -929.6407 
Likelihood ratio (߯2)   0.03 (0.8569)    6.79 (0.0092) 

Notes: Bold values indicate statistically significant results of the LRT  353 
a  Log-Likelihood 354 
b Values in parenthesis indicate the p-value when the likelihood ratio (߯2) was computed. 355 

The LRT for unsignalized intersections showed that the NB-P and NB-1 models performed 356 

equally closely for total crashes and PDO crashes. We cannot say that the difference in the NB-P and 357 

NB-1 estimates was significant. However, for injury & fatal crashes, the results were in favor of the 358 

NB-P models. When compared with the NB-2 model, the NB-P model was a better performing model 359 

for total crashes and injury & fatal crashes, but there was no significant difference in the NB-2 and NB-360 

P models for  PDO crashes. Based on the AIC and BIC values, the NB-1 models performed better than 361 

the NB-2 models (non-nested models comparison, Table 4) for total crashes and injury & fatal crashes, 362 

while results for the PDO crashes were reasonably close for the two traditional NB models. However, 363 

the AIC and BIC showed better model fit for the GP models in all crash severity levels except injury & 364 

fatal crashes. So, it will be safe to say that the GP model outperformed the NB models in the case of 365 



 

22 
 

un-signalized intersections for most crash severities in this study. The functional parameter “P” of 366 

variance structure was significant for the NB-P models across all severity levels, and it was not close to 367 

either 1 or 2. This verifies the assumption that the restricted variance structure of the NB-1 and NB-2 368 

models might lead to biased estimates of model parameters for unsignalized intersection, and, hence the 369 

NB-P that takes into account the flexible variance structure would be more reliable in the accurate 370 

estimation of model parameters when there is no GP model considered. 371 

Table 6 Predictive performance evaluation and validation of estimated models of signalized and unsignalized intersections 372 

Crash Severity   Criteria   Signalized Intersections (198)   Unsignalized Intersections (562) 

       NB-1 NB-2 NB-P GP   NB-1 NB-2 NB-P GP 
TOTAL 
CRASHES 

  MPB   -0.233 -0.268 -0.268 -0.237   -0.035 -0.034 -0.035 -0.034 

  MAD   1.083 1.082 1.082 1.088   0.509 0.510 0.507 0.509 

  MSPE   2.998 2.932 2.932 3.042   0.472 0.473 0.470 0.471 

  CURE Deviation 
(%)   26 4 4 36   0 1 0 0 

  Validation Factor 
(VF)   1.094 1.110 1.110 1.096   0.954 0.952 0.953 0.955 

             
PDO 
CRASHES 

  MPB   0.043 0.031 0.040 0.041   -0.025 -0.027 -0.026 -0.027 

  MAD   0.688 0.693 0.693 0.691   0.340 0.337 0.337 0.337 

  MSPE   1.100 1.106 1.097 1.111   0.419 0.420 0.419 0.418 

  CURE Deviation 
(%)   19 5 6 21   0 0 0 1 

  Validation Factor 
(VF)   1.033 1.024 1.031 1.032   0.946 0.943 0.944 0.944 

             
INJURY  
& FATAL 
CRASHES 

  MPB   0.063 0.039 0.040 0.064   -0.002 0.002 -0.001 -0.002 

  MAD   0.629 0.623 0.624 0.629   0.248 0.246 0.247 0.246 

  MSPE   0.930 0.911 0.913 0.930   0.119 0.121 0.121 0.119 

  CURE Deviation 
(%)   7 2 2 6   1 1 1 1 

  Validation Factor 
(VF)   1.058 1.036 1.037 1.059   0.996 1.006 0.998 0.997 

Notes: MPB: Mean Prediction Bias, MAD: Mean Absolute Deviation, MSPE: Mean Squared Prediction Error   

Besides the likelihood-based criteria, predictive ability-based measures were also computed to 373 

validate the developed models and examine their predictive performance. It is important to note that 374 

randomly selected 80% of data were used to estimate models, while the remaining 20% were used to 375 

validate the developed models. We compute the MPB, MAD, MSPE, % CURE deviation, and a 376 

validation factor. According to Oh et al. (2003), the smaller the absolute values of the MPB, MAD, and 377 

MSPE, the better the developed models' performance. The % CURE deviation, which denotes the 378 
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percentage of the data points falling outside the two standard deviation limits of the Cumulative 379 

Residual (CURE) (Hauer, 2015), shows a good fit when its values are small (Wang et al., 2019). Finally, 380 

a factor that we called a validation factor, was calculated as the total predicted crashes' ratio to the total 381 

observed crashes using the validation sample. A value close to one indicated a better model (Wang et 382 

al., 2019). Wang et al., (2019) called it a calibration factor. 383 

In the case of signalized intersections, the NB-2 and NB-P models' predictive performances 384 

were better than that of the NB-1 model for all crash severity levels based on the measures in Table 6. 385 

Similarly, the NB-2 and NB-P models also outperformed the GP model for total crashes, the PDO 386 

crashes, and injury & fatal crashes. Of particular interest was the percentage CURE Deviation, the 387 

values of which were very high for all crash severity levels on the signalized intersections in the case 388 

of the NB-1 and GP models that indicate a poor prediction performance. For unsignalized intersections, 389 

the difference between the predictive performance measures across the developed SPFs was minimal 390 

and somewhat inconsequential. However, close observation of the results showed that the NB-1, NB-391 

P, and GP models' performances were almost similar and slightly better than the NB-2 model. This 392 

finding is in line with the results from Table 4 and Table 5. To put things into perspective, the GP 393 

regression was the better performing model for total crashes and PDO crashes, and the NB-P regression 394 

was the better performing model for injury & fatal crashes on the unsignalized intersections. Among 395 

the NB models, the NB-P and NB-1 performed closely and relatively better than the NB-2 model. 396 

In the end, we also estimated prediction intervals for the validation sample using the approach 397 

developed by Wood (2005). A prediction interval (PI) is an interval that allows a future or new 398 

observation to fall within it with 100(1-α) % confidence when the observation is recorded. The greater 399 

the observed data fall within the PI, the more the future observations are correctly predicted by the 400 

model. For instance, if the model is well-fitted to the data, it should capture about 50% of the actual 401 

counts of the new similar sites for 50% PI, 75% of the actual counts of the new similar sites for 75% 402 

PI, etc. 403 

Table 7 provides a range of PIs calculated for each intersection type. For signalized 404 

intersections, the 95% PIs captured 100% data of the validation sample for all models and all severity 405 



 

24 
 

levels except the NB-1 model for total crashes. The 90% PI captured 100% of the actual PDO crash 406 

counts of validation sites for all models. However, the observations captured by the 90% PIs for total 407 

and injury & fatal crashes were less than 100%. The 90% PI developed from the GP model caught 408 

around 97.7% of the validation sample, the highest in the total crash category. The 90% PIs of NB 409 

models captured an almost similar percentage of actual total crashes (i.e., 95.5%).  In the case of injury 410 

& fatal crashes, the 90% PIs for four models caught a similar proportion of data. For tighter intervals 411 

(i.e., 75% and 50%), the NB-P model's PIs were winners for total crashes and injury & fatal crashes. 412 

When PDO crashes were considered, the NB-2 was a winner for 50% PI, but it tied with the NB-P for 413 

75% PI.  In general, the NB-2 and NB-P models performed reasonably close to each other and better 414 

than the NB-1 and GP models. This finding confirms the results obtained from the likelihood-based 415 

measures and predictive ability-based measures in Table 5 and Table 6, respectively. 416 

Table 7 The proportion of validation data captured by 50%, 75%, 90% and 95% prediction intervals of NB-1, NB-2, NB-P 417 
and GP models- Signalized and unsignalized intersections 418 

Crash 
Severity 

 Prediction 
Interval (%) 

 Signalized Intersections  (198)   Unsignalized Intersections (562) 

                       
     NB-1 NB-2 NB-P GP   NB-1 NB-2 NB-P GP 
             
TOTAL 
CRASHES 

 50  0.778 0.800 0.822 0.800   0.805 0.814 0.867 0.823 
 75  0.889 0.911 0.933 0.933   0.901 0.920 0.947 0.903 
 90  0.956 0.956 0.955 0.977   0.973 0.982 0.973 0.973 
 95  0.978 1.000 1.000 1.000   1.000 1.000 1.000 1.000 

             
                       
PDO 
CRASHES 
  
  

 50  0.844 0.867 0.844 0.844   0.832 0.850 0.858 0.805 
 75  0.933 0.956 0.956 0.933   0.920 0.929 0.920 0.894 
 90  1.000 1.000 1.000 1.000   0.973 0.982 0.982 0.965 
 95  1.000 1.000 1.000 1.000   1.000 1.000 1.000 1.000 

             
                       
INJURY 
& FATAL 
CRASHES 
  
  

 50  0.800 0.800 0.800 0.800   0.823 0.832 0.841 0.814 
 75  0.889 0.911 0.933 0.911   0.964 0.965 0.973 0.920 
 90  0.978 0.978 0.978 0.978   0.982 0.982 0.982 0.982 
 95  1.000 1.000 1.000 1.000   0.991 0.991 0.991 0.982 

 419 

In the case of unsignalized intersections, the 95% PIs for all models caught 100% of total 420 

crashes and PDO crashes in the validation sample. However, the 95% PIs in the injury & fatal crash 421 
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category caught 99.1% and 98.2% of the validation data for all NB models and the GP model, 422 

respectively. The 90% PI performed almost similar across all four models for total crashes and exactly 423 

similar for injury & fatal crashes. Only the NB-2 model was an exception to this generalization about 424 

total crashes for which the 90% PI caught 98.2% of the data, while for other models, the proportion of 425 

caught data was 97.3%. For PDO crashes when 90% PI was considered, the NB-2 and NB-P 426 

performance was identical and only slightly better than the remaining two models. For tighter intervals 427 

(i.e., 50% and 75%), the results were mixed. For instance, the data captured by the 75% PIs for the NB-428 

P models was highest in the case of total crashes and injury & fatal crashes. When PDO crashes were 429 

considered, the result for the 75% PI for the NB-2 model was better, but it was very close to the NB-P 430 

model. For 50% PI, the winner was the NB-P model in all crash severity levels, which captured the 431 

highest data percentage. In general, the results were mixed and inconsequential for unsignalized 432 

intersections, similar to the criteria in Table 5 and Table 6.  All models performed reasonably close to 433 

one another for wider PIs (i.e., 95% and 90%). However, for tighter PIs, the NB-P models were favored. 434 

The GP models' PIs caught fewer data than that of the NB models, but the difference was negligible.  435 

We noticed that the calculated PIs captured relatively higher percentages of the validation data 436 

than expected. This could be the result of many factors acting simultaneously. In this study, we followed 437 

the approach proposed by Wood (2005) to estimate the PIs. According to Wood (2005), the lower limit 438 

of the interval should be set to zero to avoid negative boundary measures. Setting the lower limit of the 439 

PI to zero resulted in comparatively wider intervals that potentially captured more actual counts than 440 

expected. Another reason could be the dependability of the approach applied to estimate PIs on the 441 

model's dispersion parameter. We estimated our models with the fixed dispersion parameters. 442 

Geedipally and Lord (2008) reported that fixed dispersion parameter models tend to have larger PIs 443 

than those with varying dispersion parameters, and, in extreme cases, the difference could reach up to 444 

40%. We possibly got the considerably wider PIs for our models because of assuming a fixed dispersion 445 

parameter for the whole network. Other studies (Ramírez et al., 2009; Geedipally and Lord, 2008; Lord, 446 

2006; Wood, 2005) estimated the PIs for exposure-only models. However, we considered additional 447 
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variables (Table 1). Maybe the presence of these additional variables improved the predictive 448 

performance of the SPFs developed and, hence, resulted in more inclusive PIs.   449 

5. Discussion  450 

The current study investigated the application of  NB-1, NB-2, NB-P, and a GP model to 451 

develop SPFs and, among them, find a statistical model capable of improved estimation accuracy. For 452 

this purpose, several goodness of fit (likelihood-based) and predictive performance measures were 453 

calculated and compared. Before that, several variables (Table 1 and Table 2) were used to develop 454 

the SPFs (Table 3 and Table 4). Statistical modeling revealed that only a few explanatory variables 455 

have a significant relationship with the crash occurrence. The following section presents the discussion 456 

of the results obtained in section 4. 457 

5.1 Predictor variables of crashes on urban intersections 458 

A positive association between the crash frequency and traffic volume of major and minor 459 

intersections approaches was found for almost every severity level and every intersection type 460 

considered. This result was in accordance with our expectations. When the number of vehicles entering 461 

and/or leaving the intersection increases, it induces new turning and crossing maneuvers, that result in 462 

an increased risk of new conflicts. Those other conflicts, in some cases, are translated into actual 463 

crashes. Many studies have reported similar results (Wang et al., 2019; Barbosa et al., 2014; Ferreira 464 

and Couto, 2013; Vieira Gomes et al., 2012; Miaou and Lord, 2003; Greibe, 2003). It is important to 465 

note that, of all the models developed across all severity levels for both intersection types, only the 466 

traffic flow of a minor approach of unsignalized intersections in the injury & fatal crash models was 467 

not significant. Since the majority of unsignalized intersections were located on local streets where the 468 

traffic volume of minor approaches and the corresponding speed limits were relatively very low, it is 469 

possible that those factors might have contributed to a reduced number of fatal and injury crashes and 470 

hence resulted in the insignificance of traffic volume of the minor approaches in models for fatal and 471 

injury crashes. 472 



 

27 
 

The presence of crosswalks on the minor approaches, although significant, gave somewhat mixed 473 

results for signalized and unsignalized intersections. In the case of signalized intersections, the 474 

crosswalk on the minor approaches had a significant positive association with crash frequency only 475 

when it was present on both approaches. The crosswalk, however, was not significant when it existed 476 

on one of the minor approaches. Moreover, the estimated coefficients were often more than double for 477 

intersections with crosswalks on both minor approaches than intersections with crosswalks on only one 478 

approach, although not significant in the latter case. A possible explanation could be that, at signalized 479 

intersections with crosswalks on both minor approaches, an existing and/or entering or turning traffic 480 

will have two possible vehicle-pedestrian interactions and, thus, the chances of involvement in crashes 481 

will be greater. In contrast, intersections with a crosswalk on only one minor approach will have one 482 

possible vehicle-pedestrian interaction, so lower risk of a crash. In the case of unsignalized intersection, 483 

a crosswalk on a minor approach was significant across all but PDO models when it was present on 484 

only one of the minor approaches. As we know, two crosswalks on the minor approaches were only 485 

present on four-legged intersections. In the unsignalized category, the majority of intersections were 486 

three-legged, which could accommodate only one crosswalk on its minor approach at a time. Thus, 487 

most three-legged intersections, and the consequent presence of only one crosswalk on a minor 488 

approach possibly contributed significantly to crashes on unsignalized intersections.  489 

The intersection skewness was statistically significant in the models for total crashes, and injury 490 

& fatal crashes in the case of signalized intersections. The association found indicates that more crashes 491 

were expected on the intersections with a high skewness level than those with none or low skewness 492 

level. For recollection of readers, we classified an intersection angle of less than or equal to 75 degrees 493 

as a high skewness level and an intersection angle of greater than 75 degrees as low skewness or no 494 

skewness level. Nightingale et al. (2017) and Harkey (2013) reported similar results when studying the 495 

skewness angle's influence on intersection crash frequency. However, Kumfer et al.  (2019) found 496 

somewhat mixed results and concluded that the most dangerous intersection arrangements might not be 497 

those with the smallest intersection angles between the adjacent major and minor approaches. Instead, 498 

the crashes tend to be their highest when the intersection angle is between 50 and 70 degrees. Further, 499 
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they found most intersections with skew angles of 50 degrees or below relatively safe. This indicates 500 

that analysts must exercise caution when interpreting the impact of intersection skewness on its safety. 501 

Reasons for the significance of skewness in signalized intersection SPFs might be related to the fact 502 

drivers tend to have greater safety perception at these intersection types compared to unsignalized 503 

intersections. This reduces the scale of decision-making on the driver’s behalf, necessary for safe 504 

driving. When they encounter a skewed intersection, this potentially leads to confusion, which is 505 

reinforced by other undesirable characteristics (obstructed views, distorted sight distances, large 506 

intersection area, large turns, etc.) of skewed intersection may result in a crash. 507 

The number of approaches of the intersection was found to influence the expected crash 508 

frequency at unsignalized intersections only. This was particularly true in the case of PDO crashes and 509 

total crashes. The intersections with four or more legs were expected to experience more crashes than 510 

the intersections with three legs. This was an expected outcome. An increase in the number of 511 

legs/approaches increases intersection complexity. It invites additional traffic, which could be related 512 

to an increased risk of involvement in a crash.  513 

Another significant predictor of crashes at un-signalized intersections was the number of 514 

through lanes of the minor approach. The association between the number of through lanes and the 515 

expected crash frequency was positive, which means more crashes with an increased number of through 516 

lanes. Abdel-Aty and Nawathe (2006) found similar results for urban intersections, but their study was 517 

focused on signalized intersections. Zhao et al.  (2018) and Kamrani et al. (2017) also reported a 518 

significant positive association between crash frequency and the number of through lanes for 519 

intersections. The number of through lanes on a minor approach also indirectly informs about the size 520 

of an intersection and correspondingly higher traffic volumes. An intersection with many through lanes 521 

on a minor approach could have a higher expected crash frequency because of its large size that carries 522 

more traffic. This result can be generalized only to four-legged unsignalized intersections since through 523 

lanes were only reported for such facility type. 524 

We also found some unexpected results, especially the insignificance of the exclusive left and 525 

right turn lanes in the developed models. It was rather opposite to some studies' results (Al-Kaisy and 526 
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Roefaro, 2012; Abdel-Aty and Haleem, 2011; Zhou et al., 2010). The reason may be that the number 527 

of intersections with exclusive left and right turn lanes in the study data was not that much to be 528 

significant in the final models. The influence of the intersection size on crash frequency was also 529 

insignificant as a predictor variable. This might be because other variables, like, the number of through 530 

lanes on a minor approach and the number of legs/approaches of the intersection, could have acted as 531 

proxies for intersection size in the modelling process. 532 

5.2 The appropriate model(s) for crash estimation on urban intersections 533 

In the case of signalized intersections, both the likelihood-based and predictive ability-based 534 

measures revealed that the NB-P and NB-2 models performed better than the NB-1 and GP models. 535 

The estimated PIs for models of signalized intersections also confirmed these findings. For un-536 

signalized intersections, the GP model was a winner for total and PDO crashes. However, for injury & 537 

fatal crashes, the NB-P outperformed the competing models based on the goodness of fit (likelihood-538 

based) measures. Though the  predictive ability-based measures’ results were inconsequential, a close 539 

observation favored the GP models only marginally compared to the NB-1 and NB-P models. When 540 

the comparison was made across the NB models for unsignalized intersections, the NB-P and NB-1 541 

models performed better than the NB-2. When the PIs were estimated for unsignalized intersections, 542 

similar results were obtained for the developed models.  Generally, in situations where the NB models 543 

were considered, the flexible variance structure allowed the NB-P model to outperform the traditional 544 

NB-1 or NB-2 model. Another observation was that for one type of facility (un-signalized intersections), 545 

the better performing model was the NB-1, while for the other type of facility (signalized intersection), 546 

the better performing model was the NB-2 when only the traditional NB models were compared. This 547 

finding suggests that it is necessary to check for an appropriate model form in advance.  548 

The use of several functional forms of the NB regression and the equally powerful but relatively 549 

less used GP model in this study revealed that the accurate estimation of crash frequency is subjected 550 

to selecting the appropriate functional form and model type. The flexible variance structure of the NB 551 

model can improve estimation accuracy. Further, the study results showed that it is possible that a model 552 
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functional form, appropriate for one sub-type of the same infrastructure, might not be appropriate for 553 

another sub-type of that infrastructure. 554 

6. Conclusions 555 

This study developed multiple SPFs by crash severity for urban intersections using the NB-1, 556 

NB-2, NB-P, and GP regression to obtain models with higher estimation accuracy. The data was 557 

obtained for the intersections of Antwerp, Belgium. Only those intersections were included in modeling 558 

for which sufficient good quality data was available. The major and minor approaches' AADT and 559 

several other variables related to road infrastructure and geometry were used as the explanatory 560 

variables. The traffic volume was a significant predictor of crash frequency for almost all developed 561 

models and all crash severity levels. Other significant variables include the presence of a crosswalk on 562 

the minor approach and the intersection skewness in signalized intersections. For unsignalized 563 

intersection, the presence of a crosswalk on the minor approach, the number of through lanes of the 564 

minor approach, and the number of legs were significant.  565 

Several measures were computed for model comparison. The likelihood-based measures, 566 

including the LRT, AIC, and BIC, were used for checking the goodness of fit of the models, while the 567 

predictive ability-based measures were used for the predictive performance and validation of the 568 

models. The likelihood-based measures showed that the NB-P and NB-2 models performed better than 569 

the NB-1 and GP models for signalized intersections and for all crash severity levels. However, for 570 

unsignalized intersections, the GP model was relatively better than the NB models for most crash 571 

severity levels. A comparison among the NB models showed that the NB-P and NB-1 outperformed the 572 

NB-2 model. The predictive ability-based measures confirmed the above results by indicating an 573 

improvement in prediction accuracy in the NB-P model and GP model for signalized and unsignalized 574 

intersections, respectively. Similarly, the PIs calculated for the validation data confirmed those findings 575 

though the data caught by the PIs were comparatively higher than expected.  576 

All models (NB-1, NB-2, NB-P, and GP) developed in this study were promising in estimating 577 

the SPFs for intersections. Irrespective of the functional form or type, they showed similar results for 578 
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explanatory variables' influence on crash frequency. Further, it was shown that the use of the flexible 579 

variance structure of the NB-P model and/or an entirely different GP model could bring an improvement 580 

in the estimation accuracy as indicated by the comparison of the goodness of fit and later verification 581 

by the predictive performance measures and prediction intervals for  the validation sample.  582 

Finally, we hope that this study's outcome adds to the SPF estimation knowledge concerning 583 

the selection of the appropriate parametrization or model type and improvement in the accuracy and 584 

reliability of the crash estimates. Nonetheless, future research efforts can focus on investigating the 585 

applications of the NB-P model to several other facility types or/and crash types or using the NB-P 586 

model in conjunction with other techniques, for instance, exploring the functional forms of the GP 587 

model of which a traditional form called GP-1 has already been applied in this study. Since this study 588 

developed separate models for different crash severity levels, a comparison with multivariate models 589 

with multiple outcomes (i.e., count of total crashes, count of fatal and injury crashes, and count of 590 

property damage only [PDO] crashes) can be made in the future. 591 
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