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A B S T R A C T   

Background and aims: Prenatal chemical exposure has frequently been associated with reduced fetal growth 
although results have been inconsistent. Most studies associate single pollutant exposure to this health outcome, 
even though this does not reflect real life situations as humans are exposed to many pollutants during their life 
time. The objective of this study is to investigate the association between prenatal exposure to a mixture of 
persistent environmental chemicals and birth weight using multipollutant models. 
Methods: We combined exposure biomarker data measured in cord blood samples of 1579 women from four 
Flemish birth cohorts collected over a 10 years’ time period. The common set of available and detectable 
exposure measures in these cohorts are three polychlorinated biphenyls (PCB) congeners (138, 153 and 180), 
hexachlorobenzene (HCB), dichlorodiphenyldichloroethylene (p,p’-DDE) and the metals cadmium and lead. 
Multiple linear regression (MLR), Bayesian Information Criterion (BIC), penalized regression using minimax 
concave penalty (MCP) and Bayesian Adaptive Sampling (BAS) were applied to assess the influence of multiple 
pollutants in a single analysis on birth weight, adjusted for a priori selected covariates. 
Results: In the pooled dataset, a median (P25-P75) birth weight and gestational age of 3420 (3140–3700) grams 
and 39 (39–40) weeks was observed respectively. The median contaminant levels in cord blood were: 15.8, 26.5, 
18.0, 16.9 and 91.5 ng/g lipid for PCB 138, PCB 153, PCB 180, HCB and p,p’-DDE, respectively, 0.075 µg/L for 
cadmium and 9.7 µg/L for lead. According to the applied statistical methods for multipollutant assessment, p,p’- 
DDE and PCB 180 were most consistently associated with birth weight. In addition, PCB 153 was selected when 
applying MCP and BAS. An inverse association with birth weight was found for the PCB congeners, while an 
increased birth weight was observed for elevated levels of p,p’-DDE. 
Conclusions: Assessing the health risk of combinations of exposure biomarkers reflects better real-world situations 
and thereby allows more effective risk assessment. Our results add to the existing evidence based on detrimental 
effects of PCBs on birth weight and indicate a possible increase in birth weight due to p,p’-DDE (while correcting 
for PCBs).  
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1. Introduction 

A suboptimal intra-uterine environment can affect fetal growth and 
contribute to the risk of developing adult disease (Barker 1998). 
Humans, as such also pregnant women, are exposed to many chemicals 
during their lifetime via diet, inhalation, non-dietary ingestion and 
dermal absorption. Many of these chemical compounds are, due to their 
high lipophilicity or amphoteric properties, transported via the placenta 
to the fetus (Vizcaino et al., 2014). Prenatal chemical exposure has 
frequently been associated with reduced fetal growth although results 
have been inconsistent (see further). Human biomonitoring shows that 
complex mixtures of xenobiotic chemicals are present in the prenatal 
environment (Martínez et al., 2020; Rovira et al., 2019; UBA, 2014). In 
three successive human biomonitoring campaigns among newborns of 
the Flemish Environment and Health Studies (FLEHS I, II & III) and 
another regional birth cohort (3xG), we measured a diverse set of bio-
markers in human samples, i.e. cord blood and blood, hair and urine of 
the mother. The common set of available and detectable exposure 
measures in these cohorts were three polychlorinated biphenyl (PCB) 
congeners (138, 153 and 180), hexachlorobenzene (HCB), dichlor-
odiphenyldichloroethylene (p,p’-DDE) and the metals cadmium (Cd) 
and lead (Pb) measured in cord blood. 

To date, most epidemiological studies have investigated associations 
between single pollutant exposures and birth weight or other fetal 
growth measures like birth length, head circumference, small for 
gestational age, etc., and most of them reported significant inverse as-
sociations for the selected compounds, e.g. lower fetal growth for 
increased concentrations of HCB (Eggesbo et al., 2009), PCBs (Casas 
et al., 2015; Govarts et al., 2012) and Cd (Guo et al., 2017; Kippler et al., 
2012). However, results are inconsistent with several studies observing 
no significant associations (Berkowitz et al., 1996; Gladen et al., 2003; 
Khanjani and Sim, 2006; Longnecker et al., 2005; Wolff et al., 2007). 
Investigating associations of single pollutant exposures to health out-
comes does not reflect real life situations whereas humans are exposed 
to thousands of pollutants during their life time (Cohen and Jefferies, 
2019). Several biomonitoring studies have looked at the association of 
multiple exposures with fetal growth, focusing on different chemical 
exposures, e.g. phthalates (Chiu et al., 2018; Philippat et al., 2019), 
organochlorine compounds (Govarts et al., 2018; Vafeiadi et al., 2014), 
pesticides (Béranger et al., 2020) or multiple chemical classes (Govarts 
et al., 2016; Kalloo et al., 2020; Lee et al., 2020; Lenters et al., 2015; 
Woods et al., 2017). These studies used different statistical methods to 
analyse the multiple exposures in association with fetal growth, e.g. 
ordinary regression models (Chiu et al., 2018; Govarts et al., 2018; 
Vafeiadi et al., 2014), Principal Component Regression (PCR) or another 
clustering technique (Chiu et al., 2018; Govarts et al., 2016; Kalloo et al., 
2020; Lee et al., 2020), Structural Equation Models (SEM) (Chiu et al., 
2018), exposure summation or z-scores (Cabrera-Rodriguez et al., 2018; 
Govarts et al., 2016), elastic net (ENET) (Béranger et al., 2020; Lenters 
et al., 2015) and/or Bayesian techniques (Chiu et al., 2018; Woods et al., 
2017). 

The field of statistical tools to explore the association of multiple 
chemical exposures on health outcomes has evolved in recent years. 
Several methods have been developed, which can be classified into three 
groups: dimension reduction (e.g. PCR, partial least square regression 
(PLS)), variable selection (e.g. deletion/substitution/addition algo-
rithm, penalized methods like ENET, and Bayesian variable selection 
methods) and grouping of observations (e.g. cluster analysis, building 
groups based on an exposure score, Bayesian profile regression, recur-
sive partitioning techniques) (Stafoggia et al., 2017). Several simulation 
studies (Agier et al., 2016; Bobb et al., 2015; Lenters et al., 2018; Sun 
et al., 2013) have been performed to explore the performance of these 
techniques. These simulations have not identified a universal best per-
forming method, but have demonstrated clearly that classic single- 
variable or multivariable models do not suffice under most 
circumstances. 

The objective of this study is to investigate the association between 
prenatal exposure to a mixture of environmental chemicals and birth 
weight in the pooled dataset of four Flemish birth cohorts by comparing 
results obtained from different statistical models. Combining these co-
horts also provides the opportunity to study possible associations of 
birth weight with a correlated group of exposures in a homogeneous 
population collected by subsequent sampling over a 10 years’ time 
period. 

2. Methods 

2.1. Description of cohorts 

We pooled data from three successive newborn campaigns of the 
Flemish Environment and Health Studies (FLEHS I, II and III) and a 
regional birth cohort (3xG). Details of the recruitment protocols have 
been reported for the FLEHS studies (Baeyens et al., 2014; De Craemer 
et al., 2016; Den Hond et al., 2009). In FLEHS I, participants were 
recruited between 2002 and 2004 in eight geographical areas covering 
22% of the surface area of Flanders and 20% of the population. Two 
areas were urban locations (Antwerp city and Ghent city), four areas 
were characterized by industrial settings (Ghent and Antwerp harbor, 
non-ferrous industry, chemical industry and areas around waste in-
cinerators), one area had intensive fruit cultivation (fruit growing area), 
and one area was less densely populated and had no registered emissions 
(rural area). In FLEHS II and III participants were recruited from the 
general population of the five Flemish provinces between 2008 and 
2009 and 2013–2014 respectively, using a two-stage sampling proced-
ure with provinces as primary sampling unit and maternities as sec-
ondary sampling units. The distribution of participants over the different 
provinces was proportional with the number of inhabitants in that 
province. The 3xG mothers were recruited from three bordering rural 
communities (Dessel, Mol and Retie). All mothers that fulfilled the in-
clusion criteria and gave birth between 2010 and 2015 were invited to 
participate. In total 1196, 255, 281 and 301 mother-newborn pairs were 
obtained from FLEHS I, II, III, and 3xG respectively. All participants 
signed an informed consent. Inclusion criteria were to be able to fill out a 
Dutch questionnaire and to live at least five years in the selected study 
areas (FLEHS I), at least 10 years in Flanders (FLEHS II), at least five 
years in Flanders (FLEHS III), or living in the recruitment area (3xG). 
The biomonitoring studies were approved by the Ethical Committee of 
the University of Antwerp and the University Hospital of Antwerp (all 
studies) and additionally by the Ethical Committees of the local hospi-
tals if relevant. 

The study population was restricted to live-born singleton births, 
with available measurements of the selected exposure markers, outcome 
and the a priori selected covariates. The outcome of interest was birth 
weight, which was recorded shortly after delivery, together with the 
covariates gestational age (weeks) and sex of the newborn (male/fe-
male). Other covariate data were obtained from the questionnaires: 
maternal age at delivery (<27, 27 < 30, 30 < 33, ≥33 years), maternal 
pre-pregnancy body mass index (BMI; <18.5, 18.5 < 25, 25 < 30, ≥30 
kg/m2), parity (0, 1, ≥2) and maternal smoking during pregnancy (non- 
smoking, smoking). Cohort was included as an additional covariate. In 
total, we used the data from 1579 mother-newborn pairs. 

2.2. Exposure assessment 

Cord blood samples were collected by the midwife and processed 
according to centrally developed guidelines, either by the hospital lab-
oratory, or by an associated external routine laboratory. Plasma samples 
were centrifuged; cord blood and plasma samples were aliquoted in the 
appropriate tubes and stored at − 20 ◦C until transport to the central 
laboratory. After completion of the recruitment period, all the samples, 
together with field work blanks and control samples, were transported in 
batch from the central lab to the different analytical laboratories. The 
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common group of exposure biomarkers measured in cord blood in the 
four birth cohorts consisted of specific PCB congeners (PCB 138, PCB 
153, PCB 170 and PCB 180), p,p’-DDE, the major metabolite of DDT, the 
organochlorine pesticide HCB, and the metals lead and cadmium. PCB 
170 measurements had more than 50% of the samples below the limit of 
quantification (LOQ) for FLEHS I and FLEHS II. We therefore excluded 
PCB 170 from further analyses leaving a total of 7 selected exposure 
biomarkers. 

The persistent organic pollutants (POPs) were measured in cord 
plasma by gas chromatography-electron capture negative ionization 
mass spectrometry (Covaci and Voorspoels, 2005). In FLEHS I, the 
plasma total lipid concentration was determined gravimetrically. In case 
no value could be obtained gravimetrically, total lipid concentration 
was calculated based on routinely measured triglycerides and total 
cholesterol by the formula deducted from the samples for which lipid 
measures was available: total lipids = 50.49 + 1.32 × (cholesterol +
triglycerides) in mg/dL. For FLEHS II, III and 3xG lipids were deter-
mined by enzymatic methods, and lipid adjustment of organochlorines 
was based on total lipids as calculated according to the formula obtained 
in FLEHS I. The analysis of all chlorinated compounds was performed by 
the same laboratory of the University of Antwerp by the same analytical 
method, however the method was improved over time leading to lower 
LOQs in FLEHS III and 3xG. The LOQ for all chlorinated compounds in 
plasma was 20 ng/L in FLEHS I and II, and for p,p’-DDE in all campaigns. 
The LOQ for the PCB congeners was 2 ng/L and 10 ng/L for FLEHS III 
and 3xG respectively, and for HCB the LOQ was 10 ng/L in the FLEHS III 
and 3xG campaigns. 

Metals were measured in whole cord blood by high resolution 
inductively coupled plasma-mass spectrometry (Schroijen et al., 2008). 
The measurements of Cd and Pb were performed by the same laboratory 
of the Free University of Brussels by the same analytical method, how-
ever the method was improved leading to lower LODs in FLEHS III and 
3xG. The limits of detection (LODs) ranged from 0.0097 to 0.09 µg/L for 
cadmium and from 0.04 to 2 µg/L for lead. 

Data below the LOD or LOQ (1.1–27% depending on the compound) 
were single imputed from a log-normal probability distribution, where 
the mean was allowed to depend on the study population and observed 
values for the other contaminants and the residual variance to vary by 
population (Lubin et al., 2004). 

2.3. Statistical analysis 

Exposure variables were ln-transformed to reduce the influence of 
outliers. We assessed correlations between (ln-transformed) exposures 
using Pearson’s correlation coefficients. For the models, we mean- 
centered and standardized all predictor variables. To estimate the as-
sociation between the multiple pollutants and birth weight, we used five 
linear regression-based statistical methods, i.e. multiple linear regres-
sion (MLR), model selection and Bayesian model averaging using the 
Bayesian Information Criterion (BIC) (Schwarz, 1978), penalized 
regression (Zou and Hastie, 2005), and Bayesian Adaptive Sampling 
(BAS) (Liang et al., 2008). The models included all a priori selected 
covariates, without subjecting them to variable selection. Estimated 
slope coefficients are presented as the expected change in mean birth 
weight (grams) per interquartile fold change in exposure (IQFc; the fold 
change of the 75th percentile over the 25th percentile in exposure), of 
cord plasma/blood exposure levels. 

The assumption of linearity was assessed by fitting single pollutant 
models using general additive models (GAMs) to evaluate the shape of 
the associations between the exposures and outcome. Possible effect 
modification was investigated by adding interaction terms between 
single exposures and each of the covariates and between pairs of 
exposures. 

2.3.1. Multiple linear regression (MLR) 
Ordinary linear regression was applied as most conventional model 

to estimate exposure-effect associations, by including all exposure bio-
markers in a single multiple linear regression model. Statistical signifi-
cance of the association between the exposure markers and birth weight 
was assessed by the p-value. We assessed collinearity by estimating 
variance inflation factors (VIFs), with VIF greater than 5 suggesting a 
problem of collinearity (Kleinbaum et al., 2013). 

2.3.2. Bayesian Information Criterion (BIC) 
Model selection among a finite set of models can be performed by 

comparing BICs, but only when the number of candidate predictors/ 
exposures is not too high, because it requires evaluation of model fit for 
all (competing/different) regression models (Claeskens, 2016). With 7 
different exposure biomarkers, there are only 128 different models (2p 

where p is the number of exposure biomarkers) that need to be evalu-
ated, which makes the approach feasible in this study. Statistical infer-
ence based on estimated regression coefficients and 95% confidence 
intervals from the selected “best” or “median probability” models is 
flawed, because it does not take into account the selection process. With 
only a limited number of potential models to choose from, it is possible 
to estimate 95% confidence intervals that have guaranteed coverage 
probability under arbitrary model selection using the approach sug-
gested by Berk et al., (Berk et al., 2013), which is implemented in the R 
package PoSI. 

Although BIC is often used to select only a single “best-fitting” model, 
it can also be used more comprehensively to evaluate model uncertainty 
by using BIC to approximate Bayesian posterior model probabilities. By 
summing the posterior probabilities of all models in which a biomarker 
occurs, it is possible to estimate the so-called marginal posterior prob-
ability of inclusion (MPPI) for each exposure biomarker. We can then 
either fit a model that includes only exposures with a MPPI exceeding a 
certain threshold (for instance 50%; the so-called median probability 
model (Barbieri and Berger, 2004)) or base our inference on the full 
range of models as in (Bayesian) model averaging. In Bayesian model 
averaging (BMA) (Hoeting et al., 1999), MPPIs are used as weights to 
estimate a full posterior distribution for each regression coefficient, 
which can be summarized using 95% (Bayesian) credible intervals (95% 
BCI). The R package BAS was used to implement the Bayesian model 
averaging approach using BIC and to estimate 95% credible intervals for 
all regression coefficients (Clyde, 2020). 

2.3.3. Penalized regression using minimax concave penalty (MCP) 
Penalized regression methods were developed to address the prob-

lems of multicollinearity and high dimensionality, which cause MLR to 
produce unreliable parameter estimates and prevent efficient model 
exploration (Chadeau-Hyam et al., 2013). In MLR, regression co-
efficients are estimated by minimizing the residual sum of squares (i.e. 
maximizing model fit), while in penalized regression models coefficients 
are estimated by jointly minimizing the residual sum of squares and a 
function of the estimated coefficients. For the well-known LASSO pen-
alty that function is the absolute value of the coefficients, and it can be 
shown that this leads to effective variable selection because some of the 
coefficients are shrunken to exactly zero thereby effectively removing 
the variable from the model. We used a variant of LASSO that uses the 
minimax concave penalty (MCP), and is implemented in the R package 
ncvreg (Breheny and Huang, 2011). We used 10-fold cross-validation to 
determine the optimal degree of the penalization and stability selection 
to allow finite sample control of error rates by modifying routines from 
the R package stabsel (Shah and Samworth, 2013). 

As for the approach using the “best” or “median probability” models 
based on BIC, we fitted the model using the selected exposures from 
stability selection and adjusted the reported 95% confidence intervals 
using the R package PoSI. 

2.3.4. Bayesian Adaptive sampling (BAS) 
BAS is a Bayesian model averaging technique that can use either 

sampling or enumeration to explore different model structures (Liang 
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et al., 2008). We used enumeration to explore all possible 128 different 
regression models and calculated the marginal variable inclusion 
probabilities (MPPI) for each exposure biomarker using the posterior 
sampling probabilities for each model in which they were included. Like 
for BIC-BMA, a threshold of 50% for the MPPIs could be used to select 
exposures or we could base our inference on the full range of models. We 
used the Jeffreys-Zellner-Siow prior (Zellner and Siow, 1980) for the 
regression coefficients and a uniform (flat) prior on the model space. The 
R-package BAS was used to implement the analyses and estimate point 
estimates and 95% Bayesian credible intervals (BCI) using the full pos-
terior distribution of all regression coefficients. 

All statistical analyses were performed in R version 3.5.0 (R Foun-
dation for Statistical Computing, Vienna, Austria). 

3. Results 

In the pooled data, a median (P25-P75) birth weight and gestational 
age of 3420 (3140–3700) grams and 39 (39–40) weeks was observed 
respectively. There was some variation across the different birth cohorts 
in birth weight (Table 1). Median maternal age and pre-pregnancy BMI 
at delivery were similar across cohorts, 30 years and 23 kg/m2 respec-
tively (Table 1). An increasing trend of pre-pregnancy BMI ≥ 30 kg/m2 

was however observed over time (from 7% in FLEHS I to 10% in FLEHS 
III). Half the mothers were nulliparous (42–59%). Still 14% of the 
mothers smoked during pregnancy, but over the study periods the per-
centage dropped from 16% (FLEHS I) to 12% (FLEHS II) to 11% (FLEHS 
III), with 3xG having the lowest percentage of smoking mothers (8%) 
(Table 1). 

The median contaminant levels in cord blood were: 15.8 ng/g lipid 
for PCB 138, 26.5 ng/g lipid for PCB 153, 18.0 ng/g lipid for PCB 180, 
16.9 ng/g lipid for HCB, 91.5 ng/g lipid for p,p’-DDE, 0.075 µg/L for Cd 
and 9.7 µg/L for Pb (Fig. 1, Supplemental Material, Table S1). For all 
compounds, a decline over time was observed across the three succes-
sive FLEHS campaigns (Fig. 1, Supplemental Material, Table S1). Cor-
relations between the different pollutants were low to moderate 
(Pearson’s r = 0.12–0.58), except for the three PCB congeners that were 
highly correlated (Pearson’s r = 0.75–0.83) (Fig. 2). 

In single pollutant models, increased levels of all PCB congeners were 
significantly associated with reduced birth weight (Fig. 3). The other 
exposure markers were not significantly associated with birth weight in 
the single pollutant models. Only PCB 180 and p,p’-DDE were signifi-
cantly associated with birth weight in the MLR model (Fig. 3, Supple-
mental Material, Table S2). Some of the exposures were rather strongly 
correlated, causing inflation of the variance and as such larger CIs for the 
estimates (Supplemental Material, Table S2). However, VIFs were all <
5 indicating that the problem of collinearity was marginal in this large 
study population with few candidate exposures. Using BIC as the se-
lection criterion, the model with PCB 180 and p,p’-DDE was selected as 
“best” model. This was confirmed in the BMA approach using BIC for 
which PCB 180 and p,p’-DDE were both being associated with birth 
weight, with a MPPI of 70% and 78% respectively (Fig. 3, Supplemental 
Material, Table S2). PCB 153, PCB 180 and p,p’-DDE were selected in 
MCP models after stability selection (Fig. 3, Supplemental Material, 
Table S2, Figure S1), with p,p’-DDE having the highest selection prob-
ability, followed by PCB 180 and PCB 153. These pollutants were also 
identified from the BAS model, with MPPIs of 51%, 84% and 95% for 
PCB 153, PCB 180 and p,p’-DDE respectively. Point estimates and 95% 
(B)CIs for each exposure based on model averaging are provided in the 
Supplemental Material (Table S2). PCB congeners PCB 153 and PCB 180 
showed an inverse association with birth weight in all multipollutant 
models, while p,p’-DDE levels were associated with an increasing birth 
weight (Fig. 3, Supplemental Material, Table S2). 

The linearity assumption was not rejected in single pollutant models 
and there was no evidence of effect modification as no significant in-
teractions were found between exposures and covariates or pairs of 
exposures (data not shown). 

4. Discussion 

In this study, we examined the association between prenatal expo-
sure to PCB 138, PCB 153, PCB 180, HCB, p,p’-DDE, cadmium and lead 
and birth weight in a pooled dataset of four Flemish birth cohorts. From 
all exposure measures, p,p’-DDE and PCB 180 were most consistently 
associated with birth weight according to five different multipollutant 
modeling approaches. In addition, PCB 153 was selected when applying 
MCP and BAS. An inverse association with birth weight was found for 
the PCB congeners, while an increased birth weight was observed for 
elevated levels of p,p’-DDE. No associations were found or retained for 
HCB, PCB congeners 170 and 138, and the metals Cd and Pb. 

Five different approaches were used to assess the association be-
tween multiple exposures and birth weight. The results were comparable 
for this dataset with 7 exposures. Probably as proof of principle, these 
methods should also be explored in higher dimensional datasets with 
more exposures, where it has been shown that MLR does not work 
anymore (Agier et al., 2016). MLR also performs less in this study, as it 
was not able to pick-up PCB 153 due to variance inflation; and if a 
multiple comparison correction was applied also the association for PCB 
180 was lost. The advantage of the MCP, BIC and BAS approaches is that 

Table 1 
Characteristics of the participants of the 4 birth cohorts.  

Characteristics FLEHS I FLEHS II FLEHS III 3xG 

(2002–2004) (2008–2009) (2013–2014) (2011–2015) 

Na 957 224 273 125 
Birth weight (g) 3395 

(3120–3660) 
3518 
(3180–3778) 

3420 
(3155–3720) 

3430 
(3200–3730) 

Gestational Age 
(weeks) 

39 (39–40) 40 (39–40) 39 (39–40) 40 (39–40) 

Child’s sex     
Boy 496 (51.8%) 116 (51.8%) 139 (50.9%) 63 (50.4%) 
Girl 461 (48.2%) 108 (48.2%) 134 (49.1%) 62 (49.6%) 
Maternal age at 

delivery 
(years) 

29.7 
(26.7–32.2) 

30.2 
(27.5–32.7) 

30.1 
(27.3–33.2) 

29.6 
(27.5–31.6) 

Maternal age at 
delivery     

< 27 years 254 (26.5%) 51 (22.8%) 61 (22.3%) 24 (19.2%) 
27 < 30 years 249 (26.0%) 57 (25.5%) 74 (27.1%) 44 (35.2%) 
30 < 33 years 265 (27.7%) 65 (29.0%) 68 (24.9%) 37 (29.6%) 
≥ 33 years 189 (19.8%) 51 (22.8%) 70 (25.6%) 20 (16.0%) 
Maternal pre- 

pregnancy 
BMI (kg/m2) 

22.5 
(20.3–25.1) 

22.5 
(20.4–24.9) 

23.1 
(20.8–25.8) 

22.8 
(21.0–25.8) 

Maternal pre- 
pregnancy 
BMI     

<18.5 kg/m2 56 (5.9%) 14 (6.3%) 7 (2.6%) 5 (4.0%) 
18.5 < 25 kg/ 

m2 
654 (68.3%) 157 (70.1%) 181 (66.3%) 83 (66.4%) 

25 < 30 kg/m2 180 (18.8%) 34 (15.2%) 59 (21.6%) 23 (18.4%) 
≥ 30 kg/m2 67 (7.0%) 19 (8.5%) 26 (9.5%) 14 (11.2%) 
Parity     
0 568 (59.4%) 93 (41.5%) 122 (44.7%) 65 (52.0%) 
1 270 (28.2%) 71 (31.7%) 98 (35.9%) 47 (37.6%) 
≥ 2 119 (12.4%) 60 (26.8%) 53 (19.4%) 13 (10.4%) 
Maternal 

smoking 
during 
pregnancy     

Non-smoking 800 (83.6%) 197 (88.0%) 243 (89.0%) 115 (92.0%) 
Smoking 157 (16.4%) 27 (12.1%) 30 (11.0%) 10 (8.0%) 

Continuous measures described by median (P25-P75); categorical measures 
described by frequencies (%). 
Abbreviations: BMI, body mass index; P, percentile. 

a Number of live-born singleton births with exposure levels and information 
on birth weight and the selected covariates gestational age, sex of the newborn, 
maternal age at delivery, maternal pre-pregnancy BMI, maternal smoking during 
pregnancy and cohort. 
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they provide a selection probability for each pollutant that can be used 
to estimate an error rate (either family-wise error rate of false discovery 
rate). MCP is a variable selection tool, whereas BAS tries to find the best 
subset model based on model averaging. The results of BAS can however 
be used for model selection and/or variable selection. In simulation 
studies (Agier et al., 2016; Bobb et al., 2015; Sun et al., 2013), it has 
been shown that no method outperforms all others across different 
datasets. The performances differ according to the nature of the 
outcome, the sample size, the number of pollutants, and the strength of 
the exposure–response association (Agier et al., 2016; Bobb et al., 2015; 

Sun et al., 2013). The choice of the method depends on the goal of the 
study: risk prediction, effect estimation or screening for important pre-
dictors and their interactions. 

This study was set up as an explorative study to explore different 
statistical methods and to generate hypotheses. Based on the stability 
selection for MCP and MPPI for BIC-BMA and BAS, p,p’-DDE had the 
highest selection probability, followed by PCB 180 and PCB 153. The 
lower selection probability for the PCB congeners is likely at least 
partially due to the strong correlation between them. For the PCB con-
geners, an inverse association with birth weight was observed, while p, 
p’-DDE was associated with higher birth weight. The association be-
tween p,p’-DDE and birth weight could only be observed when assessed 
in models that included (at least) one of the PCB congeners, and not in 
the single pollutant models. This illustrates the fact that co-exposures 
should not be ignored when looking into exposure–response 
associations. 

Our results show that p,p’-DDE and PCBs may have opposite effects 
on birth weight. The inverse association between PCB congeners and 
birth weight has been reported previously in several human studies 
assessing the association of single pollutants (Casas et al., 2015; Govarts 
et al., 2018; Lauritzen et al., 2017; Patel et al., 2018). In a pooled 
analysis of 9000 mother-newborn pairs obtained from 11 European birth 
cohorts, a significant inverse association was found between PCB 153 
and birth weight (Casas et al., 2015), but no association was found for p, 
p’-DDE. Moreover, some studies have reported higher odds for small for 
gestational age with increasing levels of PCB 153 (Govarts et al., 2018; 
Lauritzen et al., 2017; Longnecker et al., 2005). However, results are 
inconsistent as some studies reported no or small associations of PCBs 
and birth weight (Cabrera-Rodriguez et al., 2018; Woods et al., 2017), or 
even opposite associations (Lignell et al., 2013). Till now, only two 
studies (Govarts et al., 2018; Vafeiadi et al., 2014) fitted a multi-
pollutant regression model with several PCB congeners, p,p’-DDE and 
HCB, to assess the association between multiple exposure and birth 
weight. In Vafeiadi et al. (2014), the association with birth weight was 
mainly driven by HCB. In the pooled statistical analysis of Govarts et al. 
(2018) using multiple linear regression analysis, PCB 153 and HCB 
appeared to drive the association with SGA with no effect of p,p’-DDE, 
however in that study, there were no other PCB congeners included. In 
our study, PCB 180 was selected as stronger predictor of the three PCB 
congeners. Tang et al. (2018) reported that the association between PCB 

Fig. 1. Boxplots of distributions of exposure biomarker concentrations of A) PCB 138, PCB 153, PCB 180, HCB and p,p’-DDE in cord plasma (ng/g lipid), and B) Cd 
and Pb in cord whole blood (µg/L), per birth cohort. Horizontal lines correspond to medians, and boxes to the 25th-75th percentiles; whiskers extend to data within 
the interquartile range times 1.5, and data beyond this are plotted as dots. Abbreviations: PCB, polychlorinated biphenyl; HCB, hexachlorobenzene; p,p’-DDE, 
dichlorodiphenyldichloroethylene; Cd, cadmium; Pb, lead. 

Fig. 2. Pearson correlation matrix between the ln-transformed exposure bio-
markers. The color intensity of the circles indicates the strength of the corre-
lation. Blue indicates a positive correlation, and red indicates a negative 
correlation. Abbreviations: PCB, polychlorinated biphenyl; HCB, hexa-
chlorobenzene; p,p’-DDE, dichlorodiphenyldichloroethylene; Cd, cadmium; Pb, 
lead. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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and birth outcomes and hormones seem to differ by molecular weight of 
the PCB congeners. However, it remains difficult to truly separate the 
effects of individual PCBs in observational studies given the high cor-
relations between the individual PCBs. The positive association between 
cord blood concentration of p,p’-DDE and birth weight was also reported 
in several other recent studies (Cabrera-Rodriguez et al., 2018; Xu et al., 
2017). Moreover, other studies showed that p,p’-DDE levels were asso-
ciated with infant growth, showing a higher BMI at the age of 2 years old 
(Coker et al., 2018; Iszatt et al., 2015). 

Halogenated chemicals interact with thyroid hormone- and sex 
steroid-dependent systems which regulate early development (Mughal 
et al., 2018; Parent et al., 2011). PCB congeners act mainly as estrogens, 
while also anti-estrogenic, androgenic and anti-androgenic activities are 
described depending on the metabolite and the concentration (Flor 
et al., 2016). In addition, PCBs and their metabolites bind to thyroid 
transport proteins, such as transthyretin, displace thyroxine, and disrupt 
thyroid function (Duntas and Stathatos, 2015). Epidemiological studies 
have described mainly negative associations between PCB congeners 
and maternal and fetal thyroid hormones (Maervoet et al., 2007). DDE 
has been shown to inhibit androgens from binding to their receptors 
(Kelce et al., 1995). DDT and its metabolites have also been confirmed as 
thyroid-disrupting chemicals through human epidemiological studies 
(de Cock et al., 2014). 

The interplay of the different endocrine disrupting compounds 
(EDCs) and their metabolites is not fully understood. They may interfere 
with fetal growth by acting on maternal metabolism, on the placenta or 
directly on fetal organs. Developmental and maternal hypothyroidism 
are associated with low birth weight and human development (Forhead 
and Fowden, 2014). The placenta is an endocrine organ itself and plays a 
major regulatory role in maintaining pregnancy and growth of the fetus. 
Estrogens and androgens play important roles in regulating nutrient 
delivery to the fetus as well as organ maturation (Baud and Berkane, 
2019). As pregnancy progresses, and the fetus begins to produce hor-
mones on its own, the endocrine disrupting effects of these compounds 

that have been noted in the mother may occur in the fetus as well 
(Fudvoye et al., 2014). Additionally, there is strong evidence indicating 
that estrogenic EDCs can program gene activity via epigenetic changes 
during critical periods in development, with long-term consequences 
that impact the health status of the individual throughout the remainder 
of life (Forhead and Fowden, 2014). Thyroid hormone and estrogenic 
chemicals modulate adipocyte development and activity which display 
receptors for these chemicals (Forhead and Fowden, 2014). 

The strength of this study was that by pooling the data, power was 
increased to look into the association between multiple correlated pol-
lutants and birth weight. This resulted in a dataset of 1579 individuals 
having measurements for PCB 138, PCB 153, PCB 180, p,p’-DDE, HCB, 
lead and cadmium. The four birth cohorts were obtained by subsequent 
sampling over a 10 years’ time period in the Flemish region of Belgium, 
which could be seen as a homogeneous population. Moreover, the same 
sampling procedures have been followed and the same laboratories 
analyzed the pollutants across the four birth cohorts, and the analytical 
methods of these compounds were comparable over time. Blind samples 
of previous FLEHS campaigns were reanalyzed in the next FLEHS 
campaign, for which the results were comparable. As the mothers gave 
birth between 2002 and 2015, exposure to the selected compounds 
could have changed over time, i.e. changes in behaviors or 
manufacturing practices that could have reduced exposure or differ-
ences in correlation patterns over time, and this might have affected the 
analyses. This decline in exposure was observed in the three successive 
FLEHS studies for all studied exposures as published in Schoeters et al. 
(2017). There was however no significant interaction between cohort 
and the exposure–response associations, and the direction of the esti-
mates (except for PCB 180 in 3xG) was in all cohorts the same. 
Furthermore, we cannot exclude the possibility of unmeasured con-
founding, both by other exposures and covariates. We used modeling 
techniques to select between collinear exposures. However, we were 
limited to the exposures measured in all four birth cohorts. As such, we 
did not test for co-exposure to other POPs from similar sources. Although 

Fig. 3. Estimated association between the exposure biomarkers and birth weight from the single pollutant models (SINGLE) and five different multiple-exposure 
models (MLR, BIC, BIC-BMA, MCP, BAS) for birth weight. Estimate (95% CI) represents the change in mean birth weight (g) per IQFc of the exposure biomarker 
levels in the model adjusted for the other exposures (not for SINGLE), gestational age (linear and quadratic terms), sex of the newborn, maternal age at delivery, 
maternal pre-pregnancy BMI, parity, smoking during pregnancy and cohort. For BIC and MCP estimates are only obtained for the exposure markers retained after 
variable selection. 95% confidence intervals for refitted models after variable selection for the BIC and MCP approaches were adjusted for model selection. Ab-
breviations: PCB, polychlorinated biphenyl; HCB, hexachlorobenzene; p,p’-DDE, dichlorodiphenyldichloroethylene; Cd, cadmium; Pb, lead; IQFc, interquartile fold 
change; CI, confidence/credible interval; SINGLE, single pollutant regression model; MLR, multiple linear regression; BIC, Bayesian Information Criterion; BIC-BMA, 
Bayesian model averaging approach using BIC; MCP, minimax concave penalty; BAS, Bayesian Adaptive Sampling. 
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the multipollutant techniques that we used could also be used to 
investigate interaction between exposures and with covariates, we 
refrained from doing so because of the low power and potential adverse 
effects on estimating main effects. However this was assessed through 
single pollutant regression models. Another limitation could be that 
cadmium in cord blood may not be a very good indicator, as cadmium 
does not easily cross the placenta. Cd in maternal blood (even after 
birth) would have been better as indicator (Govarts et al., 2016). 
Moreover, smoking status during pregnancy was derived from ques-
tionnaire information and could be underreported. 

5. Conclusions 

In the pooled analysis of four Flemish birth cohorts we found that 
accounting simultaneously for the association of multiple pollutants 
with birth weight revealed new insights into the interplay of chemical 
exposure and the association with a certain health effect. Our results add 
to the existing evidence on detrimental effects of PCBs on birth weight 
and indicate a possible increase in birth weight due to p,p’-DDE (while 
correcting for PCBs). Assessing health risk of combinations of exposure 
biomarkers reflects better real-world situations. The findings allow more 
effective risk assessment as addressing the critical chemical in a mixture 
of pollutants is pivotal for risk assessment. 
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