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NON-COMMUTATIVE CREPANT RESOLUTIONS FOR SOME

TORIC SINGULARITIES I

ŠPELA ŠPENKO AND MICHEL VAN DEN BERGH

Abstract. We give a criterion for the existence of non-commutative crepant

resolutions (NCCR’s) for certain toric singularities. In particular we recover
Broomhead’s result that a 3-dimensional toric Gorenstein singularity has an

NCCR. Our result also yields the existence of an NCCR for a 4-dimensional

toric Gorenstein singularity which is known to have no toric NCCR.

1. Introduction

In this note we discuss the existence of non-commutative crepant resolutions
(NCCRs) for some toric singularities. Let us first recall the definition. For the
rationale behind the definition of an NCCR see [VdB04a, Leu12]. Throughout k is
an algebraically closed field of characteristic zero.

Definition 1.1. [DITV15, Leu12, ŠVdB17a, VdB04a, Wem16] Let R be a normal
Gorenstein domain. A non-commutative crepant resolution (NCCR) of R is an R-
algebra of finite global dimension of the form Λ = EndR(M) which in addition is
Cohen-Macaulay as R-module and whereM is a non-zero finitely generated reflexive
R-module.

The following proposition is a combination of our main results. For a representa-
tion X of a reductive group G we denote by Xu := {x ∈ X | 0 ∈ Gx} the unstable
locus.

Proposition 1.2 (§6). Let W be a generic unimodular representation of an abelian
reductive group G over k, and let X := Spec Sym(W ) = W∨. If dimXu−dimG ≤ 1
then Sym(W )G has an NCCR.

For the definition of a generic, unimodular representation see Definitions 3.1,
3.2, respectively. Recall that an abelian reductive group over k is a product of a
torus and a finite abelian group.

Proposition 1.2 gives a relatively easy proof that three-dimensional toric Goren-
stein singularities have an NCCR (see Corollary 6.2), a fact first proved by Broom-
head [Bro12]. Actually Broomhead establishes the existence of a “toric” [Boc12]
NCCR (M is a sum of reflexive ideals) which is much more difficult and relies on the
theory of dimer models. In [ŠVdB17c] we give an alternative proof of Broomhead’s
result which is however still not easy.
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In [ŠVdB17a, §10.1] we constructed toric NCCRs for toric rings coming from
quasi-symmetric representations W (e.g. self-dual), and showed that in general
toric NCCRs do not always exist. In other words, Broomhead’s result does not
extend to higher dimension. In fact in [ŠVdB17a, §10.1] we gave an example of a 4-
dimensional toric Gorenstein singularity which does not have a toric NCCR. Using
Proposition 1.2 we can now show that it nevertheless has a non-toric NCCR. See
Example 6.3 below. On the other hand, Higashitani and Nakajima [HN17] recently
constructed toric NCCRs for some natural examples of toric rings not coming from
quasi-symmetric representations.

2. Acknowledgment

We thank the referee for his careful reading of the paper and many useful com-
ments which considerably improved its exposition.

3. Notation and conventions

All objects are defined over k. If X is a stack then we write D(X ) for the
unbounded derived category DQch(Mod(OX )) of OX -modules with quasi-coherent
cohomology.

For a reductive group G we denote by X(G)(resp. Y (G)) the character group
(resp. the group of one-parameter subgroups) of G. There is a natural pairing
Y (G)×X(G)→ Z, we denote it by 〈 , 〉.

If a reductive group G acts on an affine variety X and χ ∈ X(G) is a character
then we write Xss,χ for the open subset of X consisting of the χ-semi-stable points
in X. In other words (following [Kin94]), Xss,χ consists of the points x ∈ X such
that for λ ∈ Y (G) of G with the property that limt→0 λ(t)x exists then 〈λ, χ〉 ≥ 0.
We say that x ∈ X is stable if it has a closed orbit and a finite stabilizer. We denote
the locus of stable points in X by Xs. We have Xs ⊂ Xss,χ for any χ. Moreover,
we write Xs ⊂ X for the set of points with closed orbit and trivial stabilizer.

We write Xu = {x | 0 ∈ Gx} for the G-unstable locus or nullcone.
The inclusions between the open subschemes of X that were introduced are

summarized in the following diagram

Xs �
� // Xs �

� //� _

��

Xss,χ
� _

��
X \Xu �

� // X

Definition 3.1. We say that a reductive group G acts generically on a smooth
affine variety X if codim(X −Xs, X) ≥ 2. If W is a G-representation then we say
that W is generic if G acts generically on Spec Sym(W ) ∼= W∨.

Definition 3.2. Let W be d-dimensional representation of an algebraic group G.
We say that W is a unimodular if ∧dW ∼= k, where k is the trivial representation.

A variety is an integral separated scheme of finite type over k. If X is a variety
with an action of a reductive group G then we consider a G-equivariant sheaf on
X as a sheaf on the stack X/G.
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4. Main result

The next theorem extends [VdB04a, Thm. 5.1] to certain Deligne-Mumford
stacks [DM69, LMB00, Ols16]. As a consequence we obtain NCCRs (see Corol-
lary 4.4). The proof of the theorem is given in §5.

Let us recall that if X is an affine variety then X//G = Spec k[X]G, Xss,χ//G =
Proj Γ∗(X)G where Γ∗(X) =

⊕
n Γ(X,χ−n ⊗OX). Note that Γ0(X) = k[X]G and

the inclusion Γ0(X) ↪→ Γ∗(X) defines a natural projective map θ : Xss,χ//G →
X//G.

Theorem 4.1. Let G be an abelian reductive group over k and let X be a smooth
affine G-variety containing a G-stable point. Let χ ∈ X(G) be a character such
that every point in Xss,χ has finite stabilizer (i.e. Xss,χ/G is a Deligne-Mumford
stack) and assume in addition that θ : Xss,χ//G → X//G has fibers of dimension
≤ 1. Then coh(Xss,χ/G) contains an object T with the following properties.

(1) T is a vector bundle on Xss,χ.
(2) ExtiXss,χ/G(T , T ) = 0 for i > 0.

(3) T is a generator1 for D(Xss,χ/G).

An object satisfying (1)(2)(3) is sometimes called a tilting bundle.

Remark 4.2. If G is an abelian reductive group acting linearly on an affine variety
then Xss,χ/G will be a Deligne-Mumford stack if χ ∈ X(G) is chosen generically.
Indeed we may choose a closed embedding of X in a G-representation and for a
representation the claim follows from [CLS11, Theorem 14.3.14] (see also [HLS16,
Proposition 2.1]).

Whenever we are in the setting of Theorem 4.1 we will use the following diagram

(1) Xss,χ �
� θ̃ //

��
π

""

X

��
γ

||

Xss,χ/G
� � //

πs

��

X/G

γs

��
Xss,χ//G

θ
// X//G

where θ̃ is an inclusion, θ the induced map on the quotients (coming from the
definition of the quotients), π, γ are quotient maps, and πs, γs are stack morphisms.
More precisely, the morphism γ : X → X//G is G-equivariant and hence it factors
through X/G which yields γs. A similar statement holds for πs.

Under some genericity conditions (in the sense of Definition 3.1) one may obtain
an NCCR from Theorem 4.1. We denote by R = k[X]G the coordinate ring of
X//G.

Corollary 4.3. Let X,G, χ, T be as in Theorem 4.1. Then D(Xss,χ/G) ∼= D(Λ)
where Λ = EndXss,χ/G(T ). One has gl dim Λ <∞. Moreover, if G acts generically

on X then Λ = EndR(T ) where T = Γ(Xss,χ/G, T ) = Γ(Xss,χ, T )G which is a
reflexive R-module.

1See Definition 5.1 for the definition of the generation.
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Proof. The derived equivalence claim follows from [Kel94, Theorem 4.3]. The de-
rived equivalence implies gl dim Λ ≤ ∞ since Xss,χ/G is smooth (see [HVdB07,
Theorem 7.6]). We now refer to [ŠVdB17a, §3,4] for some generalities concern-
ing reflexive sheaves we use below. Recall in particular that reflexive sheaves
F , G on a normal variety Z form a rigid monoidal category with tensor prod-
uct F ⊗ G := (F ⊗Z G)∨∨. Assume that codim(X − Xs, X) ≥ 2. Then also

codim(X − Xss,χ, X) ≥ 2 and hence θ̃∗ defines a monoidal equivalence between
the categories of reflexive sheaves on Xss,χ and X. Using again the condition
codim(X−Xs, X) ≥ 2, taking G-invariants defines a monoidal equivalence between
G-equivariant reflexive sheaves on X and reflexive sheaves on X//G by [ŠVdB17c,

Lemma 4.1.3]. Therefore T = Γ(Xss,χ, T )G = Γ(X, θ̃∗T )G = Γ(X//G, (γ∗θ̃∗T )G),
and in particular T is a reflexive R-module. Again using the mentioned monoidal
equivalences we obtain Λ = EndXss,χ/G(T ) = EndX//G((γ∗θ̃∗T )G) = EndR(T ). �

Corollary 4.4. Let X,G, χ be as in Theorem 4.1. Assume in addition that X =
W∨ where W is generic unimodular G-representation. Then R = Sym(W )G has
an NCCR.

Proof. Let A = EndXss,χ/G(T ) where T is as in Theorem 4.1. Then A is a sheaf
of algebras on Xss,χ/G. By Corollary 4.3 we have to show that Λ = Rfs,∗A
is Cohen-Macaulay. Using Lemma 4.5 below we have by the same argument as
[VdB04b, Lemma 3.2.9] noting that fs = θ ◦ πs is proper (since πs, θ are proper by
[Ols16, Exercise 11.E], [CLS11, Proposition 14.1.12], resp.) and referring to [Nir09,
Corollary 2.10] for the first equality

RHomX//G(Rfs,∗A, ωX//G) = RHomXss,χ/G(A, f !
sωX//G)

= RHomXss,χ/G(A, ωXss,χ/G)

= RHomXss,χ/G(A,OXss,χ/G)

= Rfs,∗A∨

= Rfs,∗A
= fs,∗A

This finishes the proof. �

We have used the following lemma.

Lemma 4.5. Let X,G, χ be as in Theorem 4.1. Assume in addition that X = W∨

where W is a generic unimodular G-representation. The map fs = θ ◦πs is crepant
and ωXss,χ/G ∼= OXss,χ/G.

Proof. The hypothesis imply that ωX//G is invertible and moreover ωX//G ∼= OX//G
by [Kno89, Satz 2] because of the unimodularity. A Deligne-Mumford stack is étale
locally a quotient stack for a finite group and in particular ωXss,χ/G is a reflexive
sheaf (it is in fact invertible but already reflexivity suffices our purposes). We
claim f∗s ωX//G = ωXss,χ/G and hence in particular ωXss,χ/G ∼= OXss,χ/G. This
follows from the fact both ωX//G and ωXss,χ/G are reflexive and fs is the identity
on Xs/G ∼= Xs//G, using that the complement of Xs in X is of codimension ≥ 2
by the genericity assumption. �

Remark 4.6. The assumption that W is generic simplifies the proof of the previous
lemma but it is in fact superfluous. This is a consequence of the theory of toric
DM stacks [BH06]. See e.g. [ŠVdB17c, Lemma A.2].
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5. Proof of Theorem 4.1

We refer to [ŠVdB16, Definition 3.3.1] for the definition of a good quotient.
Assume Y is such that a good quotient Y//G exists (in particular G is reductive).

For an open U ⊂ Y//G we write Ũ = U ×Y//G Y ⊂ Y .

Definition 5.1. Let Y be a stack. We say that a derived category D(Y) is gener-
ated by an object E ∈ D(Y) if E⊥ = 0. We say that D(Y) for Y = Y/G such that

a good quotient Y//G exists is locally generated by a perfect object E if D(Ũ/G) is

generated by E|Ũ for every affine open U ⊂ Y//G, i.e. (E|Ũ)⊥ = 0.

Remark 5.2. From the fact that G-equivariant complexes on Ũ can be extended
to complexes on Y (for example by pushforward), it follows that E being a local
generator is equivalent to the statement that RHomY/G(E,F) = 0 implies F = 0.

The following is a variant on [ŠVdB16, Lemma 3.5.4]. It can be deduced from
a more general result (see [OS03, Lemma 1.3, Theorem 5.7]). However it seems
useful to give a direct proof in our simple setting.

Lemma 5.3. Let G be a reductive group acting on an algebraic variety Y such
that a good quotient π : Y → Y//G exists and such that Y/G is a Deligne-Mumford
stack. Then D(Y/G) is locally generated by V ⊗OY for a single finite dimensional
representation V of G.

Proof. By Remark 5.2, we need to find V such that πs,∗RHomY/G(V ⊗OY ,F) = 0
implies F = 0, where πs : Y/G → Y//G is the morphism of stacks associated to
π. Since πs,∗ is exact, as π is a good quotient, and V ⊗OY is a vector bundle we
have H∗(πs,∗RHomY/G(V ⊗ OY ,F)) = πs,∗HomY/G(V ⊗ OY , H∗(F)). In other
words, it is sufficient to prove that πs,∗HomY/G(V ⊗OY ,F) = 0 implies F = 0 for
F ∈ Qch(Y/G).

If a certain V works then any representation containing V works as well. Hence
we claim that the existence of V is a local property for the étale topology on Y//G.

Let (Ui → Y//G)i be an étale covering of Y//G. Let Ũi = Y ×Y//G Ui. Since G

is reductive (and π is a good quotient) one can see that Ui = Ũi//G.2 We denote

πis : Ũi/G → Ui//G. Let us assume that for every i there exists Vi such that

πis,∗HomŨi/G
(Vi ⊗ OŨi ,F) = 0 implies F = 0 for F ∈ Qch(Ũi/G). As Y//G is

quasi-compact (and as an étale map is open) we only need a finite number of Ui
such that (Ui → Y//G)ni=1 is an étale covering. Let V = ⊕ni=1Vi. Assume that H =
πs,∗HomY/G(V ⊗ OY ,F) = 0. We need to prove that F = 0. Let us write Gi for

the pullback of G ∈ Qch(Y/G) to Ũi/G. The restriction Hi to Ũi/G is 0. Moreover,
flatness of étale morphisms implies that Hi = πis,∗HomŨi/G

(Vi ⊗ OŨi ,Fi) = 0.

Thus, Fi = 0 by our assumption, and hence F = 0.
We may therefore assume that Y is affine, and furthermore it suffices to show

that F is zero in a neighbourhood of any closed orbit by [ŠVdB16, Lemma 4.4.3].
Invoking the Luna slice theorem we may assume that π is of the form G ×H S →

2It is easy to see that a good quotient (in the sense of [ŠVdB17b, Definition 3.3.1]) is compatible

with arbitrary base extension; i.e. if Y → X is a good quotient and Z → X is arbitrary, then
Y ×X Z → Z is also a good quotient. To see this note that Y → X is built by gluing morphisms
SpecA→ SpecAG and this allows us to reduce to the affine case. Let Y = SpecA, X = SpecAG,

Z = SpecB. Then the dual statement B = (A ⊗AG B)G holds since the inclusion AG ↪→ A is

split by the Reynolds operator.
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(G ×H S)//G ∼= S//H where S is an étale slice at y ∈ Y with closed orbit and
H = Stab(y). Since Y/G is a Deligne-Mumford stack, H is finite. Let kH be the
regular H-representation. Then HomS/H(kH ⊗ OS ,F) = 0 implies F = 0. Since

S/H ∼= (G×H S)/G, kH ⊗kOS corresponds to a G-equivariant vector bundle E on
G×H S. It now suffices, using the reduction to Y = G×H S and Y/G ∼= S/H, to
write E as a quotient of V ⊗ OG×HS for some finite dimensional G-representation
V . �

Lemma 5.4. Let G be a reductive group acting on an algebraic variety Y which is
projective over an affine variety and letM be an ample G-equivariant line bundle on
Y . Let Y ss ⊂ Y be the semi-stable locus corresponding to the linearization given by
M and let π : Y ss → Y ss//G be the (good)3 quotient map. Then up to replacing M
by a strictly positive multiple we may assume that (M|Y ss)G is an ample line bundle
on Y ss//G generated by global sections such that moreover π∗((M|Y ss)G) ∼=M|Y ss .

Proof. Put

Γ∗(Y ) =
⊕
n≥0

Γ(Y,M⊗n).

Then Y ss//G = Proj Γ∗(Y )G. Since Γ∗(Y ) and Γ∗(Y )G are finitely generated, there
is an N such that the N ’th Veronese subalgebras of Γ∗(Y ) and Γ∗(Y )G are both
generated in degree one. We then replace M by M⊗N . �

Lemma 5.5. Let G be a reductive group acting on an algebraic variety Y which is
projective over an affine variety and let M be an ample G-equivariant line bundle
on Y . Let Y ss ⊂ Y be the semi-stable locus corresponding to the linearization given
by M and let π : Y ss → Y ss//G, πs : Y ss/G → Y ss//G be the associated quotient
maps. We assume that Y ss/G is a Deligne-Mumford stack.

In addition we assume that we have replaced M by a strictly positive multiple
such that L := (M | Y ss)G ∈ Pic(Y ss//G) has the properties exhibited in Lemma
5.4. Put Z = Spec Γ(Y,OY ). Let d be the maximum of the dimension of the fibers
of Y ss//G → Z//G. Let V be a finite dimensional representation of G such that
V ⊗ OY ss is a local generator for D(Y ss/G) as in Lemma 5.3. Put V =

⊕n
i=1 Vi

with Vi irreducible and fix mi ∈ Z for i = 1, . . . , n and l ≥ 1. Then

d⊕
j=0

n⊕
i=1

Vi ⊗ π∗s (L)⊗lj+mi =

d⊕
j=0

n⊕
i=1

Vi ⊗M⊗lj+mi
∣∣∣∣
Y ss

is a compact generator for D(Y ss/G).

Proof. ReplacingM byM⊗l we may assume l = 1. Put E =
⊕n

i=1 Vi⊗ π∗s (L)⊗mi .
Then since π∗s (L) is locally free on Y ss/G, E is a local generator for D(Y ss/G). We

must prove that
⊕d

j=0 E ⊗ π∗s (L)⊗j is a generator for D(Y ss/G).

Assume F ∈ D(Y ss/G) is such that RHomY ss/G(
⊕d

j=0 E ⊗ π∗s (L)⊗j ,F) = 0.

Then RHomY ss//G(
⊕d

j=0 L⊗j , πs,∗RHomY ss/G(E ,F)) = 0. By [VdB04b, Lemma

3.2.2] this implies πs,∗RHomY ss/G(E ,F) = 0. Since E is a local generator this
implies F = 0. �

Lemma 5.6. Let X,G, χ be as in Theorem 4.1. Then θ is birational and it is true
that Rθ∗OXss,χ//G = OX//G. Finally Riθ∗ = 0 for i > 1.

3See e.g. [ŠVdB16, §3.4].
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Proof. Both Xss,χ//G and X//G contain Xs//G as an nonempty hence dense sub-
scheme. So they are birational. Both Xss,χ//G and X//G are quotients by reductive
groups and hence they have rational singularities (see [Bou87, Corollaire]). This
proves the claim about Rθ∗OXss,χ//G. The last claim follows from the hypothesis
that the fibers of θ have dimension ≤ 1. �

Lemma 5.7. Let G,X, χ be as in Theorem 4.1. Then there exist characters
(χu)u=1,...,N such that Lu = χu ⊗ OXss,χ for i = 1, . . . , N generate D(Xss,χ/G)
and such that moreover we have

(2) ExtiXss,χ/G(Lu,Lu) = 0 for i > 0

(3) ExtiXss,χ/G(Lu,Lv) = 0 for i > 1

(4) Ext1
Xss,χ/G(Lu,Lv) = 0 for u < v

Proof. According to Lemma 5.5 (with Y = X, M = χ ⊗ OXss,χ) after replacing
χ by some strict positive multiple there exist µi ∈ X(G) (corresponding to the
character of Vi = µi⊗OXss,χ in Lemma 5.5) such that for any collection of mi ∈ Z
and for any ` ≥ 1 the object

1⊕
j=0

n⊕
i=1

µi ⊗ χlj+mi ⊗OXss,χ

is a compact generator of D(Xss,χ/G). We put χ1 = µ1 ⊗ χm1 , χ2 = µ1 ⊗ χl+m1 ,
χ3 = µ2⊗χm2 , . . . , χ2n = µn⊗χl+mn , N = 2n. Then (2), (3) follow directly from
Lemma 5.6 (because πs,∗ is exact since π is a good quotient (see Lemma 5.4) and
X//G is affine).

To make (4) true we choose l, (mi)i in such a way that

m1 � l +m1 � m2 � m2 + l� m3 � · · ·

Then in (4) we have Lu = µi⊗χa⊗OXss , Lv = µj ⊗χb⊗OXss,χ with a� b. Put
L = πs,∗(χ ⊗ OXss,χ). By our choice of χ, L is ample on Xss,χ//G and πs,∗L =
χ⊗OXss,χ by Lemma 5.4. Using the projection formula we have

RHomXss,χ/G(Lu,Lv) = RΓ(Xss,χ//G,L⊗b−a ⊗ πs,∗(µ2 ⊗ µ−1
1 ⊗OXss,χ))

= Γ(Xss,χ//G,L⊗b−a ⊗ πs,∗(µ2 ⊗ µ−1
1 ⊗OXss,χ))

where in the second line we use that L is ample and b− a� 0. �

Proof of Theorem 4.1. If E,F are objects in an abelian category A such that the
Yoneda extension Ext1

A(E,F ) is a finitely generated right HomA(E,E)-module with
generators c1, . . . , cn then we define the corresponding semi-universal extension of
E and F to be the middle term of the extension

0→ F → F̄ → E⊕n → 0

corresponding to (ci)i.
Let (Lu)u=1,...,N be as in Lemma 5.7. Using the conditions (2,3,4) as in Lemma

5.7 we may construct the object T by taking successive semi-universal extensions
among the (Lu)u. See [HP14, Lemma 3.1] for details. In loc. cit. universal ex-
tensions are considered but the argument also works with semi-universal exten-
sions. �
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6. Combinatorial interpretation

We let X,G, χ be as in Theorem 4.1, without a priori assuming that the fibers
of θ : Xss,χ//G→ X//G have dimension ≤ 1.

Proposition 6.1. Assume X = W∨ for a G-representation W . Then if

(5) dimXu − dimG ≤ 1

the fibers of θ have dimension ≤ 1.

Proof. We refer to the diagram (1). By semi-continuity it is sufficient to bound the

dimension of θ−1(0̄), where 0̄ = π(0). Now θ−1(0̄) = π(θ̃−1(γ−1(0̄))). Since the
fibers of π have constant dimension dimG we deduce

dim θ−1(0̄) = dim(γ−1(0̄) ∩Xss,χ)− dimG

= dim(Xu ∩Xss,χ)− dimG ≤ dimXu − dimG �.

Proof of Proposition 1.2. We claim that we can apply Corollary 4.4 to obtain an
NCCR. We need to verify that there exists χ ∈ X(G) such X = W∨, G χ satisfy
assumptions of Theorem 4.1. By Remark 4.2, we may choose χ ∈ X(G) such
that Xss,χ/G is a DM stack. Moreover, the fibers of θ have dimension ≤ 1 by
Proposition 6.1. �

Corollary 6.2. Assume X = W∨ for a G-representation W . If W is generic and
dimX//G = dimX − dimG ≤ 3 then the fibers of θ have dimension ≤ 1. In partic-
ular we recover the result by Broomhead that “affine Gorenstein toric singularities
of dimension 3 have an NCCR”.

Proof. Let β1, . . . , βd be the weights of W . The fact that W is generic implies that
for every 0 6= λ ∈ Y (G) we have that there are at least two i such that 〈λ, βi〉 > 0
(as otherwise X − Xs contains a codimension 1 variety given by the vanishing
of the coordinate xi corresponding to the only i for which 〈λ, βi〉 > 0). Hence
dimXu ≤ dimX − 2. Thus dimXu − dimG ≤ dimX − dimG− 2 ≤ 3− 2 = 1. In
other words (5) holds.

For the last statement we employ Proposition 1.2 after noting that every affine
toric variety X can be written in the form W∨//G for a generic G-representation W .
This is explained e.g. in [ŠVdB17a, §11.6.1]. If X is Gorenstein then of course so
is W∨//G and this is equivalent to W being unimodular by [Kno89]. �

Note that (5) may hold for higher dimensional X//G. Below we recall an exam-
ple from [ŠVdB17a] of a 4-dimensional variety X//G which does not have a toric
NCCR. For this variety (5) is satisfied, and it therefore has a (non-toric) NCCR by
Proposition 1.2 which we explicitly construct.

Example 6.3. Consider the example [ŠVdB17a, §10.1]. Then we have that G =
G2
m is a two dimensional torus and (after the identifying X(G) ∼= Z2) the weights

(βi)i of W are given by (3, 0), (1, 1), (0, 3), (−1, 0), (−3,−3), (0,−1) (see Figure 1).
We have Xu =

⋃
1≤i≤6{xi = xi+1 = xi+2 = 0} with cyclic indices, hence dimXu =

3 and moreover W is generic and unimodular so that by Proposition 1.2 R =
Sym(W )G = k[x2x4x6, x1x3x5, x1x

3
4, x3x

3
6, x

3
2x5] ∼= k[a, b, c, d, e]/(a3b− cde) has an

NCCR. However this NCCR is not toric which is the same as saying that it is not
given by a module of covariants (a module of the form M(U) = (U ⊗ SW )G for
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a finite dimensional G-representation U). In fact an NCCR given by a module of
covariants does not exist in this case as is shown in loc. cit.

2

4

6

5

1

3

χ

Figure 1. •i weights , • CM weights, ◦• L

We will now describe the construction of an explicit NCCR for this example.
We have not literally followed the proof of Proposition 1.2 which appeared com-
putationally too expensive. Instead we obtain an NCCR using a similar but more
adhoc procedure.

First we give some heuristic motivation for the construction. Assuming an ap-
propriately strengthened version of the Bondal-Orlov conjecture asserting that all
(stacky) commutative and non-commutative crepant resolutions are derived equiva-
lent [BO02, IW13, VdB04a] the number of indecomposable summands of the module
defining a non-commutative crepant resolution that we need is given by the rank of
K0 of a (stacky) crepant commutative resolution of SpecR (since K0 is invariant
under derived equivalence).

It is easy to verify that SpecR as a (singular) toric variety corresponds to the
fan given by the cone over a 3-dimensional polytope P shown in Figure 2. The
volume of this polytope equals 13/6, therefore the rank of K0 of the stacky crepant
resolution of SpecR, corresponding to a triangulation of P , is 13 (see Theorem
A.1).

Figure 2
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After these heuristics we describe the actual construction. Let L4 be given by
weights corresponding to encircled dots in Figure 6.3 and let L′ = L \ {(2, 1)}. We
write M(µ) = (µ ⊗ SW )G. The endomorphism ring EndR(⊕µ∈L′M(µ)) is Cohen-

Macaulay (see [ŠVdB17a, Example 10.1]). Since |L′| = 12 we expect to need a single
additional indecomposable R-module K such that Λ = EndR(⊕µ∈L′M(µ) ⊕K) is
an NCCR. By loc. cit. K cannot be a module of covariants.

We define K by the exact sequence

(6) 0→ K →M(0,−1)⊕M(1, 1)⊕M(−1, 1)
ψ−→M(2, 1)→ 0,

where ψ(r1, r2, r3) = r1d + r2a + r3ab/c. (Note that M(0,−1) ∼= (a, e), M(1, 1) ∼=
(a, d), M(−1, 1) ∼= (a2, ac, cd), M(2, 1) ∼= (a2, ad, de).) ConsideringM(µ) as subsets
of Sym(W ) we can write ψ(r1, r2, r3) = r1x2x5 + r2x4 + r3x3x5.

It is easy to check that Λ is a Cohen-Macaulay R-module (using e.g. Macaulay2),
suggesting that it might be an NCCR of R. Below we verify this fact by constructing
an appropriate tilting bundle on a particular stacky resolution Xss,χ/G of SpecR.

Let χ = (1,−2). We claim that E =
⊕

µ∈L µ ⊗ OXss,χ generates D(Xss,χ/G).

One can use a similar algorithm as in the proof of [ŠVdB17a, Theorem 1.5.1].
We refer to [ŠVdB17a, §11.1-3] for some unexplained notation. In loc. cit. the
complexes Cλ,µ with cohomology supported on Xλ,≥0 relate projectives Pν , ν ∈
X(T ), in D(X/G). Thus, if 〈χ, λ〉 < 0 then Cλ,µ is exact when restricted to
Xss,χ/G (recall that Xss,χ consists of x ∈ X such that if λ ∈ Y (T ) is such that
limt→0 λ(t)x exists then 〈λ, χ〉 ≥ 0 which is equivalent to saying that −χ is in the

cone generated by (βi)xi 6=0). Assume that L̃ ⊂ X(T ) is such that ν ⊗ OXss,χ ,

ν ∈ L̃, belong to the subcategory of D(Xss,χ/G) generated by E (e.g. L̃ = L).

Then we may enlarge L̃ by ν ∈ X(T ) if for some 〈λ, χ〉 < 0 all components except
for ν ⊗ OXss,χ of either of the complexes Cλ,ν , Cλ,ν−

∑
〈λ,βi〉>0 βi

are of the form

µ⊗OXss,χ/G for µ ∈ L̃. Note that if L̃ contains X(T )∩Σ, then we may enlarge L̃
to X(T ). (See also the proof of [HLS16, Theorem 3.2].)

In our example we may easily verify by hand (or by computer, cf. [ŠVdB17a,
Remark 11.3.2]) that we can indeed enlarge L to Σ ∩ X(T ) (where in this case
Σ ∩ X(T ) is given by weights corresponding to black dots in the above picture),
and therefore E generates D(Xss,χ/G).

Since the endomorphism ring EndR(⊕µ∈L′M(µ)) is Cohen-Macaulay, we have

Ext1
Xss,χ/G(E ′, E ′) = 0 for E ′ =

⊕
µ∈L′ µ⊗OXss,χ (see [VdB93, Corollary 3.3.2]).

Denote M = {(0,−1), (1, 1), (−1, 1)} ⊂ L′. Let ψ̃ :
⊕

µ∈M µ⊗OXss,χ → µ(2,1)⊗
OXss,χ be the lift of ψ to Xss,χ/G, and let K be the lift of K (see the proof of
Corollary 4.3). We claim that (6) induces an exact sequence

(7) 0→ K →
⊕
µ∈M

µ⊗OXss,χ
ψ̃−→ µ(2,1) ⊗OXss,χ → 0.

Since ψ̃ is a restriction of the map Ψ : ⊕µ∈Mµ⊗OX → µ(2,1)⊗OX , induced from ψ,
we need to check that the cokernel N of this map has support in the complement
of Xss,χ. The support of the cokernel is defined by the ideal (x2x5, x4, x3x5).
Let x = (x1, . . . , x6) belong to the support. Then either x2 = x3 = x4 = 0 or

4This notation is in accordance with notation in [ŠVdB17c, §11] which we will refer to in the
sequel. It should not be confused with the notation for line bundles used in the previous sections.
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x4 = x5 = 0. Since −χ does not lie in the cone generated by neither β1, β5, β6 nor
β1, β2, β3, β6, x does not belong to Xss,χ.

Moreover, any map from
⊕

µ∈L′ µ⊗OX to µ(2,1)⊗OX factors through Ψ, since

its image is zero in N which easily follows from the fact that L′ does not intersect
the semigroups generated by β1, β5, β6 and β1, β2, β3, β6, resp., shifted by µ(2,1).
Therefore, employing again the proof of Corollary 4.3, the map HomXss,χ/G(µi ⊗
OXss,χ ,

⊕
µ∈M µ ⊗ OXss,χ) → HomXss,χ/G(µi ⊗ OXss,χ , µ(2,1) ⊗ OXss,χ) induced

from (7) is surjective. Thus, Ext1
Xss,χ/G(µi ⊗OXss,χ ,K) = 0.

Applying HomXss,χ/G(−, µi ⊗OXss,χ) and HomXss,χ/G(−,K) to (7) further im-

plies that Ext1
Xss,χ/G(K, µi ⊗OXss,χ) = 0 and Ext1

Xss,χ/G(K,K) = 0.

Since E generates D(Xss,χ/G), the same holds for F =
⊕

µ∈L′ µ⊗OXss,χ
⊕
K by

(7), and we moreover have Ext1
Xss,χ/G(F ,F) = 0. Thus, EndR(

⊕
µ∈L′ M(µ)

⊕
K)

is an NCCR of R by Corollary 4.4.

Remark 6.4. The discussion on the “universality” of Ψ in fact implies that ψ in (6)
is the minimal add(⊕µ∈L′M(µ))-approximation of M(2, 1) in the sense that every
map M(µ)→M(2, 1) for µ ∈ L′ factors through ψ.

Remark 6.5. Let S = k[a, b, c, d, e]. The module K introduced in the above example
may also be described by a matrix factorization (d0, d1) of f = a3b− cde:

d0 =


ab 0 ce 0
0 ab −ac −cd
−d 0 −a2 0
−a −e 0 a2

 , d1 =


a2 0 ce 0
0 a2 −ac cd
−d 0 −ab 0
a e 0 ab

 ,

where d0, d1 : S4 → S4 and K = coker(d0).

Appendix A. Grothendieck group of a toric DM stack

Here we recall some results about the Grothendieck group of a toric DM stack.
We mainly follow [BH06].

Let Σ be a fan, refining a cone over an n−1-dimensional convex lattice polyhedron
P × {1}. Let Σ be a stacky fan (Σ, (vi)

l
i=1), where vi ∈ Zn−1 × {1} define 1-

dimensional cones in Σ. We denote by PΣ (resp. PΣ) the corresponding toric
DM stack (resp. toric variety). Note that PΣ (resp. PΣ) equals Y ss,χ/G (resp.

Y ss,χ//G) for an action of G ⊂ k∗l on Y = kn via characters determined by the
images of the generators ei ∈ Zl (ei denotes the i-th generator) in Zl/ρ(M) ∼= X(G)
(ρ : m 7→ (〈m, vi〉)i) and a generic χ ∈ X(G) (see [BH06, Section 2], [CLS11,
Theorem 15.1.10]).

Let µi = ēi ∈ X(G). We denote by Ri the class of the invertible sheaf µi⊗OY ss,χ
in K0(PΣ).

Theorem A.1. [BH06] Let PΣ be a toric DM stack. Let B be the quotient of
the Laurent polynomial ring Z[x1, x

−1
1 , . . . , xl, x

−1
l ] by the ideal generated by the

relations

•
∏l
i=1 x

〈m,vi〉
i = 1 for all m ∈M ,

•
∏
i∈I(1 − xi) = 0 for any set I ⊆ {1, . . . , l} such that vi, i ∈ I, are not

contained in any cone of Σ.

Then the map φ : B → K0(PΣ) which sends xi to Ri is an isomorphism. If PΣ is
a triangulation of a cone over a polyhedron P , then rkK0(PΣ) = (n− 1)!Vol(P ).
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Proof. First part follows by [BH06, Theorem 4.10], while the last statement follows
from [BH06, Remark 3.11, Theorem 5.3]. Indeed, we only need to show that (1 −
t)l
∑
n∈N∩σ t

deg(n) evaluated at 1 equals (n− 1)! Vol(P ).
Note that N ∩ σ =

⋃
d∈N dP ×{d}, and deg(n) = d for n ∈ dP ×{d}. Moreover,

the number of lattice points in dP × {d} equals EhrP (d), where Ehr denotes the
Ehrhart polynomial (see e.g. [CLS11, Theorem 9.4.2]). Since the degree of Ehr is
n− 1 (as P is n− 1-dimensional) and its leading coefficient equals (n− 1)! Vol(P )
(see e.g. [CLS11, Exercise 9.4.7]) we obtain that the above sum evaluated at 1
equals (n− 1)! Vol(P ). �
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