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Abstract: To enable older drivers to maintain mobility without endangering public safety, it is
necessary to develop more effective means of assessing their fitness-to-drive as alternatives to an
on-road driving test. In this study, a functional ability test, simulated driving test, and on-road
driving test were carried out for 136 older drivers. Influencing factors related to fitness-to-drive were
selected based on the correlation between the outcome measure of each test and the pass/fail outcome
of the on-road driving test. Four potential alternatives combining different tests were considered and
three modeling techniques were compared when constructing the fitness-to-drive assessment model
for the elderly. As a result, 92 participants completed all of the tests, of which 61 passed the on-road
driving test and the remaining 31 failed. A total of seven influencing factors from all types of tests
were selected. The best model was trained by the technique of gradient boosted machine using all of
the seven factors, generating the highest accuracy of 92.8%, with sensitivity of 0.94 and specificity of
0.90. The proposed fitness-to-drive assessment method is considered an effective alternative to the
on-road driving test, and the results offer a valuable reference for those unfit-to-drive older drivers to
either adjust their driving behavior or cease driving.

Keywords: road traffic safety; older drivers; fitness-to-drive; simulated driving; gradient boosted
machine (GBM)

1. Introduction

The independence, mobility, and freedom provided by driving are highly valued by the elderly.
In recent decades, the number of older drivers has increased due to the aging of the population.
The involvement of older drivers in crashes has also increased. Statistics show that older drivers
are over represented in fatal and serious injury crash involvements [1,2]. Declining driving ability,
combined with increased frailty associated with age, are the major causes of the risk, which can
have a severe negative impact on road traffic safety [3]. Therefore, it is of great significance to assess
the fitness-to-drive of older drivers and to recognize those who are unfit-to-drive. The on-road
driving test is generally regarded as the “gold standard” [4,5], but usually has considerable costs in
terms of material, manpower, and time [6], and has potential danger for older drivers with impaired
driving ability. As a result, identifying alternatives to the on-road driving test to assess older drivers’
fitness-to-drive is an increasing concern.

In reality, the risk of driving at an older age is not about age itself, but about the physical changes
due to aging [7]. The degree of functional deterioration determines whether the elderly can continue
driving safely to a large extent [8]. The functional ability usually considered for older drivers includes
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three main aspects: visual function, motor function, and cognitive function. Visual impairment is
the most common sensory problem affecting the driving ability of the elderly. Generally, the elderly
suffer from decreased visual acuity and contrast sensitivity, and are more vulnerable to glare [9].
In terms of motor function, older drivers’ reaction and movement times are generally longer than
that of younger drivers, which results in reduced driving operation ability [10]. Regarding cognitive
function, drivers’ attention, memory, and executive function generally decline with age, which makes
it difficult for the elderly to deal with complex driving environments and emergencies safely [3].
Consequently, functional ability is particularly critical to safe driving, and should be an essential part
of a fitness-to-drive assessment [11].

A series of fitness-to-drive assessment methods based exclusively on a functional ability test
have been established over in recent decades [12–19]. Although different test batteries are applied,
few of these achieve the desired accuracy, which indicates the difficulty in discriminating safe and
unsafe drivers using a functional ability test alone [11]. The emergence and maturity of driving
simulation technology provides a new choice to improve the accuracy of older drivers’ fitness-to-drive
assessments. Simulated driving experiments allow researchers to study complex driving behaviors
in a controlled environment, which might be impractical, unsafe, or unethical under actual road
conditions [20]. By comparing the performance of naturalistic driving and simulated driving of
the elderly, several studies have supported the effectiveness of applying a driving simulator to
measure driving behavior [6,21]. These experiments can not only collect longitudinal and lateral
driving performance parameters of older drivers during normal driving, but they can also record
their performance in specific events that are known to be difficult to execute, such as yielding
at an intersection, turning left, and merging into traffic [4,11,19]. Previous studies established a
fitness-to-drive assessment method by combining a neuropsychological test, clinical interviews,
and simulated driving, with accuracy of 93% for patients with dementia [4] and 94.4% for patients with
mild cognitive impairment (MCI) [22]. The value of well-designed simulated driving experiments to
study the driving safety of the elderly is considerable.

Although the abovementioned studies have combined a variety of assessments with simulated
driving tests and obtained good results, concerns remain. First, the subjects of these studies were specific
populations with either Alzheimer’s disease or dementia, so the assessment of their performance in
the simulator was relatively simple. Moreover, most studies applied traditional statistical models,
such as a regression model, to distinguish between safe and unsafe drivers, but few took model
generalization into account. In addition, to find an effective alternative to the on-road driving test
for assessing fitness-to-drive among older drivers, the balance between the achievable assessment
performance and the potential costs, including labor, raw material, and time should be taken into
consideration. As a result, the fitness-to-drive assessment of older drivers with more general
characteristics is investigated in this study. The study considered two simulated driving assessment
methods, i.e., observation-based and performance-based and investigated three advanced data mining
and machine learning techniques, i.e., random forest (RF), support vector machine (SVM), and gradient
boosted machine (GBM). Finally, four potential alternatives to the on-road driving test, based on either
the functional ability test alone or different driving performances in simulators, or their combination,
were compared.

The remainder of this paper is organized as follows. The experiments carried out and the data
collected for the study are described in Section 2. Next, methodology related to variable selection and
model development are specified in Section 3. The results from the models are presented in Section 4
and further discussed in Section 5. The paper ends with conclusions and future research in Section 6.

2. Data Description

Participants were recruited through the geriatrics day hospital of the Jessa Hospital (Belgium),
in addition to information brochures issued by local elderly organizations. Active drivers over 70 years
old who presented or were suspected to have cognitive decline were included, and were informed
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of the procedure of the study. The participants had their functional ability test in Jessa Hospital on
day one, a driving simulator ride with a trained researcher from the Transportation Research Institute
(IMOB) of Hasselt University on day two, and an on-road driving test similar to the Belgian official
licensing procedure on day three.

In total, 136 older drivers (102 males and 34 females) agreed to participate in the study and
provided written informed consent. This study protocol was approved by the ethical review committees
of Hasselt University and the Jessa Hospital.

2.1. Functional Ability Test

Due to the relationship between visual, motor, and cognitive functions and driving ability,
the following commonly used and well-known tests in daily geriatric practice were selected.
The following is a brief introduction to each test and its relationship with driving performance.

2.1.1. Visual Function

Visual acuity and contrast sensitivity were used to assess visual function. Visual acuity was
assessed by the Snellen Chart, scoring from 0 to 1.2. Peripheral vision is reduced with increasing
age [23], which can result in difficulty in detecting relevant traffic stimuli in the driver’s periphery.

Contrast sensitivity was measured by the Pelli–Robson chart [24], whose score ranges from 0 to
2.25. It has been found that normal aging can lead to structural changes in the eye, resulting in reduced
visual acuity and contrast sensitivity [9]. This results in increased glare sensitivity, hence increased
risk, for the elderly during night driving.

2.1.2. Motor Function

Two tests were selected in this respect. One was the timed get-up-and-go, which helps in analyzing
locomotion and mobility [25]. Participants were asked to get up from a chair, walk for 3 m and return,
then sit down again. The completion time was recorded as the result measure. A score larger or equal
to 14 s shows a high risk of falling and instability. Impaired performance is regarded as predictive of
slower emergency maneuvers because of prolonged braking time.

The second test is called the functional reach test, which evaluates the physical balance [26].
Participants were required to stand up straight with a single arm extended forward as far as possible
without any support. The difference between arm length and the farthest reach attained by the
participant is recorded. The rate of falling due to loss of physical balance is found to be closely
associated with accident involvement in older drivers [27].

2.1.3. Cognitive Function

Multiple tests were carried out to assess older drivers’ cognitive function.
Mini-Mental State Examination (MMSE): To measure global cognitive functioning in elderly

drivers, MMSE is widely used. A lower MMSE score shows impaired cognitive performance. Its value
ranges from 0 to 30.

Clock drawing test: This is an alternative screening tool to the MMSE. In this test the participant
is given a pre-drawn circle on paper and is asked to draw a clock showing the time “11:10”. Its score
ranges from 0 to 7, with lower scores indicating worse performance.

Amsterdamse Dementie Screening (ADS)—Eight Word subtest: This is an auditory verbal learning
test assessing memory. First, eight words are delivered to participants orally, and they are asked to
recall as many as possible; repetition of this procedure five times results in a number of correct recalls
ranging from 0 to 40. After 15 min, participants are asked to recall as many as possible of the 8 words
again (0–8). Finally, 8 new words are added to the list, and participants are asked to judge whether
each of the 16 words have been tested before (0–16). The results are recorded respectively.

The Rey Complex Figure Test: In this test, participants are asked to first copy the image according
to an example, then draw again according to impression after the example is removed, and finally
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draw again by memory 15 min later. The three drawings are scored separately, with a value ranging
from 0 to 36. It has been found that this test is predictive of driving errors among elderly drivers [28].

WAIS III—Digit Span: This test is used to examine working memory capability. Participants are
asked to repeat a progressing number of digits which are read by an experimenter in a sequence.
The test consists of two parts. In part 1 the participants recall in the same order as in the presentation,
and in part 2 the order is reversed. The maximum number of digits recalled is recorded. It has been
found that the older drivers’ working memory performance is associated with their on-road driving
abilities [29].

Trail Making Test (TMT): This test consists of part A and B, both of which are widely used in
the field of fitness-to-drive. Trail A consists of 25 numbered dots and participants have to search
and tie successive numbers on a screen or sheet of paper. In part B, the participants have to do the
same alternatively with numbers and letters in alphabetical order (1–A–2–B). TMT A predominantly
measures visual search and working memory, whereas TMT B measures attention shifting in addition
to increased demands on working memory. Research has found that TMT, particularly the TMT B
score minus the TMT A score, is predictive of crashes [30].

Useful Field of View (UFOV): This consists of three subsets that assess processing speed, divided attention,
and selective attention. The response time is recorded in milliseconds, with the value ranging from
16.7 to 500 ms. The longer the response time, the worse the performance in the test. It has been found
that UFOV is a strong predictor of both retrospective and prospective crashes in the general population
of older adults [31].

Stroke Drivers Screening Assessment—Knowledge of Road Signs: In this test, participants are
presented with 20 pictures of traffic signs, and are asked to match the signs to the presented traffic
situation. Two points are given for a correct match within 3 min and 1 point is given for a correct
matching beyond 3 min.

Proteus Maze test: This test examines the ability to use planning, patience, and mental alertness
in a novel and concrete performance task. Participants are required to start in the middle of a paper
maze and trail through it until they reach the exit without crossing lines or lifting their pencil from the
paper. A total of 10 mazes are presented with increasing complexity, and the index number of the most
complicated maze completed is recorded. Performance in this test has been found to be significantly
related to driving ability ratings [32].

2.2. Simulated Driving Test

The STISIM Drive v3 Vehicle Driving Simulator (Systems Technology Inc. Hawthorne, California,
USA) with 180◦ surround projection and field of view was used to carry out the simulator driving
experiments. After two practice drives for participants to get used to the simulated driving environment,
the test was conducted in 3 different scenarios (i.e., urban, rural, and motorway) at 2 levels of complexity
(i.e., high and low traffic flow). The data acquisition frequency was 60 Hz. Participants experiencing
simulator sickness were excluded from the test. This test was performed in two different ways:

2.2.1. Observation-Based Assessment

The participants’ driving ability was rated by observation. A test ride to investigate practical
fitness-to-drive—Belgium version (TRIP) [33] with 11 subscales focusing on various aspects of driving
behavior was completed by the experimenter. Each was scored on a four-point scale, with a total score
range of 0–44. The assessment does not need any information collected from the driving simulator,
which means that a simplified driving simulator without data collection function is sufficient for
this test.

2.2.2. Performance-Based Assessment

The data collected from the simulator were used to measure the driving ability of older adults.
Average speed and standard deviation of lateral position (SDLP) were used as performance parameters
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in the normal driving section. In addition, the simulated driving scenes also included some specific
events that are difficult for older drivers, and participants’ performance on these scenes were collected.
The detailed description of these events are as follows.

Merging into traffic: The participants were supposed to start from an on-ramp of the motorway
and to merge into the passing traffic. The distance traveled (in meters) when they completed the
merging and lane changing operation was recorded.

Maximum deceleration-stop sign: The maximum deceleration (in m/s2) at the point 100 m before
a stop sign-controlled intersection that the participants approached in a rural area was recorded.
This was done to measure abruptness of breaking and anticipation.

Initial brake point-pedestrian crosswalk: The participants drove along a rural road and encountered
a pedestrian at the crosswalk ahead. It was preset that the pedestrian started to cross the road when
the time to collision (TTC) was 3 s. The distance (m) from the crosswalk when the participant started
to brake was recorded.

Turning left-gap acceptance: A traffic flow on the intersecting road was presented with the
headway increasing by seconds when the participants were asked to turn left. To avoid simulator
sickness, participants did not have to actually make a left turn, but simply indicated the gap they
decided to cross. The length of the chosen gap (s) was recorded.

Detection time to road hazard: The participant encountered an unexpectedly crossing pedestrian
on a rural road, and had to brake hard to avoid a collision. The detection time was recorded as the
time from the pedestrian started to cross to the participant’s first release of the throttle (10% released).

Reaction time to road hazards: Similar to the detection time to hazard, reaction time was recorded
as the time in seconds from hazard to the first input of the brake pedal. The road hazard in a high traffic
flow scene was signaled with a precursor (a bus stop), whereas in low traffic flow scene it was not.

2.3. On-Road Driving Test

The on-road driving test was conducted according to Belgium’s official license issuing procedure,
with the presence of a specialized fitness-to-drive evaluator from Center for Determination of Fitness to
Drive and Car Adaptations (CARA). Based on observation, the assessor scored the driving performance
of each participant by TRIP assessment and classified them as "fit" or “unfit” to drive.

3. Methodology

In this study, the fitness-to-drive assessment models were constructed with the variables selected
from the results of the functional ability test and the simulated driving test as inputs and the outcome
of the on-road driving test as the output. In this respect, different assessment combinations were
considered, and various modeling techniques were applied. The generalization ability of each model
was also evaluated by “hold-out”.

3.1. Variable Selection and Assessment Combinations

To perform an effective fitness-to-drive assessment of older drivers, the most valuable predictive
set with appropriate number of variables should be extracted. The selection is based on statistical
significance and effect size of the correlation with the pass/fail outcome of the on-road driving test.
In terms of the Pearson correlation coefficient, the Cohen’s criterion for small, medium, and large effect
sizes are 0.1, 0.3, and 0.5, respectively [34]. In this study, variables with an effect size ≥0.3 (more than
medium correlation) and significant at the 0.01 level were selected.

In the modeling section, depending on the category of the assessment each test belongs to, 4 types
of assessment combinations were considered in this study:

Alternative I—assessing fitness-to-drive by the functional ability test only;
Alternative II—assessing fitness-to-drive by the functional ability test and the simulated driving

test (observation based);
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Alternative III—assessing fitness-to-drive by the functional ability test and the simulated driving
test (performance based); and

Alternative IV—assessing fitness-to-drive by all tests.
The main reason for considering these four alternatives for fitness-to-drive assessment of older

drivers is that the cost (including labor, raw material, and time) of these assessment methods
increases gradually. Alternative I is used to evaluate the effect of the functional ability test alone
on the fitness-to-drive assessment, which requires only several clinical screening tools, and thus
costs the least. Then, the observation-based simulator driving test is included in the test battery,
and requires a simplified driving simulator and an experimenter to rate the performance by observation.
Alternative II is therefore able to evaluate the contribution of observation-based simulator driving to
the fitness-to-drive assessment. Next, the performance-based simulator driving test is combined with
the functional assessment, in which a more sophisticated device is applied to collect the performance
parameters from simulated driving. By comparing the results from Alternative III with those from
Alternative II, a more effective method with respect to the simulated driving assessment can be
determined. Finally, Alternative IV considers the results from all tests, which also implies the
highest cost.

3.2. Modeling Techniques

The fitness-to-drive assessment modeling process is essentially a binary classification problem.
Thus, in contrast to the traditional statistical analysis applied in previous studies, advanced data
mining and machine learning techniques, such as random forest (RF), support vector machine (SVM),
and gradient boosted machine (GBM), are investigated in this study. First, we briefly introduce the
principles and characteristics of these three techniques.

The random forest is a supervised learning algorithm which builds multiple decision trees and
merges them together for a more accurate prediction. It combines the idea of the random subspace
method and bagging [35,36]. The decision trees in the random forest use information gain to split a node,
which is calculated based on the Gini index or entropy. This method can generally avoid the problem
of overfitting, and is able to handle a large number of input variables. Moreover, feature importance
can be evaluated by mean decreased accuracy and mean decreased Gini in “out of bag” (OOB) data.

The support vector machine has been increasingly used in traffic safety research, such as in studies
of traffic incident detection, driver classification, and crash severity [37,38]. The principle of the SVM
is to find a hyperplane to separate two types of points, to maximize the margin between points closest
to both sides of the hyperplane; points on the margin are defined as support vectors [39]. In linear
inseparable cases, the input vectors can be mapped to a high-dimensional feature space, in which
the samples can be linearly separated. To avoid the complex calculation of the inner product in
high-dimensional feature space, the concept of the kernel function is introduced, including polynomial
kernel, Gaussian kernel (radial basis function kernel), and sigmoid kernel. Overfitting can be prevented
by applying soft a margin.

The gradient boosted machine is an extremely powerful machine learning algorithm that removes
the weak effect of all of the trees and results in a powerful “committee” of trees by minimizing the error,
with high flexibility for parameter tuning [40]. The idea of gradient boosting is that in a suitable cost
function, boosting can be interpreted as an optimization function. Gradient boosting minimizes the
mean squared error (MSE) loss function and the mean absolute error. This can be considered a gradient
descent algorithm, which is a generic optimization algorithm capable of finding optimal solutions.
A GBM can also determine the importance of variables.
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3.3. Model Evaluation

To evaluate the generalization ability of the models, the dataset was divided into training and
testing sets with the ratio of 0.7:0.3. Moreover, the quantity imbalance between fit and unfit older drivers
(61:31) was considered by applying the Synthetic Minority Oversampling Technique (SMOTE) in R
studio (R Core Team (2020). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria). In contrast to the random oversampling algorithm, the basic
idea of SMOTE is to analyze the minority samples and synthesize new ones to add to the dataset
according to the minority samples.

In this study, the original training data was processed by the SMOTE algorithm before the model
was constructed to improve the model accuracy. All models (3 modeling techniques with 4 types of
assessment combinations, i.e., 12 models in total) were built in R studio. The parameters of each model
were tuned respectively by cross validation.

Overall accuracy, sensitivity, specificity, positive predicted value, negative predicted value, and the
area under the receiver operating characteristic (ROC) curve (AUC, if applicable) were used for
evaluating the model performance on the original test set. The calculation of the above indicators is
shown in the following equations:

Sentivity =
a

a + c
(1)

Specificity =
d

b + d
(2)

Positive predicted value =
a

a + b
(3)

Negative predicted value =
d

c + d
(4)

where “a” represents the number of participants who are assessed as fit-to-drive by both the model
and the on-road driving test, “b” represents the number of participants who are assessed as fit-to-drive
by the model but actually unfit, “c” represents the number of participants who are assessed as
unfit-to-drive by the model but actually fit, and “d” represents the number of participants who are
assessed as unfit-to-drive by both the model and the on-road driving test.

4. Application and Results

In this study, a complete dataset of 92 participants with 34 relevant influencing factors were used
for analysis. The remaining 44 participants were excluded because of dropping out, simulator sickness,
unfinished on-road driving test, or missing data. The average age of the sample is 78.22 years old,
with 55.45 years of driving experience on average. A share of 59.8% of the participants drive at a
daily frequency, and 98.9% drive more than once a week. Moreover, 67.4% of the sample drive more
than 5000 km per year, and 33.7% drive more than 10,000 km per year. According to the results of
the on-road driving test, 61 older drivers are considered as fit-to-drive, whereas the remaining 31,
who failed the test, are now regarded as unfit-to-drive.

4.1. Descriptive Statistics and Variable Selection

The descriptive statistics of the functional ability test and their correlation coefficients with the
on-road driving test are presented in Table 1. Similarly, results from the simulated driving tests are
shown in Table 2.
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Table 1. Descriptive statistics and correlation coefficients of the functional test measures.

Mean SD Sig. r

Visual acuity 0.71 0.18 0.001 * 0.30 1

Contrast sensitivity 1.78 0.2 0.016 0.22
Timed get up and go 9.5 3.2 0.009 * −0.24

Functional reach 32 6.5 0.000 * 0.32 1

MMSE 26.9 2.3 0.107 0.15
Clock drawing test 4.9 1.3 0.151 0.13

ADS eight-word test—direct recall 29.0 6.8 0.008 * 0.24
ADS eight-word test—delayed 4.8 2.2 0.438 0.07

ADS eight-word test—recognition 15 1.6 0.011 0.23
RCFT—Copy Trail 27.8 4 0.095 0.15

RCFT—Immediate Recall 15 5.9 0.004 * 0.26
RCFT—delayed recall 14.4 5.7 0.042 0.22

WAIS digit span—forward 5 0.8 0.012 0.23
WAIS digit span—backward 3.8 1 0.107 0.15

Trail making test—A 59.6 29.7 0.013 −0.23
Trail making test—B 140.7 52.8 0.006 * −0.28
UFOV—processing 58.3 83.4 0.008 * −0.24

UFOV—divided attention 190.6 163.9 0.001 * −0.30 1

UFOV—selective attention 247.2 146.3 0.000 * −0.32 1

Knowledge of road signs 14 5.7 0.000 * 0.36 1

Proteus Maze 9.5 2.3 0.113 0.15

* p < 0.01, 1 effect size ≥ 0.3.

Table 2. Descriptive statistics and correlation coefficients of the simulated driving measures.

Mean SD Sig. r

Average driving speed—urban 50.2 6.3 0.350 −0.10
Average driving speed—rural 63.9 9.3 0.762 0.03

Standard deviation of lateral position—urban 0.24 0.06 0.194 −0.14
Standard deviation of lateral position—rural 0.22 0.07 0.274 −0.12

Merging into traffic—distance 917.9 126.3 0.008 * −0.31 1

Maximum deceleration—at stop sign −6.5 1.9 0.408 0.10
Initial brake point—at zebra crossing 45.7 14.5 0.643 0.05

Turning left—gap acceptance 7 1.6 0.096 0.20
Road hazard detection time—without precursor 0.92 0.68 0.020 −0.26

Road hazard detection time—with precursor 1.0 1.2 0.379 0.10
Road hazard reaction time—without precursor 0.21 3.6 0.006 * −0.30 1

Road hazard reaction time—with precursor 0.10 9.4 0.822 0.02
TRIP score (observation based) 35.5 6.0 0.002 * 0.326 1

* p < 0.01, 1 effect size ≥ 0.3.

According to the variable selection criteria, 8 of the 34 influencing factors were selected. However,
“UFOV—divided attention” and “UFOV—selective attention” were highly correlated (r = 0.901,
p = 0.000). To avoid multicollinearity, the factor with the lowest effect size was excluded. Consequently,
seven influencing factors in total were selected to assess the fitness-to-drive for the elderly.

Amongst others, visual acuity, functional reach, UFOV—selective attention, and knowledge of road
signs belong to the functional ability test. Merging into traffic and road hazard reaction time—without
precursor are parameters from the performance-based simulator driving test. Additionally, the TRIP
score is the measure of observation-based simulator driving assessment. All of these are closely
correlated with the on-road driving test outcome and are statistically significant.

4.2. Model Evaluation

The input variables of the models were chosen from the seven influencing factors selected above.
Considering different types of assessment combinations, 4 alternatives were developed, as shown
in Table 3. The evaluation results based on different modeling techniques are presented in the
following sections.
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Table 3. Different variables used in the designated alternatives.

Alternative I—Fitness-To-Drive Assessment Using Functional Abilities Test Alone

Functional reach
Knowledge of road signs

UFOV—selective attention
Visual acuity

Alternative II—Fitness-to-drive assessment using functional abilities test and simulated driving test
(observation-based)

Functional reach
Knowledge of road signs

UFOV—selective attention
Visual acuity

TRIP score

Alternative III—Fitness-to-drive assessment using functional abilities test and simulated driving test
(performance-based)

Functional reach
Knowledge of road signs

UFOV—selective attention
Visual acuity

Merging into traffic
Road hazard reaction time—without precursor

Alternative IV—Fitness-to-drive assessment by combining all tests

Functional reach
Knowledge of road signs

UFOV—selective attention
Visual acuity

Merging into traffic
Road hazard reaction time—without precursor

TRIP score

4.2.1. Assessing Fitness-to-Drive by Functional Abilities Test Alone

• RF-I

The prediction accuracy of this model was 71.5%, with sensitivity of 0.81, specificity of 0.58,
positive predicted value of 0.72, and negative predicted value of 0.70. The AUC is 0.71. The number of
trees (ntree) and the number of variables randomly selected at each split (mtry) in RF were tuned as 500
and 2, respectively, for best prediction, and these parameters were held consistent for all RF models.

• SVM-I

The model correctly predicted 81% of the older drivers who are fit-to-drive and 58% who are
unfit-to-drive, with the positive and negative predicted values of 0.72 and 0.70, respectively, resulting in
an overall accuracy of 71.5%. The ROC curve was not applicable for SVM because there is no threshold
for classification that can be adjusted.

• GBM-I

The GBM model correctly classified 76% of the participants who are fit-to-drive and 71% unfit,
with an overall accuracy of 75%. The area under the curve was 0.84 (sensitivity = 0.76, specificity = 0.71,
positive predicted value = 0.88, negative predicted value = 0.50).

In summary, the results show that the three models above based on the functional ability test
alone cannot achieve both high sensitivity and specificity. In particular, the recognition ability of
unfit-to-drive older drivers is not adequate. Among others, the GBM model has the highest overall
accuracy, specificity, and AUC value, while its sensitivity score is slightly lower than those of the other
two models, which means that it is relatively more likely to misclassify fit-to-drive as unfit.



Int. J. Environ. Res. Public Health 2020, 17, 8886 10 of 18

4.2.2. Assessing Fitness-to-Drive by Functional Abilities Test and Simulated Driving Test
(Observation-Based)

• RF-II

The outcome measure of observation-based simulator driving test, i.e., the TRIP score, was added
to the assessment. The RF model correctly predicted 82% of the fit-to-drive participants as fit and 63% of
unfit-to-drive participants as unfit (sensitivity = 0.82, specificity = 0.63, positive predicted value = 0.77,
negative predicted value = 0.70), resulting in a predictive accuracy of 75% and an AUC value of 0.72.
Compared with RF-I, all evaluation indicators of RF-II were slightly improved, with the exception of
the negative predictive value which remained unchanged.

• SVM-II

The results of the prediction show that 83% of the participants who were predicted as fit-to-drive
actually passed the on-road driving test, and that 60% of the participants predicted as unfit-to-drive
actually failed in the on-road driving test (sensitivity = 0.79, specificity = 0.66, positive predicted
value = 0.83, negative predicted value = 0.60). The overall prediction accuracy of the model was 75%,
which was improved relative to SVM-I.

• GBM-II

This model correctly classified 80% of the fit-to-drive older adults as fit and 75% of those
unfit-to-drive as unfit (sensitivity = 0.80, specificity = 0.75, positive predicted value = 0.89,
negative predicted value = 0.60), with an overall accuracy of 78.6% and an AUC value of 0.85.
Similar to the case in RF-II, the performance of GBM-II was better than that of GBM-I in all aspects.

From the results above, including observation-based simulator driving test in the assessment
was proven to be beneficial for predicting fitness-to-drive of the elderly. Among the three techniques
discussed above, RF had the highest sensitivity and the lowest specificity, SVM had the lowest specificity,
and GBM still had the highest overall accuracy, specificity, and AUC value.

4.2.3. Assessing Fitness-to-Drive by Functional Abilities Test and Simulated Driving Test
(Performance-Based)

• RF-III

The observation-based simulator driving test was replaced by performance parameters collected
from simulated driving, i.e., "Merging into traffic” and “Road hazard reaction time—without precursor”.
For this set of variables, the RF model correctly classified 83% of the fit-to-drive participants as fit and
70% of the unfit-to-drive participants as unfit (sensitivity = 0.83, specificity = 0.70, positive predicted
value = 0.83, negative predicted value = 0.79), resulting in an overall accuracy of 78.6%, and the AUC
value of this model was found to be 0.76. The performance of RF-III was better than that of RF-II
considering all evaluation indicators.

• SVM-III

The replacement also increased the predictive performance of SVM to a certain extent. This model
correctly classified 77% of the participants who pass the on-road driving test as fit and 83% of
participants who fail as unfit (sensitivity = 0.77, specificity = 0.83, positive predicted value = 0.94,
negative predicted value = 0.50). The overall accuracy was 78.6%.

• GBM-III

The overall accuracy of this model was 82.2%, with sensitivity of 0.84, specificity of 0.78,
positive predicted value of 0.88, negative predicted value of 0.70, and AUC value of 0.86. After replacing
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observation-based indicators by performance-based indicators for assessment, the performance of
GBM-III was slightly improved comparing to GBM-II.

The results above demonstrate that the performance indicators from simulated driving test were
more effective in assessing fitness-to-drive for the elderly than the observation-based indicators. In this
assessment method, SVM had the highest specificity, which means that its misclassification probability
of unfit-to-drive was the lowest. Regarding for the other model evaluation indicators, GBM achieved
the highest scores.

4.2.4. Assessing Fitness-to-Drive by All Tests

• RF-IV

After combining all types of tests, the overall accuracy of the RF model was improved from
78.6% (RF-III) to 82.2%. The model correctly classified 88% of the fit-to-drive participants and 72% of the
unfit-to-drive participants, respectively (positive predicted value = 0.83, negative predicted value = 0.80),
reaching an AUC value of 0.85.

• SVM-IV

This model performed even better than RF-IV, with an overall accuracy of 85.7% (sensitivity = 0.85,
specificity = 0.87, positive predicted value = 0.74, negative predicted value = 0.90), and could suitably
identify older adults who were unfit to drive.

• GBM-IV

This model correctly classified 94% of the fit-to-drive participants and 90% of the unfit-to-drive
participants (sensitivity = 0.94, specificity = 0.90, positive predicted value = 0.94, negative predicted
value = 0.90), reaching the highest accuracy of 92.8% and the highest AUC value of 0.97 among all of
the 12 models, in addition to the highest sensitivity and specificity.

Figure 1 presents the ROC curves of all the models.
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Table 4 provides a summary of the performances of the 12 models discussed above. In cross-sectional
comparison, the GBM model was found to be better than RF and SVM in overall accuracy regardless of
the type of assessment or combination of assessments used for prediction, whereas the indicators
of sensitivity and specificity fluctuated among these three methods. Nevertheless, irrespective of
the method applied, the prediction accuracy of the models reached the highest when combining all
tests, i.e., Alternative IV. To summarize, GBM-IV was the best model among all of the 12 models,
with sensitivity and specificity over 0.9, and AUC value close to 1.

Table 4. Summary of model performances.

Accuracy (%) Sensitivity Specificity AUC

RF—I 71.5 0.81 0.58 0.71
RF—II 75.0 0.82 0.63 0.72
RF—III 78.6 0.83 0.70 0.76
RF—IV 82.2 0.88 0.72 0.85

SVM—I 71.5 0.81 0.58 -
SVM—II 75.0 0.79 0.66 -
SVM—III 78.6 0.77 0.83 -
SVM—IV 85.7 0.85 0.87 -

GBM—I 75.0 0.76 0.71 0.84
GBM—II 78.6 0.80 0.75 0.85
GBM—III 82.2 0.84 0.78 0.86
GBM—IV 92.8 0.94 0.90 0.97

-AUC is not applicable for SVM.
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To determine which variable (s) significantly influence the performance of the model, all of the
variables were ranked by the feature importance algorithm in GBM. As shown in Figure 2, this model
takes “UFOV—selective attention” from the functional ability test as the most important influencing
factor, followed by the observational “TRIP score”. Regarding driving simulator performance measures,
merging distance on a highway is a more important factor.
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5. Discussion

5.1. Principal Findings

In this study, assessing fitness-to-drive for the elderly based on different types of tests was explored
to identify the most effective alternative to on-road driving test. In total, seven variables from either
the functional ability test or the simulated driving test were selected given their significant correlation
with the on-road driving test outcome. Three machine learning techniques and four test combinations
were considered as potential alternatives. As a result, the GBM model using all variables was found
to be the best option, with overall accuracy of 92.8%. The results of feature importance suggest that
“UFOV—selective attention” is the most important influencing factor, followed by the observational
“TRIP-score” and “Merging into traffic” in simulated driving.

5.2. Influencing Factors for Fitness-to-Drive

Driving is a complex task that can be affected by many factors, including the visual, motor, and
cognitive conditions of a person, and requires competent functional ability for safe control. A good
driver needs to be able to visually interpret traffic and road conditions, have sufficient knowledge
of road signs, and be physically stable and active to control the vehicle. Literature on age-related
driving behavior studies is vast, but age alone is not a good indicator of driving performance and skills,
because many physical changes can occur during aging, resulting in impaired functional ability and
driving ability. In this study, only a weak association between age and on-road driving test outcome
was found (p = 0.02, r= −0.21). Therefore, age was not included in the assessment. This result is
consistent with the conclusion drawn in many previous studies [7,8].

Among factors selected from the functional ability test, visual acuity is crucial to driving safety.
A lower visual acuity is representative of impaired vision and hence poor driving, which can also
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influence older drivers’ ability to notice and comprehend the meanings of road signs, thereby putting
them at greater risk comparing to younger drivers [41]. Road signs and signals convey important
information for driving. Ignoring and misunderstanding traffic signs have a negative impact on safety
and efficiency of traffic. A higher score on knowledge of road signs also indicates a better executive
function. The attention required for driving is also valued, which is measured by the UFOV test.
It has been found that the “UFOV—selective attention” is the best predictor of driving performance
in complex situations among the subtests of UFOV [31] and, in the current study, “UFOV—selective
attention” was not only selected but also identified as the most important factor among all factors in
the GBM model. In addition, the results indicate that the physical balance measured by the functional
reach test is also important for safe driving of the elderly, which was found to be strongly associated
with poor driving skills and accident involvement in older drivers [27].

The factors selected from driving simulator tests indicate that road hazards’ perception can
distinguish older adults as safe or unsafe drivers. Older drivers have been found to be slower at
responding to hazards and traffic conflicts due to cognitive and visual impairments [42]. In addition,
unfit-to-drive older drivers suffer from reduced information processing speed and perception ability,
thus taking larger distance and more time to merge into traffic flow. The selection of the variable
“merging into traffic” is supported by the findings of previous studies that older drivers usually have
trouble quickly moving into traffic streams [43]. In addition to the performance variables mentioned
above, the observation-based TRIP score is also considered important for fitness-to-drive assessment.
The TRIP score results from the simulated driving test, and the high correlation between this score and
the pass/fail outcome of the on-road driving test also justifies the effectiveness of simulation.

5.3. Fitness-to-Drive Assessment Modeling

Choosing a fitness-to-drive assessment model or a classifier is critical, especially when dealing
with imbalanced classes. In most cases, classifiers can only perform well at predicting the major
class, but result in more misclassifications of the minor classes. To address this problem, the data
were balanced by the SMOTE algorithm. In contrast to previous studies that did not conduct model
validation, in the current study, 70% of the data was used for training and the remaining 30% for
evaluating the generalization error of the model. Compared with RF and SVM, the GBM model
proved to be the best option. This is attributed to the greedy nature of GBM, which minimizes the
information loss function of all features and constructs successive training sets based on incorrectly
classified examples.

The performance of the models initially constructed by the functional ability test alone is not
satisfactory, which supports the previous viewpoint that it is difficult to identify the fitness-to-drive
among the elderly merely by functional assessment [11]. When considering different combination
of the tests, the percentage of correctly classified drivers increases significantly when performance
variables collected from the simulator driving test are included. Adding the observation-based TRIP
score from the simulator driving test can also improve the performance of the model, but the effect is
not as great as performance-based assessment, despite its strong correlation with the on-road driving
test outcome. Finally, a combination of all seven variables from all of the tests increased the predictive
accuracy from 78.5% to 82.2%, 75% to 85.7%, and 82.2% to 92.8% in RF, SVM and GBM, respectively.

In summary, we conclude based on this study that the best alternative for fitness-to-drive
assessment among older drivers is the that which combines all variables from both the functional ability
test and the simulated driving test, with the model trained via the gradient boosted machine, because it
results in the highest predictive accuracy of 92.8% and the largest AUC of 0.97. Moreover, such a
model is recognized by its capability to well predict both fit and unfit older drivers, thus decreasing
the chance of misclassification of the minor class. However, it should be noted that to perform such an
assessment in practice, the highest cost regarding labor, raw material, and time is also required.
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5.4. Limitations

We believe that the results obtained from this study are valuable from both theoretical and practical
perspectives. However, some limitations in terms of experiment design and model development are
present and in need of further investigation.

First, the scores from the on-road driving test are used as a criterion to distinguish between fit-
and unfit-to-drive older adults, and for different models’ performance evaluation and comparison.
Although the on-road driving test is generally regarded as the “gold standard” for fitness-to-drive
assessment, in reality uncertainty exists about the extent to which the licensing procedure reflects
the true level of driving ability among older adults. In addition, in this study, fit- or unfit-to-drive
were the only two outcomes from the on-road driving test. However, individuals may lie between the
absolute categories of “fit” and “unfit”, who could be treated as safe drivers under certain conditions.
This situation was not considered in the current research.

Regarding the simulated driving experiments, a gap clearly exists between simulation and
naturalistic driving, regardless of the improvements made to increase the authenticity of the former [44].
For instance, in the “maximum deceleration” and “initial break point” events, the simulation is
not closely indicative of real-world braking due to the lack of suitable feedback cues. Additionally,
maintaining a minimum highway speed is not included in the performance-based simulator assessment,
which might be an important variable to be considered. For instance, drivers who drive faster would
brake harder when they encounter a crossing pedestrian. Furthermore, even if the reaction time
of individuals is the same, a higher speed will lead to a longer distance traveled before braking,
thus affecting the performance in the “initial brake point” event.

Moreover, based on a literature review [19,34], variables with effect size greater than 0.3 were
selected for further analysis. Such a rule is feasible in practice but still lacks well-grounded theoretical
support. Other criteria might be considered in the future and a sensitivity analysis should be conducted.

In addition, 10% of unfit-to-drive older adults were not discovered by the GBM-IV model,
and 6% of capable older drivers were suggested to cease driving by this model; that is, there is still
room for model improvement. For instance, other potential factors should be explored, such as the
measurement of risk-taking tendencies and aggressive driving behaviors [45]. To achieve this goal,
appropriate indicators need to be first developed and refined.

6. Conclusions and Future Research

Conflict between the mobility needs of older drivers and their impaired driving ability is a
long-standing issue. Older drivers may drive beyond their fitness limits at the expense of public safety.
Conversely, safe drivers may be forced to cease driving. Therefore, there is an urgent need to establish
a fitness-to-drive assessment method to distinguish unsafe from safe older drivers.

By combining a functional ability test, and observation-based and performance-based simulator
driving tests, in different ways, four potential alternatives to the on-road driving test were investigated
and further compared in this study. The best approach combined all seven variables from both
the functional ability test and the simulated driving tests, with the model trained using a gradient
boosted machine, which correctly classified 94% of safe older drivers and 90% of unsafe older drivers,
with overall accuracy of 92.8%. Moreover, visual acuity, functional reach test, UFOV—selective
attention, knowledge of road signs, merging into traffic, reaction time to road hazard—without
precursor, and TRIP score were selected as the most relevant variables for the fitness-to-drive
assessment, in which UFOV—selective attention was considered to be the most important influencing
factor, followed by the observational TRIP score and merging into traffic in simulated driving.

It should be noted that although the motivation of this study is to develop a fitness-to-drive
assessment method as an alternative to the on-road driving test, “replacing” it completely by applying
either the functional ability test, the simulated driving test, or both together remains a distant
goal. The on-road driving test remains the “gold standard” for fitness-to-drive assessment currently.
However, the results from this study are encouraging and promising, and offer a valuable reference
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for some older drivers to either adjust their driving behavior, apply auxiliary devices, or cease
driving. Although not perfect, it provides an opportunity to rethink the traditional method used for
fitness-to-drive assessment.

In the future, other potential influencing factors, such as risk-taking tendencies, aggressive driving
behaviors, and maintaining a minimum highway speed, should be investigated in simulator driving
tests. Moreover, to guarantee the convenience and life quality of the elderly, in addition to the safety
of the public, further research can focus on driving ability training approaches and the design of an
intelligent auxiliary driving system for unfit-to-drive older drivers.
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