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Abstract 

Reliable estimates of outdoor air pollution concentrations are needed to support global 

actions to improve public health. We developed a new approach to estimating annual average 

outdoor nitrogen dioxide (NO2) concentrations using approximately 20,000 ground-level 

measurements in Flanders, Belgium combined with aerial images and deep neural networks. Our 

final model explained 79% of the spatial variability in NO2 (root mean square error of 10-fold 

cross-validation=3.58 µg/m
3
) using only images as model inputs. This novel approach offers an 

alternative means of estimating large-scale spatial variations in ambient air quality and may be 

particularly useful for regions of the world without detailed emissions data or land use 

information typically used to estimate outdoor air pollution concentrations.    

 

Highlights: 

- Citizen science can be used to collected air pollution data over broad spatial scales 

- We combined NO2 data collected through citizen science with aerial image and deep 

learning models to predict annual average NO2 concentrations in Flanders, Belgium 

- The final models explained the majority of spatial variations in NO2 using only images as 

inputs 

- This method may be useful in regions lacking information on traditional model inputs 

including land use data or emissions information. 

 

Keywords: Nitrogen dioxide; Citizen Science; Deep learning; Convolutional neural networks 
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1. Introduction 

Outdoor air pollution causes millions of premature deaths around the world each year 

with estimated economic impacts measured in billions of dollars annually (Brauer et al. 2016; 

GBD 2017 Risk Factors Collaborators, 2017). In order to address this global health concern, 

regulatory policies must be based on accurate and reliable population exposure data that 

suitably captures fine-scale spatial variations in pollutant concentrations over broad geographic 

areas. In particular, ambient nitrogen dioxide (NO2) forms a key proxy for complex air 

pollution mixtures resulting from traffic emissions and other combustion sources, and elevated 

NO2 levels have been associated with both acute and chronic illnesses causing pre-mature 

mortality (Faustini et al., 2014).  The current approach to modelling large-scale spatial variations 

in outdoor NO2 relies on the application of statistical or chemical transport models that are fed 

with data streams from reference monitoring networks, complemented with satellite 

measurements, traffic and power plant emissions data, and land use information such as 

proximity to roadways, population density, green space, and active fire locations (Larkin et al., 

2017). However, considerable uncertainty remains with respect to ambient NO2 concentrations 

in many portions of the world owing to sparse coverage of regulatory monitoring networks 

and/or missing data for parameters needed to estimate outdoor concentrations (Larkin et al., 

2017). Given the high cost of developing and maintaining conventional reference monitoring 

stations, many parts of the world will continue to have major gaps in air pollution data coverage 

until alternative approaches are developed that can provide accurate predictions in the absence 

of detailed emissions data and/or land use information (Martin et al., 2019). This is particularly 

true for developing countries where resources are limited (Rybarczyk and Zalakeviciute, 2018; 
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Zalakeviciute et al., 2020). In this study, we developed a new approach to estimating ground-

level NO2 concentrations using a deep learning model trained using aerial images and ground-

level NO2 data collected from a large-scale citizen science project in Flanders, Belgium (Irwin, 

2018). The resulting model provides reliable predictions of annual average outdoor 

NO2 concentrations over a broad spatial scale using only digital images as input.  

2. Methods 

A database of approximately 20,000 annual average NO2 measurements and 

corresponding latitude-longitude coordinates spread across Flanders, Belgium was compiled 

from the “CurieuzeNeuzen” (“Curious Noses”) project. In brief, this citizen science project mass-

mobilized families, schools, companies, and social organizations to measure NO2 concentrations 

across Flanders, Belgium (Figure 1) (Irwin, 2018). Data were collected over a 4-week period in 

May 2018 using low-cost passive samplers (in duplicate) and were subsequently scaled to annual 

average concentrations. Annual average outdoor NO2 concentrations for sites included in our 

analyses ranged from 10.9-75.3 µg/m
3
 (mean: 24.1 µg/m

3
; median: 21.9 µg/m

3
) across the study 

area.  

Aerial images centered on each latitude-longitude pair for ground-level NO2 data were 

downloaded from Google Static Maps using the ggmap package in the R statistical computing 

environment (Kahle and Wickham, 2013; R Core Team, 2019). Three aerial images were 

downloaded for each coordinate differing by integer zoom levels of 16 (covering approximately 

970 x 970m), 18 (240 x 240m) and 19 (120 x 120m). All images were saved at a resolution of 256 

x 256 x 3 to maintain a reasonable training time. The subsequent database of image-NO2 pairs 

was split into 11 equal sized folds for model training and evaluation. 
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Fig 1. Monitoring locations for annual average NO2 concentrations across Flanders, Belgium 

(2018). Major urban areas are indicated by dashed outlines.  

 

Convolutional neural networks (CNNs) with two input images of different zoom levels (i.e. 

different spatial scales, one image to capture local information and one image to capture 

regional information) were trained to predict annual average NO2 concentrations (Figure 2).  

 

Fig 2. Summary of model architecture used to predict NO2 concentrations from images 
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Each input image was fed into an independent Xception convolutional base (Chollett, 2017; 

Kaiming et al., 2016) for feature extraction, followed by a 2D global average pooling operation. 

The outputs of the two CNNs were then concatenated and mapped to a linear activation output 

layer to predict outdoor NO2 concentrations. Data augmentation was used to improve the 

generalizability of the model by randomly flipping the aerial images during model training. 

Models were trained with the Nadam optimizer (using the default values for b1=0.9 and 

b2=0.999 as recommended by the original paper) (Dozat, 2016) using root mean square error 

(RMSE) loss, and model performance was evaluated based on minimizing the RMSE of the 

predictions. These design choices were found to have the best performance in previous 

approaches to modelling outdoor air pollution using CNNs (Hong et al., 2019a; 2019b).   

Four key hyperparameters were identified that affected final model performance 

including initial model weights, image zoom levels (i.e. spatial scale), batch size, and learning 

rate. The initial model weight parameter describes the convolutional weights assigned at the 

start of model training. We considered two options for initial model weights: weights from a 

network pre-trained for image classification on ImageNet (Krizhevsky et al., 2012) and weights 

from the IMAGE-PM2.5 model which was trained to estimate global variations in outdoor PM2.5 

concentrations using satellite images as input (Hong et al., 2019a). The values of each 

hyperparameter are shown in Figure 3A. All hyperparameter combinations were used to train 

models for up to 500 epochs using a training dataset composed of the 1st through 10th folds, 

and a validation dataset composed of the 11th fold. These models were trained using an early-

stopping callback to prematurely stop model training if the prediction accuracy did not improve 

for 50 epochs to prevent overfitting. The set of hyperparameters that achieved the lowest 
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validation RMSE was retained and the number of epochs required to reach the minimum 

validation RMSE was noted. The lowest RMSE of 3.30 µg/m
3
 was achieved after training for 155 

epochs using a combination of zoom level 16 and 19 images (spatial scales of approximately 

1km
2
 and 0.015km

2
, respectively), with IMAGE-PM2.5 weights along with a batch size of 8 and 

learning rate of 0.0001 (Figure 3A).  

 

Figure 3. (A) Results of the hyperparameter optimization. Each set of connected dots represents 

the difference in performance on the validation set holding every other parameter constant. (B) 

Measured versus predicted annual average NO2 concentrations (µg/m
3
) using the best 

performing set of hyperparameters determined in A. 
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A 10-fold cross-validation procedure was used to evaluate model performance using the 

optimal set of hyperparameters listed above; the 11th fold was excluded from the cross-

validation procedure as hyperparameters were optimized on this portion of the data. Each of the 

10 models were trained for 155 epochs rather than using the early-stopping callback, as the 

model would be blind to the test set in practice and would not know when to optimally stop 

training to avoid overfitting. The RMSE of 10-fold cross-validation is reported to estimate the 

performance of the model.  Gradient-weighted class activation maps (GradCAMs) were 

subsequently used to highlight portions of images that played an important role in making 

model predictions (Selvaraju et al., 2017). All analyses were conducted using Keras (version 

2.2.4) and TensorFlow (1.13.1) in Python. Using parallel training across four GPUs model training 

took on average 5-minutes per epoch.   

3. Results and Discussion 

Overall, the model provided reliable estimates of annual average outdoor NO2 

concentrations across the study area (slope=1.040, 95% CI: 1.033, 1.049) and explained the 

majority of spatial variations in annual average outdoor NO2 (R
2
=0.79, RMSE=3.58 µg/m

3
) (Figure 

3B). The spatial resolution of these predictions is approximately 0.015 km
2
, as determined by the 

approximate area covered by the zoom level 19 images used to make predictions. For 

comparison, when applied using the same dataset, land use regression (R
2
=0.77) and dispersion 

modelling (R
2
=0.58) approaches explained a slightly lower proportion of spatial variations in 

annual average outdoor NO2 across the study area (Meysman et al., 2020). Similarly, a recent 

global land use regression model for ambient NO2 reported an R
2
 value of 0.57 (RMSE=4.5 
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µg/m
3
) for Europe (Larkin et al., 2017) which is substantially lower than the values reported for 

our model above. 

Gradient-weighted class activation maps (GradCAMs) were used to highlight portions of 

images that played an important role in making model predictions (Selvaraju et al., 2017). Figure 

4 shows GradCAMs for images captured at monitoring locations in the lower (Figure 4A) and 

upper (Figure 4B) quintiles of annual average outdoor NO2 concentrations in Flanders, 

Belgium. In these figures, the original image is shown in the column on the left and the GradCAM 

is displayed in the column on the right. Each row corresponds to a different quintile of annual 

average ambient NO2 concentration. In Figure 4A, our model correctly classified the image as 

being in the lowest quintile of NO2 concentration and the associated GradCAMs reveal a number 

of interesting points with respect to what our model may be learning to make predictions. For 

example, in the top row of Figure 4A we see that the green areas around the roadway are 

highlighted but not the roadway itself. In addition, if we look at the bottom row of Figure 4A, we 

see that nothing is highlighted; this indicates that the model did not consider anything about this 

image to be particularly relevant to the highest quintile of exposure. Similarly, Figure 4B shows 

an image that was correctly classified as being in the highest category of outdoor NO2 

concentration. In this example, the streets and block configurations are highlighted in the 

bottom row suggesting that these features were important in classifying the image as being in 

the upper quintile of exposure.  Alternatively, nothing is highlighted in the top row of Figure 

4B suggesting that this image had few features relevant to classification in the lowest 

quintile. These visualizations are reassuring in that they are consistent with our understanding of 
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sources of outdoor NO2 as we would expect concentrations to be lower in green areas and 

higher in areas with more streets/traffic.   

 

Figure 4. Aerial images and gradient-weighted class activation maps (GradCAMs) for sites in the 

lower (A) and upper (B) quintiles of annual average outdoor NO2 concentrations in Flanders, 

Belgium. 
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Overall, our findings suggest that convolutional neural networks trained using ground 

level measurements and digital imagery can provide reliable estimates of annual average 

outdoor NO2 concentrations without relying on typical model inputs including emissions data, 

chemical transport models, and/or geographic information systems (Larkin et al., 2017; de 

Hoogh et al., 2016; Beleen et al., 2013).  In general, the deep learning approach can 

be conceptualized as a modified version of traditional land use regression models whereby 

important combinations of land use features (captured in images) are learned automatically by 

the model to make predictions without having to rely on pre-specified geographic information 

system data or other data sources such as emissions data which are often missing in many 

locations around the world. Indeed, the combined use of aerial images and deep learning 

models has several advantages as aerial images are increasingly available on a global scale and 

thus model predictions are not limited to locations with access to suitable model inputs. While 

additional geolocated NO2 data are needed to expand model coverage, particularly for locations 

with different physical appearances and distributions of outdoor NO2, a transfer learning 

approach (i.e. starting model training using weights from our existing model) can be used to 

greatly reduce the number of samples required to facilitate this process (Pan and Yang, 2010). 

Moreover, as shown here, the process of ground-level data collection can be scaled efficiently in 

the context of citizen science projects.  Importantly, the deep learning approach to model 

development is amenable to continuous improvement as new information can be added to 

update the model and expand generalizability across space and time as more data 

become available.  Moreover, this approach could also facilitate the development of hybrid 
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models whereby deep learning model predictions based on images are used as additional 

parameters in traditional land use regression modelling framework.  

It is difficult to overstate the potential impact that this could have on the future of air 

pollution exposure science: given the right infrastructure and data-sharing mechanisms, every 

new study containing geolocated air pollution data could contribute to improving a single global 

model. The efficiencies gained through this approach could be enormous and the resulting 

models could have a transformative impact on our current understanding of spatial/temporal 

variations in outdoor air pollution concentrations in regions currently lacking basic data 

on environmental pollutants.  While we cannot speculate with respect to the effectiveness of 

this approach for all air pollutants, we previously demonstrated that images can be used to 

predict spatial variations in long-term average outdoor PM2.5 (Hong et al. 2019a) and ultrafine 

particle concentrations (Hong et al. 2019b) and more recently short-term variations in UFPs 

number concentrations, UFP size, and noise (Hong et al. 2020). Therefore, it seems likely that 

images may provide useful information in predicting exposures for environmental pollutants 

with source information (or surrogate measures of sources like land use characteristics) that can 

be captured in images.  Of course, deep learning models also have limitations, most notably 

related to interpretation as it is not always clear how predictions are made given the large 

number of parameters in these models (Weichenthal et al., 2019). Convolutional neural 

networks are somewhat advantageous in this regard, and the GradCAMs employed in this study 

suggest that our NO2 model is learning from features that are consistent with our understanding 

of spatial variations in sources of NO2 including green space and traffic/street characteristics. 
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This provides reassurance that the model is capturing meaningful information related to the 

presence/absences of known sources of NO2.   

4. Conclusions 

In summary, we developed a new deep learning model to predict spatial variations in 

annual average outdoor NO2 concentrations across Flanders, Belgium. This model relies only on 

digital images as input and predictive performance meets or exceeds current state-of-the-art 

approaches to modelling spatial variations in outdoor NO2. A transfer learning approach can be 

used to efficiently expand model coverage in the future, continuously updating model weights as 

new data are collected. This procedure offers a novel means of expanding coverage to regions of 

the world missing detailed emissions data and/or land use information typically used to estimate 

outdoor air pollution concentrations. Predictions from these models may be used on their own 

or integrated into more complex ensemble models to leverage the overall strengths of different 

modelling approaches. 
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