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Motor Evoked Potentials (MEPs) are used to monitor disability progression in multiple

sclerosis (MS). Their morphology plays an important role in this process. Currently,

however, there is no clear definition of what constitutes a normal or abnormal morphology.

To address this, five experts independently labeled the morphology (normal or abnormal)

of the same set of 1,000 MEPs. The intra- and inter-rater agreement between the

experts indicates they agree on the concept of morphology, but differ in their choice

of threshold between normal and abnormal morphology. We subsequently performed an

automated extraction of 5,943 time series features from the MEPs to identify a valid

proxy for morphology, based on the provided labels. To do this, we compared the

cross-validation performances of one-dimensional logistic regression models fitted to

each of the features individually. We find that the approximate entropy (ApEn) feature

can accurately reproduce the majority-vote labels. The performance of this feature

is evaluated on an independent test set by comparing to the majority vote of the

neurologists, obtaining an AUC score of 0.92. Themodel slightly outperforms the average

neurologist at reproducing the neurologists consensus-vote labels. We can conclude

that MEP morphology can be consistently defined by pooling the interpretations from

multiple neurologists and that ApEn is a valid continuous score for this. Having an

objective and reproducible MEP morphological abnormality score will allow researchers

to include this feature in their models, without manual annotation becoming a bottleneck.

This is crucial for large-scale, multi-center datasets. An exploratory analysis on a large

single-center dataset shows that ApEn is potentially clinically useful. Introducing an

automated, objective, and reproducible definition of morphology could help overcome

some of the barriers that are currently obstructing broad adoption of evoked potentials

in daily care and patient follow-up, such as standardization of measurements between

different centers, and formulating guidelines for clinical use.
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1. INTRODUCTION

Multiple sclerosis (MS) is characterized by disruption of electrical
signal conduction over axons in the central nervous system by a
variety of mechanisms, including the loss of the myelin sheath
(Emerson, 1998). Evoked potential (EP) disturbances have been
widely utilized in people with MS (PwMS) to demonstrate the
involvement of sensory, visual, auditory, and motor pathways.
The advent of magnetic resonance imaging (MRI) techniques
has greatly reduced the clinical utilization of EPs, which is
not fully justifiable, as the information provided by EPs is
quite different from that provided by MRI. The abnormalities
of evoked responses reflect the global damage of the evoked
nervous pathway and are significantly correlated with the clinical
symptoms, while the vast majority of MRI lesions are not (Comi
et al., 1999). As such EPs are a functional counterpart to the
anatomical findings on MRI.

The diagnostic value of EPs is based on the ability to reveal
clinically silent lesions and to objectivate the central nervous
system damage in PwMS, who complain of vague and indefinite
disturbances which frequently occur in the early phases of the
disease (Comi et al., 1999). Besides their diagnostic value, EPs
may serve as useful instruments for assessing the effectiveness
of therapeutic agents which may alter the course of the MS. The
availability of new treatments able to modify the natural course
of MS has generated interest in paraclinical measures like EPs
to monitor disease evolution. Furthermore, since EPs measure
conduction within the central nervous system, they provide a
means of directly assessing symptomatic treatments designed
to improve central conduction (Emerson, 1998). Finally, several
recent findings demonstrate the utility of EP for predicting the
course of the disease in patients (Fraser et al., 2006; Kallmann
et al., 2006; Jung et al., 2008; Invernizzi et al., 2011; Margaritella
et al., 2012; Schlaeger et al., 2014; Giffroy et al., 2016; London
et al., 2017). For these purposes, EPs show better potential than
conventional MRI (Fuhr and Kappos, 2001).

EPs are time series, resulting in high-dimensional data. For
example, the motor EP (MEP) studied in this work span 100
ms and are sampled at 19.2 kHz, so we end up with 1,920
measurement points (i.e., dimensions). To significantly lower
their dimensionality and to capture their salient information,
evoked potential time series (EPTS) are often condensed into
a single EP score (Schlaeger et al., 2016). Recent work has
also investigated in reducing the dimensionality of an EP by
using principal component regression (Nguyen et al., 2019). The
EP score is a composite score, for which three variables are
commonly extracted from the EPTS: latency, amplitude, and
presence of morphological abnormality (Schlaeger et al., 2016).

Abbreviations: AH, abductor hallucis; AP, average precision; APB, abductor

pollicis brevis; AUC/AUROC, area under the receiver operating characteristics

curve; EDSS, expanded disability status scale; EP, evoked potential; EPTS, evoked

potential time series; FPR, false positive rate; HCTSA, highly comparative time-

series analysis; MEP, motor evoked potential; MEPTS, motor evoked potential time

series; MRI, magnetic resonance imaging; MS, multiple sclerosis; PPMS, primary

progressive MS; RMSC, revalidation and MS center; RRMS, relapsing-remitting

MS; SD, standard deviation; SPMS, secondary progressive MS; TPR, true positive

rate.

The first two variables are clearly defined, and can therefore be
extracted automatically. Morphology, in contrast, does not have a
simple operational definition, and depends on the interpretation
of the neurologist.

The lack of an objective and reproducible definition leads
to several issues, both in the clinic and for research purposes.
When scoring the morphological abnormality of an EP, how
dependent is the result on the neurologist? While EPs contain
valuable information about the disease course, they are currently
suboptimally utilized in clinics as their interpretation varies
between clinics and requires expert knowledge. A clear definition
for the morphology negates the need for an EP expert and
could facilitate a wider adoption of this marker. From a
research point of view, if morphology scoring is moderately
inconsistent, the resulting EP score is noisier and less suited
for statistical modeling. If scoring is highly inconsistent, one
can wonder if morphology is a sensitive and well-defined
concept. Current studies on EPs use at most a few 100
EPTS, which can be annotated manually (Leocani et al.,
2006; Invernizzi et al., 2011; Schlaeger et al., 2016; London
et al., 2017). But what if the number of EPs is orders
of magnitude larger? Letting neurologists manually annotate
the morphology of such a large number of EPs is not
practically feasible. Finally, while there is agreement that the
latency, peak-to-peak amplitude, and morphology of an EP
are of clinical interest, their precise usefulness is still under
debate. An automated and standardized score for morphological
abnormality will greatly aid investigating the clinical usefulness
of EP morphology.

In this work, five neurologists independently assign a binary
label on the morphological abnormality of 1,000 motor EPTS
(MEPTS). We investigate to what extent their labels agree.
We use a machine learning approach to show that a single
variable extracted from the EPTS, namely approximate entropy
(ApEn), is able to reproduce the morphology classification to
a high degree of fidelity. A graphical explanation of what
ApEn measures in MEPTS is provided. Finally, we perform
an exploratory analysis on its possible clinical usefulness on a
real-world dataset.

2. MATERIALS AND METHODS

2.1. Description of the Dataset
The dataset used in this work is a subset of a retrospective dataset
of full MEPTS that were collected in standard longitudinal
follow-up at the Revalidatie en MS Centrum (RMSC) in Pelt,
Belgium. A visit consists of two hands [M. abductor pollicis brevis
(APB)] and 2 feet [M. abductor hallucis (AH)] measurements.
An example of the set of measurements made in a single visit is
shown in Figure 1. From this dataset we selected 225 visits (each
containing 4 MEPs) at random. Table 1 shows the descriptive
statistics of the cohort used in this study.

This study was approved by the ethical commission
of the University of Hasselt (CME2017/729). No consent
to participate/publish was necessary since this study uses
retrospective data only.
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FIGURE 1 | Example of the motor evoked potential time series recorded at a single hospital visit. The labels on the plot indicate the limb and the side on which the

measurement was performed, M. Abductor Pollicis Brevis (APB) for the hands, M. Abductor Hallucis (AH) for the feet. The sides are indicated using R and L for right

and left respectively. The time series for the same limb are the result of different magnetic excitation strengths. Adapted from Yperman et al. (2020).

TABLE 1 | Summary of the descriptive statistics of the cohort used in this study.

MS type No. of patients Age (SD) EDSS (SD) F/M No. of visits

Unknown 29 44 (15) 2.8 (2.0) 21/8 34

PPMS 6 57 (7) 3.7 (1.3) 4/2 7

RRMS 107 43 (11) 2.4 (1.3) 82/25 164

SPMS 13 54 (8) 4.7 (1.6) 7/6 20

All 155 45 (12) 2.8 (1.6) 114/41 225

PPMS, Primary progressive MS; RRMS, Relapsing-remitting MS; SPMS, Secondary

progressive MS.

2.2. Measurement Protocol
Motor evoked potentials were recorded from the abductor
pollicis brevis and abductor hallucis muscles bilaterally. Magnetic
stimuli were delivered to the hand and leg areas of the motor

cortex with a Magstim 2002 device (The Magstim Company Ltd.,
Whitland, UK) via a round coil with an inner diameter of 9
cm with maximal output of the stimulator of 2.2 T. The signal
is recorded for 100 ms. The acquisition rate is 19.2 or 20 kHz.
The 20 kHz signals are down-sampled to 19.2 kHz. Recording is
done with two different machines. Signals from one machine are
filtered between 0.6 Hz and 10 kHz, while the other machine has a
high-pass filter of 100Hz.We discuss the impact of this difference
in machine setting in section 7 of the Supplementary Materials.
The measurements are not averaged across multiple trials.

The measurements are performed in a standardized way to
minimize variations due to factors such as coil orientation,
stimulus intensity etc. For the hands, electrodes are placed at
three places: on top of the hand (ground), the APB muscle, and
the proximal phalanx of the thumb. The first excitation is at 45%
of themaximal stimulator output. New stimuli are presented with
an increase of 5% points.
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For the feet, electrodes are placed at three places: on top of the
foot (ground), the big toe, and the AHmuscle. The first excitation
is at 50% of the maximal stimulater output. New stimuli are
presented with an increase of 5% points.

The measurement ends if the amplitude stops increasing for
stronger stimuli, as judged from the lack of increase in amplitude
of a few consecutive single MEPs. If the patient is expected to
have a large maximal amplitude (much larger than 1 millivolt),
one stops the measurements if an amplitude of 1 millivolt is
reached. If the signal is of bad quality, as judged by the nurse,
it is discarded.

An example of all the EPTS of the MEP for a single visit is
shown in Figure 1. For each limb, each excitation strength gives
one EPTS. After discussion with the neurologists we decided to
use only the EPTS with the maximal peak-to-peak amplitude, as
this is likely to be the most informative measurement.

2.3. Consensus Building on the Clinical
Definition of MEPTS Morphology:
Workshops
Two workshops were organized via teleconference. Five
MS neurologists from 4 different hospitals across Belgium
participated. All neurologists had extensive expertise in using
EPs in their clinic. The goal of the two workshops was to come to
an agreement on how to label the morphology of a MEP. More
specifically, each limb should be labeled as having either normal
or abnormal morphology, or as “bad data.” If a time series is
labeled as “bad data” by at least one of the neurologists, e.g., when
a time series contains measurement artifacts, it is discarded.

A few randomly sampled visits were discussed in the first
teleconference. Afterwards, 50 visits were labeled independently
by each neurologist. In the second teleconference, visits with
the most disagreement in assigned label were discussed, to clear
up any possible differences in interpretation. After the second
teleconference, 225 new visits were labeled. Twenty-five visits are
labeled twice, to measure intra-rater variability.

The EPTS for all excitation strengths are visible when
rating. However, only the EPTS with the maximal peak-to-
peak amplitude is rated. By showing all EPTS, the rater
can take the excitation strength into account for judging
morphological abnormality.

2.4. Online Labeling and Definition of
Ground Truths
Labeling was done using a web-based labeling tool (see the
Supplementary Materials for details). Tools were provided to
pan, zoom, and hide/show individual time series.

To evaluate the performance of any rater, be it an algorithm or
a person, ground truth labels are required. For the morphology
of a MEPTS, there is no objective ground truth (in contrast to,
e.g., detecting the presence of a tumor on an MRI, which can be
confirmed with a biopsy). Therefore, we use the majority vote of
the annotators. Since there are 5 votes, there is a consensus for
each MEPTS. We will refer to the ground truth labels obtained
in this way as the 5-vote labels. The labels of the individual
neurologists are referred to as the 1-vote labels.

FIGURE 2 | Illustration of the various voting schemes when calculating the

accuracy. The 5-vote indicates how one would evaluate the model on the

majority vote of the five neurologists (N1 to N5). The 3-vote illustrates how one

would evaluate N5 (and similarly for N1-4). The 1-vote illustrates how one

would evaluate the model on the labels of just one neurologist (in this case N5).

When evaluating the performance of the neurologists,
however, we cannot use the 5-vote labels, as the label of
the neurologist that is to be evaluated is included in that
vote, skewing any performance metric in their favor. Just
omitting their annotations isn’t ideal either, as with four labels
some MEPTS don’t have a consensus (two against two votes).
Therefore, we opt for having 4 sets of ground truths per
neurologist, created by leaving out each of the remaining four
neurologists once. These ground truth labels will be referred to
as the 3-vote labels. Any performance metric based on the 3-vote
labels is the average across the four sets. This is illustrated for
neurologist 5 (N5) in Figure 2.

As the 3-vote labels are less stable than those of the 5-vote,
we evaluate our model on each of these 20 (5 neurologists × 4
sets of ground truths) sets as well, and average any performance
metric across them. An illustration of how the 5-, 3-, and 1-vote
are calculated for the accuracy measure is shown in Figure 2.

2.5. Data Analysis
5,943 features from different time series analysis methodologies
are extracted from the MEPTS with the highly comparative time-
series analysis (HCTSA) package (Fulcher et al., 2013; Fulcher
and Jones, 2017). A wide variety of features is calculated in
HCTSA, ranging from simple ones such as the mean of the
time series, to more complex ones such as the average error
of an autoregressive model that predicts the next point in the
time series. Details of the HCTSA computation are the same as
described in Yperman et al. (2020).

The dataset is divided into a training and test set, 50% train
and 50% test, for which we ensure that there is no overlap in
the patients. First of all, we want to find a single time series
feature that can be used as a proxy for the morphology of the
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time series. Our goal is not somuch tomaximize the classification
performance of our model, but rather to find an interpretable
way of automating the labeling process on the level of the
average neurologist. To do this, we fit a one-dimensional logistic
regression model to each of the 5,943 time series features. This
is done on the labels of each individual neurologist separately (1-
vote).We use the 1-vote labels instead of the 5-vote labels to avoid
the thresholding problem, which is discussed in further detail
in section 3.4. We use one-dimensional logistic regression as it
allows for an easy interpretation of the result, since one simply
determines a threshold value of a one-dimensional statistic. Using
3-fold cross-validation on the training set we rank all features by
their average AUROC score (Area Under the Receiver Operating
Characteristics curve), usually referred to as just AUC in the
literature. We compare the resulting top 10 features of each
neurologist to find any overlap between them. A common feature
is picked to use as a proxy for the morphology. To evaluate the
performance of said feature, we train a logistic regression model
on only this feature, using the 5-vote and 3-vote labels as targets.
For the performance metrics that require a binary label, we
choose the threshold where the true positive rate minus the false
positive rate is maximal for the complete training set (a.k.a. the
Youden index method). Finally, we measure the performance of
the model on the test set.

The code that implements this analysis, as well as the dataset,
has been made available at https://github.com/JanYperman/
deciphering-morphology.

2.6. Performance Metrics
To evaluate the inter- and intrarater reliability of the labeling
process we calculate both the agreement fractions and the
Cohen’s Kappa coefficients (κ) (Cohen, 1960). The former
indicates the fraction of time series for which the neurologists
on average agree. As this metric is greatly influenced by class
imbalance, we also calculated the Cohen’s κ . The Cohen’s κ

corrects for this class imbalance, and is influenced equally by
the agreement errors in both classes. Cohen’s κ ranges from −1
to 1, with 1 being perfect agreement. If there is no agreement
among the raters other than what would be expected by chance
κ = 0. If agreement is worse than random κ < 0. Both the
agreement fraction and the Cohen’s κ for the inter-rater reliability
are evaluated pairwise between the neurologists, meaning each
of them is compared to the other four for a total of 20 inter-
rater reliability scores. For the final result we take the average
of these scores. The intra-rater reliability is evaluated on the 100
timeseries that were labeled twice by the experts, as discussed in
section 2.1.

Performance of the model on the test set is evaluated using
several classification performance metrics. Those without a
choice of threshold: AUC and average precision. Those with a
choice of threshold: F1-score, accuracy, precision, recall, and
Cohen’s κ . The F1-score is the harmonic mean of the precision
and the recall: F1 = 2 (precision × recall)/(precision + recall).
For the model we compute these for both the 5-vote labels and
the average across the 3-vote label sets. For the neurologists, we
compute these measures only across the 3-vote label sets, as the
5-vote labels results would be skewed, as discussed in section 2.4.

TABLE 2 | The results of the inter- and intra-rater scores.

Agreement fraction Cohen’s kappa

N1 0.85 (0.96) 0.64 (0.90)

N2 0.85 (0.90) 0.63 (0.76)

N3 0.82 (0.93) 0.59 (0.85)

N4 0.80 (0.91) 0.48 (0.67)

N5 0.74 (0.78) 0.45 (0.57)

Average 0.81 (0.90) 0.56 (0.75)

The inter-rater score is the average of the neurologist’s agreement with the others, as

defined in section 3.1. The intra-rater score is shown in brackets. Both the agreement

fraction and the Cohen’s kappa scores are shown.

3. RESULTS AND DISCUSSION

3.1. Inter- and Intra-Rater Agreement
Between the Neurologists
In total 3.6% of the MEPTS are discarded because at least one
neurologist labeled them to be bad data. Around 74% is labeled
as normal, so there is a class imbalance. The inter- and intra-rater
scores are summarized in Table 2. We show both the agreement
fraction and the Cohen’s kappa coefficient.

We find there is good agreement between the neurologists.
The average inter-rater (81%) and intra-rater (90%) agreement
fractions are high. A judgment on the quality of the obtained
Cohen’s κ score is by definition subjective. Following the (often
used) labeling from Landis and Koch (1977) (<0: Poor, 0–0.2:
slight, 0.21–0.4: fair, 0.41–0.6: moderate, 0.61–0.8: substantial,
0.81–1.0: almost perfect), the inter-rater Cohen’s κ of 0.56 is
a moderate agreement level, and the intra-rater Cohen’s κ of
0.75 is a substantial agreement level. However, any differences
in labeling can be mostly attributed to the individual choice of
threshold, which we discuss in detail in section 3.4. Therefore, we
conclude that morphological abnormality is consistently rated.
The obtained labels can therefore be used to create ground-truth
datasets, which are the basis for automating the morphology
extraction fromMEPTS.

3.2. Selected Feature: Approximate
Entropy, a Measure for Time Series
Regularity
To select the feature that can serve as a proxy for morphology,
we inspect the top 10s of the best performing features for the
individual neurologists’ classifications (1-votes). Approximate
entropy (ApEn) occurs in the top 10 of each individual
neurologist, with an average AUC of 0.92. This makes it
a prime candidate for it to be used as a proxy for the
experts’ interpretation of the morphology. ApEn was originally
introduced to quantify the regularity of a time series (Pincus and
Goldberger, 1994). It is a dimensionless quantity which, in the
case of a MEP, basically measures the strength and duration of its
fluctuations. The interpretation of ApEn for MEPTS is discussed
in section 3.5. The fact that it independently occurs in the top
10 of each expert corroborates the conclusion from the previous
section that morphology is a consistently rated quantity. For a
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TABLE 3 | Summary of all performance metrics.

Model [5-vote]

(std)

Model [3-vote]

(std)

Neurologists

[3-vote] (std)

AUC 0.92 (0.01) 0.92 (0.01) N/A

AP 0.85 (0.01) 0.82 (0.02) N/A

F1 0.81 (0.01) 0.77 (0.02) 0.71 (0.08)

Accuracy 0.89 (0.01) 0.87 (0.02) 0.82 (0.05)

Precision 0.84 (0.01) 0.81 (0.03) 0.76 (0.17)

Recall 0.78 (0.02) 0.74 (0.05) 0.75 (0.17)

Cohen 0.73 (0.02) 0.68 (0.03) 0.60 (0.11)

The values shown in brackets are the standard deviations of the average performance.

Recall that the performance of each neurologist is averaged across 4 3-vote ground truth

sets. For the 5-vote labels, we subsampled the test set 5 times (at 80%) to obtain the

value for the standard deviation. Note that for these metrics the abnormal class was used

as the positive label. AUC, Area Under the receiver operating characteristic Curve; AP,

Average Precision.

more detailed discussion of the top 10s, we refer the reader to
section 1 of the Supplementary Materials.

3.3. Performance of Approximate Entropy
From a visual inspection of the performance on the 1-vote labels
we have chosen ApEn as the morphology feature. To test whether
it indeed works well, we evaluate its performance on the 3-
vote and 5-vote labels, on an independent test set, using several
metrics. These results are shown in Table 3. The performance of
the logistic regression model with ApEn as its only input either
exceeds or matches that of the average neurologist on unseen
MEPTS, indicating that ApEn can be used effectively for scoring
morphological abnormality. For the metrics that required binary
labels, the approximate entropy threshold was chosen to be 0.545.
For the performances of the model for each of the machines
separately to study the impact of the filter, we refer the reader
to section 7 of the Supplementary Materials.

3.4. Individual Neurologists Differ in
ApEn Threshold
Neurologists were asked to classify each MEPTS into two classes
(normal vs. abnormal). However, the morphological abnormality
of a MEPTS is not a binary characteristic, but a continuous score,
revealing different degrees of morphological abnormality. Our
dichotomization makes each neurologist choose a threshold at
which the class goes from normal to abnormal. Because in our
case the choice of this threshold is rather arbitrary, it will almost
inevitably differ among neurologists. In this section, we show
how a significant portion of the disagreement can be attributed
to the choice of threshold.

As discussed above, we have fitted a logistic regression model
for each neurologist separately to find the best possible proxy
for morphology, resulting in five separate models. All these
models worked very well when using the approximate entropy
feature, which indicates that all the experts were annotating
the same feature of the MEPTS, and that they differ mostly in
their choice of threshold. We can illustrate this thresholding
issue by estimating the threshold each neurologist has chosen

A B C

FIGURE 3 | Distribution of the labels (normal and abnormal) as a function of

approximate entropy, as well as the distribution of MEPTS (motor evoked

potential time series) with the most disagreement among the neurologists (i.e.,

those where there is a 2 against 3 vote). The distributions are made using a

Gaussian kernel of width 0.05. To illustrate what various values of approximate

entropy look like, a few samples are shown, taken from the distribution at the

locations indicated by the A, B, and C labels (approximate entropy equal to

0.2, 0.5, and 0.9, respectively). The individual thresholds of the experts are

also shown to illustrate the thresholding problem.

on the approximate entropy scale. In the one-dimensional case,
fitting a logistic regression model boils down to choosing a
threshold above which everything is classified as abnormal, and
everything below it is classified as normal. These thresholds can
be interpreted as the thresholds of each of the neurologists.
They are illustrated in Figure 3, from which it can be seen
that they center around ∼0.5, though there are clearly some
differences. For example, N5 is quicker to label a time series as
abnormal compared to the others, while N1 and N2 have very
similar thresholds.

The distributions of the ApEn values for the normal and
abnormal class are also shown in Figure 3. The two classes clearly
lie on different sides. From the distribution of samples with
a 2 against 3 vote, we see an increased disagreement rate of
the classification of the neurologists for MEPTS with moderate
ApEn. The individual thresholds again suggest that the increased
disagreement rate of MEPTS with moderate ApEn is not so
much due to a difference in interpretation of morphology, but
rather an unfortunate side-effect of dichotomizing an inherently
continuous measure.

As our model outputs a continuous value, we can visualize its
performance when varying the threshold for normal/abnormal.
This is illustrated in Figure 4, where we show the precision-
recall curve and the receiver operating curve. On top of these
curves we plot the performances of the individual neurologists,
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FIGURE 4 | The receiver operating curve (left) and the precision-recall curve (right). We also plot the performance of the neurologists and the model as measured on

the 3-vote ground truths labels. TPR, True Positive Rate; FPR, False Positive Rate.

as determined by their 3-vote score. These appear as points
since the neurologists only assigned binary labels (i.e., they have
a single threshold). We then see that these performances lie
mostly on top of the model curve, which demonstrates once
more the threshold assignment problem: varying the threshold
of the model (i.e., traversing the curve) would allow us to mimic
the performance of each of the neurologists. Also shown are the
performances of the model on 5 of the 20 3-vote sets (one for
each neurologist). By comparing the 3-vote scores, we see that the
performance of our model is comparable to that of the experts.

3.5. Approximate Entropy: Interpretation of
What It Measures
In this section, we explain and visualize what ApEn
measures in a MEPTS. Technical details are given in
the Supplementary Materials. A large ApEn (abnormal
morphology) is found if the fluctuations have a steep slope,
and/or if the fluctuations have a long duration. In terms used by
neurologists: ApEn measures the duration of polyphasia, and the
speed and height of the polyphasia (strength of dispersion).

This claim can be visually understood by plotting the MEPs
and showing the associated ApEn contributions (see Figure 5).
In this figure, two MEPs are compared. Each (sampled) point
in the MEPTS leads to a contribution to the final ApEn value,
which is found by averaging the individual contributions of all
the points. To help with visual interpretation, a running average
(red line) of the ApEn contributions is shown. Figure 5 contains
a MEP with very low and very high ApEn. When the MEP is
(almost) constant, the ApEn contribution is (almost) zero. When
the MEP start moving up and down (i.e., fluctuating), the ApEn
contribution becomes significantly higher than zero. To be more
precise: a significant contribution is observed at the positions
where the time series has a steep slope, as can be seen on the
right side of Figure 5. When the movement is slow, the slope
is shallow, and the ApEn contribution is low, as can be seen

on the left side of Figure 5. A more detailed explanation, with
more examples and details on how to implement the approximate
entropy in practice, is provided in the Supplementary Materials.

One might be tempted to use simpler metrics than ApEn to
quantify the abnormality of the morphology. A different metric
could be counting the number of peaks (or, equivalently, the
number of zero-line crossings) to count the number of phases
(Nguyen et al., 2019). This works less well: the number of peaks
feature has AUC = 0.76 on average on the 1-votes of the training
set, compared to AUC = 0.92 for ApEn.

3.6. Approximate Entropy: Exploratory
Clinical Implications
Given this new continuous score for the morphological
abnormality of a MEPTS, we can now use it to annotate larger
datasets without having to depend on neurologists to do this
manually. To demonstrate this, we annotated a larger dataset
of MEPs we have available from the RMSC, and explore some
clinically relevant questions. The dataset is the same as in
Yperman et al. (2020).

3.6.1. Relation With Latency and Peak-to-Peak

Amplitude
We investigate how the ApEn feature is related to the latency and
the peak-to-peak amplitude. Note that low ApEn means normal
morphology. Several scatter plots are shown in Figure 6, where
we show separate plots for hands (AH) and feet (APB). For each
of the scatter plots we also show the R2 measure and the mutual
information (Cover and Thomas, 1991). We include the R2

measure mainly because it is often used in the literature, but we
note here that it is of limited use in this case since not all relations
are well-approximated by a linear dependence. Therefore, we
also show the mutual information, which takes into account
non-linear correlation as well. Intuitively, it measures how much
knowing one of the variables reduces uncertainty about the other.
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FIGURE 5 | Example of two MEPTS (motor evoked potential time series) with low (left) and high (right) ApEn (approximate entropy). The time series are shown in the

upper figures, while the ApEn contributions are shown in the lower figures. Each point of the time series has a corresponding ApEn contribution. A moving average of

11 points is also shown (red line). The final ApEn value is the average of all contributions. Note that the final ApEn value is normalized between 0 and 1.

It is equal to zero if two variables are independent, and higher
values mean higher dependency.

There is no particularly strong relation between ApEn and
latency. Both the R2 and the mutual information values are low
in this case. Higher latencies are slightly correlated with higher
ApEn, as evidenced by a linear fit which has a positive slope which
differs from zero in a statistically significant manner. Generally
speaking, abnormal morphology (which we quantify here using
the approximate entropy) is an indication of demyelination,
which also leads to higher latencies. Demyelination without
changes to the morphology does occur, however, which explains
the lack of a strong correlation. The observed small positive
relation between ApEn and latency is therefore expected.

For the peak-to-peak amplitudes the correlation is higher
than for the latencies, though still small. For both APB and
AH, high ApEn is related to low peak-to-peak amplitude, and
low ApEn is related to high peak-to-peak amplitude. This is
also the expected behavior, as abnormal morphology indicates
demyelination, which causes the motor response to be spread
out over a longer time. This then leads to smaller amplitudes.
The peak-to-peak amplitude is, however, also affected by purely
axonal damage, which is separate from the demyelination and
which does not affect the morphology as much. This agrees with
the observed spread of the values in the plots. The extreme cases
with values of the approximate entropy close to 0 and 1 aremostly
artifacts, and are discussed in further detail in section 2 of the
Supplementary Materials.

Finally, we note that a linear model that tries to estimate the
approximate entropy using both the latency and the peak-to-peak

amplitude obtains an R2 score of 0.4 and 0.31 for the legs and the
arms, respectively.

These results show that the value of the ApEn is not
fully determined by the latency and peak-to-peak values. It
therefore contains information that is not captured by these
two variables, indicating that it could be useful to include for
clinical follow-up. ApEn could, e.g., be used as a variable in
statistical models or for visualizing the evolution of a patient.
Whether ApEn contains clinically relevant information that is
not captured by the the latency and peak-to-peak amplitude
requires further investigation.

3.6.2. Relation With Disability
The relation of ApEn with disability can be investigated by
using the expanded disability status scale (EDSS) (Kurtzke, 1983).
A higher EDSS value indicates more disability. If an EDSS
measurement is available one year before or after the MEP visit,
the closest one is chosen as the EDSS of that visit. If none is
available, the visit is not included in the analysis. In Figure 7, we
show the violin plots to show the relation between the EDSS value
and the ApEn for both the hands (APB) and the feet (AH). These
plots show the mean and extremes of the samples (indicated by
horizontal bars), as well as a rotated density plot showing the
distribution of the samples.

There is a positive correlation between the EDSS and the
ApEn, most clearly visible in the AH distributions. This shows
that abnormal morphology is related to a higher amount of
disability. We will discuss the results for the feet (AH) first, as
these are the most sensitive for determining the EDSS value. This
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FIGURE 6 | Scatter plots of the ApEn (approximate entropy) feature with the latency or peak-to-peak amplitude. We show separate plots for the hands (APB) and feet

(AH) as the distributions are quite disparate. The titles of the plots indicate the muscles, as well as the R2 score and the mutual information (MI). A subset (2,000

randomly selected samples) of the complete dataset was used for visual clarity.

FIGURE 7 | Violin plots to show the correlation between EDSS (expanded disability status scale) and the approximate entropy. We show separate plots for the hands

(APB) and feet (AH) as the distributions are quite disparate. Time series with EDSS > 7.5 have been discarded as there are too few to be statistically relevant.

is because starting at an EDSS of 4, the tests only include the
patient’s ability to walk.

The ApEn distributions for AH show a transition
toward higher values at EDSS = 3, which in a clinical
practice is considered the onset of significant motor
disability. Up to EDSS 4, the tests include evaluations of
various parts of the central nervous system, so knowing

the morphology of just the leg muscles will not contain
enough information to determine the EDSS. This explains
the spread of the distribution for those values. Starting
at EDSS 4, however, the EDSS is based solely on the
patient’s ability to walk which is reflected in the fact that
the distributions become more localized to high ApEn for higher
EDSS values.
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FIGURE 8 | The distributions of the approximate entropy of the MEPs (motor evoked potentials) of the group of patients that have worsened after 2 years, and those

that did not. Worsening is defined as disability progression as measured from the EDSS (expanded disability status scale), as discussed in section 3.6.3. This is done

on a larger dataset (5,004 time series per limb) than the dataset that was rated. The distributions are made using a Gaussian kernel of width 0.05.

For APB (hands), there is little variation of the ApEn
distribution between the EDSS values of 0 and 3. The
distributions are more localized for these values than for those
of 4 and up, as the arms are not directly considered for higher
EDSS values. There is a slight increase of the average ApEn value
between the EDSS values of 4–6. While low ApEn values are still
the most common, there are now a significant number of high
ApEn measurements (as can be seen from the density plots).
Finally, for EDSS values higher than 6 we see a clear broadening
of the distribution toward higher ApEn values, which translates
into a higher average ApEn for EDSS > 6.

Comparing APB with AH, we note that the measurements
performed on AH have, on average, a higher approximate
entropy. This is to be expected as the asynchrony of the
dispersed corticospinal volleys is accentuated by conduction
in the peripheral nerve (Rossini et al., 2015). This effect is
proportionate to the length of the peripheral nerve, which is
higher for the AH muscle.

3.6.3. Case Study: Predictive Ability of

Approximate Entropy
In this section, we use the MEPs of patients that have 2-year
follow-up data available (2,504 visits in total) to predict disability
progression after 2 years using approximate entropy. TheseMEPs
were also taken from the full retrospective dataset obtained from
the RMSC, as in Yperman et al. (2020). A patient is said to
have progressed if EDSST1 − EDSST0 >= 1.0 for EDSST0 ≤

5.5, or if EDSST1 − EDSST0 >= 0.5 for EDSST0 > 5.5, as
used by e.g., Goodkin et al. (1991). T0 is the time of the first
measurement, and T1 is the time of the EDSS measurement
between 1.5 and 3 years which is closest to the 2 year mark. An
extensive investigation of this task for the MEP on this dataset
was performed in Yperman et al. (2020).

In Figure 8, we show the distributions of ApEn of both
worsening and non-worsening patients. From this we see that
the ApEn distributions in the hands (APB) are very similar.
For the measurements made in the feet (AH), there is a clear
difference between the two distributions: the patient population
that is going to worsen is more skewed toward high ApEn

(i.e., abnormal morphology). This shows that the morphology
contains useful information regarding the task of predicting
disability progression over 2 year’s time.

A model based solely on the ApEn feature achieves an AUC of
0.62 on the prediction task. For comparison, the latency feature,
found to have prognostic value in several works, obtains an AUC
score of 0.67. We also tested whether adding the ApEn to a
baseline predictionmodel based on theMEP latencies, EDSS, and
age (this baseline model was used in Yperman et al., 2020) leads
to improved prediction performance. We found, however, that
this does not improve the performance for this task. The reason
could be that the information in the ApEn is fully contained
in the combination of MEP latencies, age, and EDSS. Another
reason could be that the dataset is not large enough to pick up
the additional information without overfitting. It could also be a
combination of these two reasons. A largerMEP dataset would be
required to obtain a clearer picture. Another interesting research
direction is to look at the full longitudinal trajectories of MEP
measurements to predict disability progression (De Brouwer
et al., 2019), and investigate whether ApEn adds predictive
performance for such an analysis.

4. CONCLUSION

Our results show that the approximate entropy feature (Pincus
and Goldberger, 1994) can serve as a continuous score of
the morphological abnormality of MEPs, removing the need
for manual annotation by experts. Furthermore, it contains
information not captured in the latency and peak-to-peak
amplitude of the MEP, which are the variables most commonly
used in statistical models. Having a valid proxy for morphological
abnormality of MEPs has a number of advantages.
Scalability: Seeing as there is no longer a need for manual
annotations, it is much easier to use the morphology feature
in the analysis of much larger datasets. Annotating the 1,000
MEPTS used in this study took an average of 4 h when done
manually. This quickly becomes a bottleneck for any data analysis
pipeline. The analysis presented in section 3.6.3, which is based
on data from a single center, would have taken upwards of 40 h
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to annotate manually. This becomes completely unfeasible when
looking at multi-center datasets.
Continuous: ApEn is a continuous feature, with values ranging
from 0 to 1 when normalized. This allows for a more nuanced
interpretation, as opposed to the artificial dichotomization which
often occurs due to practicality concerns. For example, prediction
models would most likely benefit from being able to leverage this
additional information.
Reproducibility: We see from our results that while the experts
agree on the concept of morphology, there are still discrepancies
in their choice of threshold of what constitutes a normal
or an abnormal morphology. Datasets annotated by different
experts would therefore be difficult to compare directly. Having
a practical definition for morphological abnormality removes
these inconsistencies.
Predictive value: We have shown in a cursory study that
approximate entropy may be used as a predictor for MS disability
progression. Whether it adds predictive power on top of other
biomarkers (EP latency, MRI markers, neurofilament light chain,
. . . ) can now be investigated.
Investigating clinical value: We believe our results can support
efforts to formulate recommendations and guidelines for the
clinical use of MEPs in diagnosing and monitoring PwMS. For
example, our morphology variable can be used to standardize
EP morphologies from different measuring devices (or different
centers). This standardized variable can then be used for clinical
follow-up. Together with clinical findings and MR imaging, EP
data may help us rationalize and optimize resources used in
PwMS diagnosis and follow-up.
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